Science.gov

Sample records for abnormal default-mode network

  1. Abnormal Default-Mode Network Homogeneity in First-Episode, Drug-Naive Major Depressive Disorder

    PubMed Central

    Guo, Wenbin; Liu, Feng; Zhang, Jian; Zhang, Zhikun; Yu, Liuyu; Liu, Jianrong; Chen, Huafu; Xiao, Changqing

    2014-01-01

    Background Default mode network (DMN) is one of the most commonly recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD is poorly understood. As such, this study was conducted to determine whether or not an abnormal network homogeneity (NH) of DMN is observed in patients with first-episode and drug-naive MDD. Methods Twenty-four first-episode drug-naive patients with MDD and twenty-four healthy control subjects participated in the study. NH and independent component analysis (ICA) methods were used to analyze data. Results Depressed patients exhibited a significantly increased NH in the left dorsal medial prefrontal cortex (MPFC) and decreased NH in the right inferior temporal gyrus (ITG) compared with the healthy control subjects. Receiver operating characteristic curves (ROC) were analyzed and results revealed that the NH values of MPFC and ITG could be applied as candidate markers with relatively high sensitivity and specificity to distinguish patients from healthy control subjects. No correlation was observed between the NH values of the two regions and clinical variables. Conclusions Our findings suggested that an abnormal DMN homogeneity could be observed in MDD, which highlight the importance of the DMN in the pathophysiology of MDD. PMID:24609111

  2. Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest.

    PubMed

    Guo, Wenbin; Yao, Dapeng; Jiang, Jiajing; Su, Qinji; Zhang, Zhikun; Zhang, Jian; Yu, Liuyu; Xiao, Changqing

    2014-03-03

    Dysconnectivity hypothesis posits that schizophrenia relates to abnormal resting-state connectivity within the default-mode network (DMN) and this aberrant connectivity is considered as contribution of difficulties in self-referential and introspective processing. However, little is known about the alterations of the network homogeneity (NH) of the DMN in schizophrenia. In the present study, we used an automatic NH method to investigate the NH of the DMN in schizophrenia patients at rest. Forty-nine first-episode, drug-naive schizophrenia patients and 50 age-, gender-, and education-matched healthy controls underwent a resting-state functional magnetic resonance imaging (fMRI). An automated NH approach was used to analyze the data. Patients exhibited lower NH than controls in the left medial prefrontal cortex (MPFC) and the right middle temporal gyrus (MTG). Significantly higher NH values in the left posterior cingulate cortex (PCC) and the right cerebellum Crus I were found in the patient group than in the control group. No significant correlation was found between abnormal NH values and Positive and Negative Symptom Scale (PANSS) scores, duration of untreated psychosis (DUP), age or years of education in the patient group. Our findings suggest that abnormal NH of the DMN exists in first-episode, drug-naive schizophrenia and further highlight the importance of the DMN in the pathophysiology of schizophrenia. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    PubMed

    Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  4. Abnormal Coupling Between Default Mode Network and Delta and Beta Band Brain Electric Activity in Psychotic Patients.

    PubMed

    Baenninger, Anja; Palzes, Vanessa A; Roach, Brian J; Mathalon, Daniel H; Ford, Judith M; Koenig, Thomas

    2017-02-01

    Common-phase synchronization of neuronal oscillations is a mechanism by which distributed brain regions can be integrated into transiently stable networks. Based on the hypothesis that schizophrenia is characterized by deficits in functional integration within neuronal networks, this study aimed to explore whether psychotic patients exhibit differences in brain regions involved in integrative mechanisms. We report an electroencephalography (EEG)-informed functional magnetic resonance imaging analysis of eyes-open resting-state data collected from patients and healthy controls at two study sites. Global field synchronization (GFS) was chosen as an EEG measure indicating common-phase synchronization across electrodes. Several brain clusters appeared to be coupled to GFS differently in patients and controls. Activation in brain areas belonging to the default mode network was negatively associated to GFS delta (1-3.5 Hz) and positively to GFS beta (13-30 Hz) bands in patients, whereas controls showed an opposite pattern for both GFS frequency bands in those regions; activation in the extrastriate visual cortex was inversely related to GFS alpha1 (8.5-10.5 Hz) band in healthy controls, while patients had a tendency toward a positive relationship. Taken together, the GFS measure might be useful for detecting additional aspects of deficient functional network integration in psychosis.

  5. Modulating the default mode network using hypnosis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Halligan, Peter W

    2012-01-01

    Debate regarding the neural basis of the hypnotic state continues, but a recent hypothesis suggests that it may produce alterations in the default mode network (DMN). DMN describes a network of brain regions more active during low-demand compared to high-demand task conditions and has been linked to processes such as task-independent thinking, episodic memory, semantic processing, and self-awareness. However, the experiential and cognitive correlates of DMN remain difficult to investigate directly. Using hypnosis as a means of altering the resting ("default") state in conjunction with subjective measures and brain imaging, the authors found that the state of attentional absorption following a hypnotic induction was associated with reduced activity in DMN and increased activity in prefrontal attentional systems, under invariant conditions of passive visual stimulation. The findings that hypnosis and spontaneous conceptual thought at rest were subjectively and neurally distinctive are also relevant to understanding hypnosis itself.

  6. Default mode network and frontolimbic gray matter abnormalities in patients with borderline personality disorder: A voxel-based meta-analysis

    PubMed Central

    Yang, Xun; Hu, Liyuan; Zeng, Jianguang; Tan, Ying; Cheng, Bochao

    2016-01-01

    Specific frontolimbic abnormalities are hypothesized to underlie the etiology of borderline personality disorder (BPD). However, findings from neuroimaging studies were inconsistent. In the current study, we aimed to provide a complete overview of cerebral microstructural alterations in gray matter (GM) of BPD patients. A total of 11 studies were enrolled, comprising 275 BPD patients and 290 healthy controls (HCs). A meta-analysis was conduct to quantitatively estimate regional GM abnormalities in BPD patients using the seed-based d mapping (SDM). Meta-regression was also conducted. Compared with HCs, the BPD patients exhibited increased GM mainly in bilateral supplementary motor area extending to right posterior cingulated cortex (PCC) and bilateral primary motor cortex, right middle frontal gyrus (MFG), and the bilateral precuneus extending to bilateral PCC. Decreased GM was identified in bilateral middle temporal gyri, right inferior frontal gyrus extending to right insular, left hippocampus and left superior frontal gyrus extending to left medial orbitofrontal cortex. The mean age of BPD patients were found nagativly associated with GM alterations in right MFG. Our findings suggested that BPD patients have significantly GM abnormalities in the default mode network and frontolimbic circuit. Our results provided further evidences in elucidating the underline neural mechanisms of BPD. PMID:27694955

  7. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments.

  8. Connectivity gradients between the default mode and attention control networks.

    PubMed

    Anderson, Jeffrey S; Ferguson, Michael A; Lopez-Larson, Melissa; Yurgelun-Todd, Deborah

    2011-01-01

    Functional imaging studies have shown reduced activity within the default mode network during attention-demanding tasks. The network circuitry underlying this suppression remains unclear. Proposed hypotheses include an attentional switch in the right anterior insula and reciprocal inhibition between the default mode and attention control networks. We analyzed resting state blood oxygen level dependent (BOLD) data from 1278 subjects from 26 sites and constructed whole-brain maps of functional connectivity between 7266 regions of interest (ROIs) covering the gray matter at ~5 mm resolution. ROIs belonging to the default mode network and attention control network were identified based on correlation to six published seed locations. Spatial heterogeneity of correlation between the default mode and attention control networks was observed, with smoothly varying gradients in every hub of both networks that ranged smoothly from weakly but significantly anticorrelated to positively correlated. Such gradients were reproduced in 3 separate groups of subjects. Anticorrelated subregions were identified in major hubs of both networks. Between-network connectivity gradients strengthen with age during late adolescence and early adulthood, with associated sharpening of the boundaries of the default mode network, integration of the insula and cingulate with frontoparietal attentional regions, and decreasing correlation between the default mode and attention control networks with age.

  9. Greater default-mode network abnormalities compared to high order visual processing systems in amnestic mild cognitive impairment: an integrated multi-modal MRI study.

    PubMed

    Sala-Llonch, Roser; Bosch, Beatriz; Arenaza-Urquijo, Eider M; Rami, Lorena; Bargalló, Núria; Junqué, Carme; Molinuevo, José-Luis; Bartrés-Faz, David

    2010-01-01

    We conducted an integrated multi-modal magnetic resonance imaging (MRI) study based on functional MRI (fMRI) data during a complex but cognitively preserved visual task in 15 amnestic mild cognitive impairment (a-MCI) patients and 15 Healthy Elders (HE). Independent Component Analysis of fMRI data identified a functional network containing an Activation Task Related Pattern (ATRP), including regions of the dorsal and ventral visual stream, and a Deactivation Task Related Pattern network (DTRP), with high spatial correspondence with the default-mode network (DMN). Gray matter (GM) volumes of the underlying ATRP and DTRP cortical areas were measured, and probabilistic tractography (based on diffusion MRI) identified fiber pathways within each functional network. For the ATRP network, a-MCI patients exhibited increased fMRI responses in inferior-ventral visual areas, possibly reflecting compensatory activations for more compromised dorsal regions. However, no significant GM or white matter group differences were observed within the ATRP network. For the DTRP/DMN, a-MCI showed deactivation deficits and reduced GM volumes in the posterior cingulate/precuneus, excessive deactivations in the inferior parietal lobe, and less fiber tract integrity in the cingulate bundles. Task performance correlated with DTRP-functionality in the HE group. Besides allowing the identification of functional reorganizations in the cortical network directly processing the task-stimuli, these findings highlight the importance of conducting integrated multi-modal MRI studies in MCI based on spared cognitive domains in order to identify functional abnormalities in critical areas of the DMN and their precise anatomical substrates. These latter findings may reflect early neuroimaging biomarkers in dementia.

  10. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  11. Altered default mode network functional connectivity in schizotypal personality disorder.

    PubMed

    Zhang, Qing; Shen, Jing; Wu, Jianlin; Yu, Xiao; Lou, Wutao; Fan, Hongyu; Shi, Lin; Wang, Defeng

    2014-12-01

    The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.

  12. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura.

    PubMed

    Zhang, Jilei; Su, Jingjing; Wang, Mengxing; Zhao, Ying; Yao, Qian; Zhang, Qiting; Lu, Haifeng; Zhang, Hui; Wang, Shuo; Li, Ge-Fei; Wu, Yi-Lan; Liu, Feng-Di; Shi, Yan-Hui; Li, Jianqi; Liu, Jian-Ren; Du, Xiaoxia

    2016-12-01

    The precuneus/posterior cingulate cortex, which has been associated with pain sensitivity, plays a pivotal role in the default mode network. However, information regarding migraine-related alterations in resting-state brain functional connectivity in the default mode network and in local regional spontaneous neuronal activity is not adequate. This study used functional magnetic resonance imaging to acquire resting-state scans in 22 migraineurs without aura and in 22 healthy matched controls. Independent component analysis, a data-driven method, was used to calculate the resting-state functional connectivity of the default mode network in the patient and healthy control groups. Regional homogeneity (ReHo) was used to analyse the local features of spontaneous resting-state brain activity in the migraineurs without aura. Compared with the healthy controls, migraineurs without aura showed increased functional connectivity in the left precuneus/posterior cingulate cortex within the default mode network and significant increase in ReHo values in the bilateral precuneus/posterior cingulate cortex, left pons and trigeminal nerve entry zone. In addition, functional connectivity was decreased between the areas with abnormal ReHo (using the peaks in the precuneus/posterior cingulate cortex) and other brain areas. The abnormalities in the precuneus/posterior cingulate cortex suggest that migraineurs without aura may exhibit information transfer and multimodal integration dysfunction and that pain sensitivity and pian processing may also be affected.

  13. Rat brains also have a default mode network

    PubMed Central

    Lu, Hanbing; Zou, Qihong; Gu, Hong; Raichle, Marcus E.; Stein, Elliot A.; Yang, Yihong

    2012-01-01

    The default mode network (DMN) in humans has been suggested to support a variety of cognitive functions and has been implicated in an array of neuropsychological disorders. However, its function(s) remains poorly understood. We show that rats possess a DMN that is broadly similar to the DMNs of nonhuman primates and humans. Our data suggest that, despite the distinct evolutionary paths between rodent and primate brain, a well-organized, intrinsically coherent DMN appears to be a fundamental feature in the mammalian brain whose primary functions might be to integrate multimodal sensory and affective information to guide behavior in anticipation of changing environmental contingencies. PMID:22355129

  14. Dynamic Default Mode Network across Different Brain States

    PubMed Central

    Lin, Pan; Yang, Yong; Gao, Junfeng; De Pisapia, Nicola; Ge, Sheng; Wang, Xiang; Zuo, Chun S.; Jonathan Levitt, James; Niu, Chen

    2017-01-01

    The default mode network (DMN) is a complex dynamic network that is critical for understanding cognitive function. However, whether dynamic topological reconfiguration of the DMN occurs across different brain states, and whether this potential reorganization is associated with prior learning or experience is unclear. To better understand the temporally changing topology of the DMN, we investigated both nodal and global dynamic DMN-topology metrics across different brain states. We found that DMN topology changes over time and those different patterns are associated with different brain states. Further, the nodal and global topological organization can be rebuilt by different brain states. These results indicate that the post-task, resting-state topology of the brain network is dynamically altered as a function of immediately prior cognitive experience, and that these modulated networks are assembled in the subsequent state. Together, these findings suggest that the changing topology of the DMN may play an important role in characterizing brain states. PMID:28382944

  15. Decoupling of the brain's default mode network during deep sleep.

    PubMed

    Horovitz, Silvina G; Braun, Allen R; Carr, Walter S; Picchioni, Dante; Balkin, Thomas J; Fukunaga, Masaki; Duyn, Jeff H

    2009-07-07

    The recent discovery of a circuit of brain regions that is highly active in the absence of overt behavior has led to a quest for revealing the possible function of this so-called default-mode network (DMN). A very recent study, finding similarities in awake humans and anesthetized primates, has suggested that DMN activity might not simply reflect ongoing conscious mentation but rather a more general form of network dynamics typical of complex systems. Here, by performing functional MRI in humans, it is shown that a natural, sleep-induced reduction of consciousness is reflected in altered correlation between DMN network components, most notably a reduced involvement of frontal cortex. This suggests that DMN may play an important role in the sustenance of conscious awareness.

  16. Antidepressants normalize the default mode network in patients with dysthymia.

    PubMed

    Posner, Jonathan; Hellerstein, David J; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J; Stewart, Jonathan W; Peterson, Bradley S

    2013-04-01

    The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain's DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. University research institute. Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain's DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain's DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. The baseline imaging findings are consistent with those found in patients with major

  17. Dynamic reconfiguration of the default mode network during narrative comprehension

    PubMed Central

    Simony, Erez; Honey, Christopher J; Chen, Janice; Lositsky, Olga; Yeshurun, Yaara; Wiesel, Ami; Hasson, Uri

    2016-01-01

    Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour. PMID:27424918

  18. Default-mode-like network activation in awake rodents.

    PubMed

    Upadhyay, Jaymin; Baker, Scott J; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B; Day, Mark

    2011-01-01

    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.

  19. Default-Mode-Like Network Activation in Awake Rodents

    PubMed Central

    Upadhyay, Jaymin; Baker, Scott J.; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J.; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B.; Day, Mark

    2011-01-01

    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks. PMID:22125628

  20. Default mode network functional and structural connectivity after traumatic brain injury.

    PubMed

    Sharp, David J; Beckmann, Christian F; Greenwood, Richard; Kinnunen, Kirsi M; Bonnelle, Valerie; De Boissezon, Xavier; Powell, Jane H; Counsell, Serena J; Patel, Maneesh C; Leech, Robert

    2011-08-01

    Traumatic brain injury often results in cognitive impairments that limit recovery. The underlying pathophysiology of these impairments is uncertain, which restricts clinical assessment and management. Here, we use magnetic resonance imaging to test the hypotheses that: (i) traumatic brain injury results in abnormalities of functional connectivity within key cognitive networks; (ii) these changes are correlated with cognitive performance; and (iii) functional connectivity within these networks is influenced by underlying changes in structural connectivity produced by diffuse axonal injury. We studied 20 patients in the chronic phase after traumatic brain injury compared with age-matched controls. Network function was investigated in detail using functional magnetic resonance imaging to analyse both regional brain activation, and the interaction of brain regions within a network (functional connectivity). We studied patients during performance of a simple choice-reaction task and at 'rest'. Since functional connectivity reflects underlying structural connectivity, diffusion tensor imaging was used to quantify axonal injury, and test whether structural damage correlated with functional change. The patient group showed typical impairments in information processing and attention, when compared with age-matched controls. Patients were able to perform the task accurately, but showed slow and variable responses. Brain regions activated by the task were similar between the groups, but patients showed greater deactivation within the default mode network, in keeping with an increased cognitive load. A multivariate analysis of 'resting' state functional magnetic resonance imaging was then used to investigate whether changes in network function were present in the absence of explicit task performance. Overall, default mode network functional connectivity was increased in the patient group. Patients with the highest functional connectivity had the least cognitive impairment. In

  1. Abnormal lateralization of functional connectivity between language and default mode regions in autism

    PubMed Central

    2014-01-01

    Background Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke areas. Methods Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke area and the posterior cingulate cortex associates with more severe autism. Conclusions Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain. PMID:24502324

  2. Menopausal Hot Flashes and the Default Mode Network

    PubMed Central

    Thurston, Rebecca C.; Maki, Pauline M.; Derby, Carol A.; Sejdić, Ervin; Aizenstein, Howard J.

    2015-01-01

    Objective To test whether more physiologically assessed hot flashes were associated with greater connectivity in the default mode network (DMN), the network of brain regions active during rest. We particularly focus on DMN networks supporting the hippocampus as this region is rich in estrogen receptors and has previously been linked to hot flashes. Design Women underwent 24 hours of physiologic and diary hot flash monitoring, functional magnetic resonance imaging, 72 hours of sleep actigraphy monitoring, a blood draw, questionnaires, and physical measures. Setting Community Participants Twenty midlife women ages 40–60 with their uterus and both ovaries and not taking hormone therapy Interventions None Main outcome measures DMN functional connectivity Results Controlling for age, race, education, a greater number of physiologically-monitored hot flashes were associated with greater DMN connectivity [beta, B (standard error, SE)=.004 (.002), p<.05], particularly hippocampal DMN connectivity [B(SE)=.005 (.002), p<.05]. Findings were most pronounced for sleep physiologic hot flashes [with hippocampal DMN, B(SE)= .02 (.007), p<0.01]. Associations persisted additionally controlling for sleep, depressive symptoms, and serum estradiol concentrations. Conclusions More physiologically-monitored hot flashes were associated with greater DMN connectivity, particularly networks supporting the hippocampus. Findings were most pronounced for sleep hot flashes. Findings underscore the importance of continued investigation of the central nervous system in efforts to understand this classic menopausal phenomenon. PMID:25910572

  3. Angular default mode network connectivity across working memory load.

    PubMed

    Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A

    2017-01-01

    Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc.

  4. LORETA EEG phase reset of the default mode network

    PubMed Central

    Thatcher, Robert W.; North, Duane M.; Biver, Carl J.

    2014-01-01

    Objectives: The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and (2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. Conclusions: The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a “shutter” that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations. PMID:25100976

  5. LORETA EEG phase reset of the default mode network.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2014-01-01

    The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300-350 ms and (2) 350-450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a "shutter" that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations.

  6. Patterns of Default Mode Network Deactivation in Obsessive Compulsive Disorder

    PubMed Central

    Gonçalves, Óscar F.; Soares, José Miguel; Carvalho, Sandra; Leite, Jorge; Ganho-Ávila, Ana; Fernandes-Gonçalves, Ana; Pocinho, Fernando; Carracedo, Angel; Sampaio, Adriana

    2017-01-01

    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content. PMID:28287615

  7. Constituents and functional implications of the rat default mode network

    PubMed Central

    Hsu, Li-Ming; Liang, Xia; Gu, Hong; Brynildsen, Julia K.; Stark, Jennifer A.; Ash, Jessica A.; Lin, Ching-Po; Lu, Hanbing; Rapp, Peter R.; Stein, Elliot A.; Yang, Yihong

    2016-01-01

    The default mode network (DMN) has been suggested to support a variety of self-referential functions in humans and has been fractionated into subsystems based on distinct responses to cognitive tasks and functional connectivity architecture. Such subsystems are thought to reflect functional hierarchy and segregation within the network. Because preclinical models can inform translational studies of neuropsychiatric disorders, partitioning of the DMN in nonhuman species, which has previously not been reported, may inform both physiology and pathophysiology of the human DMN. In this study, we sought to identify constituents of the rat DMN using resting-state functional MRI (rs-fMRI) and diffusion tensor imaging. After identifying DMN using a group-level independent-component analysis on the rs-fMRI data, modularity analyses fractionated the DMN into an anterior and a posterior subsystem, which were further segregated into five modules. Diffusion tensor imaging tractography demonstrates a close relationship between fiber density and the functional connectivity between DMN regions, and provides anatomical evidence to support the detected DMN subsystems. Finally, distinct modulation was seen within and between these DMN subcomponents using a neurocognitive aging model. Taken together, these results suggest that, like the human DMN, the rat DMN can be partitioned into several subcomponents that may support distinct functions. These data encourage further investigation into the neurobiological mechanisms of DMN processing in preclinical models of both normal and disease states. PMID:27439860

  8. Reduced default mode network connectivity following combat trauma.

    PubMed

    DiGangi, Julia A; Tadayyon, Armin; Fitzgerald, Daniel A; Rabinak, Christine A; Kennedy, Amy; Klumpp, Heide; Rauch, Sheila A M; Phan, K Luan

    2016-02-26

    Recent studies show decreased functional connectivity in the default mode network (DMN) in PTSD; however, few have directly examined combat trauma specifically. There is limited understanding of how combat itself may affect the DMN. Some literature suggests that trauma exposure, rather than PTSD, can disrupt the DMN. To further elucidate the effect of trauma and PTSD on the DMN, we investigated DMN functional connectivity during the resting-state in veterans with PTSD, combat-exposed controls, and never-traumatized healthy controls. Results revealed that DMN connectivity was reduced in veterans exposed to combat trauma with and without PTSD compared to healthy civilian controls. Specifically, both groups of veterans demonstrated weaker connectivity within a network involving the precuneus, medial prefrontal cortex (mPFC) and right superior parietal lobule regardless of whether the mPFC or precuneus was chosen as a seed region. Findings suggest that the experience of trauma, rather than the pathology of PTSD, may be related to DMN changes. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Gamification of Learning Deactivates the Default Mode Network

    PubMed Central

    Howard-Jones, Paul A.; Jay, Tim; Mason, Alice; Jones, Harvey

    2016-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  10. Gamification of Learning Deactivates the Default Mode Network.

    PubMed

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  11. Boredom, sustained attention and the default mode network.

    PubMed

    Danckert, James; Merrifield, Colleen

    2016-03-15

    Boredom is a ubiquitous human experience that can best be described as an inability to engage with one's environment despite the motivation to do so. Boredom is perceived as a negative experience and demonstrates strong associations with other negatively valenced states including depression and aggression. Although boredom has been shown to be elevated in neurological and psychiatric illnesses, little is known about the neural underpinnings of the state. We scanned the brains of healthy participants under four separate conditions: a resting state scan, a sustained attention task and two video-based mood inductions, one known to produce boredom and another we validated to produce a state of interest or engagement. Using independent components analyses, results showed common regions of correlated activation in posterior regions of the so-called default mode network (DMN) of the brain across all four conditions. The sustained attention and boredom induction scans were differentiated from the resting state scan by the presence of anticorrelated activity-i.e. when DMN regions were active, this region was deactivated-in the anterior insula cortex. This same region demonstrated correlated activity with both the DMN and the regions associated with attentional control during the interest mood induction. We interpret these findings to suggest that boredom represents a failure to engage executive control networks when faced with a monotonous task-in other words, when the task demands some level of engagement (watch the movie, search for infrequent targets), but is so mundane that attempts to do so fail.

  12. Dysmaturation of the Default Mode Network in Autism

    PubMed Central

    Washington, Stuart D.; Gordon, Evan M.; Brar, Jasmit; Warburton, Samantha; Sawyer, Alice T.; Wolfe, Amanda; Mease-Ference, Erin R.; Girton, Laura; Hailu, Ayichew; Mbwana, Juma; Gaillard, William D.; Kalbfleisch, M. Layne; VanMeter, John W.

    2013-01-01

    Two hypotheses of autism spectrum disorder (ASD) propose that this condition is characterized by deficits in Theory of Mind and by hypoconnectivity between remote cortical regions with hyperconnectivity locally. The default mode network (DMN) is a set of remote, functionally connected cortical nodes less active during executive tasks than at rest and is implicated in Theory of Mind, episodic memory, and other self-reflective processes. We show that children with ASD have reduced connectivity between DMN nodes and increased local connectivity within DMN nodes and the visual and motor resting-state networks. We show that, like the trajectory of synaptogenesis, internodal DMN functional connectivity increased as a quadratic function of age in typically developing children, peaking between, 11 and 13 years. In children with ASD, these long-distance connections fail to develop during adolescence. These findings support the “developmental disconnection model” of ASD, provide a possible mechanistic explanation for the Theory-of-Mind hypothesis of ASD, and show that the window for effectively treating ASD could be wider than previously thought. PMID:23334984

  13. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  14. Reduced default mode network connectivity following combat trauma

    PubMed Central

    DiGangi, Julia A.; Tadayyon, Armin; Fitzgerald, Daniel A.; Rabinak, Christine A.; Kennedy, Amy; Klumpp, Heide; Rauch, Sheila A.M.; Phan, K. Luan

    2016-01-01

    Recent studies show decreased functional connectivity in the default mode network (DMN) in PTSD; however, few have directly examined combat trauma specifically. There is limited understanding of how combat itself may affect the DMN. Some literature suggests that trauma exposure, rather than PTSD, can disrupt the DMN. To further elucidate the effect of trauma and PTSD on the DMN, we investigated DMN functional connectivity during the resting-state in veterans with PTSD, combat-exposed controls, and never-traumatized healthy controls. Results revealed that DMN connectivity was reduced in veterans exposed to combat trauma with and without PTSD compared to healthy civilian controls. Specifically, both groups of veterans demonstrated weaker connectivity within a network involving the precuneus, medial prefrontal cortex (mPFC) and right superior parietal lobule regardless of whether the mPFC or precuneus was chosen as a seed region. Findings suggest that the experience of trauma, rather than the pathology of PTSD, may be related to DMN changes. PMID:26797653

  15. Damage to the default mode network disrupts autobiographical memory retrieval.

    PubMed

    Philippi, Carissa L; Tranel, Daniel; Duff, Melissa; Rudrauf, David

    2015-03-01

    Functional neuroimaging studies have implicated the default mode network (DMN) in autobiographical memory (AM). Convergent evidence from a lesion approach would help clarify the role of the DMN in AM. In this study, we used a voxelwise lesion-deficit approach to test the hypothesis that regions of the DMN are necessary for AM. We also explored whether the neural correlates of semantic AM (SAM) and episodic AM (EAM) were overlapping or distinct. Using the Iowa Autobiographical Memory Questionnaire, we tested AM retrieval in 92 patients with focal, stable brain lesions. In support of our hypothesis, damage to regions within the DMN (medial prefrontal cortex, mPFC; posterior cingulate cortex, PCC; inferior parietal lobule, IPL; medial temporal lobe, MTL) was associated with AM impairments. Within areas of effective lesion coverage, the neural correlates of SAM and EAM were largely distinct, with limited areas of overlap in right IPL. Whereas SAM deficits were associated with left mPFC and MTL damage, EAM deficits were associated with right mPFC and MTL damage. These results provide novel neuropsychological evidence for the necessary role of parts of the DMN in AM. More broadly, the findings shed new light on how the DMN participates in self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Damage to the default mode network disrupts autobiographical memory retrieval

    PubMed Central

    Tranel, Daniel; Duff, Melissa; Rudrauf, David

    2015-01-01

    Functional neuroimaging studies have implicated the default mode network (DMN) in autobiographical memory (AM). Convergent evidence from a lesion approach would help clarify the role of the DMN in AM. In this study, we used a voxelwise lesion-deficit approach to test the hypothesis that regions of the DMN are necessary for AM. We also explored whether the neural correlates of semantic AM (SAM) and episodic AM (EAM) were overlapping or distinct. Using the Iowa Autobiographical Memory Questionnaire, we tested AM retrieval in 92 patients with focal, stable brain lesions. In support of our hypothesis, damage to regions within the DMN (medial prefrontal cortex, mPFC; posterior cingulate cortex, PCC; inferior parietal lobule, IPL; medial temporal lobe, MTL) was associated with AM impairments. Within areas of effective lesion coverage, the neural correlates of SAM and EAM were largely distinct, with limited areas of overlap in right IPL. Whereas SAM deficits were associated with left mPFC and MTL damage, EAM deficits were associated with right mPFC and MTL damage. These results provide novel neuropsychological evidence for the necessary role of parts of the DMN in AM. More broadly, the findings shed new light on how the DMN participates in self-referential processing. PMID:24795444

  17. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  18. Dynamic functional connectivity of the default mode network tracks daydreaming.

    PubMed

    Kucyi, Aaron; Davis, Karen D

    2014-10-15

    Humans spend much of their time engaged in stimulus-independent thoughts, colloquially known as "daydreaming" or "mind-wandering." A fundamental question concerns how awake, spontaneous brain activity represents the ongoing cognition of daydreaming versus unconscious processes characterized as "intrinsic." Since daydreaming involves brief cognitive events that spontaneously fluctuate, we tested the hypothesis that the dynamics of brain network functional connectivity (FC) are linked with daydreaming. We determined the general tendency to daydream in healthy adults based on a daydreaming frequency scale (DDF). Subjects then underwent both resting state functional magnetic resonance imaging (rs-fMRI) and fMRI during sensory stimulation with intermittent thought probes to determine the occurrences of mind-wandering events. Brain regions within the default mode network (DMN), purported to be involved in daydreaming, were assessed for 1) static FC across the entire fMRI scans, and 2) dynamic FC based on FC variability (FCV) across 30s progressively sliding windows of 2s increments within each scan. We found that during both resting and sensory stimulation states, individual differences in DDF were negatively correlated with static FC between the posterior cingulate cortex and a ventral DMN subsystem involved in future-oriented thought. Dynamic FC analysis revealed that DDF was positively correlated with FCV within the same DMN subsystem in the resting state but not during stimulation. However, dynamic but not static FC, in this subsystem, was positively correlated with an individual's degree of self-reported mind-wandering during sensory stimulation. These findings identify temporal aspects of spontaneous DMN activity that reflect conscious and unconscious processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Microstructure of the Default Mode Network in the Preterm Infants

    PubMed Central

    Cui, Jiaolong; Tymofiyeva, Olga; Desikan, Rahul; Flynn, Trevor; Kim, Hosung; Gano, Dawn; Hess, Christopher P; Ferriero, Donna M; Barkovich, A James; Xu, Duan

    2016-01-01

    Background and Prupose This study aims to evaluate the microstructure of the white matter tracts underlying the default mode network (DMN) in premature newborns using resting-state functional MRI (rsfMRI) in conjunction with diffusion tensor imaging (DTI)-based tractography. Material and Methods A cohort of 44 preterm infants underwent structural T1-weighted imaging, rsfMRI and DTI at 3T, including 21 infants with brain injuries and 23 infants with normal appearing structural imaging as controls. Neurodevelopment was evaluated using Bayley Scales of Infant Development (BSID) at 12 months adjusted age. Probabilistic independent components analysis was applied to rsfMRI data to explore resting state networks. The localized clusters of the DMN were used as seeding for probabilistic tractography. The DTI metrics (fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)) of the reconstructed primary tracts within the DMN - cingula were measured. Results Results revealed decreased FA (0.20±0.03) and elevated RD values (1.24±0.16) of the cingula in the preterm infants with brain injuries compared with controls (FA: 0.25±0.03, p<0.001; RD: 1.06±0.16, p=0.001). BSID cognitive scores were significantly associated with cingulate FA (p=0.004) and RD (p=0.021), which suggest that the microstructural properties of interconnecting axonal pathways within the DMN are of critical importance in the infants’ early neurocognitive development. Conclusion This study of combined rsfMRI and DTI at rest suggests that such studies may allow for the investigation of key functional brain circuits in premature newborns, which could function not only as diagnostic tools, but also as biomarkers for long-term neurodevelopmental outcomes. PMID:28059709

  20. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  1. Internal and external attention and the default mode network.

    PubMed

    Scheibner, Hannah J; Bogler, Carsten; Gleich, Tobias; Haynes, John-Dylan; Bermpohl, Felix

    2017-03-01

    Focused attention meditations have been shown to improve psychological health and wellbeing and are nowadays an integral part of many psychotherapies. While research on the neural correlates of focused attention meditation is increasing, findings vary on whether meditations are associated with high or low activity in the default mode network (DMN). To clarify the relationship between focused attention meditation and the activity in DMN regions, it may be helpful to distinguish internal and external attention as well as different phases within one meditation: During focused attention meditation, the practitioner switches between mindful attention, mind-wandering and refocusing. Here, we employed a thought-probe paradigm to study the neural correlates of these different phases. Twenty healthy, meditation naïve participants were introduced to external (mindfulness of sound) and internal (mindfulness of breathing) attention meditation and then practiced the meditation at home for four consecutive days. They then performed the same focused attention meditations during fMRI scanning, in four runs alternating between internal and external attention. At pseudorandom intervals, participants were asked whether they had just been focused on the task (mindful attention) or had been distracted (mind-wandering). During mindful attention, brain regions typically associated with the DMN, such as the medial prefrontal cortex, posterior cingulate cortex and left temporoparietal junction showed significantly less neural activation compared to mind-wandering phases. Reduced activity of the DMN was found during both external and internal attention, with stronger deactivation in the posterior cingulate cortex during internal attention compared to external attention. Moreover, refocusing after mind-wandering was associated with activity in the left inferior frontal gyrus. Our results support the theory that mindful attention is associated with reduced DMN activity compared to mind

  2. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    PubMed

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  3. Reentrant Information Flow in Electrophysiological Rat Default Mode Network

    PubMed Central

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A.; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness. PMID:28289373

  4. A Review of the Functional and Anatomical Default Mode Network in Schizophrenia.

    PubMed

    Hu, Mao-Lin; Zong, Xiao-Fen; Mann, J John; Zheng, Jun-Jie; Liao, Yan-Hui; Li, Zong-Chang; He, Ying; Chen, Xiao-Gang; Tang, Jin-Song

    2017-02-01

    Schizophrenia is a severe mental disorder characterized by impaired perception, delusions, thought disorder, abnormal emotion regulation, altered motor function, and impaired drive. The default mode network (DMN), since it was first proposed in 2001, has become a central research theme in neuropsychiatric disorders, including schizophrenia. In this review, first we define the DMN and describe its functional activity, functional and anatomical connectivity, heritability, and inverse correlation with the task positive network. Second, we review empirical studies of the anatomical and functional DMN, and anti-correlation between DMN and the task positive network in schizophrenia. Finally, we review preliminary evidence about the relationship between antipsychotic medications and regulation of the DMN, review the role of DMN as a treatment biomarker for this disease, and consider the DMN effects of individualized therapies for schizophrenia.

  5. Damage to the Salience Network and interactions with the Default Mode Network.

    PubMed

    Jilka, Sagar R; Scott, Gregory; Ham, Timothy; Pickering, Alan; Bonnelle, Valerie; Braga, Rodrigo M; Leech, Robert; Sharp, David J

    2014-08-13

    Interactions between the Salience Network (SN) and the Default Mode Network (DMN) are thought to be important for cognitive control. However, evidence for a causal relationship between the networks is limited. Previously, we have reported that traumatic damage to white matter tracts within the SN predicts abnormal DMN function. Here we investigate the effect of this damage on network interactions that accompany changing motor control. We initially used fMRI of the Stop Signal Task to study response inhibition in humans. In healthy subjects, functional connectivity (FC) between the right anterior insula (rAI), a key node of the SN, and the DMN transiently increased during stopping. This change in FC was not seen in a group of traumatic brain injury (TBI) patients with impaired cognitive control. Furthermore, the amount of SN tract damage negatively correlated with FC between the networks. We confirmed these findings in a second group of TBI patients. Here, switching rather than inhibiting a motor response: (1) was accompanied by a similar increase in network FC in healthy controls; (2) was not seen in TBI patients; and (3) tract damage after TBI again correlated with FC breakdown. This shows that coupling between the rAI and DMN increases with cognitive control and that damage within the SN impairs this dynamic network interaction. This work provides compelling evidence for a model of cognitive control where the SN is involved in the attentional capture of salient external stimuli and signals the DMN to reduce its activity when attention is externally focused.

  6. Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia

    PubMed Central

    De Simoni, Sara; Grover, Patrick J.; Jenkins, Peter O.; Honeyfield, Lesley; Quest, Rebecca A.; Ross, Ewan; Scott, Gregory; Wilson, Mark H.; Majewska, Paulina; Waldman, Adam D.; Patel, Maneesh C.

    2016-01-01

    See Bigler (doi:10.1093/aww277) for a scientific commentary on this article. Post-traumatic amnesia is very common immediately after traumatic brain injury. It is characterized by a confused, agitated state and a pronounced inability to encode new memories and sustain attention. Clinically, post-traumatic amnesia is an important predictor of functional outcome. However, despite its prevalence and functional importance, the pathophysiology of post-traumatic amnesia is not understood. Memory processing relies on limbic structures such as the hippocampus, parahippocampus and parts of the cingulate cortex. These structures are connected within an intrinsic connectivity network, the default mode network. Interactions within the default mode network can be assessed using resting state functional magnetic resonance imaging, which can be acquired in confused patients unable to perform tasks in the scanner. Here we used this approach to test the hypothesis that the mnemonic symptoms of post-traumatic amnesia are caused by functional disconnection within the default mode network. We assessed whether the hippocampus and parahippocampus showed evidence of transient disconnection from cortical brain regions involved in memory processing. Nineteen patients with traumatic brain injury were classified into post-traumatic amnesia and traumatic brain injury control groups, based on their performance on a paired associates learning task. Cognitive function was also assessed with a detailed neuropsychological test battery. Functional interactions between brain regions were investigated using resting-state functional magnetic resonance imaging. Together with impairments in associative memory, patients in post-traumatic amnesia demonstrated impairments in information processing speed and spatial working memory. Patients in post-traumatic amnesia showed abnormal functional connectivity between the parahippocampal gyrus and posterior cingulate cortex. The strength of this functional

  7. Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia.

    PubMed

    De Simoni, Sara; Grover, Patrick J; Jenkins, Peter O; Honeyfield, Lesley; Quest, Rebecca A; Ross, Ewan; Scott, Gregory; Wilson, Mark H; Majewska, Paulina; Waldman, Adam D; Patel, Maneesh C; Sharp, David J

    2016-12-01

    SEE BIGLER DOI101093/AWW277 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Post-traumatic amnesia is very common immediately after traumatic brain injury. It is characterized by a confused, agitated state and a pronounced inability to encode new memories and sustain attention. Clinically, post-traumatic amnesia is an important predictor of functional outcome. However, despite its prevalence and functional importance, the pathophysiology of post-traumatic amnesia is not understood. Memory processing relies on limbic structures such as the hippocampus, parahippocampus and parts of the cingulate cortex. These structures are connected within an intrinsic connectivity network, the default mode network. Interactions within the default mode network can be assessed using resting state functional magnetic resonance imaging, which can be acquired in confused patients unable to perform tasks in the scanner. Here we used this approach to test the hypothesis that the mnemonic symptoms of post-traumatic amnesia are caused by functional disconnection within the default mode network. We assessed whether the hippocampus and parahippocampus showed evidence of transient disconnection from cortical brain regions involved in memory processing. Nineteen patients with traumatic brain injury were classified into post-traumatic amnesia and traumatic brain injury control groups, based on their performance on a paired associates learning task. Cognitive function was also assessed with a detailed neuropsychological test battery. Functional interactions between brain regions were investigated using resting-state functional magnetic resonance imaging. Together with impairments in associative memory, patients in post-traumatic amnesia demonstrated impairments in information processing speed and spatial working memory. Patients in post-traumatic amnesia showed abnormal functional connectivity between the parahippocampal gyrus and posterior cingulate cortex. The strength of this functional

  8. Decreased connectivity of the default mode network in pathological gambling: a resting state functional MRI study.

    PubMed

    Jung, Myung Hun; Kim, Jae-Hun; Shin, Young-Chul; Jung, Wi Hoon; Jang, Joon Hwan; Choi, Jung-Seok; Kang, Do-Hyung; Yi, Jung-Seo; Choi, Chi-Hoon; Kwon, Jun Soo

    2014-11-07

    The default mode network (DMN) represents neuronal activity that is intrinsically generated during a resting state. The present study used resting-state fMRI to investigate whether functional connectivity is altered in pathological gambling (PG). Fifteen drug-naive male patients with PG and 15 age-matched male control subjects participated in the present study. The pathological gambling modification of the Yale-Brown Obsessive Compulsive Scale (PG-YBOCS), the Beck Depression Inventory, and the Beck Anxiety Inventory were used to determine symptom severity in all participants. Participants were instructed to keep their eyes closed and not to focus on any particular thoughts during the 4.68-min resting-state functional scan. The patients with PG displayed decreased default mode connectivity in the left superior frontal gyrus, right middle temporal gyrus, and precuneus compared with healthy controls. The severity of PG symptoms in patients with PG was negatively associated with connectivity between the posterior cingulate cortex seed region and the precuneus (r=-0.599, p=0.018). Decreased functional connectivity within DMN suggests that PG may share similar neurobiological abnormalities with other addictive disorders. Moreover, the severity of PG symptoms was correlated with decreased connectivity in the precuneus, which may be important in the response to treatment in patients with PG. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Resting in peace or noise: scanner background noise suppresses default-mode network.

    PubMed

    Gaab, Nadine; Gabrieli, John D E; Glover, Gary H

    2008-07-01

    Studies have identified specific brain regions that increase activation during rest relative to attention-demanding tasks; these regions subserve the "default mode of brain function". Most of these studies have been conducted in the presence of scanner background noise (SBN). This noise has been shown to lead to altered attentional demands, and thus may modulate the default-mode network. Twelve subjects were examined during a rest condition that was contrasted with an auditory task. Words were presented either with SBN employing a conventional acquisition or without SBN using a sparse sampling approach. The number of experimental and resting trials was equated between the designs. Selecting the images in the condition with SBN that corresponded in time with the images in the condition without SBN made a direct comparison of the default-mode network (rest contrasted with active task) possible. There was typical activation of the default-mode network during rest versus task for both designs. However, SBN suppressed major components of the default-mode network, including medial prefrontal cortex, posterior cingulate, and precuneus. Our results suggest that the default mode of brain function differs when assessed in the presence compared to the absence of scanner noise, with the presence of scanner noise perhaps adding attentional demands that diminish activation changes between rest and task in a nonlinear way within the default network. Further studies are needed to clarify whether the use of a sparse sampling technique might enhance clinical utilities that have been proposed for analysis of the default-mode network.

  10. Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease.

    PubMed

    Putcha, Deepti; Ross, Robert S; Cronin-Golomb, Alice; Janes, Amy C; Stern, Chantal E

    2016-02-01

    Cognitive impairment is common in Parkinson's disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson's disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson's disease.

  11. Sustained activity within the default mode network during an implicit memory task.

    PubMed

    Yang, Jiongjiong; Weng, Xuchu; Zang, Yufeng; Xu, Mingwei; Xu, Xiaohong

    2010-03-01

    Recent neuroimaging studies have shown that several brain regions--namely, the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (vmPFC), and the bilateral angular gyrus--are more active during resting states than during cognitive tasks (i.e., default mode network). Although there is evidence showing that the default mode network is associated with unconscious state, it is unclear whether this network is associated with unconscious processing when normal human subjects perform tasks without awareness. We manipulated the level of conscious processing in normal subjects by asking them to perform an implicit and an explicit memory task, and analyzed signal changes in the default mode network for the stimuli versus baseline in both tasks. The functional magnetic resonance imaging (fMRI) analysis showed that the level of activation in regions within this network during the implicit task was not significantly different from that during the baseline, except in the left angular gyrus and the insula. There was strong deactivation for the explicit task when compared with the implicit task in the default mode regions, except in the left angular gyrus and the left middle temporal gyrus. These data suggest that the activity in the default network is sustained and less disrupted when an implicit memory task is performed, but is suspended when explicit retrieval is required. These results provide evidence that the default mode network is associated with unconscious processing when human subjects perform an implicit memory task. Copyright (c) 2009 Elsevier Srl. All rights reserved.

  12. Sustained activity within the default mode network during an implicit memory task

    PubMed Central

    Yang, Jiongjiong; Weng, Xuchu; Zang, Yufeng; Xu, Mingwei; Xu, Xiaohong

    2009-01-01

    Recent neuroimaging studies have shown that several brain regions -- namely, the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (vmPFC), and the bilateral angular gyrus -- are more active during resting states than during cognitive tasks (i.e., default mode network). Although there is evidence showing that the default mode network is associated with unconscious state, it is unclear whether this network is associated with unconscious processing when normal human subjects perform tasks without awareness. We manipulated the level of conscious processing in normal subjects by asking them to perform an implicit and an explicit memory task, and analyzed signal changes in the default mode network for the stimuli versus baseline in both tasks. The fMRI analysis showed that the level of activation in regions within this network during the implicit task was not significantly different from that during the baseline, except in the left angular gyrus and the insula. There was strong deactivation for the explicit task when compared with the implicit task in the default mode regions, except in the left angular gyrus and the left middle temporal gyrus. These data suggest that the activity in the default network is sustained and less disrupted when an implicit memory task is performed, but is suspended when explicit retrieval is required. These results provide evidence that the default mode network is associated with unconscious processing when human subjects perform an implicit memory task. PMID:19552900

  13. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  14. Interactions between default mode and control networks as a function of increasing cognitive reasoning complexity.

    PubMed

    Hearne, Luke; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2015-07-01

    Successful performance of challenging cognitive tasks depends on a consistent functional segregation of activity within the default-mode network, on the one hand, and control networks encompassing frontoparietal and cingulo-opercular areas on the other. Recent work, however, has suggested that in some cognitive control contexts nodes within the default-mode and control networks may actually cooperate to achieve optimal task performance. Here, we used functional magnetic resonance imaging to examine whether the ability to relate variables while solving a cognitive reasoning problem involves transient increases in connectivity between default-mode and control regions. Participants performed a modified version of the classic Wason selection task, in which the number of variables to be related is systematically varied across trials. As expected, areas within the default-mode network showed a parametric deactivation with increases in relational complexity, compared with neural activity in null trials. Critically, some of these areas also showed enhanced connectivity with task-positive control regions. Specifically, task-based connectivity between the striatum and the angular gyri, and between the thalamus and right temporal pole, increased as a function of relational complexity. These findings challenge the notion that functional segregation between regions within default-mode and control networks invariably support cognitive task performance, and reveal previously unknown roles for the striatum and thalamus in managing network dynamics during cognitive reasoning. © 2015 Wiley Periodicals, Inc.

  15. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    PubMed

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  16. Default mode network disturbances in restless legs syndrome/Willis-Ekbom disease.

    PubMed

    Ku, Jeonghun; Lee, Yeong Seon; Chang, HyukWon; Earley, Christopher J; Allen, Richard P; Cho, Yong Won

    2016-07-01

    The unusual sensations of restless legs syndrome/Willis-Ekbom disease (RLS/WED) are induced by rest or a low arousal state with a circadian variation in the threshold for induction. It has been suggested that the emergence of RLS/WED symptoms relates to abnormal brain functions dealing with internally generated stimuli. The purpose of this study was to investigate the changes in the default mode network (DMN) in RLS/WED subjects. Sixteen drug-naïve, idiopathic, RLS/WED subjects, and 16 age-matched and gender-matched healthy subjects were scanned in an asymptomatic resting state. A comparison of the DMN was conducted between the two groups. Resting state functional magnetic resonance imaging (MRI), Korean versions of the International RLS scale, and other sleep questionnaires were used. The results showed reductions in the DMN connectivity in the left posterior cingulate cortex, the right orbito-frontal gyrus, the left precuneus, and the right subcallosal gyrus of the RLS/WED subjects. The DMN connectivity was increased in sensory-motor-associated circuits, which included the right superior parietal lobule, the right supplementary motor area, and the left thalamus. In addition, the connectivity between the DMN and thalamus was negatively correlated with that in the orbito-frontal gyrus and the subcallosal gyrus in the subjects. The results showed disturbances of the DMN in RLS/WED subjects that influence the thalamic relay sensory-motor-associated circuit. These findings may underscore the fact that RLS/WED subjects have disturbances in default mode network functions involving internal stimuli in the resting state. This may be related to compensatory changes to maintain resting. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Default mode network in the effects of Δ9-Tetrahydrocannabinol (THC) on human executive function.

    PubMed

    Bossong, Matthijs G; Jansma, J Martijn; van Hell, Hendrika H; Jager, Gerry; Kahn, René S; Ramsey, Nick F

    2013-01-01

    Evidence is increasing for involvement of the endocannabinoid system in cognitive functions including attention and executive function, as well as in psychiatric disorders characterized by cognitive deficits, such as schizophrenia. Executive function appears to be associated with both modulation of active networks and inhibition of activity in the default mode network. In the present study, we examined the role of the endocannabinoid system in executive function, focusing on both the associated brain network and the default mode network. A pharmacological functional magnetic resonance imaging (fMRI) study was conducted with a placebo-controlled, cross-over design, investigating effects of the endocannabinoid agonist Δ9-tetrahydrocannabinol (THC) on executive function in 20 healthy volunteers, using a continuous performance task with identical pairs. Task performance was impaired after THC administration, reflected in both an increase in false alarms and a reduction in detected targets. This was associated with reduced deactivation in a set of brain regions linked to the default mode network, including posterior cingulate cortex and angular gyrus. Less deactivation was significantly correlated with lower performance after THC. Regions that were activated by the continuous performance task, notably bilateral prefrontal and parietal cortex, did not show effects of THC. These findings suggest an important role for the endocannabinoid system in both default mode modulation and executive function. This may be relevant for psychiatric disorders associated with executive function deficits, such as schizophrenia and ADHD.

  18. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    ERIC Educational Resources Information Center

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  19. Default Mode Network Connectivity in Children with a History of Preschool Onset Depression

    ERIC Educational Resources Information Center

    Gaffrey, Michael S.; Luby, Joan L.; Botteron, Kelly; Repovs, Grega; Barch, Deanna M.

    2012-01-01

    Background: Atypical Default Mode Network (DMN) functional connectivity has been previously reported in depressed adults. However, there is relatively little data informing the developmental nature of this phenomenon. The current case-control study examined the DMN in a unique prospective sample of school-age children with a previous history of…

  20. Default Mode Network Connectivity in Children with a History of Preschool Onset Depression

    ERIC Educational Resources Information Center

    Gaffrey, Michael S.; Luby, Joan L.; Botteron, Kelly; Repovs, Grega; Barch, Deanna M.

    2012-01-01

    Background: Atypical Default Mode Network (DMN) functional connectivity has been previously reported in depressed adults. However, there is relatively little data informing the developmental nature of this phenomenon. The current case-control study examined the DMN in a unique prospective sample of school-age children with a previous history of…

  1. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    ERIC Educational Resources Information Center

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  2. Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa.

    PubMed

    Cowdrey, Felicity A; Filippini, Nicola; Park, Rebecca J; Smith, Stephen M; McCabe, Ciara

    2014-02-01

    Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa. Copyright © 2012 Wiley Periodicals, Inc.

  3. Reduced salience and default mode network activity in women with anorexia nervosa.

    PubMed

    McFadden, Kristina L; Tregellas, Jason R; Shott, Megan E; Frank, Guido K W

    2014-05-01

    The neurobiology of anorexia nervosa is poorly understood. Neuronal networks contributing to action selection, self-regulation and interoception could contribute to pathologic eating and body perception in people with anorexia nervosa. We tested the hypothesis that the salience network (SN) and default mode network (DMN) would show decreased intrinsic activity in women with anorexia nervosa and those who had recovered from the disease compared to controls. The basal ganglia (BGN) and sensorimotor networks (SMN) were also investigated. Between January 2008 and January 2012, women with restricting-type anorexia nervosa, women who recovered from the disease and healthy control women completed functional magnetic resonance imaging during a conditioned stimulus task. Network activity was studied using independent component analysis. We studied 20 women with anorexia nervosa, 24 recovered women and 24 controls. Salience network activity in the anterior cingulate cortex was reduced in women with anorexia nervosa (p = 0.030; all results false-discovery rate- corrected) and recovered women (p = 0.039) compared to controls. Default mode network activity in the precuneus was reduced in women with anorexia compared to controls (p = 0.023). Sensorimotor network activity in the supplementary motor area (SMA; p = 0.008), and the left (p = 0.028) and right (p = 0.002) postcentral gyrus was reduced in women with anorexia compared to controls; SMN activity in the SMA (p = 0.019) and the right postcentral gyrus (p = 0.008) was reduced in women with anorexia compared to recovered women. There were no group differences in the BGN. Differences between patient and control populations (e.g., depression, anxiety, medication) are potential confounds, but were included as covariates. Reduced SN activity in women with anorexia nervosa and recovered women could be a trait-related biomarker or illness remnant, altering the drive to approach food. The alterations in the DMN and SMN observed only

  4. Reduced salience and default mode network activity in women with anorexia nervosa

    PubMed Central

    McFadden, Kristina L.; Tregellas, Jason R.; Shott, Megan E.; Frank, Guido K.W.

    2014-01-01

    Background The neurobiology of anorexia nervosa is poorly understood. Neuronal networks contributing to action selection, self-regulation and interoception could contribute to pathologic eating and body perception in people with anorexia nervosa. We tested the hypothesis that the salience network (SN) and default mode network (DMN) would show decreased intrinsic activity in women with anorexia nervosa and those who had recovered from the disease compared to controls. The basal ganglia (BGN) and sensorimotor networks (SMN) were also investigated. Methods Between January 2008 and January 2012, women with restricting-type anorexia nervosa, women who recovered from the disease and healthy control women completed functional magnetic resonance imaging during a conditioned stimulus task. Network activity was studied using independent component analysis. Results We studied 20 women with anorexia nervosa, 24 recovered women and 24 controls. Salience network activity in the anterior cingulate cortex was reduced in women with anorexia nervosa (p = 0.030; all results false-discovery rate–corrected) and recovered women (p = 0.039) compared to controls. Default mode network activity in the precuneus was reduced in women with anorexia compared to controls (p = 0.023). Sensorimotor network activity in the supplementary motor area (SMA; p = 0.008), and the left (p = 0.028) and right (p = 0.002) postcentral gyrus was reduced in women with anorexia compared to controls; SMN activity in the SMA (p = 0.019) and the right postcentral gyrus (p = 0.008) was reduced in women with anorexia compared to recovered women. There were no group differences in the BGN. Limitations Differences between patient and control populations (e.g., depression, anxiety, medication) are potential confounds, but were included as covariates. Conclusion Reduced SN activity in women with anorexia nervosa and recovered women could be a trait-related biomarker or illness remnant, altering the drive to approach

  5. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience

    PubMed Central

    Hamilton, J. Paul; Farmer, Madison; Fogelman, Phoebe; Gotlib, Ian H.

    2015-01-01

    The intuitive association between self-focused rumination in major depressive disorder (MDD) and the self-referential operations performed by the brain’s default-mode network (DMN) has prompted interest in examining the role of the DMN in MDD. In this paper we present meta-analytic findings showing reliably increased functional connectivity between the DMN and subgenual prefrontal cortex (sgPFC)—connectivity that often predicts levels of depressive rumination. We also present meta-analytic findings that, while there is reliably increased regional cerebral blood flow in sgPFC in MDD, no such abnormality has been reliably observed in nodes of the DMN. We then detail a model that integrates the body of research presented. In this model, we propose that increased functional connectivity between sgPFC and the DMN in MDD represents an integration of the self-referential processes supported by the DMN with the affectively laden, behavioral withdrawal processes associated with sgPFC—an integration that produces a functional neural ensemble well suited for depressive rumination and that, in MDD, abnormally taxes only sgPFC and not the DMN. This synthesis explains a broad array of existing data concerning the neural substrates of depressive rumination and provides an explicit account of functional abnormalities in sgPFC in MDD. PMID:25861700

  6. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience.

    PubMed

    Hamilton, J Paul; Farmer, Madison; Fogelman, Phoebe; Gotlib, Ian H

    2015-08-15

    The intuitive association between self-focused rumination in major depressive disorder (MDD) and the self-referential operations performed by the brain's default-mode network (DMN) has prompted interest in examining the role of the DMN in MDD. In this article, we present meta-analytic findings showing reliably increased functional connectivity between the DMN and subgenual prefrontal cortex (sgPFC)-connectivity that often predicts levels of depressive rumination. We also present meta-analytic findings that, while there is reliably increased regional cerebral blood flow in sgPFC in MDD, no such abnormality has been reliably observed in nodes of the DMN. We then detail a model that integrates the body of research presented. In this model, we propose that increased functional connectivity between sgPFC and the DMN in MDD represents an integration of the self-referential processes supported by the DMN with the affectively laden, behavioral withdrawal processes associated with sgPFC-an integration that produces a functional neural ensemble well suited for depressive rumination and that, in MDD, abnormally taxes only sgPFC and not the DMN. This synthesis explains a broad array of existing data concerning the neural substrates of depressive rumination and provides an explicit account of functional abnormalities in sgPFC in MDD.

  7. Functional connectivity of paired default mode network subregions in primary insomnia

    PubMed Central

    Nie, Xiao; Shao, Yi; Liu, Si-yu; Li, Hai-jun; Wan, Ai-lan; Nie, Si; Peng, De-chang; Dai, Xi-jian

    2015-01-01

    Objective The aim of this study is to explore the resting-state functional connectivity (FC) differences between the paired default mode network (DMN) subregions in patients with primary insomnia (PIs). Methods Forty-two PIs and forty-two age- and sex-matched good sleepers (GSs) were recruited. All subjects underwent the resting-state functional magnetic resonance imaging scans. The seed-based region-to-region FC method was used to evaluate the abnormal connectivity within the DMN subregions between the PIs and the GSs. Pearson correlation analysis was used to investigate the relationships between the abnormal FC strength within the paired DMN subregions and the clinical features in PIs. Results Compared with the GSs, the PIs showed higher Pittsburgh Sleep Quality Index score, Hamilton Anxiety Rating Scale score, Hamilton Depression Rating Scale score, Self-Rating Depression Scale score, Self Rating Anxiety Scale score, Self-Rating Scale of Sleep score, and Profile of Mood States score (P<0.001). Compared with the GSs, the PIs showed significant decreased region-to-region FC between the medial prefrontal cortex and the right medial temporal lobe (t=−2.275, P=0.026), and between the left medial temporal lobe and the left inferior parietal cortices (t=−3.32, P=0.001). The abnormal FC strengths between the DMN subregions did not correlate with the clinical features. Conclusion PIs showed disrupted FC within the DMN subregions. PMID:26719693

  8. Blink-related momentary activation of the default mode network while viewing videos.

    PubMed

    Nakano, Tamami; Kato, Makoto; Morito, Yusuke; Itoi, Seishi; Kitazawa, Shigeru

    2013-01-08

    It remains unknown why we generate spontaneous eyeblinks every few seconds, more often than necessary for ocular lubrication. Because eyeblinks tend to occur at implicit breakpoints while viewing videos, we hypothesized that eyeblinks are actively involved in the release of attention. We show that while viewing videos, cortical activity momentarily decreases in the dorsal attention network after blink onset but increases in the default-mode network implicated in internal processing. In contrast, physical blackouts of the video do not elicit such reciprocal changes in brain networks. The results suggest that eyeblinks are actively involved in the process of attentional disengagement during a cognitive behavior by momentarily activating the default-mode network while deactivating the dorsal attention network.

  9. Default-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients.

    PubMed

    van Buuren, Mariët; Vink, Matthijs; Kahn, René S

    2012-12-01

    The default-mode network (DMN) of the brain shows highly coherent intrinsic activity in healthy subjects and is implicated in self-referential processing important for social cognitive functioning. Schizophrenia patients show abnormal resting-state connectivity within the DMN and this aberrant connectivity is thought to contribute to difficulties in self-referential and introspective processing. Subjects at increased genetic risk of developing schizophrenia, including unaffected siblings of patients, also exhibit brain abnormalities and impaired social cognitive processing. However, it is unclear whether resting-state connectivity within the DMN is abnormal in these subjects. Here, we investigate resting-state DMN connectivity in siblings and whether this is related to the functioning of the network during self-referential processing. Brain activity was measured using functional MRI in 25 unaffected siblings of patients with schizophrenia and 25 healthy controls during an 8-minute resting-state period and during a self-referential processing task in which the subjects had to indicate whether a trait adjective (e.g. "lazy") described their personality (self-referential condition) or whether the trait was socially desirable (non-referential condition). Compared with controls, siblings showed exaggerated connectivity during resting-state between the midline areas of the DMN. Moreover, they failed to adequately modulate connectivity between these areas during self-referential processing. No abnormalities in activation during self-referential processing were observed. These findings suggest that subjects at increased genetic risk of developing schizophrenia exhibit abnormal intrinsic connectivity within the midline DMN and that this is associated with aberrant interactions between these regions during self-referential processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Disruptive changes of cerebellar functional connectivity with the default mode network in schizophrenia.

    PubMed

    Wang, Lubin; Zou, Feng; Shao, Yongcong; Ye, Enmao; Jin, Xiao; Tan, Shuwen; Hu, Dewen; Yang, Zheng

    2014-12-01

    The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established. In this study, we investigated cerebellar functional connectivity differences between 60 patients with schizophrenia and 60 healthy controls from a public resting-state fMRI database. Seed-based correlation analysis was performed by using seeds from the left Crus I, right Crus I and Lobule IX, which have previously been identified as being involved in the DMN. Our results revealed that, compared with the healthy controls, the patients showed significantly reduced cerebellar functional connectivity with the thalamus and several frontal regions including the middle frontal gyrus, anterior cingulate cortex, and supplementary motor area. Moreover, the positive correlations between the strength of frontocerebellar and thalamocerebellar functional connectivity observed in the healthy subjects were diminished in the patients. Our findings implicate disruptive changes of the fronto-thalamo-cerebellar circuit in schizophrenia, which may provide further evidence for the "cognitive dysmetria" concept of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Default Mode Network is Disrupted in Parkinson's Disease with Visual Hallucinations

    PubMed Central

    Yao, Nailin; Shek-Kwan Chang, Richard; Cheung, Charlton; Pang, Shirley; Lau, Kui Kai; Suckling, John; Rowe, James B; Yu, Kevin; Ka-Fung Mak, Henry; Chua, Siew-Eng; Ho, Shu Leong; McAlonan, Grainne M

    2014-01-01

    Background: Visual hallucinations (VH) are one of the most striking nonmotor symptoms in Parkinson's disease (PD), and predict dementia and mortality. Aberrant default mode network (DMN) is associated with other psychoses. Here, we tested the hypothesis that DMN dysfunction contributes to VH in PD. Methods: Resting state functional data was acquired from individuals with PD with VH (PDVH) and without VH (PDnonVH), matched for levodopa drug equivalent dose, and a healthy control group (HC). Independent component analysis was used to investigate group differences in functional connectivity within the DMN. In addition, we investigated whether the functional changes associated with hallucinations were accompanied by differences in cortical thickness. Results: There were no group differences in cortical thickness but functional coactivation within components of the DMN was significantly lower in both PDVH and PDnonVH groups compared to HC. Functional coactivation within the DMN was found to be greater in PDVH group relative to PDnonVH group. Conclusion: Our study demonstrates, for the first time that, within a functionally abnormal DMN in PD, relatively higher “connectivity” is associated with VH. We postulate that aberrant connectivity in a large scale network affects sensory information processing and perception, and contributes to “positive” symptom generation in PD. Hum Brain Mapp 35:5658–5666, 2014. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:24985056

  12. Decreased default-mode network homogeneity in unaffected siblings of schizophrenia patients at rest.

    PubMed

    Guo, Wenbin; Liu, Feng; Yao, Dapeng; Jiang, Jiajing; Su, Qinji; Zhang, Zhikun; Zhang, Jian; Yu, Liuyu; Zhai, Jinguo; Xiao, Changqing

    2014-12-30

    The dysconnectivity hypothesis proposes that abnormal resting state connectivity within the default-mode network (DMN) plays a key role in schizophrenia. Little is known, however, about alterations of the network homogeneity (NH) of the DMN in unaffected siblings of patients with schizophrenia. Unaffected siblings have unique advantages as subjects of neuroimaging studies independent of the clinical and treatment issues that complicate studies of the patients themselves. In the present study, we investigated NH of the DMN in unaffected siblings of schizophrenia. Participants comprised 46 unaffected siblings of schizophrenia patients and 50 age-, sex-, and education-matched healthy controls who underwent resting state functional magnetic resonance imaging (fMRI). Automated NH and group independent component analysis (ICA) approaches were used to analyze the data. Compared with healthy controls, the unaffected siblings of schizophrenia patients showed decreased DMN homogeneity in the left precuneus. No significantly increased DMN homogeneity was found in the sibling group relative to the control group. Our results suggest that there is decreased NH of the DMN in unaffected siblings of schizophrenia patients and indicate that the alternative perspective of examining the DMN NH in patients׳ siblings may improve understanding of the nature of schizophrenia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children

    PubMed Central

    Yerys, Benjamin E.; Gordon, Evan M.; Abrams, Danielle N.; Satterthwaite, Theodore D.; Weinblatt, Rachel; Jankowski, Kathryn F.; Strang, John; Kenworthy, Lauren; Gaillard, William D.; Vaidya, Chandan J.

    2015-01-01

    Functional pathology of the default mode network is posited to be central to social-cognitive impairment in autism spectrum disorders (ASD). Altered functional connectivity of the default mode network's midline core may be a potential endophenotype for social deficits in ASD. Generalizability from prior studies is limited by inclusion of medicated participants and by methods favoring restricted examination of network function. This study measured resting-state functional connectivity in 22 8–13 year-old non-medicated children with ASD and 22 typically developing controls using seed-based and network segregation functional connectivity methods. Relative to controls the ASD group showed both under- and over-functional connectivity within default mode and non-default mode regions, respectively. ASD symptoms correlated negatively with the connection strength of the default mode midline core—medial prefrontal cortex–posterior cingulate cortex. Network segregation analysis with the participation coefficient showed a higher area under the curve for the ASD group. Our findings demonstrate that the default mode network in ASD shows a pattern of poor segregation with both functional connectivity metrics. This study confirms the potential for the functional connection of the midline core as an endophenotype for social deficits. Poor segregation of the default mode network is consistent with an excitation/inhibition imbalance model of ASD. PMID:26484047

  14. Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children.

    PubMed

    Yerys, Benjamin E; Gordon, Evan M; Abrams, Danielle N; Satterthwaite, Theodore D; Weinblatt, Rachel; Jankowski, Kathryn F; Strang, John; Kenworthy, Lauren; Gaillard, William D; Vaidya, Chandan J

    2015-01-01

    Functional pathology of the default mode network is posited to be central to social-cognitive impairment in autism spectrum disorders (ASD). Altered functional connectivity of the default mode network's midline core may be a potential endophenotype for social deficits in ASD. Generalizability from prior studies is limited by inclusion of medicated participants and by methods favoring restricted examination of network function. This study measured resting-state functional connectivity in 22 8-13 year-old non-medicated children with ASD and 22 typically developing controls using seed-based and network segregation functional connectivity methods. Relative to controls the ASD group showed both under- and over-functional connectivity within default mode and non-default mode regions, respectively. ASD symptoms correlated negatively with the connection strength of the default mode midline core-medial prefrontal cortex-posterior cingulate cortex. Network segregation analysis with the participation coefficient showed a higher area under the curve for the ASD group. Our findings demonstrate that the default mode network in ASD shows a pattern of poor segregation with both functional connectivity metrics. This study confirms the potential for the functional connection of the midline core as an endophenotype for social deficits. Poor segregation of the default mode network is consistent with an excitation/inhibition imbalance model of ASD.

  15. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain.

    PubMed

    Jiang, Ying; Oathes, Desmond; Hush, Julia; Darnall, Beth; Charvat, Mylea; Mackey, Sean; Etkin, Amit

    2016-09-01

    Maladaptive responses to pain-related distress, such as pain catastrophizing, amplify the impairments associated with chronic pain. Many of these aspects of chronic pain are similar to affective distress in clinical anxiety disorders. In light of the role of the amygdala in pain and affective distress, disruption of amygdalar functional connectivity in anxiety states, and its implication in the response to noxious stimuli, we investigated amygdala functional connectivity in 17 patients with chronic low back pain and 17 healthy comparison subjects, with respect to normal targets of amygdala subregions (basolateral vs centromedial nuclei), and connectivity to large-scale cognitive-emotional networks, including the default mode network, central executive network, and salience network. We found that patients with chronic pain had exaggerated and abnormal amygdala connectivity with central executive network, which was most exaggerated in patients with the greatest pain catastrophizing. We also found that the normally basolateral-predominant amygdala connectivity to the default mode network was blunted in patients with chronic pain. Our results therefore highlight the importance of the amygdala and its network-level interaction with large-scale cognitive/affective cortical networks in chronic pain, and help link the neurobiological mechanisms of cognitive theories for pain with other clinical states of affective distress.

  16. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics.

    PubMed

    Baliki, Marwan N; Geha, Paul Y; Apkarian, A Vania; Chialvo, Dante R

    2008-02-06

    Chronic pain patients suffer from more than just pain; depression and anxiety, sleep disturbances, and decision-making abnormalities (Apkarian et al., 2004a) also significantly diminish their quality of life. Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain (Apkarian et al., 2004b; Acerra and Moseley, 2005), but whether these structural impairments and behavioral deficits are connected by a single mechanism is as of yet unknown. Here we propose that long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the "default mode network" (DMN). This DMN (Raichle et al., 2001; Greicius et al., 2003; Vincent et al., 2007) is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted (Fox and Raichle, 2007). Using well validated functional magnetic resonance imaging (fMRI) paradigms to study the DMN (Fox et al., 2005), we investigated whether the impairments of chronic pain patients could be rooted in disturbed DMN dynamics. Studying with fMRI a group of chronic back pain (CBP) patients and healthy controls while executing a simple visual attention task, we discovered that CBP patients, despite performing the task equally well as controls, displayed reduced deactivation in several key DMN regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the DMN may underlie the cognitive and behavioral impairments accompanying chronic pain.

  17. The unrested resting brain: sleep deprivation alters activity within the default-mode network.

    PubMed

    Gujar, Ninad; Yoo, Seung-Schik; Hu, Peter; Walker, Matthew P

    2010-08-01

    The sleep-deprived brain has principally been characterized by examining dysfunction during cognitive task performance. However, far less attention has been afforded the possibility that sleep deprivation may be as, if not more, accurately characterized on the basis of abnormal resting-state brain activity. Here we report that one night of sleep deprivation significantly disrupts the canonical signature of task-related deactivation, resulting in a double dissociation within anterior as well as posterior midline regions of the default network. Indeed, deactivation within these regions alone discriminated sleep-deprived from sleep-control subjects with a 93% degree of sensitivity and 92% specificity. In addition, the relative balance of deactivation within these default nodes significantly correlated with the amount of prior sleep in the control group (and not extended time awake in the deprivation group). Therefore, the stability and the balance of task-related deactivation in key default-mode regions may be dependent on prior sleep, such that a lack thereof disrupts this signature pattern of brain activity, findings that may offer explanatory insights into conditions associated with sleep loss at both a clinical as well as societal level.

  18. Altered functional connectivity in default mode network in Internet gaming disorder: Influence of childhood ADHD.

    PubMed

    Lee, Deokjong; Lee, Junghan; Lee, Jung Eun; Jung, Young-Chul

    2017-04-03

    Internet gaming disorder (IGD) is a type of behavioral addiction characterized by abnormal executive control, leading to loss of control over excessive gaming. Attention deficit and hyperactivity disorder (ADHD) is one of the most common comorbid disorders in IGD, involving delayed development of the executive control system, which could predispose individuals to gaming addiction. We investigated the influence of childhood ADHD on neural network features of IGD. Resting-state functional magnetic resonance imaging analysis was performed on 44 young, male IGD subjects with and without childhood ADHD and 19 age-matched, healthy male controls. Posterior cingulate cortex (PCC)-seeded connectivity was evaluated to assess abnormalities in default mode network (DMN) connectivity, which is associated with deficits in executive control. IGD subjects without childhood ADHD showed expanded functional connectivity (FC) between DMN-related regions (PCC, medial prefrontal cortex, thalamus) compared with controls. These subjects also exhibited expanded FC between the PCC and brain regions implicated in salience processing (anterior insula, orbitofrontal cortex) compared with IGD subjects with childhood ADHD. IGD subjects with childhood ADHD showed expanded FC between the PCC and cerebellum (crus II), a region involved in executive control. The strength of connectivity between the PCC and cerebellum (crus II) was positively correlated with self-reporting scales reflecting impulsiveness. Individuals with IGD showed altered PCC-based FC, the characteristics of which might be dependent upon history of childhood ADHD. Our findings suggest that altered neural networks for executive control in ADHD would be a predisposition for developing IGD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Meditation experience is associated with differences in default mode network activity and connectivity

    PubMed Central

    Brewer, Judson A.; Worhunsky, Patrick D.; Gray, Jeremy R.; Tang, Yi-Yuan; Weber, Jochen; Kober, Hedy

    2011-01-01

    Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation. PMID:22114193

  20. Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks

    PubMed Central

    Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.

    2016-01-01

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383

  1. Musical Creativity "Revealed" in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks.

    PubMed

    Bashwiner, David M; Wertz, Christopher J; Flores, Ranee A; Jung, Rex E

    2016-02-18

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music.

  2. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania

    PubMed Central

    Martino, Matteo; Magioncalda, Paola; Huang, Zirui; Conio, Benedetta; Piaggio, Niccolò; Duncan, Niall W.; Rocchi, Giulio; Escelsior, Andrea; Marozzi, Valentina; Wolff, Annemarie; Inglese, Matilde; Amore, Mario; Northoff, Georg

    2016-01-01

    Depressive and manic phases in bipolar disorder show opposite constellations of affective, cognitive, and psychomotor symptoms. At a neural level, these may be related to topographical disbalance between large-scale networks, such as the default mode network (DMN) and sensorimotor network (SMN). We investigated topographical patterns of variability in the resting-state signal—measured by fractional SD (fSD) of the BOLD signal—of the DMN and SMN (and other networks) in two frequency bands (Slow5 and Slow4) with their ratio and clinical correlations in depressed (n = 20), manic (n = 20), euthymic (n = 20) patients, and healthy controls (n = 40). After controlling for global signal changes, the topographical balance between the DMN and SMN, specifically in the lowest frequency band, as calculated by the Slow5 fSD DMN/SMN ratio, was significantly increased in depression, whereas the same ratio was significantly decreased in mania. Additionally, Slow5 variability was increased in the DMN and decreased in the SMN in depressed patients, whereas the opposite topographical pattern was observed in mania. Finally, the Slow5 fSD DMN/SMN ratio correlated positively with clinical scores of depressive symptoms and negatively with those of mania. Results were replicated in a smaller independent bipolar disorder sample. We demonstrated topographical abnormalities in frequency-specific resting-state variability in the balance between DMN and SMN with opposing patterns in depression and mania. The Slow5 DMN/SMN ratio was tilted toward the DMN in depression but was shifted toward the SMN in mania. The Slow5 fSD DMN/SMN pattern could constitute a state-biomarker in diagnosis and therapy. PMID:27071087

  3. Modulatory interactions between the default mode network and task positive networks in resting-state

    PubMed Central

    Di, Xin

    2014-01-01

    The two major brain networks, i.e., the default mode network (DMN) and the task positive network, typically reveal negative and variable connectivity in resting-state. In the present study, we examined whether the connectivity between the DMN and different components of the task positive network were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial independent component analysis was first conducted to identify components that represented networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was conducted between pairs of these networks to identify networks or regions that showed modulatory interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory interactions between the DMN, salience, and executive networks. Together with the anatomical properties of the salience network regions, the results suggest that the salience network may modulate the relationship between the DMN and executive networks. In addition, voxel-wise analysis demonstrated that the basal ganglia and thalamus positively interacted with the salience network and the dorsal attention network, and negatively interacted with the salience network and the DMN. The results demonstrated complex modulatory interactions among the DMNs and task positive networks in resting-state, and suggested that communications between these networks may be modulated by some critical brain structures such as the salience network, basal ganglia, and thalamus. PMID:24860698

  4. Coactivation of the Default Mode Network regions and Working Memory Network regions during task preparation

    PubMed Central

    Koshino, Hideya; Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2014-01-01

    The Default Mode Network (DMN) regions exhibit deactivation during a wide variety of resource demanding tasks. However, recent brain imaging studies reported that they also show activation during various cognitive activities. In addition, studies have found a negative correlation between the DMN and the working memory network (WMN). Here, we investigated activity in the DMN and WMN regions during preparation and execution phases of a verbal working memory task. Results showed that the core DMN regions, including the medial prefrontal cortex and posterior cingulate cortex, and WMN regions were activated during preparation. During execution, however, the WMN regions were activated but the DMN regions were deactivated. The results suggest that activation of these network regions is affected by allocation of attentional resources to the task relevant regions due to task demands. This study extends our previous results by showing that the core DMN regions exhibit activation during task preparation and deactivation during task execution. PMID:25092432

  5. Coactivation of the Default Mode Network regions and Working Memory Network regions during task preparation.

    PubMed

    Koshino, Hideya; Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2014-08-05

    The Default Mode Network (DMN) regions exhibit deactivation during a wide variety of resource demanding tasks. However, recent brain imaging studies reported that they also show activation during various cognitive activities. In addition, studies have found a negative correlation between the DMN and the working memory network (WMN). Here, we investigated activity in the DMN and WMN regions during preparation and execution phases of a verbal working memory task. Results showed that the core DMN regions, including the medial prefrontal cortex and posterior cingulate cortex, and WMN regions were activated during preparation. During execution, however, the WMN regions were activated but the DMN regions were deactivated. The results suggest that activation of these network regions is affected by allocation of attentional resources to the task relevant regions due to task demands. This study extends our previous results by showing that the core DMN regions exhibit activation during task preparation and deactivation during task execution.

  6. Topological Reorganization of the Default Mode Network in Irritable Bowel Syndrome.

    PubMed

    Qi, Rongfeng; Ke, Jun; Schoepf, U Joseph; Varga-Szemes, Akos; Milliken, Cole M; Liu, Chang; Xu, Qiang; Wang, Fangyu; Zhang, Long Jiang; Lu, Guang Ming

    2016-12-01

    The aim of this study was to investigate the topological reorganization of the brain default mode network (DMN) in patients with irritable bowel syndrome (IBS) using resting-state functional magnetic resonance imaging (rs-fMRI). With approval by our ethics committee, rs-fMRI was prospectively performed in 31 IBS patients (25 male, 27 ± 8 years) and 32 healthy controls (25 male, 29 ± 9 years). The DMN was determined by unbiased seed-based functional connectivity (FC) analysis and then parcellated into several subregions. FC across all pairs of DMN subregions was computed to construct the DMN architecture, for which topological properties were characterized by graph theoretical approaches. Pearson correlation was performed between abnormal DMN inter-regional FC and network measures and clinical indices in IBS patients. Compared to healthy controls, IBS patients showed decreased DMN inter-regional FC between the anterior cingulate cortex and precuneus, the medial orbital of the superior frontal gyrus (ORBsupmed) and precuneus, and the middle temporal gyrus and precuneus. IBS patients also showed decreased DMN global efficiency (E glob). Inclusion of anxiety and depression as covariates abolished FC between ORBsupmed and precuneus and some E glob differences. The average DMN FC was positively correlated with average E glob (r = 0.47, P = 0.008) and negatively correlated with symptom severity score (r = -0.37, P = 0.04) in IBS patients. In conclusion, IBS patients showed topological reorganization of the DMN to a non-optimized regularity configuration, which may partly be ascribed to high levels of anxiety and depression.

  7. Olanzapine modulates the default-mode network homogeneity in recurrent drug-free schizophrenia at rest.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping

    2017-10-01

    Previous studies on brain function alterations associated with antipsychotic treatment for schizophrenia have produced conflicting results because they used short treatment periods and different designs. Resting-state functional magnetic resonance imaging scans were obtained from 17 drug-free patients with recurrent schizophrenia and 24 healthy controls. The patients were treated with olanzapine for 6 months and were scanned at three time points (baseline, 6 weeks of treatment and 6 months of treatment). Network homogeneity was used to analyze the imaging data to examine default-mode network homogeneity alterations associated with antipsychotic treatment. Compared with the controls, the patients at baseline showed increased network homogeneity in the bilateral precuneus and decreased network homogeneity in the bilateral middle temporal gyrus. Network homogeneity values in the bilateral precuneus decreased, and network homogeneity values in the left superior medial prefrontal cortex and the right middle temporal gyrus increased in patients administered olanzapine as antipsychotic treatment. By contrast, network homogeneity values in the left middle temporal gyrus remained unchanged in patients after treatment. This study provides evidence that antipsychotic treatment with olanzapine modulates the default-mode network homogeneity in schizophrenia. These findings contribute to the understanding of antipsychotic treatment effects on brain functions.

  8. Disrupted functional connectivity of the default mode network due to acute vestibular deficit.

    PubMed

    Klingner, Carsten M; Volk, Gerd F; Brodoehl, Stefan; Witte, Otto W; Guntinas-Lichius, Orlando

    2014-01-01

    Vestibular neuritis is defined as a sudden unilateral partial failure of the vestibular nerve that impairs the forwarding of vestibular information from the labyrinth. The patient suffers from vertigo, horizontal nystagmus and postural instability with a tendency toward ipsilesional falls. Although vestibular neuritis is a common disease, the central mechanisms to compensate for the loss of precise vestibular information remain poorly understood. It was hypothesized that symptoms following acute vestibular neuritis originate from difficulties in the processing of diverging sensory information between the responsible brain networks. Accordingly an altered resting activity was shown in multiple brain areas of the task-positive network. Because of the known balance between the task-positive and task-negative networks (default mode network; DMN) we hypothesize that also the DMN is involved. Here, we employ functional magnetic resonance imaging (fMRI) in the resting state to investigate changes in the functional connectivity between the DMN and task-positive networks, in a longitudinal design combined with measurements of caloric function. We demonstrate an initially disturbed connectedness of the DMN after vestibular neuritis. We hypothesize that the disturbed connectivity between the default mode network and particular parts of the task-positive network might be related to a sustained utilization of processing capacity by diverging sensory information. The current results provide some insights into mechanisms of central compensation following an acute vestibular deficit and the importance of the DMN in this disease.

  9. Disrupted functional connectivity of the default mode network due to acute vestibular deficit

    PubMed Central

    Klingner, Carsten M.; Volk, Gerd F.; Brodoehl, Stefan; Witte, Otto W.; Guntinas-Lichius, Orlando

    2014-01-01

    Vestibular neuritis is defined as a sudden unilateral partial failure of the vestibular nerve that impairs the forwarding of vestibular information from the labyrinth. The patient suffers from vertigo, horizontal nystagmus and postural instability with a tendency toward ipsilesional falls. Although vestibular neuritis is a common disease, the central mechanisms to compensate for the loss of precise vestibular information remain poorly understood. It was hypothesized that symptoms following acute vestibular neuritis originate from difficulties in the processing of diverging sensory information between the responsible brain networks. Accordingly an altered resting activity was shown in multiple brain areas of the task-positive network. Because of the known balance between the task-positive and task-negative networks (default mode network; DMN) we hypothesize that also the DMN is involved. Here, we employ functional magnetic resonance imaging (fMRI) in the resting state to investigate changes in the functional connectivity between the DMN and task-positive networks, in a longitudinal design combined with measurements of caloric function. We demonstrate an initially disturbed connectedness of the DMN after vestibular neuritis. We hypothesize that the disturbed connectivity between the default mode network and particular parts of the task-positive network might be related to a sustained utilization of processing capacity by diverging sensory information. The current results provide some insights into mechanisms of central compensation following an acute vestibular deficit and the importance of the DMN in this disease. PMID:25379422

  10. Decreased regional activity of default-mode network in unaffected siblings of schizophrenia patients at rest.

    PubMed

    Guo, Wenbin; Su, Qinji; Yao, Dapeng; Jiang, Jiajing; Zhang, Jian; Zhang, Zhikun; Yu, Liuyu; Zhai, Jinguo; Xiao, Changqing

    2014-04-01

    Dysconnectivity hypothesis posits that abnormal resting-state connectivity within the default-mode network (DMN) acts as a key role in schizophrenia. However, little is known about the regional alterations of the DMN in unaffected siblings of schizophrenia patients. Unaffected siblings have a unique advantage in neuroimaging studies independent of clinical and treatment issues that complicate studies on patients themselves. In the present study, we used fractional amplitude of low-frequency fluctuation (fALFF) to investigate regional alterations of the DMN in unaffected siblings of schizophrenia patients at rest. Forty-six unaffected siblings of schizophrenia patients and 50 age-, sex-, and education-matched healthy controls underwent a resting-state functional magnetic resonance imaging (fMRI). The fALFF and independent component analysis (ICA) approaches were used to analyze the data. The unaffected siblings of schizophrenia patients had lower fALFF than the controls in the left inferior temporal gyrus (ITG). No significantly increased fALFF was found in any brain regions in the siblings compared to that in the controls. Further receiver operating characteristic (ROC) curve and support vector machine (SVM) analyses showed that the fALFF values of the left ITG could be utilized to separate the siblings from the controls. Our results first suggest that there is decreased regional activity of the DMN in unaffected siblings of schizophrenia patients, and provide a clue that decreased regional activity of the left ITG could be applied as a candidate biomarker to identify the siblings from the controls. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  11. Functional MRI for Assessment of the Default Mode Network in Acute Brain Injury.

    PubMed

    Kondziella, Daniel; Fisher, Patrick M; Larsen, Vibeke Andrée; Hauerberg, John; Fabricius, Martin; Møller, Kirsten; Knudsen, Gitte Moos

    2017-05-08

    Assessment of the default mode network (DMN) using resting-state functional magnetic resonance imaging (fMRI) may improve assessment of the level of consciousness in chronic brain injury, and therefore, fMRI may also have prognostic value in acute brain injury. However, fMRI is much more challenging in critically ill patients because of cardiovascular vulnerability, intravenous sedation, and artificial ventilation. Using resting-state fMRI, we investigated the DMN in a convenience sample of patients with acute brain injury admitted to the intensive care unit. The DMN was classified dichotomously into "normal" and "grossly abnormal." Clinical outcome was assessed at 3 months. Seven patients with acute brain injury (4 females; median age 37 years [range 14-71 years]; 1 traumatic brain injury [TBI]; 6 non-TBI) were investigated by fMRI a median of 15 days after injury (range 5-25 days). Neurological presentation included 2 coma, 1 vegetative state/unresponsive wakefulness syndrome (VS/UWS), 3 minimal conscious state (MCS) minus, and 1 MCS plus. Clinical outcomes at 3 months included 1 death, 1 VS/UWS, 1 MCS plus, and 4 conscious states (CS; 1 modified Rankin Scale 0; 2 mRS 4; 1 mRS 5). Normal DMNs were seen in 4 out of 7 patients (1 MCS plus, 3 CS at follow-up). It is feasible to assess the DMN by resting-state fMRI in patients with acute brain injury already in the very early period of intensive care unit admission. Although preliminary data, all patients with a preserved DMN regained consciousness levels at follow-up compatible with MCS+ or better.

  12. Delay discounting is predicted by scale-free dynamics of default mode network and salience network.

    PubMed

    Chen, Zhiyi; Guo, Yiqun; Feng, Tingyong

    2017-08-24

    Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is frequently used as a powerful technology to detect individual differences in many cognitive functions. Recently, some studies have explored the association between scale-free dynamic properties of resting-state brain activation and individual personality traits. However, little is known about whether the scale-free dynamics of resting-state function networks is associated with delay discounting. To address this question, we calculated the Hurst exponent which quantifies long-term memory of the time series in resting-state networks (RSNs) identified via independent component analysis (ICA) and examined what relationship between delay discounting and the Hurst exponent of RSNs is. ICA results showed that entire nine RSNs were successfully recognized and extracted from independent components. After controlling some covariates, including gender, age, education, personality and trait anxiety, partial correlation analysis revealed that the Hurst exponent in default mode network (DMN) and salience network (SN) was positively correlated with the delay discounting rates. No significant correlation between delay discounting and mean Hurst exponent of the whole brain was found. Thus, our results suggest the individual delay discounting is associated with the dynamics of inner-network interactions in the DMN and SN, and highlight the crucial role of scale-free dynamic properties of function networks on intertemporal choice. Copyright © 2017. Published by Elsevier Ltd.

  13. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia.

    PubMed

    Orliac, François; Naveau, Mickael; Joliot, Marc; Delcroix, Nicolas; Razafimandimby, Annick; Brazo, Perrine; Dollfus, Sonia; Delamillieure, Pascal

    2013-08-01

    Neuroimaging data support the idea that schizophrenia is a brain disorder with altered brain structure and function. New resting-state functional connectivity techniques allow us to highlight synchronization of large-scale networks, such as the default-mode network (DMN) and salience network (SN). A large body of work suggests that disruption of these networks could give rise to specific schizophrenia symptoms. We examined the intra-network connectivity strength and gray matter content (GMC) of DMN and SN in 26 schizophrenia patients using resting-state functional magnetic resonance imaging and voxel-based morphometry. Resting-state data were analyzed with independent component analysis and dual-regression techniques. We reported reduced functional connectivity within both DMN and SN in patients with schizophrenia. Concerning the DMN, patients showed weaker connectivity in a cluster located in the right paracingulate cortex. Moreover, patients showed decreased GMC in this cluster. With regard to the SN, patients showed reduced connectivity in the left and right striatum. Decreased connectivity in the paracingulate cortex was correlated with difficulties in abstract thinking. The connectivity decrease in the left striatum was correlated with delusion and depression scores. Correlation between the connectivity of DMN frontal regions and difficulties in abstract thinking emphasizes the link between negative symptoms and the likely alteration of the frontal medial cortex in schizophrenia. Correlation between the connectivity of SN striatal regions and delusions supports the aberrant salience hypothesis. This work provides new insights into dysfunctional brain organization in schizophrenia and its contribution to specific schizophrenia symptoms.

  14. Effective connectivity analysis of default mode network based on the Bayesian network learning approach

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chen, Kewei; Zhang, Nan; Fleisher, Adam S.; Li, Yao; Wu, Xia

    2009-02-01

    This work proposed to use the linear Gaussian Bayesian network (BN) to construct the effective connectivity model of the brain's default mode network (DMN), a set of regions characterized by more increased neural activity during rest-state than most goal-oriented tasks. In a complete unsupervised data-driven manner, Bayesian information criterion (BIC) based learning approach was utilized to identify a highest scored network whose nodes (brain regions) were selected based on the result from the group independent component analysis (Group ICA) examining the DMN. We put forward to adopt the statistical significance testing method for regression coefficients used in stepwise regression analysis to further refine the network identified by BIC. The final established BN, learned from the functional magnetic resonance imaging (fMRI) data acquired from 12 healthy young subjects during rest-state, revealed that the hippocampus (HC) was the most influential brain region that affected activities in all other regions included in the BN. In contrast, the posterior cingulate cortex (PCC) was influenced by other regions, but had no reciprocal effects on any other region. Overall, the configuration of our BN illustrated that a prominent connection from HC to PCC existed in the DMN.

  15. Aging Influence on Gray Matter Structural Associations within the Default Mode Network Utilizing Bayesian Network Modeling.

    PubMed

    Wang, Yan; Chen, Kewei; Zhang, Jiacai; Yao, Li; Li, Ke; Jin, Zhen; Ye, Qing; Guo, Xiaojuan

    2014-01-01

    Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN). However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN) modeling, we analyzed gray matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC) to medial prefrontal cortex (mPFC), right hippocampus (HP) to right ITC, and mPFC to posterior cingulate cortex and increases in connections from left HP to mPFC and right inferior parietal cortex to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity, and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.

  16. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking

    PubMed Central

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativity found an association between creativity and the brain regions in the prefrontal cortex, the anterior cingulate cortex, the default mode network and the executive network. However, which neural networks contribute to the explicit mode of thinking during idea generation remains an open question. We employed an fMRI paradigm to examine which brain regions were activated when participants (n = 16) mentally generated alternative uses for everyday objects. Most previous creativity studies required participants to verbalize responses during idea generation, whereas in this study participants produced mental alternatives without verbalizing. This study found activation in the left anterior insula when contrasting idea generation and object identification. This finding suggests that the insula (part of the brain’s salience network) plays a role in facilitating both the central executive and default mode networks to activate idea generation. We also investigated closely the effect of the serial order of idea being generated on brain responses: The amplitude of fMRI responses correlated positively with the serial order of idea being generated in the anterior cingulate cortex, which is part of the central executive network. Positive correlation with the serial order was also observed in the regions typically assigned to the default mode network: the precuneus/cuneus, inferior parietal lobule and posterior cingulate cortex. These networks support the explicit mode of thinking and help the individual to convert conventional mental models to new ones. The serial order correlated

  17. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking.

    PubMed

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativity found an association between creativity and the brain regions in the prefrontal cortex, the anterior cingulate cortex, the default mode network and the executive network. However, which neural networks contribute to the explicit mode of thinking during idea generation remains an open question. We employed an fMRI paradigm to examine which brain regions were activated when participants (n = 16) mentally generated alternative uses for everyday objects. Most previous creativity studies required participants to verbalize responses during idea generation, whereas in this study participants produced mental alternatives without verbalizing. This study found activation in the left anterior insula when contrasting idea generation and object identification. This finding suggests that the insula (part of the brain's salience network) plays a role in facilitating both the central executive and default mode networks to activate idea generation. We also investigated closely the effect of the serial order of idea being generated on brain responses: The amplitude of fMRI responses correlated positively with the serial order of idea being generated in the anterior cingulate cortex, which is part of the central executive network. Positive correlation with the serial order was also observed in the regions typically assigned to the default mode network: the precuneus/cuneus, inferior parietal lobule and posterior cingulate cortex. These networks support the explicit mode of thinking and help the individual to convert conventional mental models to new ones. The serial order correlated

  18. Resting-state functional connectivity of the default mode network associated with happiness.

    PubMed

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun; Huang, Xiting

    2016-03-01

    Happiness refers to people's cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people's perceived happiness.

  19. Resting-state functional connectivity of the default mode network associated with happiness

    PubMed Central

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun

    2016-01-01

    Happiness refers to people’s cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people’s perceived happiness. PMID:26500289

  20. Default mode network interference in mild traumatic brain injury - a pilot resting state study.

    PubMed

    Sours, Chandler; Zhuo, Jiachen; Janowich, Jacqueline; Aarabi, Bizhan; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P

    2013-11-06

    In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits.

  1. Functional neuroimaging with default mode network regions distinguishes PTSD from TBI in a military veteran population.

    PubMed

    Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A; Amen, Daniel G

    2015-09-01

    PTSD and TBI are two common conditions in veteran populations that can be difficult to distinguish clinically. The default mode network (DMN) is abnormal in a multitude of neurological and psychiatric disorders. We hypothesize that brain perfusion SPECT can be applied to diagnostically separate PTSD from TBI reliably in a veteran cohort using DMN regions. A group of 196 veterans (36 with PTSD, 115 with TBI, 45 with PTSD/TBI) were selected from a large multi-site population cohort of individuals with psychiatric disease. Inclusion criteria were peacetime or wartime veterans regardless of branch of service and included those for whom the traumatic brain injury was not service related. SPECT imaging was performed on this group both at rest and during a concentration task. These measures, as well as the baseline-concentration difference, were then inputted from DMN regions into separate binary logistic regression models controlling for age, gender, race, clinic site, co-morbid psychiatric diseases, TBI severity, whether or not the TBI was service related, and branch of armed service. Predicted probabilities were then inputted into a receiver operating characteristic analysis to compute sensitivity, specificity, and accuracy. Compared to PSTD, persons with TBI were older, male, and had higher rates of bipolar and major depressive disorder (p < 0.05). Baseline quantitative regions with SPECT separated PTSD from TBI in the veterans with 92 % sensitivity, 85 % specificity, and 94 % accuracy. With concentration scans, there was 85 % sensitivity, 83 % specificity and 89 % accuracy. Baseline-concentration (the difference metric between the two scans) scans were 85 % sensitivity, 80 % specificity, and 87 % accuracy. In separating TBI from PTSD/TBI visual readings of baseline scans had 85 % sensitivity, 81 % specificity, and 83 % accuracy. Concentration scans had 80 % sensitivity, 65 % specificity, and 79 % accuracy. Baseline-concentration scans had 82

  2. Differential activation of the default mode network in jet lagged individuals.

    PubMed

    Coutinho, Joana Fernandes; Gonçalves, Oscar Filipe; Maia, Liliana; Fernandes Vasconcelos, Cristiana; Perrone-McGovern, Kristin; Simon-Dack, Stephanie; Hernandez, Kristina; Oliveira-Silva, Patricia; Mesquita, Ana Raquel; Sampaio, Adriana

    2015-02-01

    Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination.

  3. The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review

    PubMed Central

    Mohan, Akansha; Roberto, Aaron J.; Mohan, Abhishek; Lorenzo, Aileen; Jones, Kathryn; Carney, Martin J.; Liogier-Weyback, Luis; Hwang, Soonjo; Lapidus, Kyle A.B.

    2016-01-01

    The relationship of cortical structure and specific neuronal circuitry to global brain function, particularly its perturbations related to the development and progression of neuropathology, is an area of great interest in neurobehavioral science. Disruption of these neural networks can be associated with a wide range of neurological and neuropsychiatric disorders. Herein we review activity of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, Epilepsy (Temporal Lobe Epilepsy - TLE), attention deficit hyperactivity disorder (ADHD), and mood disorders. We discuss the implications of DMN disruptions and their relationship to the neurocognitive model of each disease entity, the utility of DMN assessment in clinical evaluation, and the changes of the DMN following treatment. PMID:27505016

  4. Affective network and default mode network in depressive adolescents with disruptive behaviors

    PubMed Central

    Kim, Sun Mi; Park, Sung Yong; Kim, Young In; Son, Young Don; Chung, Un-Sun; Min, Kyung Joon; Han, Doug Hyun

    2016-01-01

    Aim Disruptive behaviors are thought to affect the progress of major depressive disorder (MDD) in adolescents. In resting-state functional connectivity (RSFC) studies of MDD, the affective network (limbic network) and the default mode network (DMN) have garnered a great deal of interest. We aimed to investigate RSFC in a sample of treatment-naïve adolescents with MDD and disruptive behaviors. Methods Twenty-two adolescents with MDD and disruptive behaviors (disrup-MDD) and 20 age- and sex-matched healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). We used a seed-based correlation approach concerning two brain circuits including the affective network and the DMN, with two seed regions including the bilateral amygdala for the limbic network and the bilateral posterior cingulate cortex (PCC) for the DMN. We also observed a correlation between RSFC and severity of depressive symptoms and disruptive behaviors. Results The disrup-MDD participants showed lower RSFC from the amygdala to the orbitofrontal cortex and parahippocampal gyrus compared to HC participants. Depression scores in disrup-MDD participants were negatively correlated with RSFC from the amygdala to the right orbitofrontal cortex. The disrup-MDD participants had higher PCC RSFC compared to HC participants in a cluster that included the left precentral gyrus, left insula, and left parietal lobe. Disruptive behavior scores in disrup-MDD patients were positively correlated with RSFC from the PCC to the left insular cortex. Conclusion Depressive mood might be correlated with the affective network, and disruptive behavior might be correlated with the DMN in adolescent depression. PMID:26770059

  5. Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network

    PubMed Central

    Niu, Xuan; Zhang, Ming; Liu, Zhenyu; Sun, Chuanzhu; Wang, Shan; Wang, Xiaocui; Chen, Zhen; Chen, Hongyan; Tian, Jie

    2016-01-01

    Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal

  6. Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network.

    PubMed

    Niu, Xuan; Zhang, Ming; Liu, Zhenyu; Bai, Lijun; Sun, Chuanzhu; Wang, Shan; Wang, Xiaocui; Chen, Zhen; Chen, Hongyan; Tian, Jie

    2017-01-01

    Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal

  7. Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery.

    PubMed

    Calhoun, Vince D; Adalı, Tülay

    2012-01-01

    Since the discovery of functional connectivity in fMRI data (i.e., temporal correlations between spatially distinct regions of the brain) there has been a considerable amount of work in this field. One important focus has been on the analysis of brain connectivity using the concept of networks instead of regions. Approximately ten years ago, two important research areas grew out of this concept. First, a network proposed to be "a default mode of brain function" since dubbed the default mode network was proposed by Raichle. Secondly, multisubject or group independent component analysis (ICA) provided a data-driven approach to study properties of brain networks, including the default mode network. In this paper, we provide a focused review of how ICA has contributed to the study of intrinsic networks. We discuss some methodological considerations for group ICA and highlight multiple analytic approaches for studying brain networks. We also show examples of some of the differences observed in the default mode and resting networks in the diseased brain. In summary, we are in exciting times and still just beginning to reap the benefits of the richness of functional brain networks as well as available analytic approaches.

  8. Can the default-mode network be described with one spatial-covariance network?

    PubMed

    Habeck, Christian; Steffener, Jason; Rakitin, Brian; Stern, Yaakov

    2012-08-15

    The default-mode network (DMN) has become a well accepted concept in cognitive and clinical neuroscience over the last decade, and perusal of the recent literature attests to a stimulating research field of cognitive and diagnostic applications (for example, (Andrews-Hanna et al., 2010; Koch et al., 2010; Sheline et al., 2009a; Sheline et al., 2009b; Uddin et al., 2008; Uddin et al., 2009; Weng et al., 2009; Yan et al., 2009)). However, a formal definition of what exactly constitutes a functional brain network is difficult to come by. In recent contributions, some researchers argue that the DMN is best understood as multiple interacting subsystems (Buckner et al., 2008) and have explored modular components of the DMN that have different functional specialization and could to some extent be identified separately (Fox et al., 2005; Uddin et al., 2009). Such conception of modularity seems to imply an opposite construct of a 'unified whole', but it is difficult to locate proponents of the idea of a DMN who are supplying constraints that can be brought to bear on data in rigorous tests. Our aim in this paper is to present a principled way of deriving a single covariance pattern as the neural substrate of the DMN, test to what extent its behavior tracks the coupling strength between critical seed regions, and investigate to what extent our stricter concept of a network is consistent with the already established findings about the DMN in the literature. We show that our approach leads to a functional covariance pattern whose pattern scores are a good proxy for the integrity of the connections between a medioprefrontal, posterior cingulate and parietal seed regions. Our derived DMN network thus has potential for diagnostic applications that are simpler to perform than computation of pairwise correlational strengths or seed maps.

  9. Network Optimization of Functional Connectivity within Default Mode Network Regions to Detect Cognitive Decline.

    PubMed

    Chaovalitwongse, Wanpracha Art; Won, Daehan; Seref, Onur; Borghesani, Paul; Askren, Mary Katie; Willis, Sherry; Grabowski, Tom

    2017-03-07

    The rapid aging of the world's population is causing an increase in the prevalence of cognitive decline and degenerative brain disease in the elderly. Current diagnoses of amnestic and nonamnestic Mild Cognitive Impairment (MCI), which may represent early stage Alzheimer's disease or related degenerative conditions, are based on clinical grounds. The recent emergence of advanced network analyses of functional Magnetic Resonance Imaging (fMRI) data taken at cognitive rest has provided insight that declining functional connectivity of the default mode network (DMN) may be correlated with neurological disorders, and particularly prodromal Alzheimer's disease. The goal of this paper is to develop a network analysis technique using fMRI data to characterize transition stages from healthy brain aging to cognitive decline. Previous studies primarily focused on internodal connectivity of the DMN and often assume functional homogeneity within each DMN region. In this paper, we develop a technique that focuses on identifying critical intra-nodal DMN connectivity by incorporating sparsity into connectivity modeling of the k-cardinality tree (KCT) problem. Most biological networks are efficient and formed by sparse connections, and the KCT can potentially reveal sparse connectivity patterns that are biologically informative. The KCT problem is NP-hard, and existing solution approaches are mostly heuristic. Mathematical formulations of the KCT problem in the literature are not compact and do not provide good solution bounds. This paper presents new KCT formulations and a fast heuristic approach to efficiently solve the KCT models for large DMN regions. The results in this study demonstrate that traditional fMRI group analysis on DMN regions cannot detect any statistically significant connectivity differences between normal aging and cognitively impaired subjects in DMN regions, and the proposed KCT approaches are more sensitive than the state-of-the-art regional homogeneity

  10. Disruptions of functional connectivity in the default mode network of comatose patients.

    PubMed

    Norton, L; Hutchison, R M; Young, G B; Lee, D H; Sharpe, M D; Mirsattari, S M

    2012-01-17

    To evaluate the possible role of the default mode network (DMN) in consciousness and assess the diagnostic or prognostic potential of DMN connectivity measures in the assessment of a patient group lacking cognitive awareness. DMN connectivity was established using independent component analysis of resting-state fMRI data in patients with reversible (n = 2) and irreversible (n = 11) coma following cardiac arrest and compared to healthy controls (n = 12). A present and intact DMN was observed in controls and those patients who subsequently regained consciousness, but was disrupted in all patients who failed to regain consciousness. The results suggest that the DMN is necessary but not sufficient to support consciousness. Clinically, DMN connectivity may serve as an indicator of the extent of cortical disruption and predict reversible impairments in consciousness.

  11. Acupuncture Modulates the Functional Connectivity of the Default Mode Network in Stroke Patients

    PubMed Central

    Zhang, Yong; Li, Kuangshi; Ren, Yi; Cui, Fangyuan; Xie, Zijing; Shin, Jae-Young; Tan, Zhongjian; Tang, Lixin; Bai, Lijun; Zou, Yihuai

    2014-01-01

    Abundant evidence from previous fMRI studies on acupuncture has revealed significant modulatory effects at widespread brain regions. However, few reports on the modulation to the default mode network (DMN) of stroke patients have been investigated in the field of acupuncture. To study the modulatory effects of acupuncture on the DMN of stroke patients, eight right hemispheric infarction and stable ischemic stroke patients and ten healthy subjects were recruited to undergo resting state fMRI scanning before and after acupuncture stimulation. Functional connectivity analysis was applied with the bilateral posterior cingulate cortices chosen as the seed regions. The main finding demonstrated that the interregional interactions between the ACC and PCC especially enhanced after acupuncture at GB34 in stroke patients, compared with healthy controls. The results indicated that the possible mechanisms of the modulatory effects of acupuncture on the DMN of stroke patients could be interpreted in terms of cognitive ability and motor function recovery. PMID:24734113

  12. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep

    PubMed Central

    Tagliazucchi, Enzo; von Wegner, Frederic; Morzelewski, Astrid; Brodbeck, Verena; Jahnke, Kolja; Laufs, Helmut

    2013-01-01

    The integration of segregated brain functional modules is a prerequisite for conscious awareness during wakeful rest. Here, we test the hypothesis that temporal integration, measured as long-term memory in the history of neural activity, is another important quality underlying conscious awareness. For this aim, we study the temporal memory of blood oxygen level-dependent signals across the human nonrapid eye movement sleep cycle. Results reveal that this property gradually decreases from wakefulness to deep nonrapid eye movement sleep and that such decreases affect areas identified with default mode and attention networks. Although blood oxygen level-dependent spontaneous fluctuations exhibit nontrivial spatial organization, even during deep sleep, they also display a decreased temporal complexity in specific brain regions. Conversely, this result suggests that long-range temporal dependence might be an attribute of the spontaneous conscious mentation performed during wakeful rest. PMID:24003146

  13. Modulation of Steady State Functional Connectivity in the Default Mode and Working Memory Networks By Cognitive Load

    PubMed Central

    Newton, Allen T.; Morgan, Victoria L.; Rogers, Baxter P.; Gore, John C.

    2010-01-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. In order to test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. PMID:21077136

  14. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss.

    PubMed

    Schmidt, Sara A; Akrofi, Kwaku; Carpenter-Thompson, Jake R; Husain, Fatima T

    2013-01-01

    We investigated auditory, dorsal attention, and default mode networks in adults with tinnitus and hearing loss in a resting state functional connectivity study. Data were obtained using continuous functional magnetic resonance imaging (fMRI) while the participants were at "rest" and were not performing any task. Participants belonged to one of three groups: middle-aged adults with tinnitus and mild-to-moderate high frequency hearing loss (TIN), age-matched controls with normal hearing and no tinnitus (NH), and a second control group with mild-to-moderate high frequency hearing loss without tinnitus (HL). After standard preprocessing, (a) a group independent component analysis (ICA) using 30 components and (b) a seeding-based connectivity analysis were conducted. In the group ICA, the default mode network was the only network to display visual differences between subject groups. In the seeding analysis, we found increased connectivity between the left parahippocampus and the auditory resting state network in the TIN group when compared to NH controls. Similarly, there was also an increased correlation between the right parahippocampus and the dorsal attention network when compared to HL controls. Other group differences in this attention network included decreased correlations between the seed regions and the right supramarginal gyrus in TIN patients when compared to HL controls. In the default mode network, there was a strong decrease in correlation between the seed regions and the precuneus when compared to both control groups. The findings of this study identify specific alterations in the connectivity of the default mode, dorsal attention, and auditory resting state networks due to tinnitus. The results suggest that therapies for tinnitus that mitigate the increased connectivity of limbic regions with auditory and attention resting state networks and the decreased coherence of the default mode network could be effective at reducing tinnitus-related distress.

  15. Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents.

    PubMed

    Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Satterthwaite, Theodore D; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Del'aquilla, Marco Antonio Gomes; Amaro, Edson; McGuire, Philip; Lacerda, Acioly L T; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2015-12-01

    Abnormal connectivity patterns have frequently been reported as involved in pathological mental states. However, most studies focus on "static," stationary patterns of connectivity, which may miss crucial biological information. Recent methodological advances have allowed the investigation of dynamic functional connectivity patterns that describe non-stationary properties of brain networks. Here, we introduce a novel graphical measure of dynamic connectivity, called time-varying eigenvector centrality (tv-EVC). In a sample 655 children and adolescents (7-15 years old) from the Brazilian "High Risk Cohort Study for Psychiatric Disorders" who were imaged using resting-state fMRI, we used this measure to investigate age effects in the temporal in control and default-mode networks (CN/DMN). Using support vector regression, we propose a network maturation index based on the temporal stability of tv-EVC. Moreover, we investigated whether the network maturation is associated with the overall presence of behavioral and emotional problems with the Child Behavior Checklist. As hypothesized, we found that the tv-EVC at each node of CN/DMN become more stable with increasing age (P < 0.001 for all nodes). In addition, the maturity index for this particular network is indeed associated with general psychopathology in children assessed by the total score of Child Behavior Checklist (P = 0.027). Moreover, immaturity of the network was mainly correlated with externalizing behavior dimensions. Taken together, these results suggest that changes in functional network dynamics during neurodevelopment may provide unique insights regarding pathophysiology. © 2015 Wiley Periodicals, Inc.

  16. Functional Connectivity in the Cognitive Control Network and the Default Mode Network in Late-life Depression

    PubMed Central

    Alexopoulos, George S.; Hoptman, Matthew J.; Kanellopoulos, Dora; Murphy, Christopher F.; Lim, Kelvin O.; Gunning, Faith M.

    2011-01-01

    Background Abnormalities have been identified in the Cognitive Control Network (CCN) and the default mode network (DMN) during episodes of late-life depression. This study examined whether functional connectivity at rest (FC) within these networks characterize late-life depression and predict antidepressant response. Methods 26 non-demented, non-MCI older adults were studied. Of these, 16 had major depression and 10 had no psychopathology. Depressed patients were treated with escitalopram (target dose 20 mg) for 12 weeks after a 2-week placebo phase. Resting state timeseries was determined prior to treatment. FC within the CCN was determined by placing seeds in the dACC and the DLPFC bilaterally. FC within the DMN was assessed from a seed placed in the posterior cingulate. Results Low resting state FC within the CCN and high FC within the DMN distinguished depressed from normal elderly subjects. Beyond this “double dissociation”, low resting state FC within the CCN predicted low remission rate and persistence of depressive symptoms and signs, apathy, and dysexecutive behavior after treatment with escitalopram. In contrast, resting state FC within the DMN was correlated with pessimism but did not predict treatment response. Conclusions If confirmed, these findings may serve as a signature of the brain’s functional topography characterizing late-life depression and sustaining its symptoms. By identifying the network abnormalities underlying biologically meaningful characteristics (apathy, dysexecutive behavior, pessimism) and sustaining late-life depression, these findings can provide a novel target on which new somatic and psychosocial treatments can be tested. PMID:22425432

  17. Identifying the Default Mode Network Structure Using Dynamic Causal Modeling on Resting-state Functional Magnetic Resonance Imaging

    PubMed Central

    Di, Xin; Biswal, Bharat B.

    2013-01-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on resting-state fMRI dataset to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01–0.08 Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model that the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight on the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. PMID:23927904

  18. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

    PubMed

    Di, Xin; Biswal, Bharat B

    2014-02-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.

  19. Persistent Operational Synchrony within Brain Default-Mode Network and Self-Processing Operations in Healthy Subjects

    ERIC Educational Resources Information Center

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.

    2011-01-01

    Based on the theoretical analysis of self-consciousness concepts, we hypothesized that the spatio-temporal pattern of functional connectivity within the default-mode network (DMN) should persist unchanged across a variety of different cognitive tasks or acts, thus being task-unrelated. This supposition is in contrast with current understanding…

  20. Persistent Operational Synchrony within Brain Default-Mode Network and Self-Processing Operations in Healthy Subjects

    ERIC Educational Resources Information Center

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.

    2011-01-01

    Based on the theoretical analysis of self-consciousness concepts, we hypothesized that the spatio-temporal pattern of functional connectivity within the default-mode network (DMN) should persist unchanged across a variety of different cognitive tasks or acts, thus being task-unrelated. This supposition is in contrast with current understanding…

  1. Characterizing structure connectivity correlation with the default mode network in Alzheimer's patients and normal controls

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie

    2012-03-01

    Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.

  2. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network.

    PubMed

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-07-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

  3. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    PubMed Central

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-01-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420

  4. Default mode network connectivity patterns associated with visual processing at different stages of Parkinson's disease.

    PubMed

    Rektorova, Irena; Krajcovicova, Lenka; Marecek, Radek; Novakova, Marie; Mikl, Michal

    2014-01-01

    The default mode network (DMN) decreases its activity when switching from a resting state to a cognitive task condition, while activity of the network engaged in the given task increases. Visual processing is typically disturbed in Parkinson's disease dementia (PDD). Using functional MRI, we studied the DMN effective connectivity patterns in PDD as compared with cognitively normal patients with Parkinson's disease (PD) and healthy controls (HC) when switching from baseline to a visual cognitive task condition. In all, 14 PDD, 18 PD, and 18 age-matched healthy controls participated in this functional MRI study. We used a psychophysiological interaction analysis with the precuneus (PCu) as a seed. The threshold was set at p(FWE) <0.05. The healthy controls showed greater PCu connectivity with the bilateral middle temporal/middle occipital gyri at baseline than during the task condition. The correlation direction changed from positive to negative. Both PD and PDD showed disturbed DMN connectivity with the brain regions that are involved in bottom-up visual processing. In PD, we also found impaired integration of the areas engaged in the ventral attentional network, which might reflect specific attentional deficits observed during the early course of PD. In mild PDD, we detected increased engagement of areas involved in the dorsal attentional network, which corresponds to increased top-down control in this patient group as compared to the healthy controls. Our results show impaired dynamic interplay between large scale brain networks in PD that spread far beyond the motor system.

  5. Distinct Interactions between Fronto-Parietal and Default Mode Networks in Impaired Consciousness

    PubMed Central

    Long, Jinyi; Xie, Qiuyou; Ma, Qing; Urbin, M. A.; Liu, Liqing; Weng, Ling; Huang, Xiaoqi; Yu, Ronghao; Li, Yuanqing; Huang, Ruiwang

    2016-01-01

    Existing evidence suggests that the default-mode network (DMN) and fronto-pariatal network (FPN) play an important role in altered states of consciousness. However, the brain mechanisms underlying impaired consciousness and the specific network interactions involved are not well understood. We studied the topological properties of brain functional networks using resting-state functional MRI data acquired from 18 patients (11 vegetative state/unresponsive wakefulness syndrome, VS/UWS, and 7 minimally conscious state, MCS) and compared these properties with those of healthy controls. We identified that the topological properties in DMN and FPN are anti-correlated which comes, in part, from the contribution of interactions between dorsolateral prefrontal cortex of the FPN and precuneus of the DMN. Notably, altered nodal connectivity strength was distance-dependent, with most disruptions appearing in long-distance connections within the FPN but in short-distance connections within the DMN. A multivariate pattern-classification analysis revealed that combination of topological patterns between the FPN and DMN could predict conscious state more effectively than connectivity within either network. Taken together, our results imply distinct interactions between the FPN and DMN, which may mediate conscious state. PMID:27958328

  6. Development of the brain's default mode network from wakefulness to slow wave sleep.

    PubMed

    Sämann, Philipp G; Wehrle, Renate; Hoehn, David; Spoormaker, Victor I; Peters, Henning; Tully, Carolin; Holsboer, Florian; Czisch, Michael

    2011-09-01

    Falling asleep is paralleled by a loss of conscious awareness and reduced capacity to process external stimuli. Little is known on sleep-associated changes of spontaneously synchronized anatomical networks as detected by resting-state functional magnetic resonance imaging (rs-fMRI). We employed functional connectivity analysis of rs-fMRI series obtained from 25 healthy participants, covering all non-rapid eye movement (NREM) sleep stages. We focused on the default mode network (DMN) and its anticorrelated network (ACN) that are involved in internal and external awareness during wakefulness. Using independent component analysis, cross-correlation analysis (CCA), and intraindividual dynamic network tracking, we found significant changes in DMN/ACN integrity throughout the NREM sleep. With increasing sleep depth, contributions of the posterior cingulate cortex (PCC)/retrosplenial cortex (RspC), parahippocampal gyrus, and medial prefrontal cortex to the DMN decreased. CCA revealed a breakdown of corticocortical functional connectivity, particularly between the posterior and anterior midline node of the DMN and the DMN and the ACN. Dynamic tracking of the DMN from wakefulness into slow wave sleep in a single subject added insights into intraindividual network fluctuations. Results resonate with a role of the PCC/RspC for the regulation of consciousness. We further submit that preserved corticocortical synchronization could represent a prerequisite for maintaining internal and external awareness.

  7. Altered default mode, fronto-parietal and salience networks in adolescents with Internet addiction.

    PubMed

    Wang, Lubin; Shen, Hui; Lei, Yu; Zeng, Ling-Li; Cao, Fenglin; Su, Linyan; Yang, Zheng; Yao, Shuqiao; Hu, Dewen

    2017-07-01

    Internet addiction (IA) is a condition characterized by loss of control over Internet use, leading to a variety of negative psychosocial consequences. Recent neuroimaging studies have begun to identify IA-related changes in specific brain regions and connections. However, whether and how the interactions within and between the large-scale brain networks are disrupted in individuals with IA remain largely unexplored. Using group independent component analysis, we extracted five intrinsic connectivity networks (ICNs) from the resting-state fMRI data of 26 adolescents with IA and 43 controls, including the anterior and posterior default mode network (DMN), left and right fronto-parietal network (FPN), and salience network (SN). We then examined the possible group differences in the functional connectivity within each ICN and between the ICNs. We found that, compared with controls, IA subjects showed: (1) reduced inter-hemispheric functional connectivity of the right FPN, whereas increased intra-hemispheric functional connectivity of the left FPN; (2) reduced functional connectivity in the dorsal medial prefrontal cortex (mPFC) of the anterior DMN; (3) reduced functional connectivity between the SN and anterior DMN. Our findings suggest that IA is associated with imbalanced interactions among the DMN, FPN and SN, which may serve as system-level neural underpinnings for the uncontrollable Internet-using behaviors.

  8. Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance?

    PubMed

    Čeko, Marta; Gracely, John L; Fitzcharles, Mary-Ann; Seminowicz, David A; Schweinhardt, Petra; Bushnell, M Catherine

    2015-08-19

    In studies of cognitive processing using tasks with externally directed attention, regions showing increased (external-task-positive) and decreased or "negative" [default-mode network (DMN)] fMRI responses during task performance are dynamically responsive to increasing task difficulty. Responsiveness (modulation of fMRI signal by increasing load) has been linked directly to successful cognitive task performance in external-task-positive regions but not in DMN regions. To investigate whether a responsive DMN is required for successful cognitive performance, we compared healthy human subjects (n = 23) with individuals shown to have decreased DMN engagement (chronic pain patients, n = 28). Subjects performed a multilevel working-memory task (N-back) during fMRI. If a responsive DMN is required for successful performance, patients having reduced DMN responsiveness should show worsened performance; if performance is not reduced, their brains should show compensatory activation in external-task-positive regions or elsewhere. All subjects showed decreased accuracy and increased reaction times with increasing task level, with no significant group differences on either measure at any level. Patients had significantly reduced negative fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex). Controls showed expected modulation of DMN deactivation with increasing task difficulty. Patients showed significantly reduced modulation of DMN deactivation by task difficulty, despite their successful task performance. We found no evidence of compensatory neural recruitment in external-task-positive regions or elsewhere. Individual responsiveness of the external-task-positive ventrolateral prefrontal cortex, but not of DMN regions, correlated with task accuracy. These findings suggest that a responsive DMN may not be required for successful cognitive performance; a responsive external-task-positive network may be sufficient. We studied the

  9. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance.

    PubMed

    Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan

    2016-03-01

    Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function.

  10. Establishing task- and modality-dependent dissociations between the semantic and default mode networks.

    PubMed

    Humphreys, Gina F; Hoffman, Paul; Visser, Maya; Binney, Richard J; Lambon Ralph, Matthew A

    2015-06-23

    The default mode network (DMN) and semantic network (SN) are two of the most extensively studied systems, and both are increasingly used as clinical biomarkers in neurological studies. There are strong theoretical reasons to assume a relationship between the networks, as well as anatomical evidence that they might rely on overlapping cortical regions, such as the anterior temporal lobe (ATL) or angular gyrus (AG). Despite these strong motivations, the relationship between the two systems has received minimal attention. We directly compared the SN and DMN using a large (n = 69) distortion-corrected functional MRI (fMRI) dataset, spanning a range of semantic and nonsemantic tasks that varied input modality. The results showed that both networks fractionate depending on the semantic nature of the task, stimulus type, modality, and task difficulty. Furthermore, despite recent claims that both AG and ATL are semantic hubs, the two areas responded very differently, with results supporting the role of ATL, but not AG, in semantic representation. Specifically, the left ATL was positively activated for all semantic tasks, but deactivated during nonsemantic task performance. In contrast, the left AG was deactivated for all tasks, with the level of deactivation related to task difficulty. Thus, ATL and AG do not share a common interest in semantic tasks, but, rather, a common "disinterest" in nonsemantic tasks. The implications for the variability in the DMN, its cognitive coherence, and interpretation of resting-state fMRI data are discussed.

  11. Establishing task- and modality-dependent dissociations between the semantic and default mode networks

    PubMed Central

    Humphreys, Gina F.; Hoffman, Paul; Visser, Maya; Binney, Richard J.; Lambon Ralph, Matthew A.

    2015-01-01

    The default mode network (DMN) and semantic network (SN) are two of the most extensively studied systems, and both are increasingly used as clinical biomarkers in neurological studies. There are strong theoretical reasons to assume a relationship between the networks, as well as anatomical evidence that they might rely on overlapping cortical regions, such as the anterior temporal lobe (ATL) or angular gyrus (AG). Despite these strong motivations, the relationship between the two systems has received minimal attention. We directly compared the SN and DMN using a large (n = 69) distortion-corrected functional MRI (fMRI) dataset, spanning a range of semantic and nonsemantic tasks that varied input modality. The results showed that both networks fractionate depending on the semantic nature of the task, stimulus type, modality, and task difficulty. Furthermore, despite recent claims that both AG and ATL are semantic hubs, the two areas responded very differently, with results supporting the role of ATL, but not AG, in semantic representation. Specifically, the left ATL was positively activated for all semantic tasks, but deactivated during nonsemantic task performance. In contrast, the left AG was deactivated for all tasks, with the level of deactivation related to task difficulty. Thus, ATL and AG do not share a common interest in semantic tasks, but, rather, a common “disinterest” in nonsemantic tasks. The implications for the variability in the DMN, its cognitive coherence, and interpretation of resting-state fMRI data are discussed. PMID:26056304

  12. Unilateral deafness in children affects development of multi-modal modulation and default mode networks.

    PubMed

    Schmithorst, Vincent J; Plante, Elena; Holland, Scott

    2014-01-01

    Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7-12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as "touched the small green circle and the large blue square" and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language.

  13. Unilateral deafness in children affects development of multi-modal modulation and default mode networks

    PubMed Central

    Schmithorst, Vincent J.; Plante, Elena; Holland, Scott

    2014-01-01

    Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7–12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as “touched the small green circle and the large blue square” and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language. PMID:24723873

  14. Interactions between the Salience and Default-Mode Networks Are Disrupted in Cocaine Addiction

    PubMed Central

    Liang, Xia; He, Yong; Salmeron, Betty Jo; Gu, Hong; Stein, Elliot A.

    2015-01-01

    Cocaine dependence is a complex neuropsychiatric disorder manifested as dysregulation of multiple behavioral, emotional, and cognitive constructs. Neuroimaging studies have begun to identify specific neurobiological circuit impairments in cocaine-dependent (CD) individuals that may underlie these symptoms. However, whether, where, and how the interactions within and between these circuits are disrupted remain largely unknown. We used resting-state fMRI and modularity network analysis to identify brain modules of a priori interest (default-mode network [DMN], salience network [SN], executive control network [ECN], medial temporal lobe [MTL], and striatum) in 47 CD and 47 matched healthy control (HC) participants and explored alterations within and between these brain modules as a function of addiction. At the module level, intermodule connectivity decreased between DMN and SN in CD. At the nodal level, several regions showed decreased connections with multiple modules in CD: the rostral anterior cingulate connection strength was reduced with SN and MTL; the posterior cingulate had reduced connections with ECN; and the bilateral insula demonstrated decreased connections with DMN. Furthermore, alexithymia, a personality trait previously associated with addiction, correlated negatively with intramodule connectivity within SN only in cocaine users. Our results indicate that cocaine addiction is associated with disrupted interactions among DMN, MTL, and SN, which have been implicated, respectively, in self-referential functions, emotion and memory, and coordinating between internal and external stimuli, providing novel and important insights into the neurobiological mechanisms of cocaine addiction. PMID:26019326

  15. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study.

    PubMed

    Luo, Cheng; Li, Qifu; Lai, Yongxiu; Xia, Yang; Qin, Yun; Liao, Wei; Li, Shasha; Zhou, Dong; Yao, Dezhong; Gong, Qiyong

    2011-03-01

    Dysfunctional default mode network (DMN) has been observed in various mental disorders, including epilepsy (see review Broyd et al. [2009]: Neurosci Biobehav Rev 33:279–296). Because interictal epileptic discharges may affect DMN, resting-state fMRI was used in this study to determine DMN functional connectivity in 14 healthy controls and 12 absence epilepsy patients. To avoid interictal epileptic discharge effects, testing was performed within interictal durations when there were no interictal epileptic discharges. Cross-correlation functional connectivity analysis with seed at posterior cingulate cortex, as well as region-wise calculation in DMN, revealed decreased integration within DMN in the absence epilepsy patients. Region-wise functional connectivity among the frontal, parietal, and temporal lobe was significantly decreased in the patient group. Moreover, functional connectivity between the frontal and parietal lobe revealed a significant negative correlation with epilepsy duration. These findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interictal epileptic discharges. Abnormal functional connectivity in absence epilepsy may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Copyright © 2010 Wiley-Liss, Inc.

  16. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits.

    PubMed

    Ward, Andrew M; Mormino, Elizabeth C; Huijbers, Willem; Schultz, Aaron P; Hedden, Trey; Sperling, Reisa A

    2015-01-01

    Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Portraying the unique contribution of the default mode network to internally driven mnemonic processes.

    PubMed

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-03-26

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval.

  18. Portraying the unique contribution of the default mode network to internally driven mnemonic processes

    PubMed Central

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-01-01

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval. PMID:23479650

  19. Extraversion is encoded by scale-free dynamics of default mode network.

    PubMed

    Lei, Xu; Zhao, Zhiying; Chen, Hong

    2013-07-01

    Resting-state functional Magnetic Resonance Imaging (rsfMRI) is a powerful tool to investigate neurological and psychiatric diseases. Recently, the evidences linking the scaling properties of resting-state activity and the personality have been accumulated. However, it remains unknown whether the personality is associated with the scale-free dynamics of default mode network (DMN) - the most widely studied network in the rsfMRI literatures. To investigate this question, we estimated the Hurst exponent, quantifying long memory of a time-series, in DMN of rsfMRI in 20 healthy individuals. The Hurst exponent in DMN, whether extracted by independent component analysis (ICA) or region of interest (ROI), was significantly associated with the extraversion score of the revised Eysenck Personality Questionnaire. Specifically, longer memory in DMN corresponded to lower extraversion. We provide evidences for an association between individual differences in personality and scaling dynamics in DMN, whose alteration has been previously linked with introspective cognition. This association might arise from the efficiency in online information processing. Our results suggest that personality trait may be reflected by the scaling property of resting-state networks.

  20. Dynamic connectivity modulates local activity in the core regions of the default-mode network.

    PubMed

    Tang, Wei; Liu, Hesheng; Douw, Linda; Kramer, Mark A; Eden, Uri T; Hämäläinen, Matti S; Stufflebeam, Steven M

    2017-09-05

    Segregation and integration are distinctive features of large-scale brain activity. Although neuroimaging studies have been unraveling their neural correlates, how integration takes place over segregated modules remains elusive. Central to this problem is the mechanism by which a brain region adjusts its activity according to the influence it receives from other regions. In this study, we explore how dynamic connectivity between two regions affects the neural activity within a participating region. Combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same group of subjects, we analyzed resting-state data from the core of the default-mode network. We observed directed influence from the posterior cingulate cortex (PCC) to the anterior cingulate cortex (ACC) in the 10-Hz range. This time-varying influence was associated with the power alteration in the ACC: strong influence corresponded with a decrease of power around 13-16 Hz and an increase of power in the lower (1-7 Hz) and higher (30-55 Hz) ends of the spectrum. We also found that the amplitude of the 30- to 55-Hz activity was coupled to the phase of the 3- to 4-Hz activity in the ACC. These results characterized the local spectral changes associated with network interactions. The specific spectral information both highlights the functional roles of PCC-ACC connectivity in the resting state and provides insights into the dynamic relationship between local activity and coupling dynamics of a network.

  1. A multiscale method for a robust detection of the default mode network

    NASA Astrophysics Data System (ADS)

    Baquero, Katherine; Gómez, Francisco; Cifuentes, Christian; Guldenmund, Pieter; Demertzi, Athena; Vanhaudenhuyse, Audrey; Gosseries, Olivia; Tshibanda, Jean-Flory; Noirhomme, Quentin; Laureys, Steven; Soddu, Andrea; Romero, Eduardo

    2013-11-01

    The Default Mode Network (DMN) is a resting state network widely used for the analysis and diagnosis of mental disorders. It is normally detected in fMRI data, but for its detection in data corrupted by motion artefacts or low neuronal activity, the use of a robust analysis method is mandatory. In fMRI it has been shown that the signal-to-noise ratio (SNR) and the detection sensitivity of neuronal regions is increased with di erent smoothing kernels sizes. Here we propose to use a multiscale decomposition based of a linear scale-space representation for the detection of the DMN. Three main points are proposed in this methodology: rst, the use of fMRI data at di erent smoothing scale-spaces, second, detection of independent neuronal components of the DMN at each scale by using standard preprocessing methods and ICA decomposition at scale-level, and nally, a weighted contribution of each scale by the Goodness of Fit measurement. This method was applied to a group of control subjects and was compared with a standard preprocesing baseline. The detection of the DMN was improved at single subject level and at group level. Based on these results, we suggest to use this methodology to enhance the detection of the DMN in data perturbed with artefacts or applied to subjects with low neuronal activity. Furthermore, the multiscale method could be extended for the detection of other resting state neuronal networks.

  2. Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity.

    PubMed

    Sambataro, F; Wolf, N D; Pennuto, M; Vasic, N; Wolf, R C

    2014-07-01

    Major depressive disorder (MDD) is characterized by alterations in brain function that are identifiable also during the brain's 'resting state'. One functional network that is disrupted in this disorder is the default mode network (DMN), a set of large-scale connected brain regions that oscillate with low-frequency fluctuations and are more active during rest relative to a goal-directed task. Recent studies support the idea that the DMN is not a unitary system, but rather is composed of smaller and distinct functional subsystems that interact with each other. The functional relevance of these subsystems in depression, however, is unclear. Here, we investigated the functional connectivity of distinct DMN subsystems and their interplay in depression using resting-state functional magnetic resonance imaging. We show that patients with MDD exhibit increased within-network connectivity in posterior, ventral and core DMN subsystems along with reduced interplay from the anterior to the ventral DMN subsystems. These data suggest that MDD is characterized by alterations of subsystems within the DMN as well as of their interactions. Our findings highlight a critical role of DMN circuitry in the pathophysiology of MDD, thus suggesting these subsystems as potential therapeutic targets.

  3. Motor imagery learning induced changes in functional connectivity of the default mode network.

    PubMed

    Ge, Ruiyang; Zhang, Hang; Yao, Li; Long, Zhiying

    2015-01-01

    Numerous studies provide evidences that motor skill learning changes the activity of some brain regions during task as well as some resting networks during rest. However, it is still unclear how motor learning affects the resting-state default-mode network (DMN). Using functional magnetic resonance imaging, this study investigated the alteration of the DMN after motor skill learning with mental imagery practice. Fourteen participants in the experimental group learned to imagine a sequential finger movement over a two-week period while twelve control participants did not undergo motor imagery learning. For the experimental group, interregional connectivity, estimated by the graph theory method, between the medial temporal lobe, lateral temporal, and lateral parietal cortex within the DMN was increased after learning, whereas activity of the DMN network, estimated by the independent component analysis method, remained stable. Moreover, the experimental group showed significant improvement in motor performance after learning and a negative correlation between the alteration of the execution rate and changes in activity in the lateral parietal cortex. These results indicate that the DMN could be sculpted by motor learning in a manner of altering interregional connectivity and may imply that the DMN plays a role in improving behavioral performance.

  4. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System

    PubMed Central

    Molnar-Szakacs, Istvan; Uddin, Lucina Q.

    2013-01-01

    Recent evidence for the fractionation of the default mode network (DMN) into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN – medial prefrontal cortex and posterior cingulate cortex – as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network. Drawing from a rapidly evolving social-cognitive neuroscience literature, we propose that embodied simulation and mentalizing are processes which allow us to gain insight into another’s physical and mental state by providing privileged access to our own physical and mental states. Embodiment implies that the same neural systems are engaged for self- and other-understanding through a simulation mechanism, while mentalizing refers to the use of high-level conceptual information to make inferences about the mental states of self and others. These mechanisms work together to provide a coherent representation of the self and by extension, of others. Nodes of the DMN selectively interact with brain systems for embodiment and mentalizing, including the mirror neuron system, to produce appropriate mappings in the service of social-cognitive demands. PMID:24062671

  6. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload.

    PubMed

    Gui, Danyang; Xu, Sihua; Zhu, Senhua; Fang, Zhuo; Spaeth, Andrea M; Xin, Yuanyuan; Feng, Tingyong; Rao, Hengyi

    2015-10-15

    After continuous and prolonged cognitive workload, people typically show reduced behavioral performance and increased feelings of fatigue, which are known as "time-on-task (TOT) effects". Although TOT effects are pervasive in modern life, their underlying neural mechanisms remain elusive. In this study, we induced TOT effects by administering a 20-min continuous psychomotor vigilance test (PVT) to a group of 16 healthy adults and used resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to examine spontaneous brain activity changes associated with fatigue and performance. Behaviorally, subjects displayed robust TOT effects, as reflected by increasingly slower reaction times as the test progressed and higher self-reported mental fatigue ratings after the 20-min PVT. Compared to pre-test measurements, subjects exhibited reduced amplitudes of low-frequency fluctuation (ALFF) in the default mode network (DMN) and increased ALFF in the thalamus after the test. Subjects also exhibited reduced anti-correlations between the posterior cingulate cortex (PCC) and right middle prefrontal cortex after the test. Moreover, pre-test resting ALFF in the PCC and medial prefrontal cortex (MePFC) predicted subjects' subsequent performance decline; individuals with higher ALFF in these regions exhibited more stable reaction times throughout the 20-min PVT. These results support the important role of both task-positive and task-negative networks in mediating TOT effects and suggest that spontaneous activity measured by resting-state BOLD fMRI may be a marker of mental fatigue.

  7. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    PubMed

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  8. Brains striving for coherence: Long-term cumulative plot formation in the default mode network.

    PubMed

    Tylén, K; Christensen, P; Roepstorff, A; Lund, T; Østergaard, S; Donald, M

    2015-11-01

    Many everyday activities, such as engaging in conversation or listening to a story, require us to sustain attention over a prolonged period of time while integrating and synthesizing complex episodic content into a coherent mental model. Humans are remarkably capable of navigating and keeping track of all the parallel social activities of everyday life even when confronted with interruptions or changes in the environment. However, the underlying cognitive and neurocognitive mechanisms of such long-term integration and profiling of information remain a challenge to neuroscience. While brain activity is generally traceable within the short time frame of working memory (milliseconds to seconds), these integrative processes last for minutes, hours or even days. Here we report two experiments on story comprehension. Experiment I establishes a cognitive dissociation between our comprehension of plot and incidental facts in narratives: when episodic material allows for long-term integration in a coherent plot, we recall fewer factual details. However, when plot formation is challenged, we pay more attention to incidental facts. Experiment II investigates the neural underpinnings of plot formation. Results suggest a central role for the brain's default mode network related to comprehension of coherent narratives while incoherent episodes rather activate the frontoparietal control network. Moreover, an analysis of cortical activity as a function of the cumulative integration of narrative material into a coherent story reveals to linear modulations of right hemisphere posterior temporal and parietal regions. Together these findings point to key neural mechanisms involved in the fundamental human capacity for cumulative plot formation.

  9. Default mode network activation and Transcendental Meditation practice: Focused Attention or Automatic Self-transcending?

    PubMed

    Travis, Frederick; Parim, Niyazi

    2017-02-01

    This study used subjective reports and eLORETA analysis to assess to what extent Transcendental Meditation (TM) might involve focused attention-voluntary control of mental content. Eighty-seven TM subjects with one month to five years TM experience participated in this study. Regression analysis of years TM practice and self-reported transcendental experiences (lack of time, space and body sense) during meditation practice was flat (r=.07). Those practicing Transcendental Meditation for 1month reported as much transcending as those with 5years of practice. The eLORETA comparison of eyes-closed rest/task and TM practice/task identified similar areas of activation: theta and alpha activation during rest and TM in the posterior cingulate and precuneus, part of the default mode network, and beta2 and beta3 activation during the task in anterior cingulate, ventral lateral and dorsolateral prefrontal cortices, part of the central executive network. In addition, eLORETA comparison of rest and TM identified higher beta temporal activation during rest and higher theta orbitofrontal activation during TM. Thus, it does not seem accurate to include TM practice with meditations in the catgory of Focused Attention, which are characterized by gamma EEG and DMN deactivation. Mixing meditations with different procedures into a single study confounds exploration of meditation effects and confounds application of meditation practices to different subject populations.

  10. The Default Mode Network Differentiates Biological From Non-Biological Motion

    PubMed Central

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A.; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  11. An examination of the default mode network in individuals with autonomous sensory meridian response (ASMR).

    PubMed

    Smith, Stephen D; Katherine Fredborg, Beverley; Kornelsen, Jennifer

    2016-05-31

    Autonomous Sensory Meridian Response (ASMR) is a perceptual condition in which specific visual and auditory stimuli consistently trigger tingling sensations on the scalp and neck, sometimes spreading to the back and limbs. These triggering stimuli are often social, almost intimate, in nature (e.g., hearing whispering, or watching someone brush her hair), and often elicit a calm and positive emotional state. Surprisingly, despite its prevalence in the general population, no published study has examined the neural underpinnings of ASMR. In the current study, the default mode network (DMN) of 11 individuals with ASMR was contrasted to that of 11 matched controls. The results indicated that the DMN of individuals with ASMR showed significantly less functional connectivity than that of controls. The DMN of individuals with ASMR also demonstrated increased connectivity between regions in the occipital, frontal, and temporal cortices, suggesting that ASMR was associated with a blending of multiple resting-state networks. This atypical functional connectivity likely influences the unique sensory-emotional experiences associated with ASMR.

  12. Metabolic mapping reveals sex-dependent involvement of default mode and salience network in alexithymia

    PubMed Central

    Colic, L.; Demenescu, L. R.; Li, M.; Kaufmann, J.; Krause, A. L.; Metzger, C.

    2016-01-01

    Alexithymia, a personality construct marked by difficulties in processing one’s emotions, has been linked to the altered activity in the anterior cingulate cortex (ACC). Although longitudinal studies reported sex differences in alexithymia, what mediates them is not known. To investigate sex-specific associations of alexithymia and neuronal markers, we mapped metabolites in four brain regions involved differentially in emotion processing using a point-resolved spectroscopy MRS sequence in 3 Tesla. Both sexes showed negative correlations between alexithymia and N-acetylaspartate (NAA) in pregenual ACC (pgACC). Women showed a robust negative correlation of the joint measure of glutamate and glutamine (Glx) to NAA in posterior cingulate cortex (PCC), whereas men showed a weak positive association of Glx to NAA in dorsal ACC (dACC). Our results suggest that lowered neuronal integrity in pgACC, a region of the default mode network (DMN), might primarily account for the general difficulties in emotional processing in alexithymia. Association of alexithymia in women extends to another region in the DMN-PCC, while in men a region in the salience network (SN) was involved. These observations could be representative of sex specific regulation strategies that include diminished internal evaluation of feelings in women and cognitive emotion suppression in men. PMID:26341904

  13. Multimodal Imaging of Alzheimer Pathophysiology in the Brain's Default Mode Network

    DOE PAGES

    Shin, Jonghan; Kepe, Vladimir; Small, Gary W.; ...

    2011-01-01

    The spatial correlations between the brain's default mode network (DMN) and the brain regions known to develop pathophysiology in Alzheimer's disease (AD) have recently attracted much attention. In this paper, we compare results of different functional and structural imaging modalities, including MRI and PET, and highlight different patterns of anomalies observed within the DMN. Multitracer PET imaging in subjects with and without dementia has demonstrated that [C-11]PIB- and [F-18]FDDNP-binding patterns in patients with AD overlap within nodes of the brain's default network including the prefrontal, lateral parietal, lateral temporal, and posterior cingulate cortices, with the exception of the medial temporalmore » cortex (especially, the hippocampus) where significant discrepancy between increased [F-18]FDDNP binding and negligible [C-11]PIB-binding was observed. [F-18]FDDNP binding in the medial temporal cortex—a key constituent of the DMN—coincides with both the presence of amyloid and tau pathology, and also with cortical areas with maximal atrophy as demonstrated by T1-weighted MR imaging of AD patients.« less

  14. The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.

    PubMed

    Barks, Sarah K; Parr, Lisa A; Rilling, James K

    2015-02-01

    The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition.

  15. Situating the default-mode network along a principal gradient of macroscale cortical organization.

    PubMed

    Margulies, Daniel S; Ghosh, Satrajit S; Goulas, Alexandros; Falkiewicz, Marcel; Huntenburg, Julia M; Langs, Georg; Bezgin, Gleb; Eickhoff, Simon B; Castellanos, F Xavier; Petrides, Michael; Jefferies, Elizabeth; Smallwood, Jonathan

    2016-11-01

    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.

  16. Situating the default-mode network along a principal gradient of macroscale cortical organization

    PubMed Central

    Margulies, Daniel S.; Goulas, Alexandros; Falkiewicz, Marcel; Huntenburg, Julia M.; Langs, Georg; Bezgin, Gleb; Eickhoff, Simon B.; Castellanos, F. Xavier; Petrides, Michael; Jefferies, Elizabeth; Smallwood, Jonathan

    2016-01-01

    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface—and are precisely equidistant—from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input. PMID:27791099

  17. What we talk about when we talk about the default mode network

    PubMed Central

    Callard, Felicity; Margulies, Daniel S.

    2014-01-01

    The default mode network (DMN) has been widely defined as a set of brain regions that are engaged when people are in a “resting state” (left to themselves in a scanner, with no explicit task instruction). The network emerged as a scientific object in the early twenty-first century, and in just over a decade has become the focus of intense empirical and conceptual neuroscientific inquiry. In this Perspective, we contribute to the work of critical neuroscience by providing brief reflections on the birth, working life, and future of the DMN. We consider: how the DMN emerged through the convergence of distinct lines of scientific investigation; controversies surrounding the definition, function and localization of the DMN; and the lines of interdisciplinary investigation that the DMN has helped to enable. We conclude by arguing that one of the most pressing issues in the field in 2014 is to understand how the mechanisms of thought are related to the function of brain dynamics. While the DMN has been central in allowing the field to reach this point, it is not inevitable that the DMN itself will remain at the heart of future investigations of this complex problem. PMID:25202250

  18. Anterior-posterior dissociation of the default mode network in dogs.

    PubMed

    Kyathanahally, Sreenath P; Jia, Hao; Pustovyy, Oleg M; Waggoner, Paul; Beyers, Ronald; Schumacher, John; Barrett, Jay; Morrison, Edward E; Salibi, Nouha; Denney, Thomas S; Vodyanoy, Vitaly J; Deshpande, Gopikrishna

    2015-03-01

    The default mode network (DMN) in humans has been extensively studied using seed-based correlation analysis (SCA) and independent component analysis (ICA). While DMN has been observed in monkeys as well, there are conflicting reports on whether they exist in rodents. Dogs are higher mammals than rodents, but cognitively not as advanced as monkeys and humans. Therefore, they are an interesting species in the evolutionary hierarchy for probing the comparative functions of the DMN across species. In this study, we sought to know whether the DMN, and consequently its functions such as self-referential processing, are exclusive to humans/monkeys or can we also observe the DMN in animals such as dogs. To address this issue, resting state functional MRI data from the brains of lightly sedated dogs and unconstrained and fully awake dogs were acquired, and ICA and SCA were performed for identifying the DMN. Since anesthesia can alter resting state networks, confirming our results in awake dogs was essential. Awake dog imaging was accomplished by training the dogs to keep their head still using reinforcement behavioral adaptation techniques. We found that the anterior (such as anterior cingulate and medial frontal) and posterior regions (such as posterior cingulate) of the DMN were dissociated in both awake and anesthetized dogs.

  19. The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network

    PubMed Central

    Palhano-Fontes, Fernanda; Andrade, Katia C.; Tofoli, Luis F.; Santos, Antonio C.; Crippa, Jose Alexandre S.; Hallak, Jaime E. C.; Ribeiro, Sidarta; de Araujo, Draulio B.

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  20. Development of deactivation of the default-mode network during episodic memory formation

    PubMed Central

    Chai, Xiaoqian J.; Ofen, Noa; Gabrieli, John D. E.; Whitfield-Gabrieli, Susan

    2014-01-01

    Task-induced deactivation of the default-mode network (DMN) has been associated in adults with successful episodic memory formation, possibly as a mechanism to focus allocation of mental resources for successful encoding of external stimuli. We investigated developmental changes of deactivation of the DMN (posterior cingulate, medial prefrontal, and bilateral lateral parietal cortices) during episodic memory formation in children, adolescents, and young adults (ages 8–24), who studied scenes during functional magnetic resonance imaging (fMRI). Recognition memory improved with age. We defined DMN regions of interest from a different sample of participants with the same age range, using resting-state fMRI. In adults, there was greater deactivation of the DMN for scenes that were later remembered than scenes that were later forgotten. In children, deactivation of the default-network did not differ reliably between scenes that were later remembered or forgotten. Adolescents exhibited a pattern of activation intermediate to that of children and adults. The hippocampal region, often considered part of the DMN, showed a functional dissociation with the rest of the DMN by exhibiting increased activation for later remembered than later forgotten scene that was similar across age groups. These findings suggest that development of memory ability from childhood through adulthood may involve increased deactivation of the neocortical DMN during learning. PMID:24064072

  1. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest.

    PubMed

    Guo, Wenbin; Liu, Feng; Liu, Jianrong; Yu, Miaoyu; Zhang, Zhikun; Liu, Guiying; Xiao, Changqing; Zhao, Jingping

    2015-03-01

    The default-mode network (DMN) has been implicated in the neurobiology of major depressive disorder (MDD), and the cerebellum is suggested to be involved in high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN alterations remains equivocal. This study was conducted to examine the cerebellar-DMN connectivity in drug-naive MDD directly by using the cerebellum Crus I as seeds.Forty-four drug-naive MDD patients and 44 healthy controls participated in the resting-state scan. Functional connectivity (FC) was applied to analyze the images.Significantly increased FCs were observed between the right Crus I and the right inferior frontal cortex (orbital part)/superior temporal pole, bilateral MPFC (orbital part), and left middle temporal gyrus in the patients compared with the controls. There was a significantly positive correlation between the z values of the right Crus I-bilateral MPFC (orbital part) connectivity and the scores of Automatic Thoughts Questionnaire in the patients (r = 0.329, P = 0.029).The findings reveal that depressed patients have increased cerebellar-DMN connectivity with clinical significance, and thus highlight the contribution of the cerebellum to the DMN alterations in neurobiology of MDD.

  2. Default Mode Network alterations in alexithymia: an EEG power spectra and connectivity study

    PubMed Central

    Imperatori, Claudio; Della Marca, Giacomo; Brunetti, Riccardo; Carbone, Giuseppe Alessio; Massullo, Chiara; Valenti, Enrico Maria; Amoroso, Noemi; Maestoso, Giulia; Contardi, Anna; Farina, Benedetto

    2016-01-01

    Recent neuroimaging studies have shown that alexithymia is characterized by functional alterations in different brain areas [e.g., posterior cingulate cortex (PCC)], during emotional/social tasks. However, only few data are available about alexithymic cortical networking features during resting state (RS). We have investigated the modifications of electroencephalographic (EEG) power spectra and EEG functional connectivity in the default mode network (DMN) in subjects with alexithymia. Eighteen subjects with alexithymia and eighteen subjects without alexithymia matched for age and gender were enrolled. EEG was recorded during 5 min of RS. EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to controls, alexithymic subjects showed a decrease of alpha power in the right PCC. In the connectivity analysis, compared to controls, alexithymic subjects showed a decrease of alpha connectivity between: (i) right anterior cingulate cortex and right PCC, (ii) right frontal lobe and right PCC, and (iii) right parietal lobe and right temporal lobe. Finally, mediation models showed that the association between alexithymia and EEG connectivity values was directed and was not mediated by psychopathology severity. Taken together, our results could reflect the neurophysiological substrate of some core features of alexithymia, such as the impairment in emotional awareness. PMID:27845326

  3. The brain on art: intense aesthetic experience activates the default mode network

    PubMed Central

    Vessel, Edward A.; Starr, G. Gabrielle; Rubin, Nava

    2012-01-01

    Aesthetic responses to visual art comprise multiple types of experiences, from sensation and perception to emotion and self-reflection. Moreover, aesthetic experience is highly individual, with observers varying significantly in their responses to the same artwork. Combining fMRI and behavioral analysis of individual differences in aesthetic response, we identify two distinct patterns of neural activity exhibited by different sub-networks. Activity increased linearly with observers' ratings (4-level scale) in sensory (occipito-temporal) regions. Activity in the striatum (STR) also varied linearly with ratings, with below-baseline activations for low-rated artworks. In contrast, a network of frontal regions showed a step-like increase only for the most moving artworks (“4” ratings) and non-differential activity for all others. This included several regions belonging to the “default mode network” (DMN) previously associated with self-referential mentation. Our results suggest that aesthetic experience involves the integration of sensory and emotional reactions in a manner linked with their personal relevance. PMID:22529785

  4. How yawning switches the default-mode network to the attentional network by activating the cerebrospinal fluid flow.

    PubMed

    Walusinski, Olivier

    2014-03-01

    Yawning is a behavior to which little research has been devoted. However, its purpose has not yet been demonstrated and remains controversial. In this article, we propose a new theory involving the brain network that is functional during the resting state, that is, the default mode network. When this network is active, yawning manifests a process of switching to the attentional system through its capacity to increase circulation of cerebrospinal fluid (CSF), thereby increasing clearance of somnogenic factors (prostaglandin D(2), adenosine, and others) accumulating in the cerebrospinal fluid. Copyright © 2013 Wiley Periodicals, Inc.

  5. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.

    PubMed

    Chang, Catie; Glover, Gary H

    2009-10-01

    Previous studies have reported that the spontaneous, resting-state time course of the default-mode network is negatively correlated with that of the "task-positive network", a collection of regions commonly recruited in demanding cognitive tasks. However, all studies of negative correlations between the default-mode and task-positive networks have employed some form of normalization or regression of the whole-brain average signal ("global signal"); these processing steps alter the time series of voxels in an uninterpretable manner as well as introduce spurious negative correlations. Thus, the extent of negative correlations with the default mode network without global signal removal has not been well characterized, and it is has recently been hypothesized that the apparent negative correlations in many of the task-positive regions could be artifactually induced by global signal pre-processing. The present study aimed to examine negative and positive correlations with the default-mode network when model-based corrections for respiratory and cardiac noise are applied in lieu of global signal removal. Physiological noise correction consisted of (1) removal of time-locked cardiac and respiratory artifacts using RETROICOR (Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162-167), and (2) removal of low-frequency respiratory and heart rate variations by convolving these waveforms with pre-determined transfer functions (Birn et al., 2008; Chang et al., 2009) and projecting the resulting two signals out of the data. It is demonstrated that negative correlations between the default-mode network and regions of the task-positive network are present in the majority of individual subjects both with and without physiological noise correction. Physiological noise correction increased the spatial extent and magnitude of negative correlations, yielding negative

  6. The Structural Connectivity Pattern of the Default Mode Network and Its Association with Memory and Anxiety.

    PubMed

    Tao, Yan; Liu, Bing; Zhang, Xiaolong; Li, Jin; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The default mode network (DMN) is one of the most widely studied resting state functional networks. The structural basis for the DMN is of particular interest and has been studied by several researchers using diffusion tensor imaging (DTI). Most of these previous studies focused on a few regions or white matter tracts of the DMN so that the global structural connectivity pattern and network properties of the DMN remain unclear. Moreover, evidences indicate that the DMN is involved in both memory and emotion, but how the DMN regulates memory and anxiety from the perspective of the whole DMN structural network remains unknown. We used multimodal neuroimaging methods to investigate the structural connectivity pattern of the DMN and the association of its network properties with memory and anxiety in 205 young healthy subjects with age ranging from 18 to 29 years old. The Group ICA method was used to extract the DMN component from functional magnetic resonance imaging (fMRI) data and a probabilistic fiber tractography technique based on DTI data was applied to construct the global structural connectivity pattern of the DMN. Then we used the graph theory method to analyze the DMN structural network and found that memory quotient (MQ) score was significantly positively correlated with the global and local efficiency of the DMN whereas anxiety was found to be negatively correlated with the efficiency. The strong structural connectivity between multiple brain regions within DMN may reflect that the DMN has certain structural basis. Meanwhile, the results we found that the network efficiency of the DMN were related to memory and anxiety measures, indicated that the DMN may play a role in the memory and anxiety.

  7. Synchronous activation within the default mode network correlates with perceived social support.

    PubMed

    Che, Xianwei; Zhang, Qinglin; Zhao, Jizheng; Wei, Dongtao; Li, Bingbing; Guo, Yanan; Qiu, Jiang; Liu, Yijun

    2014-10-01

    Perceived social support emphasizes subjective feeling of provisions offered by family, friends and significant others. In consideration of the great significance of perceived social support to health outcomes, attempt to reveal the neural substrates of perceived social support will facilitate its application in a series of mental disorders. Perceived social support potentially relies on healthy interpersonal relationships calling for cognitive processes like perspective taking, empathy and theory of mind. Interestingly, functional activations and connectivity within the default mode network (DMN) are extensively involved in these interpersonal skills. As a result, it is proposed that synchronous activities among brain regions within the DMN will correlate with self-report of perceived social support. In the present study, we tried to investigate the associations between coherence among the DMN regions and perceived social support at resting state. A total of 333 (145 men) participants were directed to fulfill the Multidimensional Scale of Perceived Social Support (MSPSS) after a 484-s functional magnetic resonance imaging (fMRI) scanning without any task. As a result, seed-based functional connectivity and power spectrum analyses revealed that heightened synchronicity among the DMN regions was associated with better performance on perceived social support. Moreover, results in the present study were independent of different methods, structural changes, and general cognitive performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Changes in default mode network as automaticity develops in a categorization task.

    PubMed

    Shamloo, Farzin; Helie, Sebastien

    2016-10-15

    The default mode network (DMN) is a set of brain regions in which blood oxygen level dependent signal is suppressed during attentional focus on the external environment. Because automatic task processing requires less attention, development of automaticity in a rule-based categorization task may result in less deactivation and altered functional connectivity of the DMN when compared to the initial learning stage. We tested this hypothesis by re-analyzing functional magnetic resonance imaging data of participants trained in rule-based categorization for over 10,000 trials (Helie et al., 2010) [12,13]. The results show that some DMN regions are deactivated in initial training but not after automaticity has developed. There is also a significant decrease in DMN deactivation after extensive practice. Seed-based functional connectivity analyses with the precuneus, medial prefrontal cortex (two important DMN regions) and Brodmann area 6 (an important region in automatic categorization) were also performed. The results show increased functional connectivity with both DMN and non-DMN regions after the development of automaticity, and a decrease in functional connectivity between the medial prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the hypothesis of a strategy shift in automatic categorization and bridge the cognitive and neuroscientific conceptions of automaticity in showing that the reduced need for cognitive resources in automatic processing is accompanied by a disinhibition of the DMN and stronger functional connectivity between DMN and task-related brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer's Disease.

    PubMed

    Li, Youjun; Yao, Hongxiang; Lin, Pan; Zheng, Liang; Li, Chenxi; Zhou, Bo; Wang, Pan; Zhang, Zengqiang; Wang, Luning; An, Ningyu; Wang, Jue; Zhang, Xi

    2017-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN) is closely related to cognition and is impaired in Alzheimer's disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI) data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs) from the five frequency bands: slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), slow-2 (0.198-0.25 Hzs) and standard low-frequency oscillations (LFO) (0.01-0.08 Hz). We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  10. Acupuncture induce the different modulation patterns of the default mode network: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Qin, Wei; Tian, Jie; Zhang, Yi

    2009-02-01

    According to Traditional Chinese Medicine (TCM) theory and certain clinical treatment reports, the sustained effects of acupuncture indeed exist, which may last several minutes or hours. Furthermore, increased attention has fallen on the sustained effects of acupuncture. Recently, it is reported that the sustained acupuncture effects may alter the default mode network (DMN). It raises interesting questions: whether the modulations of acupuncture effects to the DMN are still detected at other acupoints and whether the modulation patterns are different induced by different acupoints. In the present study, we wanted to investigate the questions. An experiment fMRI design was carried out on 36 subjects with the electroacupuncture stimulation (EAS) at the three acupoints: Guangming (GB37), Kunlun (BL60) and Jiaoxin (KI8) on the left leg. The data sets were analyzed by a data driven method named independent component analysis (ICA). The results indicated that the three acupoints stimulations may modulate the DMN. Moreover, the modulation patterns were distinct. We suggest the different modulation patterns on the DMN may attribute to the distinct functional effects of acupoints.

  11. Spontaneous default mode network phase-locking moderates performance perceptions under stereotype threat

    PubMed Central

    Leitner, Jordan B.; Duran-Jordan, Kelly; Magerman, Adam B.; Schmader, Toni; Allen, John J. B.

    2015-01-01

    This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat. PMID:25398433

  12. Characterization of Structural Connectivity of the Default Mode Network in Dogs using Diffusion Tensor Imaging

    PubMed Central

    Robinson, Jennifer L.; Baxi, Madhura; Katz, Jeffrey S.; Waggoner, Paul; Beyers, Ronald; Morrison, Edward; Salibi, Nouha; Denney, Thomas S.; Vodyanoy, Vitaly; Deshpande, Gopikrishna

    2016-01-01

    Diffusion tensor imaging (DTI) provides us an insight into the micro-architecture of white-matter tracts in the brain. This method has proved promising in understanding and investigating the neuronal tracts and structural connectivity between the brain regions in primates as well as rodents. The close evolutionary relationship between canines and humans may have spawned a unique bond in regard to social cognition rendering them useful as an animal model in translational research. In this study, we acquired diffusion data from anaesthetized dogs and created a DTI-based atlas for a canine model which could be used to investigate various white matter diseases. We illustrate the application of this atlas by calculating DTI tractography based structural connectivity between the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) regions of the default mode network (DMN) in dogs. White matter connectivity was investigated to provide structural basis for the functional dissociation observed between the anterior and posterior parts of DMN. A comparison of the integrity of long range structural connections (such as in the DMN) between dogs and humans is likely to provide us with new perspectives on the neural basis of the evolution of cognitive functions. PMID:27886204

  13. Activation and Connectivity within the Default Mode Network Contribute Independently to Future-Oriented Thought.

    PubMed

    Xu, Xiaoxiao; Yuan, Hong; Lei, Xu

    2016-02-12

    Future-oriented thought, a projection of the self into the future to pre-experience an event, has been linked to default mode network (DMN). Previous studies showed that the DMN was generally divided into two subsystems: anterior part (aDMN) and posterior part (pDMN). The former is mostly related to self-referential mental thought and latter engages in episodic memory retrieval and scene construction. However, functional contribution of these two subsystems and functional connectivity between them during future-oriented thought has rarely been reported. Here, we investigated these issues by using an experimental paradigm that allowed prospective, episodic decisions concerning one's future (Future Self) to be compared with self-referential decisions about one's immediate present state (Present Self). Additionally, two parallel control conditions that relied on non-personal semantic knowledge (Future Non-Self Control and Present Non-Self Control) were conducted. Our results revealed that the aDMN was preferentially activated when participants reflected on their present states, whereas the pDMN exhibited preferentially activation when participants reflected on their personal future. Intriguingly, significantly decreased aDMN-pDMN connectivity was observed when thinking about their future relative to other conditions. These results support the notion that activation within these subsystems and connectivity between them contribute differently to future-oriented thought.

  14. Inflection Point in Course of Mild Cognitive Impairment: Increased Functional Connectivity of Default Mode Network.

    PubMed

    Li, Xin; Tao, Wuhai; Zhang, Junying; Chen, Yaojing; Ma, Chao; Liu, Zhen; Yang, Caishui; Wang, Wenxiao; Chen, Kewei; Wang, Jun; Zhang, Zhanjun

    2017-09-01

    The alteration of the default mode network (DMN) functional connectivity (FC) has been reported in patients with amnestic mild cognitive impairment (aMCI) as a predictor of Alzheimer's disease (AD). However, no studies exist that examined stage-dependent DMN FC changes throughout the course of aMCI. The present study aims to characterize patterns of DMN FC over three aMCI stages as first defined. Utilizing the extreme groups approach on the performance of memory tasks, aMCI subjects were divided into mild, moderate, and severe stages. Independent component analysis was used to assess DMN for individual patients in each of the three cross-sectionally defined stages. Instead of finding that continued monotonic decline was the case for the hippocampus volume, which we also investigated in this study, we observed an increase in DMN functional connectivity from mild aMCI to moderate aMCI and a decrease to severe aMCI, mainly in the left precuneus and superior parietal lobe. Moreover, the FC was significantly associated with cognitive performance. Though a longitudinal study is needed to confirm these results, our cross-sectional finding is that non-linear FC changes in DMN could be a characteristic of prodromal early disease development.

  15. Intrinsic Default Mode Network Connectivity Predicts Spontaneous Verbal Descriptions of Autobiographical Memories during Social Processing

    PubMed Central

    Yang, Xiao-Fei; Bossmann, Julia; Schiffhauer, Birte; Jordan, Matthew; Immordino-Yang, Mary Helen

    2013-01-01

    Neural systems activated in a coordinated way during rest, known as the default mode network (DMN), also support autobiographical memory (AM) retrieval and social processing/mentalizing. However, little is known about how individual variability in reliance on personal memories during social processing relates to individual differences in DMN functioning during rest (intrinsic functional connectivity). Here we examined 18 participants’ spontaneous descriptions of autobiographical memories during a 2 h, private, open-ended interview in which they reacted to a series of true stories about real people’s social situations and responded to the prompt, “how does this person’s story make you feel?” We classified these descriptions as either containing factual information (“semantic” AMs) or more elaborate descriptions of emotionally meaningful events (“episodic” AMs). We also collected resting state fMRI scans from the participants and related individual differences in frequency of described AMs to participants’ intrinsic functional connectivity within regions of the DMN. We found that producing more descriptions of either memory type correlated with stronger intrinsic connectivity in the parahippocampal and middle temporal gyri. Additionally, episodic AM descriptions correlated with connectivity in the bilateral hippocampi and medial prefrontal cortex, and semantic memory descriptions correlated with connectivity in right inferior lateral parietal cortex. These findings suggest that in individuals who naturally invoke more memories during social processing, brain regions involved in memory retrieval and self/social processing are more strongly coupled to the DMN during rest. PMID:23316178

  16. Resting state connectivity between default mode network and insula encodes acute migraine headache.

    PubMed

    Coppola, Gianluca; Di Renzo, Antonio; Tinelli, Emanuele; Di Lorenzo, Cherubino; Scapeccia, Marco; Parisi, Vincenzo; Serrao, Mariano; Evangelista, Maurizio; Ambrosini, Anna; Colonnese, Claudio; Schoenen, Jean; Pierelli, Francesco

    2017-01-01

    Background Previous functional MRI studies have revealed that ongoing clinical pain in different chronic pain syndromes is directly correlated to the connectivity strength of the resting default mode network (DMN) with the insula. Here, we investigated seed-based resting state DMN-insula connectivity during acute migraine headaches. Methods Thirteen migraine without aura patients (MI) underwent 3 T MRI scans during the initial six hours of a spontaneous migraine attack, and were compared to a group of 19 healthy volunteers (HV). We evaluated headache intensity with a visual analogue scale and collected seed-based MRI resting state data in the four core regions of the DMN: Medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right inferior parietal lobules (IPLs), as well as in bilateral insula. Results Compared to HV, MI patients showed stronger functional connectivity between MPFC and PCC, and between MPFC and bilateral insula. During migraine attacks, the strength of MPFC-to-insula connectivity was negatively correlated with pain intensity. Conclusion We show that greater subjective intensity of pain during a migraine attack is associated with proportionally weaker DMN-insula connectivity. This is at variance with other chronic extra-cephalic pain disorders where the opposite was found, and may thus be a hallmark of acute migraine head pain.

  17. Spontaneous default mode network phase-locking moderates performance perceptions under stereotype threat.

    PubMed

    Forbes, Chad E; Leitner, Jordan B; Duran-Jordan, Kelly; Magerman, Adam B; Schmader, Toni; Allen, John J B

    2015-07-01

    This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat.

  18. Fasting plasma insulin and the default mode network in women at risk for Alzheimer's disease

    PubMed Central

    Kenna, Heather; Hoeft, Fumiko; Kelley, Ryan; Wroolie, Tonita; DeMuth, Bevin; Reiss, Allan; Rasgon, Natalie

    2016-01-01

    Brain imaging studies in Alzheimer's disease research have demonstrated structural and functional perturbations in the hippocampus and default mode network (DMN). Additional evidence suggests risk for pathological brain aging in association with insulin resistance (IR). This study piloted investigation of associations of IR with DMN-hippocampal functional connectivity among postmenopausal women at risk for Alzheimer's disease. Twenty middle-aged women underwent resting state functional magnetic resonance imaging. Subjects were dichotomized relative to fasting plasma insulin levels (i.e., 8 IU/mL [n 10] and 8 IU/mL [n 10]), and functional connectivity analysis contrasted their respective blood oxygen level-dependent signal correlation between DMN and hippocampal regions. Higher-insulin women had significantly reduced positive associations between the medial prefrontal cortex and bilateral parahippocampal regions extending to the right hippocampus, and conversely, between the left and right hippocampus and medial prefrontal cortex. Neuropsychological data (all within normal ranges) also showed significant differences with respect to executive functioning and global intelligence. The results provide further evidence of deleterious effects of IR on the hippocampus and cognition. Further imaging studies of the IR-related perturbations in DMN-hippocampal functional connectivity are needed. PMID:22770543

  19. Altered Local Coherence in the Default Mode Network due to Sevoflurane Anesthesia

    PubMed Central

    Deshpande, Gopikrishna; Kerssens, Chantal; Sebel, Peter Simon; Hu, Xiaoping

    2010-01-01

    Recently we introduced a robust measure, integrated local correlation (ILC), of local connectivity in the brain using fMRI data which reflects the temporal correlation of brain activity in every voxel neighborhood. The current work studies ILC in fMRI data obtained in the absence and presence of sevoflurane anesthesia (0%, 2%, and 1% end-tidal concentration, respectively) administered to healthy volunteers. ILC was determined specifically in regions of the default mode network (DMN) to address local changes in each state. In addition, a potential confound in analyses based on correlations due to signal-to-noise variations was addressed by wavelet denoising. This accommodated decreases in signal power commonly seen during anesthesia without artificially reducing derived correlations. Results showed that ILC was significantly reduced in the entire DMN during 2% sevoflurane yet recovered in the posterior and anterior cingulate cortices as well as inferior parietal cortex during 1% sevoflurane. By contrast, ILC remained attenuated prefrontally in the 1% condition, which indicates uncoupling of the frontal areas of DMN during light anesthesia. These results confirm widespread anesthetic-induced cortical suppression but also demonstrate that the local connectivity of the prefrontal cortex is rapidly reduced by sevoflurane. It remains to be seen whether these alterations arise locally as a direct consequence of anesthetic action on local neurons or are driven by distant changes in oscillations and activity elsewhere in the brain. PMID:20059988

  20. Effects of Subconcussive Head Trauma on the Default Mode Network of the Brain

    PubMed Central

    Neuberger, Thomas; Gay, Michael; Hallett, Mark; Slobounov, Semyon

    2014-01-01

    Abstract Although they are less severe than a full blown concussive episodes, subconcussive impacts happen much more frequently and current research has suggested this form of head trauma may have an accumulative effect and lead to neurological impairment later in life. To investigate the acute effects that subconcussive head trauma may have on the default mode network of the brain resting-state, functional magnetic resonance was performed. Twenty-four current collegiate rugby players were recruited and all subjects underwent initial scanning 24 h prior to a scheduled full contact game to provide a baseline. Follow-up scanning of the rugby players occurred within 24 h following that game to assess acute effects from subconcussive head trauma. Differences between pre-game and post-game scans showed both increased connectivity from the left supramarginal gyrus to bilateral orbitofrontal cortex and decreased connectivity from the retrosplenial cortex and dorsal posterior cingulate cortex. To assess whether or not a history of previous concussion may lead to a differential response following subconcussive impacts, subjects were further divided into two subgroups based upon history of previous concussion. Individuals with a prior history of concussion exhibited only decreased functional connectivity following exposure to subconcussive head trauma, while those with no history showed increased connectivity. Even acute exposure to subconcussive head trauma demonstrates the ability to alter functional connectivity and there is possible evidence of a differential response in the brain for those with and without a history of concussion. PMID:25010992

  1. Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis.

    PubMed

    Seshamani, Sharmishtaa; Blazejewska, Anna I; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Gatenby, Christopher; Studholme, Colin

    2016-11-01

    Recently, there has been considerable interest, especially for in utero imaging, in the detection of functional connectivity in subjects whose motion cannot be controlled while in the MRI scanner. These cases require two advances over current studies: (1) multiecho acquisitions and (2) post processing and reconstruction that can deal with significant between slice motion during multislice protocols to allow for the ability to detect temporal correlations introduced by spatial scattering of slices into account. This article focuses on the estimation of a spatially and temporally regular time series from motion scattered slices of multiecho fMRI datasets using a full four-dimensional (4D) iterative image reconstruction framework. The framework which includes quantitative MRI methods for artifact correction is evaluated using adult studies with and without motion to both refine parameter settings and evaluate the analysis pipeline. ICA analysis is then applied to the 4D image reconstruction of both adult and in utero fetal studies where resting state activity is perturbed by motion. Results indicate quantitative improvements in reconstruction quality when compared to the conventional 3D reconstruction approach (using simulated adult data) and demonstrate the ability to detect the default mode network in moving adults and fetuses with single-subject and group analysis. Hum Brain Mapp 37:4158-4178, 2016. © 2016 Wiley Periodicals, Inc.

  2. Characterization of Structural Connectivity of the Default Mode Network in Dogs using Diffusion Tensor Imaging.

    PubMed

    Robinson, Jennifer L; Baxi, Madhura; Katz, Jeffrey S; Waggoner, Paul; Beyers, Ronald; Morrison, Edward; Salibi, Nouha; Denney, Thomas S; Vodyanoy, Vitaly; Deshpande, Gopikrishna

    2016-11-25

    Diffusion tensor imaging (DTI) provides us an insight into the micro-architecture of white-matter tracts in the brain. This method has proved promising in understanding and investigating the neuronal tracts and structural connectivity between the brain regions in primates as well as rodents. The close evolutionary relationship between canines and humans may have spawned a unique bond in regard to social cognition rendering them useful as an animal model in translational research. In this study, we acquired diffusion data from anaesthetized dogs and created a DTI-based atlas for a canine model which could be used to investigate various white matter diseases. We illustrate the application of this atlas by calculating DTI tractography based structural connectivity between the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) regions of the default mode network (DMN) in dogs. White matter connectivity was investigated to provide structural basis for the functional dissociation observed between the anterior and posterior parts of DMN. A comparison of the integrity of long range structural connections (such as in the DMN) between dogs and humans is likely to provide us with new perspectives on the neural basis of the evolution of cognitive functions.

  3. The role of the default mode network in component processes underlying the wandering mind.

    PubMed

    Poerio, Giulia L; Sormaz, Mladen; Wang, Hao-Ting; Margulies, Daniel; Jefferies, Elizabeth; Smallwood, Jonathan

    2017-03-21

    Experiences such as mind-wandering illustrate that cognition is not always tethered to events in the here-and-now. Although converging evidence emphasises the default mode network (DMN) in mind-wandering, its precise contribution remains unclear. The DMN comprises cortical regions that are maximally distant from primary sensory and motor cortex, a topological location that may support the stimulus-independence of mind-wandering. The DMN is functionally heterogeneous, comprising regions engaged by memory, social cognition, and planning; processes relevant to mind-wandering content. Our study examined the relationships between: (i) individual differences in resting-state DMN connectivity, (ii) performance on memory, social, and planning tasks and (iii) variability in spontaneous thought, to investigate whether the DMN is critical to mind-wandering because it supports stimulus-independent cognition, memory retrieval, or both. Individual variation in task performance modulated the functional organisation of the DMN: poor external engagement was linked to stronger coupling between medial and dorsal subsystems, while decoupling of the core from the cerebellum predicted reports of detailed memory retrieval. Both patterns predicted off-task future thoughts. Consistent with predictions from component process accounts of mind-wandering, our study suggests a two-fold involvement of the DMN: (i) it supports experiences that are unrelated to the environment through strong coupling between its sub-systems; (ii) it allows memory representations to form the basis of conscious experience.

  4. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli

    PubMed Central

    Grimm, Simone; Duncan, Niall W.; Fan, Yan; Huang, Zirui; Lane, Timothy; Weng, Xuchu; Bajbouj, Malek; Northoff, Georg

    2016-01-01

    Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap. PMID:26796968

  5. Alteration of the Intra- and Cross- Hemisphere Posterior Default Mode Network in Frontal Lobe Glioma Patients

    PubMed Central

    Zhang, Haosu; Shi, Yonghong; Yao, Chengjun; Tang, Weijun; Yao, Demin; Zhang, Chenxi; Wang, Manning; Wu, Jinsong; Song, Zhijian

    2016-01-01

    Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor’s hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade. PMID:27248706

  6. Disrupted Resting-State Default Mode Network in Betel Quid-Dependent Individuals

    PubMed Central

    Zhu, Xueling; Zhu, Qiuling; Jiang, Canhua; Shen, Huaizhen; Wang, Furong; Liao, Weihua; Yuan, Fulai

    2017-01-01

    Recent studies have shown that substance dependence (addiction) is accompanied with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and betel quid dependence (BQD)-related physiopathological characteristics still remain unclear. Resting-state functional magnetic resonance imaging images were obtained from 26 BQD individuals and 28 matched healthy control subjects. Group independent component analysis was performed to analyze the resting state images into spatially independent components. Gray matter volume was examined as covariate with voxel-based morphometry to rule out its effect on the functional results. The severity of BQD was assessed by the BQD Scale (BQDS). We observed decreased functional connectivity in anterior part of the DMN including ventral medial prefrontal cortex, orbital MPFC (OMPFC)/anterior cingulate cortex (ACC). Furthermore, the functional connectivity within the OMPFC/ACC in BQD individuals was negatively correlated with BQDS (p = 0.01, r = -0.49). We reported decreased functional connectivity within anterior part of the DMN in BQD individuals, which provides new evidence for the role of the DMN in the pathophysiology of BQD. PMID:28194128

  7. The role of the default mode network in component processes underlying the wandering mind

    PubMed Central

    Sormaz, Mladen; Wang, Hao-Ting; Margulies, Daniel; Jefferies, Elizabeth; Smallwood, Jonathan

    2017-01-01

    Abstract Experiences such as mind-wandering illustrate that cognition is not always tethered to events in the here-and-now. Although converging evidence emphasises the default mode network (DMN) in mind-wandering, its precise contribution remains unclear. The DMN comprises cortical regions that are maximally distant from primary sensory and motor cortex, a topological location that may support the stimulus-independence of mind-wandering. The DMN is functionally heterogeneous, comprising regions engaged by memory, social cognition and planning; processes relevant to mind-wandering content. Our study examined the relationships between: (i) individual differences in resting-state DMN connectivity, (ii) performance on memory, social and planning tasks and (iii) variability in spontaneous thought, to investigate whether the DMN is critical to mind-wandering because it supports stimulus-independent cognition, memory retrieval, or both. Individual variation in task performance modulated the functional organization of the DMN: poor external engagement was linked to stronger coupling between medial and dorsal subsystems, while decoupling of the core from the cerebellum predicted reports of detailed memory retrieval. Both patterns predicted off-task future thoughts. Consistent with predictions from component process accounts of mind-wandering, our study suggests a 2-fold involvement of the DMN: (i) it supports experiences that are unrelated to the environment through strong coupling between its sub-systems; (ii) it allows memory representations to form the basis of conscious experience. PMID:28402561

  8. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  9. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  10. Moral decision-making, ToM, empathy and the default mode network.

    PubMed

    Reniers, Renate L E P; Corcoran, Rhiannon; Völlm, Birgit A; Mashru, Asha; Howard, Richard; Liddle, Peter F

    2012-07-01

    Automatic intuitions and deliberate reasoning, sourcing internal representations of our personal norms and values, contribute to our beliefs of what is right and wrong. We used fMRI to directly compare moral (M) and non-moral (NM) decision-making processes using scenarios requiring conscious deliberation, whereby the main character declared an intention to take a course of action. Furthermore, we examined the relationship between BOLD signal, associated with M>NM decision-making, and moral judgment competence, psychopathy, and empathy. We observed greater activity in various parts of Theory of Mind, empathy and default mode networks during M>NM decision-making. There was a trend for high scores on primary psychopathy to correlate with decreased M>NM BOLD activation in an area extending from dorsolateral prefrontal cortex to medial prefrontal cortex. We suggest that moral decision-making entails a greater degree of internally directed processing, such as self-referential mental processing and the representation of intentions and feelings, than non-moral decision-making.

  11. Module number of default mode network: inter-subject variability and effects of sleep deprivation.

    PubMed

    Wang, Yulin; Liu, Huan; Hitchman, Glenn; Lei, Xu

    2015-01-30

    Sleep deprivation have shown its great influence on the default mode network (DMN). The DMN is a core system in resting state brain activity. Recent studies have focused on its subsystems and multiple functions. However, the individual specific organization of the DMN is rarely investigated. As the effects of sleep deprivation (SD) on mood are well documented, a more interesting question is whether changes in the processing of emotional information due to sleep deprivation are related to any specific topological properties of the DMN. In this study, we proposed an index, module number of DMN (mnDMN), to measure the specific modular structure of the DMN for each individual. Our results showed that the DMN was generally split into two modules after SD, and the decreased functional connectivity between the two modules was related to a worsening of the participants׳ self-reported emotional state. Furthermore, the mnDMN was correlated with participants' rating scores of high valence pictures in the SD session, indicating that the mnDMN might reflect mood valuation in the human brain. Overall, our research reveals the diversity of the DMN, and may contribute towards a better understanding of the properties and functions of the DMN.

  12. Altered effective connectivity within default mode network in major depression disorder

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  13. Serotonergic modulation of resting state default mode network connectivity in healthy women.

    PubMed

    Helmbold, K; Zvyagintsev, M; Dahmen, B; Biskup, C S; Bubenzer-Busch, S; Gaber, T J; Klasen, M; Eisert, A; Konrad, K; Habel, U; Herpertz-Dahlmann, B; Zepf, F D

    2016-04-01

    The default mode network (DMN) plays a central role in intrinsic thought processes. Altered DMN connectivity has been linked to diminished cerebral serotonin synthesis. Diminished brain serotonin synthesis is further associated with a lack of impulse control and various psychiatric disorders. Here, we investigated the serotonergic modulation of intrinsic functional connectivity (FC) within the DMN in healthy adult females, controlling for the menstrual cycle phase. Eighteen healthy women in the follicular phase (aged 20-31 years) participated in a double-blind controlled cross-over study of serotonin depletion. Acute tryptophan depletion (ATD) and a balanced amino acid load (BAL), used as the control condition, were applied on two separate days of assessment. Neural resting state data using functional magnetic resonance imaging (fMRI) and individual trait impulsivity scores were obtained. ATD compared with BAL significantly reduced FC with the DMN in the precuneus (associated with self-referential thinking) and enhanced FC with the DMN in the frontal cortex (associated with cognitive reasoning). Connectivity differences with the DMN between BAL and ATD in the precentral gyrus were significantly correlated with the magnitude of serotonin depletion. Right medial frontal gyrus and left superior frontal gyrus connectivity differences with the DMN were inversely correlated with trait impulsivity. These findings partially deviate from previous findings obtained in males and underline the importance of gender-specific studies and controlling for menstrual cycle to further elucidate the mechanism of ATD-induced changes within intrinsic thought processes.

  14. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli.

    PubMed

    Qin, Pengmin; Grimm, Simone; Duncan, Niall W; Fan, Yan; Huang, Zirui; Lane, Timothy; Weng, Xuchu; Bajbouj, Malek; Northoff, Georg

    2016-04-01

    Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap.

  15. Investigating Default Mode and Sensorimotor Network Connectivity in Amyotrophic Lateral Sclerosis.

    PubMed

    Chenji, Sneha; Jha, Shankar; Lee, Dawon; Brown, Matthew; Seres, Peter; Mah, Dennell; Kalra, Sanjay

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by degeneration of upper motor neurons (UMN) arising from the motor cortex in the brain and lower motor neurons (LMN) in the brainstem and spinal cord. Cerebral changes create differences in brain activity captured by functional magnetic resonance imaging (fMRI), including the spontaneous and simultaneous activity occurring between regions known as the resting state networks (RSNs). Progressive neurodegeneration as observed in ALS may lead to a disruption of RSNs which could provide insights into the disease process. Previous studies have reported conflicting findings of increased, decreased, or unaltered RSN functional connectivity in ALS and do not report the contribution of UMN changes to RSN connectivity. We aimed to bridge this gap by exploring two networks, the default mode network (DMN) and the sensorimotor network (SMN), in 21 ALS patients and 40 age-matched healthy volunteers. An UMN score dichotomized patients into UMN+ and UMN- groups. Subjects underwent resting state fMRI scan on a high field MRI operating at 4.7 tesla. The DMN and SMN changes between subject groups were compared. Correlations between connectivity and clinical measures such as the ALS Functional Rating Scale-Revised (ALSFRS-R), disease progression rate, symptom duration, UMN score and finger tapping were assessed. Significant group differences in resting state networks between patients and controls were absent, as was the dependence on degree of UMN burden. However, DMN connectivity was increased in patients with greater disability and faster progression rate, and SMN connectivity was reduced in those with greater motor impairment. These patterns of association are in line with literature supporting loss of inhibitory interneurons.

  16. Task positive and default mode networks during a working memory in children with primary monosymptomatic nocturnal enuresis and healthy controls.

    PubMed

    Zhang, Kaihua; Ma, Jun; Lei, Du; Wang, Mengxing; Zhang, Jilei; Du, Xiaoxia

    2015-10-01

    Nocturnal enuresis is a common developmental disorder in children, and primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. This study investigated brain functional abnormalities that are specifically related to working memory in children with PMNE using function magnetic resonance imaging (fMRI) in combination with an n-back task. Twenty children with PMNE and 20 healthy children, group-matched for age and sex, participated in this experiment. Several brain regions exhibited reduced activation during the n-back task in children with PMNE, including the right precentral gyrus and the right inferior parietal lobule extending to the postcentral gyrus. Children with PMNE exhibited decreased cerebral activation in the task-positive network, increased task-related cerebral deactivation during a working memory task, and longer response times. Patients exhibited different brain response patterns to different levels of working memory and tended to compensate by greater default mode network deactivation to sustain normal working memory function. Our results suggest that children with PMNE have potential working memory dysfunction.

  17. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness.

    PubMed

    Panda, Rajanikant; Bharath, Rose D; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network.

  18. Large-scale topology and the default mode network in the mouse connectome

    PubMed Central

    Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496

  19. Default Mode Network Connectivity as a Function of Familial and Environmental Risk for Psychotic Disorder

    PubMed Central

    Peeters, Sanne C. T.; van de Ven, Vincent; Gronenschild, Ed H. B. M; Patel, Ameera X.; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Background Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. Results There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Discussion Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure. PMID

  20. Large-scale topology and the default mode network in the mouse connectome.

    PubMed

    Stafford, James M; Jarrett, Benjamin R; Miranda-Dominguez, Oscar; Mills, Brian D; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P; Lattal, K Matthew; Mitchell, Suzanne H; David, Stephen V; Fryer, John D; Nigg, Joel T; Fair, Damien A

    2014-12-30

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)--a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans.

  1. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness

    PubMed Central

    Panda, Rajanikant; Bharath, Rose D.; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L.

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  2. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high

  3. Vagus nerve stimulation balanced disrupted default-mode network and salience network in a postsurgical epileptic patient

    PubMed Central

    Wang, Kailiang; Chai, Qi; Qiao, Hui; Zhang, Jianguo; Liu, Tinghong; Meng, Fangang

    2016-01-01

    Introduction In recent years, treatment of intractable epilepsy has become more challenging, due to an increase in resistance to antiepileptic drugs, as well as diminished success following resection surgery. Here, we present the case of a 19-year old epileptic patient who received vagus nerve stimulation (VNS) following unsuccessful left parietal–occipital lesion-resection surgery, with results indicating an approximate 50% reduction in seizure frequency and a much longer seizure-free interictal phase. Materials and methods Using resting-state functional magnetic resonance imaging, we measured the changes in resting-state brain networks between pre-VNS treatment and 6 months post-VNS, from the perspective of regional and global variations, using regional homogeneity and large-scale functional connectives (seeding posterior cingulate cortex and anterior cingulate cortex), respectively. Results After 6 months of VNS therapy, the resting-state brain networks were slightly reorganized in regional homogeneity, mainly in large-scale functional connectivity, where excessive activation of the salience network was suppressed, while at the same time the suppressed default-mode network was activated. Conclusion With regard to resting-state brain networks, we propose a hypothesis based on this single case study that VNS acts on intractable epilepsy by modulating the balance between salience and default-mode networks through the integral hub of the anterior cingulate cortex. PMID:27785033

  4. Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

    PubMed Central

    Kaplan, Raphael; Adhikari, Mohit H.; Hindriks, Rikkert; Mantini, Dante; Murayama, Yusuke; Logothetis, Nikos K.; Deco, Gustavo

    2016-01-01

    Summary The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1, 2, 3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]—particularly in DMN regions [6, 7, 8]. Mechanistic support for the DMN’s role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples—both during sleep [9, 10] and awake deliberative periods [11, 12, 13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16, 17, 18, 19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20, 21, 22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24, 25, 26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs—like the DMN—unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics. PMID:26898464

  5. Reduced functional coupling in the default-mode network during self-referential processing.

    PubMed

    van Buuren, Mariët; Gladwin, Thomas E; Zandbelt, Bram B; Kahn, René S; Vink, Matthijs

    2010-08-01

    Activity within the default-mode network (DMN) is thought to be related to self-referential processing, such as thinking about one's preferences or personality traits. Although the DMN is generally considered to function as a network, evidence is starting to accumulate that suggests that areas of the DMN are each specialized for different subfunctions of self-referential processing. Here, we address the issue of functional specialization by investigating changes in coupling between areas of the DMN during self-referential processing. To this aim, brain activity was assessed during a task in which subjects had to indicate whether a trait adjective described their own personality (self-referential, Self condition), that of another person (other-referential, Other condition), or whether the trait was socially desirable (nonreferential, Control condition). To exclude confounding effects of cardiorespiratory processes on activity and functional coupling, we corrected the fMRI signal for these effects. Activity within areas of the DMN was found to be modulated by self-referential processing. More specifically, during the Self condition compared to the Other and Control condition, activity within the dorsal medial prefrontal cortex, ventral medial prefrontal cortex, and posterior cingulate cortex was increased. Moreover, coupling between areas of the DMN was reduced during the Self condition compared to the Other and Control condition, while coupling between regions of the DMN and regions outside the network was increased. As such, these results provide an indication for functional specialization within the DMN and support the notion that each area of the DMN is involved in different subfunctions of self-referential processing.

  6. Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study.

    PubMed

    Sakurai, Kotaro; Takeda, Youji; Tanaka, Naoaki; Kurita, Tsugiko; Shiraishi, Hideaki; Takeuchi, Fumiya; Nakane, Shingo; Sueda, Keitaro; Koyama, Tsukasa

    2010-05-01

    This study uses magnetoencephalography (MEG) to examine whether cortical regions that constitute a default mode network are involved during generalized spike-wave discharges (GSWs) in patients with juvenile absence epilepsy (JAE). We studied five JAE patients for whom MEG was recorded using a 204-channel, whole-head gradiometer system. Dynamic statistical parametric mapping (dSPM) was done to estimate the cortical source distribution of GSW. The dSPM results showed strong medial prefrontal activation in all patients, with activation in the posterior cingulate and precuneus in three of five patients simultaneously or slightly after medial prefrontal activation. Furthermore, dSPM showed that the initial activation of a GSW appears in the focal cortical regions. Cortical regions that constitute a default mode network are strongly involved in the GSW process in some patients with JAE. Results also show that focal cortical activation appears at the onset of a GSW.

  7. Shared and disorder-specific task-positive and default mode network dysfunctions during sustained attention in paediatric Attention-Deficit/Hyperactivity Disorder and obsessive/compulsive disorder.

    PubMed

    Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Cubillo, Ana; Murphy, Clodagh M; Chantiluke, Kaylita; Simmons, Andrew; Giampietro, Vincent; Brammer, Michael; Mataix-Cols, David; Rubia, Katya

    2017-01-01

    Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and obsessive/compulsive disorder (OCD) share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI) version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG). ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.

  8. Rumination and Default Mode Network Subsystems Connectivity in First-episode, Drug-Naive Young Patients with Major Depressive Disorder

    PubMed Central

    Zhu, Xueling; Zhu, Qiuling; Shen, Huaizhen; Liao, Weihua; Yuan, Fulai

    2017-01-01

    Neuroimaging evidence implicates the association between rumination and default mode network (DMN) in major depressive disorder (MDD). However, the relationship between rumination and DMN subsystems remains incompletely understood, especially in patients with MDD. Thirty-three first-episode drug-naive patients with MDD and thirty-three healthy controls (HCs) were enrolled and underwent resting-sate fMRI scanning. Functional connectivity analysis was performed based on 11 pre-defined regions of interest (ROIs) for three DMN subsystems: the midline core, dorsal medial prefrontal cortex (dMPFC) and medial temporal lobe (MTL). Compared with HCs group, patients with MDD exhibited increased within-system connectivity in the dMPFC subsystem and inter-system connectivity between the dMPFC and MTL subsystems. Decreased inter-system connectivity was identified between the midline core and dMPFC subsystem in MDD patients. Depressive rumination was positively correlated with within-system connectivity in the dMPFC subsystem (dMPFC-TempP) and with inter-system connectivity between the dMPFC and MTL subsystems (LTC-PHC). Our results suggest MDD may be characterized by abnormal DMN subsystems connectivity, which may contribute to the pathophysiology of the maladaptive self-focus in MDD patients. PMID:28225084

  9. Regional Homogeneity within the Default Mode Network in Bipolar Depression: A Resting-State Functional Magnetic Resonance Imaging Study

    PubMed Central

    Liu, Chun-Hong; Ma, Xin; Li, Feng; Wang, Yong-Jun; Tie, Chang-Le; Li, Su-Fang; Chen, Tao-Lin; Fan, Ting-ting; Zhang, Yu; Dong, Jie; Yao, Li; Wu, Xia; Wang, Chuan-Yue

    2012-01-01

    Aim We sought to use a regional homogeneity (ReHo) approach as an index in resting-state functional magnetic resonance imaging (fMRI) to investigate the features of spontaneous brain activity within the default mode network (DMN) in patients suffering from bipolar depression (BD). Methods Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD) total score, and ReHo in regions with significant group differences. Results Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group. Conclusions Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression. PMID:23133615

  10. Reduced default mode network suppression during a working memory task in remitted major depression

    PubMed Central

    Bartova, Lucie; Meyer, Bernhard M.; Diers, Kersten; Rabl, Ulrich; Scharinger, Christian; Popovic, Ana; Pail, Gerald; Kalcher, Klaudius; Boubela, Roland N.; Huemer, Julia; Mandorfer, Dominik; Windischberger, Christian; Sitte, Harald H.; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Brocke, Burkhard; Pezawas, Lukas

    2015-01-01

    Insufficient default mode network (DMN) suppression was linked to increased rumination in symptomatic Major Depressive Disorder (MDD). Since rumination is known to predict relapse and a more severe course of MDD, we hypothesized that similar DMN alterations might also exist during full remission of MDD (rMDD), a condition known to be associated with increased relapse rates specifically in patients with adolescent onset. Within a cross-sectional functional magnetic resonance imaging study activation and functional connectivity (FC) were investigated in 120 adults comprising 78 drug-free rMDD patients with adolescent- (n = 42) and adult-onset (n = 36) as well as 42 healthy controls (HC), while performing the n-back task. Compared to HC, rMDD patients showed diminished DMN deactivation with strongest differences in the anterior-medial prefrontal cortex (amPFC), which was further linked to increased rumination response style. On a brain systems level, rMDD patients showed an increased FC between the amPFC and the dorsolateral prefrontal cortex, which constitutes a key region of the antagonistic working-memory network. Both whole-brain analyses revealed significant differences between adolescent-onset rMDD patients and HC, while adult-onset rMDD patients showed no significant effects. Results of this study demonstrate that reduced DMN suppression exists even after full recovery of depressive symptoms, which appears to be specifically pronounced in adolescent-onset MDD patients. Our results encourage the investigation of DMN suppression as a putative predictor of relapse in clinical trials, which might eventually lead to important implications for antidepressant maintenance treatment. PMID:25801734

  11. Default mode network activity in male adolescents with conduct and substance use disorder.

    PubMed

    Dalwani, Manish S; Tregellas, Jason R; Andrews-Hanna, Jessica R; Mikulich-Gilbertson, Susan K; Raymond, Kristen M; Banich, Marie T; Crowley, Thomas J; Sakai, Joseph T

    2014-01-01

    Adolescents with conduct disorder (CD) and substance use disorders (SUD) experience difficulty evaluating and regulating their behavior in anticipation of future consequences. Given the role of the brain's default mode network (DMN) in self-reflection and future thought, this study investigates whether DMN is altered in adolescents with CD and SUD, relative to controls. Twenty adolescent males with CD and SUD and 20 male controls of similar ages underwent functional magnetic resonance imaging as they completed a risk-taking decision task. We used independent component analysis as a data-driven approach to identify the DMN spatial component in individual subjects. DMN activity was then compared between groups. Compared to controls, patients showed reduced activity in superior, medial and middle frontal gyrus (Brodmann area (BA) 10), retrosplenial cortex (BA 30) and lingual gyrus (BA 18), and bilateral middle temporal gryus (BA 21/22) - DMN regions thought to support self-referential evaluation, memory, foresight, and perspective taking. Furthermore, this pattern of reduced activity in patients remained robust after adjusting for the effects of depression and attention-deficit hyperactivity disorder (ADHD). Conversely, when not adjusting for effects of depression and ADHD, patients demonstrated greater DMN activity than controls solely in the cuneus (BA 19). Collectively, these results suggest that comorbid CD and SUD in adolescents is characterized by atypical activity in brain regions thought to play an important role in introspective processing. These functional imbalances in brain networks may provide further insight into the neural underpinnings of conduct and substance use disorders. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Instability of default mode network connectivity in major depression: a two-sample confirmation study

    PubMed Central

    Wise, T; Marwood, L; Perkins, A M; Herane-Vives, A; Joules, R; Lythgoe, D J; Luh, W-M; Williams, S C R; Young, A H; Cleare, A J; Arnone, D

    2017-01-01

    Major depression is associated with altered static functional connectivity in various brain networks, particularly the default mode network (DMN). Dynamic functional connectivity is a novel tool with little application in affective disorders to date, and holds the potential to unravel fluctuations in connectivity strength over time in major depression. We assessed stability of connectivity in major depression between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), key nodes in the DMN that are implicated in ruminative cognitions. Functional connectivity stability between the mPFC and PCC over the course of a resting-state functional magnetic resonance imaging (fMRI) scan was compared between medication-free patients with major depression and healthy controls matched for age, sex and handedness. We tested replicability of the results in an independent sample using multi-echo resting-state fMRI. The primary sample included 20 patients and 19 controls, while the validation sample included 19 patients and 19 controls. Greater connectivity variability was detected in major depression between mPFC and PCC. This was demonstrated in both samples indicating that the results were reliable and were not influenced by the fMRI acquisition approach used. Our results demonstrate that alterations within the DMN in major depression go beyond changes in connectivity strength and extend to reduced connectivity stability within key DMN regions. Findings were robustly replicated across two independent samples. Further research is necessary to better understand the nature of these fluctuations in connectivity and their relationship to the aetiology of major depression. PMID:28440813

  13. Default Mode Network Connectivity Encodes Clinical Pain: An Arterial Spin Labeling Study

    PubMed Central

    Loggia, Marco L.; Kim, Jieun; Gollub, Randy L.; Vangel, Mark G.; Kirsch, Irving; Kong, Jian; Wasan, Ajay D.; Napadow, Vitaly

    2012-01-01

    Neuroimaging studies have suggested the presence of alterations in the anatomo-functional properties of the brain of patients with chronic pain. However, investigation of the brain circuitry supporting the perception of clinical pain presents significant challenges, particularly when using traditional neuroimaging approaches. While potential neuroimaging markers for clinical pain have included resting brain connectivity, these cross-sectional studies have not examined sensitivity to within-subject exacerbation of pain. We used the dual regression probabilistic Independent Component Analysis approach to investigate resting-state connectivity on Arterial Spin Labeling (ASL) data. Brain connectivity was compared between patients with chronic low back pain (cLBP) and healthy controls, before and after the performance of maneuvers aimed at exacerbating clinical pain levels in the patients. Our analyses identified multiple resting state networks, including the Default Mode Network (DMN). At baseline, patients demonstrated stronger DMN connectivity to the pregenual anterior cingulate cortex (pgACC), left inferior parietal lobule and right insula (rINS). Patients’ baseline clinical pain correlated positively with connectivity strength between the DMN and right insula (DMN-rINS). The performance of calibrated physical maneuvers induced changes in pain, which were paralleled by changes in DMN-rINS connectivity. Maneuvers also disrupted the DMN-pgACC connectivity, which at baseline was anti-correlated with pain. Finally, baseline DMN connectivity predicted maneuver-induced changes in both pain and DMN-rINS connectivity. Our results support the use of ASL to evaluate clinical pain, and the use of resting DMN connectivity as a potential neuroimaging biomarker for chronic pain perception. PMID:23111164

  14. Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging.

    PubMed

    De Marco, Matteo; Meneghello, Francesca; Duzzi, Davide; Rigon, Jessica; Pilosio, Cristina; Venneri, Annalena

    2016-03-01

    A cognitive-stimulation tool was created to regulate functional connectivity within the brain Default-Mode Network (DMN). Computerized exercises were designed based on the hypothesis that repeated task-dependent coactivation of multiple DMN regions would translate into regulation of resting-state network connectivity. Forty seniors (mean age: 65.90 years; SD: 8.53) were recruited and assigned either to an experimental group (n=21) who received one month of intensive cognitive stimulation, or to a control group (n=19) who maintained a regime of daily-life activities explicitly focused on social interactions. An MRI protocol and a battery of neuropsychological tests were administered at baseline and at the end of the study. Changes in the DMN (measured via functional connectivity of posterior-cingulate seeds), in brain volumes, and in cognitive performance were measured with mixed models assessing group-by-timepoint interactions. Moreover, regression models were run to test gray-matter correlates of the various stimulation tasks. Significant associations were found between task performance and gray-matter volume of multiple DMN core regions. Training-dependent up-regulation of functional connectivity was found in the posterior DMN component. This interaction was driven by a pattern of increased connectivity in the training group, while little or no up-regulation was seen in the control group. Minimal changes in brain volumes were found, but there was no change in cognitive performance. The training-dependent regulation of functional connectivity within the posterior DMN component suggests that this stimulation program might exert a beneficial impact in the prevention and treatment of early AD neurodegeneration, in which this neurofunctional pathway is progressively affected by the disease.

  15. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity

    PubMed Central

    Murdaugh, Donna L.; Shinkareva, Svetlana V.; Deshpande, Hrishikesh R.; Wang, Jing; Pennick, Mark R.; Kana, Rajesh K.

    2012-01-01

    The default mode network (DMN) is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD) and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM) task). Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC), anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group. PMID:23185536

  16. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder

    PubMed Central

    Jann, Kay; Hernandez, Leanna M; Beck-Pancer, Devora; McCarron, Rosemary; Smith, Robert X; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Background Neuroimaging studies can shed light on the neurobiological underpinnings of autism spectrum disorders (ASD). Studies of the resting brain have shown both altered baseline metabolism from PET/SPECT and altered functional connectivity (FC) of intrinsic brain networks based on resting-state fMRI. To date, however, no study has investigated these two physiological parameters of resting brain function jointly, or explored the relationship between these measures and ASD symptom severity. Methods Here, we used pseudo-continuous arterial spin labeling with 3D background-suppressed GRASE to assess resting cerebral blood flow (CBF) and FC in 17 youth with ASD and 22 matched typically developing (TD) children. Results A pattern of altered resting perfusion was found in ASD versus TD children including frontotemporal hyperperfusion and hypoperfusion in the dorsal anterior cingulate cortex. We found increased local FC in the anterior module of the default mode network (DMN) accompanied by decreased CBF in the same area. In our cohort, both alterations were associated with greater social impairments as assessed with the Social Responsiveness Scale (SRS-total T scores). While FC was correlated with CBF in TD children, this association between FC and baseline perfusion was disrupted in children with ASD. Furthermore, there was reduced long-range FC between anterior and posterior modules of the DMN in children with ASD. Conclusion Taken together, the findings of this study – the first to jointly assess resting CBF and FC in ASD – highlight new avenues for identifying novel imaging markers of ASD symptomatology. PMID:26445698

  17. Default Mode Network in Concussed Individuals in Response to the YMCA Physical Stress Test

    PubMed Central

    Zhang, Kai; Johnson, Brian; Gay, Michael; Horovitz, Silvina G.; Hallett, Mark; Sebastianelli, Wayne

    2012-01-01

    Abstract We hypothesize that the evolution of mild traumatic brain injury (mTBI) may be related to differential effects of a concussive blow on the functional integrity of the brain default mode network (DMN) at rest and/or in response to physical stress. Accordingly, in this resting-state functional magnetic resonance imaging (fMRI) study, we examined 14 subjects 10±2 days post-sports-related mTBI and 15 age-matched normal volunteers (NVs) to investigate the possibility that the integrity of the DMN is disrupted at the resting state and/or following the physical stress test. First, all mTBI subjects were asymptomatic based upon clinical evaluation and neuropsychological (NP) assessments prior to the MRI session. Second, the functional integrity within the DMN, a main resting-state network, remained resilient to a single concussive blow. Specifically, the major regions of interest (ROIs) constituting the DMN (e.g., the posterior cingulate cortex [PCC]/precuneus area, the medial prefrontal cortex [MPFC], and left and right lateral parietal cortices [LLP and RLP]) and the connectivity within these four ROIs was similar between NVs and mTBI subjects prior to the YMCA physical stress test. However, the YMCA physical stress test disrupted the DMN, significantly reducing the magnitude of the connection between the PCC and left lateral parietal ROI, and PCC and right lateral parietal ROI, as well as between the PCC and MPFC in mTBI subjects. Thus while the DMN remained resilient to a single mTBI without exertion at 10 days post-injury, it was altered in response to limited physical stress. This may explain some clinical features of mTBI and provide some insight into its mechanism. This important finding should be considered by clinical practitioners when making decisions regarding return-to-play and clearing mTBI athletes for sports participation. PMID:22040294

  18. The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study.

    PubMed

    Neuner, Irene; Arrubla, Jorge; Werner, Cornelius J; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an "electrophysiological signature" of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the "status quo" in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed "ongoing activity" during "resting state" in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  19. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  20. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness.

    PubMed

    Lant, Nicholas D; Gonzalez-Lara, Laura E; Owen, Adrian M; Fernández-Espejo, Davinia

    2016-01-01

    The specific neural bases of disorders of consciousness (DOC) are still not well understood. Some studies have suggested that functional and structural impairments in the default mode network may play a role in explaining these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involving striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first report of structural integrity of fiber tracts connecting the nodes of the mesocircuit and the default mode network in 8 patients with DOC. We found evidence of significant damage to subcortico-cortical and cortico-cortical fibers, which were more severe in vegetative state patients and correlated with clinical severity as determined by Coma Recovery Scale-Revised (CRS-R) scores. In contrast, fiber tracts interconnecting subcortical nodes were not significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with cortical and subcortical areas. Our results suggest a strong relationship between the default mode network - and most importantly the precuneus - and the anterior forebrain mesocircuit in the neural basis of the DOC.

  1. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness

    PubMed Central

    Lant, Nicholas D.; Gonzalez-Lara, Laura E.; Owen, Adrian M.; Fernández-Espejo, Davinia

    2015-01-01

    The specific neural bases of disorders of consciousness (DOC) are still not well understood. Some studies have suggested that functional and structural impairments in the default mode network may play a role in explaining these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involving striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first report of structural integrity of fiber tracts connecting the nodes of the mesocircuit and the default mode network in 8 patients with DOC. We found evidence of significant damage to subcortico-cortical and cortico-cortical fibers, which were more severe in vegetative state patients and correlated with clinical severity as determined by Coma Recovery Scale—Revised (CRS-R) scores. In contrast, fiber tracts interconnecting subcortical nodes were not significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with cortical and subcortical areas. Our results suggest a strong relationship between the default mode network – and most importantly the precuneus – and the anterior forebrain mesocircuit in the neural basis of the DOC. PMID:26693399

  2. EEG default mode network in the human brain: spectral regional field powers.

    PubMed

    Chen, Andrew C N; Feng, Weijia; Zhao, Huixuan; Yin, Yanling; Wang, Peipei

    2008-06-01

    .001) and theta (r=0.77, p<0.001) band. In addition, the great inter-individual variability (90 folds in alpha-1, 62 folds in alpha-2) in regional field power was largely observed in the EC state (10 folds) than the EO state in subjects. To summarize, our study depicts a network of spectral EEG activities simultaneously operative at well defined regional fields in the EC state, varying specifically between EC and EO states. In contrast to transient EEG spectral rhythmic dynamics, current study of long-lasting (e.g. 3 min) spectral field powers can characterize state features in EEG. The EEG default mode network (EEG-DMN) of spectral field powers at rest in the respective EC or EO state is valued to serve as the basal electrophysiological condition in human brain. In health, this EEG-DMN is deemed essential for evaluation of brain functions without task demands for gender difference, developmental change in age span, and brain response to task activation. It is expected to define brain dysfunction in disease at resting state and with consequences for sensory, affective and cognitive alteration in the human brain.

  3. Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach.

    PubMed

    Du, Yuhui; Pearlson, Godfrey D; Yu, Qingbao; He, Hao; Lin, Dongdong; Sui, Jing; Wu, Lei; Calhoun, Vince D

    2016-01-01

    Default mode network (DMN) has been reported altered in schizophrenia (SZ) using static connectivity analysis. However, the studies on dynamic characteristics of DMN in SZ are still limited. In this work, we compare dynamic connectivity within DMN between 82 healthy controls (HC) and 82 SZ patients using resting-state fMRI. Firstly, dynamic DMN was computed using a sliding time window method for each subject. Then, the overall connectivity strengths were compared between two groups. Furthermore, we estimated functional connectivity states using K-means clustering, and then investigated group differences with respect to the connectivity strengths in states, the dwell time in each state, and the transition times between states. Finally, graph metrics of time-varying connectivity patterns and connectivity states were assessed. Results suggest that measured by the overall connectivity, HC showed stronger inter-subsystem interaction than patients. Compared to HC, patients spent more time in the states with nodes sparsely connected. For each state, SZ patients presented relatively weaker connectivity strengths mainly in inter-subsystem. Patients also exhibited lower values in averaged node strength, clustering coefficient, global efficiency, and local efficiency than HC. In summary, our findings indicate that SZ show impaired interaction among DMN subsystems, with a reduced central role for posterior cingulate cortex (PCC) and anterior medial prefrontal cortex (aMPFC) hubs as well as weaker interaction between dorsal medial prefrontal cortex (dMPFC) subsystem and medial temporal lobe (MTL) subsystem. For SZ, decreased integration of DMN may be associated with impaired ability in making self-other distinctions and coordinating present mental states with episodic decisions about future.

  4. The default mode network and social understanding of others: what do brain connectivity studies tell us

    PubMed Central

    Li, Wanqing; Mai, Xiaoqin; Liu, Chao

    2014-01-01

    The Default Mode Network (DMN) has been found to be involved in various domains of cognitive and social processing. The present article will review brain connectivity results related to the DMN in the fields of social understanding of others: emotion perception, empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy subjects with no neurological and psychiatric disease, but some studies on patients with autism and psychopathy will also be discussed. Common results show that the medial prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the subregions of the MPFC contribute differently to this function according to their roles in different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal lobe (MTL) subsystem and its connections with emotion regions are mainly associated with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC) in the cortical midline structures (CMS) and its connections with posterior and anterior cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal junction (TPJ) are primarily related to the understanding of other's mental states. As behaviors become more complex, the related regions in frontal cortex are located higher. This reflects the transfer of information processing from automatic to cognitive processes with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the connectivities of posterior cingulate cortex (PCC) also show some changes during tasks from the four social fields. These results indicate that the DMN is indispensable in the social understanding of others. PMID:24605094

  5. Effect of acupuncture ‘dose’ on modulation of the default mode network of the brain

    PubMed Central

    Lin, Yii-Jeng; Kung, Yen-Ying; Kuo, Wen-Jui; Niddam, David M; Chou, Chih-Che; Cheng, Chou-Ming; Yeh, Tzu-Chen; Hsieh, Jen-Chuen; Chiu, Jen-Hwey

    2016-01-01

    Objective Recent functional MRI (fMRI) studies show that brain activity, including the default mode network (DMN), can be modulated by acupuncture. Conventional means to enhance the neurophysiological ‘dose’ of acupuncture, including an increased number of needles and manual needle manipulation, are expected to enhance its physiological effects. The aim of this study was to compare the effects of both methods on brain activity. Methods 58 healthy volunteers were randomly assigned into four groups that received single needle acupuncture (SNA, n=15) or transcutaneous electrical nerve stimulation (TENS, n=13) as active controls, or enhanced acupuncture by way of three needle acupuncture (TNA, n=17) or SNA plus manual stimulation (SNA+MS, n=13). Treatment-associated sensations were evaluated using a visual analogue scale. Central responses were recorded before, during, and after treatment at LI4 on the left hand using resting state fMRI. Results TNA and SNA+MS induced DMN-insula activity and extensive DMN activity compared to SNA, despite comparable levels of de qi sensation. The TNA and SNA+MS groups exhibited a delayed and enhanced modulation of the DMN, which was not observed followed SNA and TENS. Furthermore, TNA increased precuneus activity and increased the DMN-related activity of the cuneus and left insula, while SNA+MS increased activity in the right insula. Conclusions The results showed that conventional methods to enhance the acupuncture dose induce different DMN modulatory effects. TNA induces the most extensive DMN modulation, compared with other methods. Conventional methods of enhancing the acupuncture dose could potentially be applied as a means of modulating brain activity. PMID:27841974

  6. Changes in the default mode networks of individuals with long-term unilateral sensorineural hearing loss.

    PubMed

    Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Chen, H; Zhang, P-P; Li, J; Chen, J-Y; Liu, L-J; Wang, J; Teng, G-J

    2015-01-29

    Hearing impairment contributes to cognitive dysfunction. Previous studies have found changes of functional connectivity in the default mode network (DMN) associated with cognitive processing in individuals with sensorineural hearing loss (SNHL). Whereas the changes in the DMN in patients with long-term unilateral SNHL (USNHL) is still not entirely clear. In this work, we analyzed resting-state functional magnetic resonance imaging (fMRI) data and neuropsychological test scores from normal hearing subjects (n = 11) and patients (n = 21) with long-term USNHL. Functional connectivity and nodal topological properties were computed for every brain region in the DMN. Analysis of covariance (ANCOVA) and post hoc analyses were conducted to identify differences between normal controls and patients for each measure. Results indicated that the left USNHL presented enhanced connectivity (p < 0.05, false discovery rate (FDR) corrected), and significant changes (p < 0.05, Bonferroni corrected) of the nodal topological properties in the DMN compared with the control. More changes in the DMN have been found in the left than right long-term USNHL (RUSNHL). However, the neuropsychological tests did not show significant differences between the USNHL and the control. These findings suggest that long-term USNHL contributes to changes in the DMN, and these changes might affect cognitive abilities in patients with long-term USNHL. Left hearing loss affects the DMN more than the right hearing loss does. The fMRI measures might be more sensitive for observing cognitive changes in patients with hearing loss than clinical neuropsychological tests. This study provides some insights into the mechanisms of the association between hearing loss and cognitive function.

  7. Progressive Bidirectional Age-Related Changes in Default Mode Network Effective Connectivity across Six Decades

    PubMed Central

    Li, Karl; Laird, Angela R.; Price, Larry R.; McKay, D. Reese; Blangero, John; Glahn, David C.; Fox, Peter T.

    2016-01-01

    The default mode network (DMN) is a set of regions that is tonically engaged during the resting state and exhibits task-related deactivation that is readily reproducible across a wide range of paradigms and modalities. The DMN has been implicated in numerous disorders of cognition and, in particular, in disorders exhibiting age-related cognitive decline. Despite these observations, investigations of the DMN in normal aging are scant. Here, we used blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) acquired during rest to investigate age-related changes in functional connectivity of the DMN in 120 healthy normal volunteers comprising six, 20-subject, decade cohorts (from 20–29 to 70–79). Structural equation modeling (SEM) was used to assess age-related changes in inter-regional connectivity within the DMN. SEM was applied both using a previously published, meta-analytically derived, node-and-edge model, and using exploratory modeling searching for connections that optimized model fit improvement. Although the two models were highly similar (only 3 of 13 paths differed), the sample demonstrated significantly better fit with the exploratory model. For this reason, the exploratory model was used to assess age-related changes across the decade cohorts. Progressive, highly significant changes in path weights were found in 8 (of 13) paths: four rising, and four falling (most changes were significant by the third or fourth decade). In all cases, rising paths and falling paths projected in pairs onto the same nodes, suggesting compensatory increases associated with age-related decreases. This study demonstrates that age-related changes in DMN physiology (inter-regional connectivity) are bidirectional, progressive, of early onset and part of normal aging. PMID:27378909

  8. Behavioral activation sensitivity and default mode network-subgenual cingulate cortex connectivity in youth.

    PubMed

    Iadipaolo, Allesandra S; Marusak, Hilary A; Sala-Hamrick, Kelsey; Crespo, Laura M; Thomason, Moriah E; Rabinak, Christine A

    2017-08-30

    Increased resting-state functional connectivity (rsFC) between the default mode network (DMN) and subgenual anterior cingulate cortex (sgACC) is consistently reported in adults and youth with psychopathologies related to affect dysregulation (e.g. depression, posttraumatic stress disorder). This pattern of increased rsFC is thought to underlie ruminative thought patterns through integration of negative affect (via sgACC) into self-referential operations supported by the DMN. Neurobiological studies in adults show that behavioral activation system (BAS) sensitivity is a potential protective factor against the development of psychopathology, particularly in the context of stress and trauma exposure. However, whether BAS sensitivity is associated with variation in DMN-sgACC stress-vulnerability circuitry in youth, particularly those at risk for affect dysregulation, has not yet been studied. This association was tested in a sample of ninety-eight children and adolescents (ages 6-17) at high sociodemographic risk for psychopathology (i.e., urban, lower income, high frequency of violence and abuse exposure). Participants underwent a six-minute resting-state functional magnetic resonance imaging scan. Using a targeted, small-volume corrected approach, we found that youth with higher BAS sensitivity demonstrated lower DMN-sgACC rsFC, suggesting a potential link between the purported protective effects of BAS sensitivity and stress-vulnerability circuitry. This work suggests that interventions that augment BAS sensitivity, such as behavioral activation therapy, may protect against the development of stress-related psychopathology by modifying a critical rumination circuitry in the brain. Such interventions may be especially important for bolstering resiliency in at-risk urban youth, who are disproportionately burdened by early stress and associated psychopathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes

    PubMed Central

    Vidal-Piñeiro, Didac; Valls-Pedret, Cinta; Fernández-Cabello, Sara; Arenaza-Urquijo, Eider M.; Sala-Llonch, Roser; Solana, Elisabeth; Bargalló, Núria; Junqué, Carme; Ros, Emilio; Bartrés-Faz, David

    2014-01-01

    Ageing entails cognitive and motor decline as well as brain changes such as loss of gray (GM) and white matter (WM) integrity, neurovascular and functional connectivity alterations. Regarding connectivity, reduced resting-state fMRI connectivity between anterior and posterior nodes of the Default Mode Network (DMN) relates to cognitive function and has been postulated to be a hallmark of ageing. However, the relationship between age-related connectivity changes and other neuroimaging-based measures in ageing is fragmentarily investigated. In a sample of 116 healthy elders we aimed to study the relationship between antero-posterior DMN connectivity and measures of WM integrity, GM integrity and cerebral blood flow (CBF), assessed with an arterial spin labeling sequence. First, we replicated previous findings demonstrating DMN connectivity decreases in ageing and an association between antero-posterior DMN connectivity and memory scores. The results showed that the functional connectivity between posterior midline structures and the medial prefrontal cortex was related to measures of WM and GM integrity but not to CBF. Gray and WM correlates of anterio-posterior DMN connectivity included, but were not limited to, DMN areas and cingulum bundle. These results resembled patterns of age-related vulnerability which was studied by comparing the correlates of antero-posterior DMN with age-effect maps. These age-effect maps were obtained after performing an independent analysis with a second sample including both young and old subjects. We argue that antero-posterior connectivity might be a sensitive measure of brain ageing over the brain. By using a comprehensive approach, the results provide valuable knowledge that may shed further light on DMN connectivity dysfunctions in ageing. PMID:25309433

  10. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults

    PubMed Central

    Su, Yun Yan; Liang, Xue; Schoepf, U. Joseph; Varga-Szemes, Akos; West, Henry C.; Qi, Rongfeng; Kong, Xiang; Chen, Hui Juan; Lu, Guang Ming; Zhang, Long Jiang

    2015-01-01

    Abstract To investigate the effect of apolipoprotein E (APOE) gene polymorphism on the resting-state brain function, structure, and blood flow in healthy adults younger than 35 years, using multimodality magnetic resonance (MR) imaging. Seventy-six healthy adults (34 men, 23.7 ± 2.8 y; 31 APOE ε4/ε3 carriers, 31 ε3/ε3 carriers, and 14 ε2/ε3 carriers) were included. For resting-state functional MRI data, default mode network (DMN) and amplitude of low-frequency fluctuation maps were extracted and analyzed. Voxel-based morphometry, diffusion tensor imaging from structural imaging, and cerebral blood flow based on arterial spin labeling MR imaging were also analyzed. Correlation analysis was performed between the above mentioned brain parameters and neuropsychological tests. There were no differences in neuropsychological performances, amplitude of low-frequency fluctuation, gray/white matter volumes, fractional anisotropy, mean diffusivity, or whole brain cerebral blood flow among the 3 groups. As for DMN, the ε4/ε3 group showed increased functional connectivities (FCs) in the left medial prefrontal cortex and bilateral posterior cingulate cortices/precuneus compared with the ε3/ε3 group, and increased FCs in the left medial prefrontal cortex and right temporal lobe compared with the ε2/ε3 group (P < 0.05, Alphasim corrected). No differences of DMN FCs were found between the ε2/ε3 and ε3/ε3 groups. FCs in the right temporal lobe positively correlated with the performances of vocabulary learning, delayed recall, and graph recall in all participants (P < 0.05). APOE ε4 carriers exhibited significantly increased DMN FCs when compared with ε3 and ε2 carriers. The ε4 affects DMN FCs before brain structure and blood flow in cognitively intact young patients, suggesting DMN FC may serve as a potential biomarker for the detection of early manifestations of genetic effect. PMID:26717353

  11. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder

    PubMed Central

    Fang, Jiliang; Rong, Peijing; Hong, Yang; Fan, Yangyang; Liu, Jun; Wang, Honghong; Zhang, Guolei; Chen, Xiaoyan; Shi, Shan; Wang, Liping; Liu, Rupeng; Hwang, Jiwon; Li, Zhengjie; Tao, Jing; Wang, Yang; Zhu, Bing; Kong, Jian

    2016-01-01

    Background Depression is the most common form of mental disorder in community and health care settings and current treatments are far from satisfactory. Vagus nerve stimulation (VNS) is an FDA-approved somatic treatment for treatment-resistant depression. However, the involvement of surgery has limited VNS only to patients who have failed to respond to multiple treatment options. Transcutaneous VNS (tVNS) is a relatively new, non-invasive VNS method based on the rationale that there is afferent / efferent vagus nerve distribution on the surface of the ear. The safe and low-cost characteristics of tVNS have the potential to significantly expand the clinical application of VNS. Methods In this study, we investigated how tVNS can modulate the default mode network (DMN) functional connectivity (FC) in mild or moderate major depressive disorder (MDD) patients. Forty-nine MDD patients were recruited, and received tVNS or sham tVNS (stVNS) treatments. Result 34 patients completed the study and were included in data analysis. After one month of tVNS treatment, the 24-item Hamilton Depression Rating Scale (HAMD) score reduced significantly in the tVNS group as compared to the stVNS group. The FC between the DMN and anterior insula and parahippocampus decreased; the FC between the DMN and precuneus and orbital prefrontal cortex increased compared to stVNS. All these FC increases are also associated with HAMD reduction. Conclusions tVNS can significantly modulate the DMN FC of MDD patients; our results provide insights to elucidate the brain mechanism of tVNS treatment for MDD patients. PMID:25963932

  12. Progressive Bidirectional Age-Related Changes in Default Mode Network Effective Connectivity across Six Decades.

    PubMed

    Li, Karl; Laird, Angela R; Price, Larry R; McKay, D Reese; Blangero, John; Glahn, David C; Fox, Peter T

    2016-01-01

    The default mode network (DMN) is a set of regions that is tonically engaged during the resting state and exhibits task-related deactivation that is readily reproducible across a wide range of paradigms and modalities. The DMN has been implicated in numerous disorders of cognition and, in particular, in disorders exhibiting age-related cognitive decline. Despite these observations, investigations of the DMN in normal aging are scant. Here, we used blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) acquired during rest to investigate age-related changes in functional connectivity of the DMN in 120 healthy normal volunteers comprising six, 20-subject, decade cohorts (from 20-29 to 70-79). Structural equation modeling (SEM) was used to assess age-related changes in inter-regional connectivity within the DMN. SEM was applied both using a previously published, meta-analytically derived, node-and-edge model, and using exploratory modeling searching for connections that optimized model fit improvement. Although the two models were highly similar (only 3 of 13 paths differed), the sample demonstrated significantly better fit with the exploratory model. For this reason, the exploratory model was used to assess age-related changes across the decade cohorts. Progressive, highly significant changes in path weights were found in 8 (of 13) paths: four rising, and four falling (most changes were significant by the third or fourth decade). In all cases, rising paths and falling paths projected in pairs onto the same nodes, suggesting compensatory increases associated with age-related decreases. This study demonstrates that age-related changes in DMN physiology (inter-regional connectivity) are bidirectional, progressive, of early onset and part of normal aging.

  13. Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation

    PubMed Central

    Washington, Stuart D.; VanMeter, John W.

    2015-01-01

    The default mode network (DMN) supports self-referential thought processes important for successful socialization including: theory-of-mind, episodic memory, and prospection. Connectivity between DMN's nodes, which are distributed between the frontal, temporal, and parietal lobes, change with age and may continue changing into adulthood. We have previously explored the maturation of functional connections in the DMN as they relate to autism spectrum disorder (ASD) in children 6 to 18 years of age. In this chapter, we refine our earlier study of DMN functional maturation by focusing on the development of inter-nodal connectivity in a larger pool of typically developing people 6 to 25 years of age (mean = 13.22 years ± 5.36 s.d.; N = 36; 42% female). Correlations in BOLD activity (Fisher's Z) between ROIs revealed varying strengths of functional connectivity between regions, the strongest of which was between the left and right inferior parietal lobules or IPLs (Z = 0.62 ± 0.25 s.d.) and the weakest of which was between the posterior cingulate cortex (PCC) and right middle temporal gyrus or MTG (Z = 0.06 ± 0.22 s.d.). Further, connectivity between two pairs of DMN nodes significantly increased as a quadratic function of age (p < 0.05), specifically the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and PCC nodes and the left IPL and right MTG nodes. The correlation between ACC/mPFC ↔ PCC connectivity and age was more significant than the correlation between left IPL ↔ right MTG connectivity and age by more than an order of magnitude. We suggest that these changes in functional connectivity in part underlie the introspective mental changes known to commonly occur between the preadolescent and adult years. A range of neurological and psychological conditions that hamper social interactions, from ASD to psychopathy, may be marked by deviations from this maturational trajectory. PMID:26236149

  14. Effect of acupuncture 'dose' on modulation of the default mode network of the brain.

    PubMed

    Lin, Yii-Jeng; Kung, Yen-Ying; Kuo, Wen-Jui; Niddam, David M; Chou, Chih-Che; Cheng, Chou-Ming; Yeh, Tzu-Chen; Hsieh, Jen-Chuen; Chiu, Jen-Hwey

    2016-12-01

    Recent functional MRI (fMRI) studies show that brain activity, including the default mode network (DMN), can be modulated by acupuncture. Conventional means to enhance the neurophysiological 'dose' of acupuncture, including an increased number of needles and manual needle manipulation, are expected to enhance its physiological effects. The aim of this study was to compare the effects of both methods on brain activity. 58 healthy volunteers were randomly assigned into four groups that received single needle acupuncture (SNA, n=15) or transcutaneous electrical nerve stimulation (TENS, n=13) as active controls, or enhanced acupuncture by way of three needle acupuncture (TNA, n=17) or SNA plus manual stimulation (SNA+MS, n=13). Treatment-associated sensations were evaluated using a visual analogue scale. Central responses were recorded before, during, and after treatment at LI4 on the left hand using resting state fMRI. TNA and SNA+MS induced DMN-insula activity and extensive DMN activity compared to SNA, despite comparable levels of de qi sensation. The TNA and SNA+MS groups exhibited a delayed and enhanced modulation of the DMN, which was not observed followed SNA and TENS. Furthermore, TNA increased precuneus activity and increased the DMN-related activity of the cuneus and left insula, while SNA+MS increased activity in the right insula. The results showed that conventional methods to enhance the acupuncture dose induce different DMN modulatory effects. TNA induces the most extensive DMN modulation, compared with other methods. Conventional methods of enhancing the acupuncture dose could potentially be applied as a means of modulating brain activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  16. The Influence of Rest Period Instructions on the Default Mode Network

    PubMed Central

    Benjamin, Christopher; Lieberman, Daniel A.; Chang, Maria; Ofen, Noa; Whitfield-Gabrieli, Sue; Gabrieli, John D. E.; Gaab, Nadine

    2010-01-01

    The default mode network (DMN) refers to regional brain activity that is greater during rest periods than during attention-demanding tasks; many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN), which is the noise produced by functional magnetic resonance imaging (fMRI). However, it is unclear whether different approaches to “rest” in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimer's disease). We examined 27 healthy adult volunteers who completed an fMRI experiment with three different instructions for rest: (1) relax and be still, (2) attend to SBN, or (3) ignore SBN. Region of interest analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimer's disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC) exhibited greater activity when specific resting instructions were given (i.e., attend to or ignore SBN) compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children. PMID:21151779

  17. Subacute default mode network dysfunction in the prediction of post-stroke depression severity.

    PubMed

    Lassalle-Lagadec, Saioa; Sibon, Igor; Dilharreguy, Bixente; Renou, Pauline; Fleury, Olivier; Allard, Michèle

    2012-07-01

    To identify patterns of rest functional connectivity (FC) in the whole brain with the default mode network (DMN) soon after stroke and to explore the predictive accuracy of the strength of rest FC in specific areas on poststroke severity of depression and anxiety symptoms. The protocol was accepted by the local ethics board, and all patients provided informed consent to participate. Resting-state functional magnetic resonance (MR) images were acquired 10 days after a first stroke in 24 patients without a history of psychiatric illness. Independent component analysis was used to isolate the DMN in each subject. Hamilton Depression Rating Scale (HDRS) 17 and Hamilton Anxiety Rating Scale (HARS) were recorded 10 days and 3 months after the stroke. Associations between severity of anxiety or depression symptoms and DMN functional connectivity were investigated with whole-brain analyses by using statistical parametric mapping software and were adjusted for age, sex, manual laterality, and National Institutes of Health Stroke Severity scores. Correlations were considered significant if P<.001, with a cluster size of more than 50 voxels. Ten days after stroke, anxiety severity was correlated with functional connectivity in the middle temporal cortex and the anterior midcingulate cortex, while at 3 months after stroke, a correlation was observed with the middle temporal cortex and the posterior cingulate cortex. Poststroke depressive symptom severity did not correlate with functional connectivity changes at 10-day follow-up, while the HDRS 17 score was correlated with functional connectivity in the left middle temporal cortex and precuneus at 3-month follow-up. These results suggest that a dysfunction of DMN functional connectivity involved in emotional control is associated with the severity of poststroke depression. Further studies are necessary to determine the mechanisms of this functional impairment. © RSNA, 2012.

  18. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients.

    PubMed

    Esposito, Roberto; Cieri, Filippo; Chiacchiaretta, Piero; Cera, Nicoletta; Lauriola, Mariella; Di Giannantonio, Massimo; Tartaro, Armando; Ferretti, Antonio

    2017-02-07

    Resting state brain activity incorporates different components, including the Default Mode Network and the Dorsal Attention Network, also known as task-negative network and task-positive network respectively. These two networks typically show an anticorrelated activity during both spontaneous oscillations and task execution. However modifications of this anticorrelated activity pattern with age and pathology are still unclear. The present study aimed to investigate differences in resting state Default Mode Network-Dorsal Attention Network functional anticorrelation among young adults, healthy elders and Mild Cognitive Impairment patients. We retrospectively enrolled in this study 27 healthy young adults (age range: 25-35 y.o.; mean age: 28,5), 26 healthy elders (age range: 61-72 y.o.; mean age: 65,1) and 17 MCI patients (age range 64-87 y.o.; mean age: 73,6). Mild Cognitive Impairment patients were selected following Petersen criteria. All participants underwent neuropsychological evaluation and resting state functional Magnetic Resonance Imaging. Spontaneous anticorrelated activity between Default Mode Network and Dorsal Attention Network was observed in each group. This anticorrelation was significantly decreased with age in most Default Mode Network-Dorsal Attention Network connections (p < 0.001, False Discovery Rate corrected). Moreover, the anticorrelation between the posterior cingulate cortex node of the Default Mode Network and the right inferior parietal sulcus node of the Dorsal Attention Network was significantly decreased when comparing Mild Cognitive Impairment with normal elders (p < 0.001, False Discovery Rate corrected). The functional connectivity changes in patients were not related to significant differences in grey matter content. Our results suggest that a reduced anticorrelated activity between Default Mode Network and Dorsal Attention Network is part of the normal aging process and that Mild Cognitive Impairment status is associated with

  19. Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder

    PubMed Central

    Stern, Emily R.; Fitzgerald, Kate D.; Welsh, Robert C.; Abelson, James L.; Taylor, Stephan F.

    2012-01-01

    Background Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the “default mode network" (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a fronto-parietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD. Methods The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups. Results OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions. Conclusions OCD is associated with abnormal intrinsic functional connectivity between large-scale brain networks. Alteration of interactions between FPN and DMN at rest may contribute to aspects of the OCD phenotype, such as patients' inability to disengage from internally-generated scenarios and thoughts when performing everyday tasks requiring external attention. PMID:22570705

  20. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    PubMed

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  1. Increased Cerebellar Functional Connectivity With the Default-Mode Network in Unaffected Siblings of Schizophrenia Patients at Rest.

    PubMed

    Guo, Wenbin; Liu, Feng; Zhang, Zhikun; Liu, Guiying; Liu, Jianrong; Yu, Liuyu; Xiao, Changqing; Zhao, Jingping

    2015-11-01

    The default-mode network (DMN) is vital in the neurobiology of schizophrenia, and the cerebellum participates in the high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities remains unclear in unaffected siblings of schizophrenia patients. Forty-six unaffected siblings of schizophrenia patients and 46 healthy controls were recruited for a resting-state scan. The images were analyzed using the functional connectivity (FC) method. The siblings showed significantly increased FCs between the left Crus I and the left superior medial prefrontal cortex (MPFC), as well as between the lobule IX and the bilateral MPFC (orbital part) and right superior MPFC compared with the controls. No significantly decreased FC was observed in the siblings relative to the controls. The analyses were replicated in 49 first-episode, drug-naive patients with schizophrenia, and the results showed that the siblings and the patients shared increased FCs between the left Crus I and the left superior MPFC, as well as between the lobule IX and the left MPFC (orbital part) compared with the controls. These findings suggest that increased cerebellar-DMN connectivities emerge earlier than illness onset, which highlight the contribution of the cerebellum to the DMN alterations in unaffected siblings. The shared increased cerebellar-DMN connectivities between the patients and the siblings may be used as candidate endophenotypes for schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The Self-Pleasantness Judgment Modulates the Encoding Performance and the Default Mode Network Activity

    PubMed Central

    Perrone-Bertolotti, Marcela; Cerles, Melanie; Ramdeen, Kylee T.; Boudiaf, Naila; Pichat, Cedric; Hot, Pascal; Baciu, Monica

    2016-01-01

    In this functional magnetic resonance imaging (fMRI) study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal) thoughts and increase default mode network (DMN) activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention) but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention). To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding (SE) activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding (UE) recruits two key medial posterior DMN regions, the posterior cingulate cortex (PCC) and precuneus (PCU). A region of interest (ROI) analysis including classic DMN areas, revealed significantly greater involvement of the medial prefrontal cortex (mPFC) in pleasant compared to unpleasant judgments, suggesting this region’s involvement in self-referential (i.e., internal) processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful) and pleasantness was observed for the PCC, PCU and inferior frontal gyrus (IFG). Overall, our

  3. Art reaches within: aesthetic experience, the self and the default mode network

    PubMed Central

    Vessel, Edward A.; Starr, G. Gabrielle; Rubin, Nava

    2013-01-01

    In a task of rating images of artworks in an fMRI scanner, regions in the medial prefrontal cortex that are known to be part of the default mode network (DMN) were positively activated on the highest-rated trials. This is surprising given the DMN's original characterization as the set of brain regions that show greater fMRI activity during rest periods than during performance of tasks requiring focus on external stimuli. But further research showed that DMN regions could be positively activated also in structured tasks, if those tasks involved self-referential thought or self-relevant information. How may our findings be understood in this context? Although our task had no explicit self-referential aspect and the stimuli had no a priori self-relevance to the observers, the experimental design we employed emphasized the personal aspects of aesthetic experience. Observers were told that we were interested in their individual tastes, and asked to base their ratings on how much each artwork “moved” them. Moreover, we used little-known artworks that covered a wide range of styles, which led to high individual variability: each artwork was rated highly by some observers and poorly by others. This means that rating-specific neural responses cannot be attributed to the features of any particular artworks, but rather to the aesthetic experience itself. The DMN activity therefore suggests that certain artworks, albeit unfamiliar, may be so well-matched to an individual's unique makeup that they obtain access to the neural substrates concerned with the self—access which other external stimuli normally do not get. This mediates a sense of being “moved,” or “touched from within.” This account is consistent with the modern notion that individuals' taste in art is linked with their sense of identity, and suggests that DMN activity may serve to signal “self-relevance” in a broader sense than has been thought so far. PMID:24415994

  4. Task-related Default Mode Network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate

    PubMed Central

    Liddle, Elizabeth B.; Hollis, Chris; Batty, Martin J.; Groom, Madeleine J.; Totman, John J.; Liotti, Mario; Scerif, Gaia; Liddle, Peter F.

    2016-01-01

    Background Deficits characteristic of Attention Deficit/Hyperactivity Disorder (ADHD), including poor attention and inhibitory control, are at least partially alleviated by factors that increase engagement of attention, suggesting a hypodopaminergic reward deficit. Lapses of attention are associated with attenuated deactivation of the Default Mode Network (DMN), a distributed brain system normally deactivated during tasks requiring attention to the external world. Task-related DMN deactivation has been shown to be attenuated in ADHD relative to controls. We hypothesised that motivational incentives to balance speed against restraint would increase task engagement during an inhibitory control task, enhancing DMN deactivation in ADHD. We also hypothesised that methylphenidate, an indirect dopamine agonist, would tend to normalise abnormal patterns of DMN deactivation. Method We obtained functional magnetic resonance images from eighteen methylphenidate-responsive children with ADHD (DSM-IV combined subtype) and 18 pairwise-matched typically developing children aged 9-15 years while they performed a paced Go/No-go task. We manipulated motivational incentive to balance response speed against inhibitory control, and tested children with ADHD both on and off methylphenidate. Results When children with ADHD were off-methylphenidate and task incentive was low, event-related DMN deactivation was significantly attenuated compared to controls, but the two groups did not differ under high motivational incentives. The modulation of DMN deactivation by incentive in the children with ADHD, off- methylphenidate, was statistically significant, and significantly greater than in typically developing children. When children with ADHD were on-methylphenidate, motivational modulation of event-related DMN deactivation was abolished, and no attenuation relative to their typically developing peers was apparent in either motivational condition. Conclusions During an inhibitory control task

  5. Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy

    PubMed Central

    James, G. Andrew; Tripathi, Shanti Prakash; Ojemann, Jeffrey G.; Gross, Robert E.; Drane, Daniel L.

    2014-01-01

    Object Functional neuroimaging has shown that the brain organizes into several independent networks of spontaneously coactivated regions during wakeful rest (resting state). Previous research has suggested that 1 such network, the default mode network (DMN), shows diminished recruitment of the hippocampus with temporal lobe epilepsy (TLE). This work seeks to elucidate how hippocampal recruitment into the DMN varies by hemisphere of epileptogenic focus. Methods The authors addressed this issue using functional MRI to assess resting-state DMN connectivity in 38 participants (23 control participants, 7 patients with TLE and left-sided epileptogenic foci, and 8 patients with TLE and right-sided foci). Independent component analysis was conducted to identify resting-state brain networks from control participants’ data. The DMN was identified and deconstructed into its individual regions of interest (ROIs). The functional connectivity of these ROIs was analyzed both by hemisphere (left vs right) and by laterality to the epileptogenic focus (ipsilateral vs contralateral). Results This attempt to replicate previously published methods with this data set showed that patients with left-sided TLE had reduced connectivity between the posterior cingulate (PCC) and both the left (p = 0.012) and right (p < 0.002) hippocampus, while patients with right-sided TLE showed reduced connectivity between the PCC and right hippocampus (p < 0.004). After recoding ROIs by laterality, significantly diminished functional connectivity was observed between the PCC and hippocampus of both hemispheres (ipsilateral hippocampus, p < 0.001; contralateral hippocampus, p = 0.017) in patients with TLE compared with control participants. Regression analyses showed the reduced DMN recruitment of the ipsilateral hippocampus and parahippocampal gyrus (PHG) to be independent of clinical variables including hippocampal sclerosis, seizure frequency, and duration of illness. The graph theory metric of

  6. Multisensory Competition Is Modulated by Sensory Pathway Interactions with Fronto-Sensorimotor and Default-Mode Network Regions.

    PubMed

    Huang, Sai; Li, You; Zhang, Wei; Zhang, Bao; Liu, Xingzhou; Mo, Lei; Chen, Qi

    2015-06-17

    Multisensory information competes for preferential access to consciousness. It remains unknown what neural processes cause one particular modality to win multisensory competition and eventually dominate behavior. Thus, in a paradigm in which human participants sought to make simultaneous auditory and visual detection responses, we sought to identify prestimulus and poststimulus neural signals that were associated with auditory and visual dominance on each trial. Behaviorally, visual detection responses preceded auditory responses more frequently than vice versa. Even when visual responses were preceded by auditory responses, they recovered more quickly from previous responses, indicating the dominance of vision over audition. Neurally, visual precedence was associated with increased prestimulus activity in the prefrontal cortex and reduced prestimulus activity in the default-mode network, and increased poststimulus connectivity between the prefrontal cortex and the visual system. Moreover, the dorsal visual stream showed not only increased activity in post-perceptual phases but also enhanced connectivity with the sensorimotor cortex, indicating the functional role of the dorsal visual stream in prioritizing the flow of visual information into the motor system. In contrast, auditory precedence was associated with increased prestimulus activity in the auditory cortex and increased poststimulus neural coupling between the auditory and the sensorimotor cortex. Finally, whenever one modality lost multisensory competition, the corresponding sensory cortex showed enhanced connectivity with the default-mode network. Overall, the outcome of audiovisual competition depended on dynamic interactions between sensory systems and both the fronto-sensorimotor and the default-mode network. Together, these results revealed both the neural causes and the neural consequences of visual and auditory dominance during multisensory competition.

  7. Altered insula-default mode network connectivity in fibromyalgia: a resting-state magnetoencephalographic study.

    PubMed

    Hsiao, Fu-Jung; Wang, Shuu-Jiun; Lin, Yung-Yang; Fuh, Jong-Ling; Ko, Yu-Chieh; Wang, Pei-Ning; Chen, Wei-Ta

    2017-08-23

    Fibromyalgia (FM) is a disabling chronic pain syndrome with unknown pathophysiology. Functional magnetic resonance imaging studies on FM have suggested altered brain connectivity between the insula and the default mode network (DMN). However, this connectivity change has not been characterized through direct neural signals for exploring the embedded spectrotemporal features and the pertinent clinical relevance. We recorded the resting-state magnetoencephalographic activities of 28 patients with FM and 28 age- and sex-matched controls, and analyzed the source-based functional connectivity between the insula and the DMN at 1-40 Hz by using the minimum norm estimates and imaginary coherence methods. We also measured the connectivity between the DMN and the primary visual (V1) and somatosensory (S1) cortices as intrapatient negative controls. Connectivity measurement was further correlated with the clinical parameters of FM. Compared with the controls, patients with FM reported more tender points (15.2±2.0 vs. 5.9±3.7) and higher total tenderness score (TTS; 29.1±7.0 vs. 7.7±5.5; both p < 0.001); they also had decreased insula-DMN connectivity at the theta band (4-8 Hz; left, p = 0.007; right, p = 0.035), but displayed unchanged V1-DMN and S1-DMN connectivity (p > 0.05). When patients with FM and the controls were combined together, the insula-DMN theta connectivity was negatively correlated with the number of tender points (left insula, r = -0.428, p = 0.001; right insula, r = -0.4, p = 0.002) and TTS score (left insula, r = -0.429, p = 0.001; right insula, r = -0.389, p = 0.003). Furthermore, in patients with FM, the right insula-DMN connectivity at the beta band (13-25 Hz) was negatively correlated with the number of tender points (r = -0.532, p = 0.004) and TTS (r = -0.428, p = 0.023), and the bilateral insula-DMN connectivity at the delta band (1-4 Hz) was negatively correlated with FM Symptom Severity (left: r = -0.423, p

  8. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging

    PubMed Central

    Sun, Felicia W.; Stepanovic, Michael R.; Andreano, Joseph

    2016-01-01

    Decline in cognitive skills, especially in memory, is often viewed as part of “normal” aging. Yet some individuals “age better” than others. Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older adults with memory performance abilities equal to or better than those of people 20–30 years younger (i.e., “superagers”), we examined the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers (60–80 years old) based on their performance compared to young adults (18–32 years old) on the California Verbal Learning Test Long Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex, rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory function. SIGNIFICANCE STATEMENT Memory performance typically declines with age, as does cortical structural integrity, yet some older adults maintain youthful memory. We tested the hypothesis that superagers (older individuals with

  9. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging.

    PubMed

    Sun, Felicia W; Stepanovic, Michael R; Andreano, Joseph; Barrett, Lisa Feldman; Touroutoglou, Alexandra; Dickerson, Bradford C

    2016-09-14

    Decline in cognitive skills, especially in memory, is often viewed as part of "normal" aging. Yet some individuals "age better" than others. Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older adults with memory performance abilities equal to or better than those of people 20-30 years younger (i.e., "superagers"), we examined the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers (60-80 years old) based on their performance compared to young adults (18-32 years old) on the California Verbal Learning Test Long Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex, rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory function. Memory performance typically declines with age, as does cortical structural integrity, yet some older adults maintain youthful memory. We tested the hypothesis that superagers (older individuals with youthful memory performance) would exhibit

  10. Segregation between the parietal memory network and the default mode network: effects of spatial smoothing and model order in ICA.

    PubMed

    Hu, Yang; Wang, Jijun; Li, Chunbo; Wang, Yin-Shan; Yang, Zhi; Zuo, Xi-Nian

    2016-01-01

    A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.

  11. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate.

    PubMed

    Liddle, Elizabeth B; Hollis, Chris; Batty, Martin J; Groom, Madeleine J; Totman, John J; Liotti, Mario; Scerif, Gaia; Liddle, Peter F

    2011-07-01

    Deficits characteristic of attention deficit/hyperactivity disorder (ADHD), including poor attention and inhibitory control, are at least partially alleviated by factors that increase engagement of attention, suggesting a hypodopaminergic reward deficit. Lapses of attention are associated with attenuated deactivation of the default mode network (DMN), a distributed brain system normally deactivated during tasks requiring attention to the external world. Task-related DMN deactivation has been shown to be attenuated in ADHD relative to controls. We hypothesised that motivational incentives to balance speed against restraint would increase task engagement during an inhibitory control task, enhancing DMN deactivation in ADHD. We also hypothesised that methylphenidate, an indirect dopamine agonist, would tend to normalise abnormal patterns of DMN deactivation. We obtained functional magnetic resonance images from 18 methylphenidate-responsive children with ADHD (DSM-IV combined subtype) and 18 pairwise-matched typically developing children aged 9-15 years while they performed a paced Go/No-go task. We manipulated motivational incentive to balance response speed against inhibitory control, and tested children with ADHD both on and off methylphenidate. When children with ADHD were off-methylphenidate and task incentive was low, event-related DMN deactivation was significantly attenuated compared to controls, but the two groups did not differ under high motivational incentives. The modulation of DMN deactivation by incentive in the children with ADHD, off-methylphenidate, was statistically significant, and significantly greater than in typically developing children. When children with ADHD were on-methylphenidate, motivational modulation of event-related DMN deactivation was abolished, and no attenuation relative to their typically developing peers was apparent in either motivational condition. During an inhibitory control task, children with ADHD exhibit a raised

  12. A failure of suppression within the default mode network in depressed adolescents with compulsive internet game play.

    PubMed

    Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F; Anderson, Jeffrey S

    2016-04-01

    Individuals who are chronic, compulsive video game players experience an elevated incidence of major depression. Excessive or problematic game play can interact with depression clinically, and may magnify impulsive behavior associated with video gaming. Functional brain imaging was performed during a Wisconsin Card Sorting Test (WCST) task in 42 healthy control and 95 volunteers seeking treatment for compulsive video game playing, including 60 participants without major depression (pure internet gaming disorder, pure IGD) and 35 participants comorbid with major depression (IGD+MDD). In response to the WCST in contrast to fixation, activation was observed in canonical brain attentional networks including bilateral intraparietal sulcus, frontal eye fields, and middle temporal cortical regions as well as dorsolateral prefrontal, inferior parietal and anterior insula, anterior cingulate cortex in all participants. For WCST>Fixation contrasts, the IGD+MDD group exhibited greater relative activation within the left hippocampus, compared to healthy control participants. For WCST>Fixation contrasts, the IGD+MDD group exhibited greater relative activation within the left hippocampus and the right parahippocampal gyrus immediately posterior to the hippocampus, compared to the pure IGD group. In cohorts of individuals with a history of compulsive internet game play, individuals with depression showed failure to suppress default mode network activity during an attentionally demanding task, compared to individuals without depression, including comparison groups with and without a history of compulsive video gaming. This reduced suppression of the brain regions within the default mode network may be a consequence of depressive neurophysiology or represent a predisposition for depression within compulsive game players. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    PubMed Central

    2016-01-01

    Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS). We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM) imaging results to identify consistent gray matter (GM) difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015) and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE) technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS. PMID:28105430

  14. Decoupling between the hand territory and the default mode network after bilateral arm transplantation: four-year follow-up case study.

    PubMed

    Hernandez-Castillo, Carlos R; Diedrichsen, Jörn; Aguilar-Castañeda, Erika; Iglesias, Martin

    2017-02-09

    Several studies have suggested both a local and network reorganization of the sensorimotor system following amputation. Transplantation of a new limb results in a new shifting of cortical activity in the local territory of the transplanted limb. However, there is a lack of information about the reversibility of the abnormalities at the network level. The objective of this study was to characterize the functional connectivity changes between the cortical territory of the new hand and two intrinsic network of interest: the sensorimotor network (SMN) and the default mode network (DMN) of one patient whom received bilateral forearm transplants. Using resting-state fMRI these two networks were identified across four different time points, starting four months after the transplantation surgery and during three consecutive years while the patient underwent physical rehabilitation. The topology of the SMN was disrupted at the first acquisition and over the years returned to its canonical pattern. Analysis of the DMN showed the normal topology with no significant changes across acquisitions. Functional connectivity between the missing hand's cortical territory and the SMN increased over time. Accordingly, functional connectivity between the missing hand's cortical territory and the DMN became anticorrelated over time. Our results suggest that after transplantation a new reorganization occurs at the network level, supporting the idea that extreme behavioral changes can affect not only the local rewiring but also the intrinsic network organization in neurologically healthy subjects. Overall this study provides new insight on the complex dynamics of brain organization.

  15. Time-Perception Network and Default Mode Network Are Associated with Temporal Prediction in a Periodic Motion Task

    PubMed Central

    Carvalho, Fabiana M.; Chaim, Khallil T.; Sanchez, Tiago A.; de Araujo, Draulio B.

    2016-01-01

    The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study, we used functional magnetic resonance imaging (fMRI) to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation) and non-periodic (harmonic oscillation with variable acceleration). We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN) midline areas, including the left dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and bilateral posterior cingulate cortex/precuneus (PCC/PC). It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may

  16. Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks

    PubMed Central

    Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong

    2016-01-01

    Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks. PMID:27148042

  17. Aberrant Dependence of Default Mode/Central Executive Network Interactions on Anterior Insular Salience Network Activity in Schizophrenia

    PubMed Central

    Sorg, Christian

    2014-01-01

    In schizophrenia, consistent structural and functional changes have been demonstrated for the insula including aberrant salience processing, which is critical for psychosis. Interactions within and across default mode and central executive network (DMN, CEN) are impaired in schizophrenia. The question arises whether these 2 types of changes are related. Recently, the anterior insula has been demonstrated to control DMN/CEN interactions. We hypothesized that aberrant insula and DMN/CEN activity in schizophrenia is associated with an impaired dependence of DMN/CEN interactions on anterior insular salience network (SN) activity. Eighteen patients with schizophrenia during psychosis and 20 healthy controls were studied by resting-state-fMRI and psychometric examination. High-model-order independent component analysis of fMRI data revealed spatiotemporal patterns of synchronized ongoing blood-oxygenation-level-dependent (BOLD) activity including SN, DMN, and CEN. Scores of functional and time-lagged connectivity across networks’ time courses were calculated. Connectivity scores and spatial network maps were compared between groups and related with patients’ hallucination and delusion severity. Spatial BOLD-synchronicity was altered in patients’ SN, DMN, and CEN, including decreased activity in the right anterior insula (rAI). Patients’ functional connectivity between DMN and CEN was increased and related with hallucinations severity. Importantly, patients’ time-lagged connectivity between SN and DMN/CEN was reduced, and decreased rAI activity of the SN was associated with both hallucinations and increased functional connectivity between DMN and CEN. Data provide evidence for an aberrant dependence of DMN/CEN interactions on anterior insular SN activity, linking impaired insula, DMN, CEN activity, and psychosis in schizophrenia. PMID:23519021

  18. Sex Differences in the Default Mode Network with Regard to Autism Spectrum Traits: A Resting State fMRI Study.

    PubMed

    Jung, Minyoung; Mody, Maria; Saito, Daisuke N; Tomoda, Akemi; Okazawa, Hidehiko; Wada, Yuji; Kosaka, Hirotaka

    2015-01-01

    Autism spectrum traits exist on a continuum and are more common in males than in females, but the basis for this sex difference is unclear. To this end, the present study draws on the extreme male brain theory, investigating the relationship between sex difference and the default mode network (DMN), both known to be associated with autism spectrum traits. Resting-state functional magnetic resonance imaging (MRI) was carried out in 42 females (mean age ± standard deviation, 22.4 ± 4.2 years) and 43 males (mean age ± standard deviation, 23.8 ± 3.9 years) with typical development. Using a combination of different analyses (viz., independent component analysis (ICA), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and seed-based analyses), we examined sex differences in the DMN and the relationship to autism spectrum traits as measured by autism-spectrum quotient (AQ) scores. We found significant differences between female and male subjects in DMN brain regions, with seed-based analysis revealing a significant negative correlation between default-mode resting state functional connectivity of the anterior medial prefrontal cortex seed (aMPFC) and AQ scores in males. However, there were no relationships between DMN sex differences and autism spectrum traits in females. Our findings may provide important insight into the skewed balance of functional connectivity in males compared to females that could serve as a potential biomarker of the degree of autism spectrum traits in line with the extreme male brain theory.

  19. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  20. Effects of repetitive sub-concussive brain injury on the functional connectivity of Default Mode Network in high school football athletes.

    PubMed

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Robinson, Meghan E; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M

    2015-01-01

    Sub-concussive head impacts are identified as a source of accrued damage. Football athletes experience hundreds of such blows each season. Resting state functional magnetic resonance imaging was used to prospectively study changes in Default Mode Network connectivity for clinically asymptomatic high school football athletes. Athletes exhibited short-term changes relative to baseline and across sessions.

  1. An Exploratory Investigation of Functional Network Connectivity of Empathy and Default Mode Networks in a Free-Viewing Task.

    PubMed

    Vemuri, Kavita; Surampudi, Bapi Raju

    2015-08-01

    This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of

  2. Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults.

    PubMed

    McFadden, Kristina L; Cornier, Marc-Andre; Melanson, Edward L; Bechtell, Jamie L; Tregellas, Jason R

    2013-10-23

    Despite the common use of exercise as a weight-loss strategy, little is known about its neuronal effects, and how these may be related to cognitive changes that impact food intake. The current study assessed the effects of a 6-month exercise intervention on intrinsic activity in the default mode network (DMN), a functionally connected network of brain regions including posterior cingulate cortex, cuneus/precuneus, medial prefrontal cortex, medial temporal lobe, and inferior parietal cortices, and salience network, which includes the anterior cingulate cortex and insula. Resting-state functional MRI data were acquired in 12 overweight/obese individuals. The intervention was associated with a reduction in DMN activity in the precuneus (P=0.003, family-wise error-corrected), which was associated with greater fat mass loss (P=0.013) as well as reduced perceived hunger (Three Factor Eating Questionnaire, P=0.024) and hunger ratings in response to a meal (P=0.013). No changes were observed in the salience network in response to the exercise intervention. The association between DMN change and both fat mass loss and reduction of hunger ratings suggests that DMN function may be involved in the regulation of food intake behaviors. Given previous reports of DMN overactivity in overweight/obese individuals, the present findings may indicate an exercise-related 'normalization' of network function.

  3. Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults

    PubMed Central

    McFadden, Kristina L.; Cornier, Marc-Andre; Melanson, Edward L.; Bechtell, Jamie L.; Tregellas, Jason R.

    2014-01-01

    Despite the common use of exercise as a weight loss strategy, little is known about its neuronal effects, and how these may be related to cognitive changes that impact food intake. The current study assessed the effects of a 6-month exercise intervention on intrinsic activity in the default mode network (DMN), a functionally connected network of brain regions including posterior cingulate cortex, cuneus/precuneus, medial prefrontal cortex, medial temporal lobe, and inferior parietal cortices, and salience network, which includes the anterior cingulate cortex and insula. Resting-state functional magnetic resonance imaging (fMRI) data were acquired in 12 overweight/obese individuals. The intervention was associated with a reduction in DMN activity in the precuneus (p=0.003, FWE-corrected), which was associated with greater fat mass loss (p=0.013) as well as reduced perceived hunger (Three Factor Eating Questionnaire, p=0.024) and hunger ratings in response to a meal (p=0.013). No changes were observed in the salience network in response to the exercise intervention. The association between DMN change and both fat mass loss and reduction of hunger ratings suggests that DMN function may be involved in the regulation of food intake behaviors. Given previous reports of DMN overactivity in overweight/obese individuals, the present findings may indicate an exercise-related “normalization” of network function. PMID:24022176

  4. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-08-10

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  5. Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought.

    PubMed

    Smallwood, Jonathan; Brown, Kevin; Baird, Ben; Schooler, Jonathan W

    2012-01-05

    The ability to generate and sustain an internal train of thought unrelated to external reality frees an agent from the constraints of only acting on immediate, environmentally triggered events. The current paper proposes that such thought is produced through cooperation between autobiographical information provided by the default mode network and a frontal-parietal control network which helps sustain and buffer internal trains of thought against disruption by the external world. This hypothesis explains at least two features of the literature on internally guided thought. First, access to the top-down control system is a generally accepted prerequisite of conscious experience; this explains why activation of this system and default mode activity is often observed together during periods of internally guided thought. Second, because the top-down attentional control system has a limited capacity, internally and externally driven streams can come into conflict, with the result that perceptual information must be denied attentional amplification if the internal stream is to be maintained. This explains why internal thought is routinely associated with a state of perceptual decoupling, reflected in both measured anticorrelations between the default mode network and sensory areas and the manner in which task unrelated thoughts compromise task performance. This paper offers a hypothesis that should help to constrain and guide interpretations, investigations, and analyses of the neural processes involved in internally driven cognition. This article is part of a Special Issue entitled Special Issue The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention

    PubMed Central

    Hellyer, Peter J.; Shanahan, Murray; Scott, Gregory; Wise, Richard J. S.; Sharp, David J.

    2014-01-01

    Understanding how dynamic changes in brain activity control behavior is a major challenge of cognitive neuroscience. Here, we consider the brain as a complex dynamic system and define two measures of brain dynamics: the synchrony of brain activity, measured by the spatial coherence of the BOLD signal across regions of the brain; and metastability, which we define as the extent to which synchrony varies over time. We investigate the relationship among brain network activity, metastability, and cognitive state in humans, testing the hypothesis that global metastability is “tuned” by network interactions. We study the following two conditions: (1) an attentionally demanding choice reaction time task (CRT); and (2) an unconstrained “rest” state. Functional MRI demonstrated increased synchrony, and decreased metastability was associated with increased activity within the frontoparietal control/dorsal attention network (FPCN/DAN) activity and decreased default mode network (DMN) activity during the CRT compared with rest. Using a computational model of neural dynamics that is constrained by white matter structure to test whether simulated changes in FPCN/DAN and DMN activity produce similar effects, we demonstate that activation of the FPCN/DAN increases global synchrony and decreases metastability. DMN activation had the opposite effects. These results suggest that the balance of activity in the FPCN/DAN and DMN might control global metastability, providing a mechanistic explanation of how attentional state is shifted between an unfocused/exploratory mode characterized by high metastability, and a focused/constrained mode characterized by low metastability. PMID:24403145

  7. A Multivariate Analysis of Age-Related Differences in Default Mode and Task Positive Networks Across Multiple Cognitive Domains

    PubMed Central

    Grady, Cheryl L.; Protzner, Andrea B.; Kovacevic, Natasa; Strother, Stephen C.; Afshin-Pour, Babak; Wojtowicz, Magda; Anderson, John A.E.; Churchill, Nathan; McIntosh, Anthony R.

    2011-01-01

    We explored the effects of aging on two large scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During fMRI scanning, young and older participants carried out four visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly matched at 80% across tasks and groups. Modulations of activity across conditions were assessed, as well as functional connectivity of both networks. Younger adults showed a broader engagement of the DMN, and older adults a more extensive engagement of the TPN. Functional connectivity in the DMN was reduced in older adults, whereas the main pattern of TPN connectivity was equivalent in the two groups. Age-specific connectivity also was seen in TPN regions. Increased activity in TPN areas predicted worse accuracy on the tasks, but greater expression of a connectivity pattern associated with a right dorsolateral prefrontal TPN region, seen only in older adults, predicted better performance. These results provide further evidence for age-related differences in the DMN, and new evidence of age differences in the TPN. Increased use of the TPN may reflect greater demand on cognitive control processes in older individuals that may be partially offset by alterations in prefrontal functional connectivity. PMID:19789183

  8. Dose-dependent genotype effects of BDNF Val66Met polymorphism on default mode network in early stage Alzheimer's disease

    PubMed Central

    Lin, Pin-Hsuan; Tsai, Shih-Jen; Huang, Chi-Wei; Mu-En, Liu; Hsu, Shih-Wei; Lee, Chen-Chang; Chen, Nai-Ching; Chang, Ya-Ting; Lan, Min-Yu; Chang, Chiung-Chih

    2016-01-01

    In humans, brain-derived neurotrophic factor (BDNF) has been shown to play a pivotal role in neurocognition, and its gene contains a functional polymorphism (Val66Met) that may explain individual differences in brain volume and memory-related activity. In this study, we enrolled 186 Alzheimer's disease (AD) patients who underwent 3D T1 magnetic resonance imaging, and explored the gray matter (GM) structural covariance networks (SCN). The patients were divided into three groups according to their genotype: Met/Met (n = 45), Val/Met (n = 86) and Val/Val (n = 55). Seed-based analysis was performed focusing on four SCN networks. Neurobehavioral scores served as the major outcome factor. Only peak cluster volumes of default mode medial temporal lobe network showed significant genotype interactions, of which the interconnected peak clusters showed dose-dependent genotype effects. There were also significant correlations between the cognitive test scores and interconnected-cluster volumes, especially in the orbitofrontal cortex. These findings support the hypothesis that BDNF rs6265 polymorphisms modulate entorhinal cortex-interconnected clusters and the valine allele was associated with stronger structural covariance patterns that determined the cognitive outcomes. PMID:27494844

  9. Encoding and retrieval along the long axis of the hippocampus and their relationships with dorsal attention and default mode networks: The HERNET model.

    PubMed

    Kim, Hongkeun

    2015-04-01

    The encoding of sensory input is intertwined with external attention, whereas retrieval is intrinsically related to internal attention. This study proposes a model in which the encoding of sensory input involves mainly the anterior hippocampus and the external attention network, whereas retrieval, the posterior hippocampus and the internal attention network. This model is referred to as the HERNET (hippocampal encoding/retrieval and network) model. Functional neuroimaging studies have identified two intrinsic large-scale networks closely associated with external and internal attention, respectively. The dorsal attention network activates during any externally oriented mental activity, whereas the default mode network shows increased activity during internally oriented mental activity. Therefore, the HERNET model may predict the activation of the anterior hippocampus and the dorsal attention network during the encoding and activation of the posterior hippocampus and the default mode network during retrieval. To test this prediction, this study provides a meta-analysis of three memory-imaging paradigms: subsequent memory, laboratory-based recollection, and autobiographical memory retrieval. The meta-analysis included 167 individual studies and 2,856 participants. The results provide support for the HERNET model and suggest that the anterior-posterior gradient of encoding and retrieval includes amygdala regions. More broadly, humans continuously oscillate between external and internal attention and thus between encoding and retrieval processes. These oscillations may involve repetitive and spontaneous activity switching between the anterior hippocampus/dorsal attention network and the posterior hippocampus/default mode network.

  10. Inhibition of Information Flow to the Default Mode Network During Self-Reference Versus Reference to Others.

    PubMed

    Soch, Joram; Deserno, Lorenz; Assmann, Anne; Barman, Adriana; Walter, Henrik; Richardson-Klavehn, Alan; Schott, Björn H

    2016-07-11

    The default mode network (DMN), a network centered around the cortical midline, shows deactivation during most cognitive tasks and pronounced resting-state connectivity, but is actively engaged in self-reference and social cognition. It is, however, yet unclear how information reaches the DMN during social cognitive processing. Here, we addressed this question using dynamic causal modeling (DCM) of functional magnetic resonance imaging (fMRI) data acquired during self-reference (SR) and reference to others (OR). Both conditions engaged the left inferior frontal gyrus (LIFG), most likely reflecting semantic processing. Within the DMN, self-reference preferentially elicited rostral anterior cingulate and ventromedial prefrontal cortex (rACC/vmPFC) activity, whereas OR engaged posterior cingulate and precuneus (PCC/PreCun). DCM revealed that the regulation of information flow to the DMN was primarily inhibitory. Most prominently, SR elicited inhibited information flow from the LIFG to the PCC/PreCun, while OR was associated with suppression of the connectivity from the LIFG to the rACC/vmPFC. These results suggest that task-related DMN activation is enabled by inhibitory down-regulation of task-irrelevant information flow when switching from rest to stimulus-specific processing.

  11. Shaped by the Past: The Default Mode Network Supports Cognition that Is Independent of Immediate Perceptual Input.

    PubMed

    Konishi, Mahiko; McLaren, Donald George; Engen, Haakon; Smallwood, Jonathan

    2015-01-01

    Although many different accounts of the functions of the default mode network (DMN) have been proposed, few can adequately account for the spectrum of different cognitive functions that utilize this network. The current study used functional magnetic resonance imaging (fMRI) to explore the hypothesis that the role of the DMN in higher order cognition is to allow cognition to be shaped by information from stored representations rather than information in the immediate environment. Using a novel task paradigm, we observed increased BOLD activity in regions of the medial prefrontal cortex and posterior cingulate cortex when individuals made decisions on the location of shapes from the prior trial and decreased BOLD activity when individuals made decisions on the location of shapes on the current trial. These data are inconsistent with views of the DMN as a task-negative system or one that is sensitive only to stimuli with strong personal or emotional ties. Instead the involvement of the DMN when people make decisions about where a shape was, rather than where it is now, supports the hypothesis that the core hubs of the DMN allow cognition to be guided by information other than the immediate perceptual input. We propose that a variety of different forms of higher order thought (such as imagining the future or considering the perspective of another person) engage the DMN because these more complex introspective forms of higher order thought all depend on the capacity for cognition to be shaped by representations that are not present in the external environment.

  12. Functional connectivity comparison of the default mode network in non-depressed Parkinson disease and depressed Parkinson disease

    NASA Astrophysics Data System (ADS)

    Han, Yuan; Li, Rui; Liu, Jiangtao; Yao, Li; Wu, Xia

    2011-03-01

    Examining the spontaneous activity to understand the neural mechanism of brain disorders and establish neuroimaging-based disease-related biomarkers is a focus in recent resting-state functional MRI (fMRI) studies. The present study hypothesized that resting activity in the default mode network (DMN), which was used for characterizing the resting-state human brain might be different in patients with depressed Parkinson disease (dPD) compared with non-depressed Parkinson disease (ndPD) patients. To test the hypothesis, we firstly employed the Group independent component analysis (ICA) approach to isolate the DMN for the two groups by analyzing the resting-state fMRI data from a group of 12 patients with dPD and a group of 12 age-matched ndPD subjects. Between-group comparison of the functional connectivity in the DMN was then performed to examine the impact of depression on the intrinsic activity in PD. We found 1) the core region from the network the medial prefrontal cortex (MPFC) show significant decreased activity in dPD group compared with ndPD group; 2) the activity in MPFC has significant negative correlation with behavioral measure; 3) the resting activity intensity of MPFC is suggested to be a promising biomarker for distinguishing dPD from ndPD.

  13. Structural and Functional Connectivity of Default Mode Network underlying the Cognitive Impairment in Late-onset Depression

    PubMed Central

    Yin, Yingying; He, Xiaofu; Xu, Mingze; Hou, Zhenghua; Song, Xiaopeng; Sui, Yuxiu; Liu, Zhi; Jiang, Wenhao; Yue, Yingying; Zhang, Yuqun; Liu, Yijun; Yuan, Yonggui

    2016-01-01

    To identify the association between the functional and structural changes of default mode network (DMN) underlying the cognitive impairment in Late-onset depression (LOD), 32 LOD patients and 39 normal controls were recruited and underwent resting-state fMRI, DTI scans, and cognitive assessments. Seed-based correlation analysis was conducted to explore the functional connectivity (FC) of the DMN. Deterministic tractography between FC-impaired regions was performed to examine the structural connectivity (SC). Partial correlation analyses were employed to evaluate the cognitive association of those altered FC and SC. Compared with controls, LOD patients showed decreased FC between DMN and the cingulo-opercular network (CON), as well as the thalamus. Decreased FA and increased RD of these fiber tracts connecting DMN with CON were found in LOD patient. The DMN-CON FC and the FA, RD of the fiber tracts were both significantly correlated with the cognitive performance. Therefore, the cognitive impairment in LOD might be associated with the decreased FC between the DMN and the CON, which probably resulted from the demyelination of the white matter. PMID:27886212

  14. Escaping the here and now: evidence for a role of the default mode network in perceptually decoupled thought.

    PubMed

    Smallwood, Jonathan; Tipper, Christine; Brown, Kevin; Baird, Benjamin; Engen, Haakon; Michaels, Joseph R; Grafton, Scott; Schooler, Jonathan W

    2013-04-01

    Cognition that is not based on perception can lead to at least two different outcomes. In some situations, cognition that is independent of perception can allow actions to be selected other than those prescribed by immediate perceptual input. In others, cognition can be independent of perception and unrelated to the current behavioral goal allowing thoughts to develop that are largely independent of the actions involved in an external task. The default mode network (DMN) has been implicated in both of these kinds of perceptually decoupled thought. The current experiment used functional magnetic resonance imaging to explore whether a common region of this network was co-activated by both of these states. Both the medial pre-frontal cortex and the posterior cingulate - two major hubs of the DMN - showed greater activity when (i) actions that did not depend upon immediate perceptual input were faster and (ii) when actions based on perceptual input were slower. Together these data suggest that the DMN is important in cognition that is independent from perceptual input regardless of whether such thoughts result in action, or, instead compete with the behavioral goals of the moment. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia

    PubMed Central

    Dodell-Feder, David; DeLisi, Lynn E.; Hooker, Christine I.

    2014-01-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN’s hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. PMID:24768131

  16. Resting-state functional connectivity changes within the default mode network and the salience network after antipsychotic treatment in early-phase schizophrenia

    PubMed Central

    Wang, Yingchan; Tang, Weijun; Fan, Xiaoduo; Zhang, Jianye; Geng, Daoying; Jiang, Kaida; Zhu, Dianming; Song, Zhenhua; Xiao, Zeping; Liu, Dengtang

    2017-01-01

    Objective Abnormal resting-state functional connectivity (FC), particularly in the default mode network (DMN) and the salience network (SN), has been reported in schizophrenia, but little is known about the effects of antipsychotics on these networks. The purpose of this study was to examine the effects of atypical antipsychotics on DMN and SN and the relationship between these effects and symptom improvement in patients with schizophrenia. Methods This was a prospective study of 33 patients diagnosed with schizophrenia and treated with antipsychotics at Shanghai Mental Health Center. Thirty-three healthy controls matched for age and gender were recruited. All subjects underwent functional magnetic resonance imaging (fMRI). Healthy controls were scanned only once; patients were scanned before and after 6–8 weeks of treatment. Results In the DMN, the patients exhibited increased FC after treatment in the right superior temporal gyrus, right medial frontal gyrus, and left superior frontal gyrus and decreased FC in the right posterior cingulate/precuneus (P<0.005). In the SN, the patients exhibited decreased FC in the right cerebellum anterior lobe and left insula (P<0.005). The FC in the right posterior cingulate/precuneus in the DMN negatively correlated with the difference between the Clinical Global Impression (CGI) score pre/post-treatment (r=−0.564, P=0.023) and negative trends with the difference in the Positive and Negative Syndrome Scale (PANSS) total score pre/post-treatment (r=−0.475, P=0.063) and the difference in PANSS-positive symptom scores (r=−0.481, P=0.060). Conclusion These findings suggest that atypical antipsychotics could regulate the FC of certain key brain regions within the DMN in early-phase schizophrenia, which might be related to symptom improvement. However, the effects of atypical antipsychotics on SN are less clear. PMID:28223812

  17. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2016-02-01

    Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly suppressed, different subnets of DMN responded differently after 4 months of meditation training: The strength of EEG operational synchrony in the right and left posterior modules of the DMN decreased in resting post-meditation condition compared to a pre-meditation condition, whereas the frontal DMN module on the contrary exhibited an increase in the strength of EEG operational synchrony. These findings combined with published data on functional-anatomic heterogeneity within the DMN and on trait subjective experiences commonly found following meditation allow us to propose that the first-person perspective and the sense of agency (the witnessing observer) are presented by the frontal DMN module, while the posterior modules of the DMN are generally responsible for the experience of the continuity of 'I' as embodied and localized within bodily space. Significance of these findings is discussed.

  18. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds

    PubMed Central

    Gould van Praag, Cassandra D.; Garfinkel, Sarah N.; Sparasci, Oliver; Mees, Alex; Philippides, Andrew O.; Ware, Mark; Ottaviani, Cristina; Critchley, Hugo D.

    2017-01-01

    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds. PMID:28345604

  19. Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide.

    PubMed

    Speth, Jana; Speth, Clemens; Kaelen, Mendel; Schloerscheidt, Astrid M; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-04-01

    This paper reports on the effects of LSD on mental time travel during spontaneous mentation. Twenty healthy volunteers participated in a placebo-controlled crossover study, incorporating intravenous administration of LSD (75 μg) and placebo (saline) prior to functional magnetic resonance imaging (fMRI). Six independent, blind judges analysed mentation reports acquired during structured interviews performed shortly after the functional magnetic resonance imaging (fMRI) scans (approximately 2.5 h post-administration). Within each report, specific linguistic references to mental spaces for the past, present and future were identified. Results revealed significantly fewer mental spaces for the past under LSD and this effect correlated with the general intensity of the drug's subjective effects. No differences in the number of mental spaces for the present or future were observed. Consistent with the previously proposed role of the default-mode network (DMN) in autobiographical memory recollection and ruminative thought, decreased resting-state functional connectivity (RSFC) within the DMN correlated with decreased mental time travel to the past. These results are discussed in relation to potential therapeutic applications of LSD and related psychedelics, e.g. in the treatment of depression, for which excessive reflection on one's past, likely mediated by DMN functioning, is symptomatic.

  20. Alpha/Theta Neurofeedback Increases Mentalization and Default Mode Network Connectivity in a Non-Clinical Sample.

    PubMed

    Imperatori, Claudio; Della Marca, Giacomo; Amoroso, Noemi; Maestoso, Giulia; Valenti, Enrico Maria; Massullo, Chiara; Carbone, Giuseppe Alessio; Contardi, Anna; Farina, Benedetto

    2017-09-21

    Several studies showed the effectiveness of alpha/theta (A/T) neurofeedback training in treating some psychiatric conditions. Despite the evidence of A/T effectiveness, the psychological and neurobiological bases of its effects is still unclear. The aim of the present study was to explore the usefulness of the A/T training in increasing mentalization in a non-clinical sample. The modifications of electroencephalographic (EEG) functional connectivity in Default Mode Network (DMN) associated with A/T training were also investigated. Forty-four subjects were enrolled in the study and randomly assigned to receive ten sessions of A/T training [neurofeedback group (NFG) = 22], or to act as controls [waiting list group (WLG) = 22]. All participants were administered the mentalization questionnaire (MZQ) and the Symptom Checklist-90-Revised (SCL-90-R). In the post training assessment, compared to WLG, NFG showed a significant increase of MZQ total scores (3.94 ± 0.73 vs. 3.53 ± 0.77; F1;43 = 8.19; p = 0.007; d = 0.863). Furthermore, A/T training was also associated with a significant increase of EEG functional connectivity in several DMN brain areas (e.g. Posterior Cingulate Cortex). Taken together our results support the usefulness of the A/T training in enhancing mentalization and DMN connectivity.

  1. Cognition and the Default Mode Network in Children with Sickle Cell Disease: A Resting State Functional MRI Study

    PubMed Central

    Montanaro, Maria; Rampazzo, Patrizia; Ermani, Mario; Talenti, Giacomo; Baracchini, Claudio; Favero, Angela; Basso, Giuseppe; Manara, Renzo; Sainati, Laura

    2016-01-01

    Cerebrovascular complications are frequent events in children with sickle cell disease, yet routinely used techniques such as Transcranial Doppler (TCD), Magnetic Resonance (MRI) and Angiography (MRA), insufficiently explain the cause of poor cognitive performances. Forty children with SS-Sβ° (mean age 8 years) underwent neurocognitive evaluation and comprehensive brain imaging assessment with TCD, MRI, MRA, Resting State (RS) Functional MRI with evaluation of the Default Mode Network (DMN). Sixteen healthy age-matched controls underwent MRI, MRA and RS functional MRI.Children with SCD display increased brain connectivity in the DMN even in the absence of alterations in standard imaging techniques. Patients with low neurocognitive scores presented higher brain connectivity compared to children without cognitive impairment or controls, suggesting an initial compensatory mechanism to maintain performances. In our cohort steady state haemoglobin level was not related to increased brain connectivity, but SatO2<97% was. Our findings provide novel evidence that SCD is characterized by a selective disruption of connectivity among relevant regions of the brain, potentially leading to reduced cognition and altered functional brain dynamics. RS functional MRI could be used as a useful tool to evaluate cognition and cerebral damage in SCD in longitudinal trials. PMID:27281287

  2. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds.

    PubMed

    Gould van Praag, Cassandra D; Garfinkel, Sarah N; Sparasci, Oliver; Mees, Alex; Philippides, Andrew O; Ware, Mark; Ottaviani, Cristina; Critchley, Hugo D

    2017-03-27

    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds.

  3. The Default Mode Network as a Biomarker of Persistent Complaints After Mild Traumatic Brain Injury: A Longitudinal fMRI Study.

    PubMed

    van der Horn, Harm Jan; Scheenen, Myrthe Elisabeth; de Koning, Myrthe Elisabeth; Liemburg, Edith J; Spikman, Jacoba M; van der Naalt, Joukje

    2017-09-07

    The objective of this study was to examine longitudinal functional connectivity of resting-state networks in patients with and without complaints after uncomplicated mild traumatic brain injury (mTBI). Second, we aimed to determine the value of network connectivity in predicting persistent complaints, anxiety, depression and long-term outcome. Thirty mTBI patients with (≥ 3) posttraumatic complaints at two weeks post-injury, 19 without complaints, and 20 matched healthy controls were selected for this study. Resting-state fMRI was performed in patients at one month and three months post-injury, and once in healthy controls. Independent component analysis (ICA) was used to investigate the default mode, executive and salience networks. Persistent posttraumatic complaints, anxiety and depression were measured at three months post-injury and outcome was determined at one year post-injury. Within the group with complaints, higher functional connectivity between the anterior and posterior components of the default mode network at one month post-injury was associated with a higher number of complaints at three months post-injury (ρ=0.59, p=0.001). Minor longitudinal changes in functional connectivity were found for patients with and without complaints after mTBI, which were limited to connectivity within the precuneus component of the default mode network. No significant results were found for the executive and salience network. Current results suggest that the default mode network may serve as a biomarker of persistent complaints in patients with uncomplicated mTBI.

  4. Increased functional connectivity between the default mode and salience networks in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Posner, Jonathan; Song, Inkyung; Lee, Seonjoo; Rodriguez, Carolyn I; Moore, Holly; Marsh, Rachel; Blair Simpson, H

    2017-02-01

    Deficits in attention have been implicated in Obsessive-Compulsive Disorder (OCD), yet their neurobiological bases are poorly understood. In unmedicated adults with OCD (n = 30) and healthy controls (n = 32), they used resting state functional connectivity MRI (rs-fcMRI) to examine functional connectivity between two neural networks associated with attentional processes: the default mode network (DMN) and the salience network (SN). They then used path analyses to examine putative relationships across three variables of interest: DMN-SN connectivity, attention, and OCD symptoms. In the OCD compared with healthy control participants, there was significantly reduced inverse connectivity between the anterior medial prefrontal cortex (amPFC) and the anterior insular cortex, regions within the DMN and SN, respectively. In OCD, reduced inverse DMN-SN connectivity was associated with both increased OCD symptom severity and decreased sustained attention. Path analyses were consistent with a potential mechanistic explanation: OCD symptoms are associated with an imbalance in DMN-SN networks that subserve attentional processes and this effect of OCD on DMN-SN connectivity is associated with decreased sustained attention. This work builds upon a growing literature suggesting that reduced inverse DMN-SN connectivity may represent a trans-diagnostic marker of attentional processes and suggests a potential mechanistic account of the relationship between OCD and attention. Reduced inverse DMN-SN connectivity may be an important target for treatment development to improve attention in individuals with OCD. Hum Brain Mapp 38:678-687, 2017. © 2016 Wiley Periodicals, Inc.

  5. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography.

    PubMed

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction.

  6. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography

    PubMed Central

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction. PMID:26321936

  7. Effects of Body Mass Index and Body Fat Percent on Default Mode, Executive Control, and Salience Network Structure and Function

    PubMed Central

    Figley, Chase R.; Asem, Judith S. A.; Levenbaum, Erica L.; Courtney, Susan M.

    2016-01-01

    It is well established that obesity decreases overall life expectancy and increases the risk of several adverse health conditions. Mounting evidence indicates that body fat is likely also associated with structural and functional brain changes, reduced cognitive function, and greater impulsivity. However, previously reported differences in brain structure and function have been variable across studies and difficult to reconcile due to sample population and methodological differences. To clarify these issues, we correlated two independent measures of body composition—i.e., body mass index (BMI) and body fat percent (BFP)—with structural and functional neuroimaging data obtained from a cohort of 32 neurologically healthy adults. Whole-brain voxel-wise analyses indicated that higher BMI and BFP were associated with widespread decreases in gray matter volume, white matter volume, and white matter microstructure (including several regions, such as the striatum and orbitofrontal cortex, which may influence value assessment, habit formation, and decision-making). Moreover, closer examination of resting state functional connectivity, white matter volume, and white matter microstructure throughout the default mode network (DMN), executive control network (ECN), and salience network (SN) revealed that higher BMI and BFP were associated with increased SN functional connectivity and decreased white matter volumes throughout all three networks (i.e., the DMN, ECN, and SN). Taken together, these findings: (1) offer a biologically plausible explanation for reduced cognitive performance, greater impulsivity, and altered reward processing among overweight individuals, and (2) suggest neurobiological mechanisms (i.e., altered functional and structural brain connectivity) that may affect overweight individuals' ability to establish and maintain healthy lifestyle choices. PMID:27378831

  8. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia

    PubMed Central

    Meda, Shashwath A.; Ruaño, Gualberto; Windemuth, Andreas; O’Neil, Kasey; Berwise, Clifton; Dunn, Sabra M.; Boccaccio, Leah E.; Narayanan, Balaji; Kocherla, Mohan; Sprooten, Emma; Keshavan, Matcheri S.; Tamminga, Carol A.; Sweeney, John A.; Clementz, Brett A.; Calhoun, Vince D.; Pearlson, Godfrey D.

    2014-01-01

    The brain’s default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging–genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases. PMID:24778245

  9. Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation

    PubMed Central

    Marzetti, Laura; Di Lanzo, Claudia; Zappasodi, Filippo; Chella, Federico; Raffone, Antonino; Pizzella, Vittorio

    2014-01-01

    According to several conceptualizations of meditation, the interplay between brain systems associated to self-related processing, attention and executive control is crucial for meditative states and related traits. We used magnetoencephalography (MEG) to investigate such interplay in a highly selected group of “virtuoso” meditators (Theravada Buddhist monks), with long-term training in the two main meditation styles: focused attention (FA) and open monitoring (OM) meditation. Specifically, we investigated the differences between FA meditation, OM meditation and resting state in the coupling between the posterior cingulate cortex, core node of the Default Mode Network (DMN) implicated in mind wandering and self-related processing, and the whole brain, with a recently developed phase coherence approach. Our findings showed a state dependent coupling of posterior cingulate cortex (PCC) to nodes of the DMN and of the executive control brain network in the alpha frequency band (8–12 Hz), related to different attentional and cognitive control processes in FA and OM meditation, consistently with the putative role of alpha band synchronization in the functional mechanisms for attention and consciousness. The coupling of PCC with left medial prefrontal cortex (lmPFC) and superior frontal gyrus characterized the contrast between the two meditation styles in a way that correlated with meditation expertise. These correlations may be related to a higher mindful observing ability and a reduced identification with ongoing mental activity in more expert meditators. Notably, different styles of meditation and different meditation expertise appeared to modulate the dynamic balance between fronto-parietal (FP) and DMN networks. Our results support the idea that the interplay between the DMN and the FP network in the alpha band is crucial for the transition from resting state to different meditative states. PMID:25360102

  10. Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation.

    PubMed

    Marzetti, Laura; Di Lanzo, Claudia; Zappasodi, Filippo; Chella, Federico; Raffone, Antonino; Pizzella, Vittorio

    2014-01-01

    According to several conceptualizations of meditation, the interplay between brain systems associated to self-related processing, attention and executive control is crucial for meditative states and related traits. We used magnetoencephalography (MEG) to investigate such interplay in a highly selected group of "virtuoso" meditators (Theravada Buddhist monks), with long-term training in the two main meditation styles: focused attention (FA) and open monitoring (OM) meditation. Specifically, we investigated the differences between FA meditation, OM meditation and resting state in the coupling between the posterior cingulate cortex, core node of the Default Mode Network (DMN) implicated in mind wandering and self-related processing, and the whole brain, with a recently developed phase coherence approach. Our findings showed a state dependent coupling of posterior cingulate cortex (PCC) to nodes of the DMN and of the executive control brain network in the alpha frequency band (8-12 Hz), related to different attentional and cognitive control processes in FA and OM meditation, consistently with the putative role of alpha band synchronization in the functional mechanisms for attention and consciousness. The coupling of PCC with left medial prefrontal cortex (lmPFC) and superior frontal gyrus characterized the contrast between the two meditation styles in a way that correlated with meditation expertise. These correlations may be related to a higher mindful observing ability and a reduced identification with ongoing mental activity in more expert meditators. Notably, different styles of meditation and different meditation expertise appeared to modulate the dynamic balance between fronto-parietal (FP) and DMN networks. Our results support the idea that the interplay between the DMN and the FP network in the alpha band is crucial for the transition from resting state to different meditative states.

  11. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia.

    PubMed

    Meda, Shashwath A; Ruaño, Gualberto; Windemuth, Andreas; O'Neil, Kasey; Berwise, Clifton; Dunn, Sabra M; Boccaccio, Leah E; Narayanan, Balaji; Kocherla, Mohan; Sprooten, Emma; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A; Clementz, Brett A; Calhoun, Vince D; Pearlson, Godfrey D

    2014-05-13

    The brain's default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging-genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases.

  12. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.

    PubMed

    Sidlauskaite, Justina; Wiersema, Jan R; Roeyers, Herbert; Krebs, Ruth M; Vassena, Eliana; Fias, Wim; Brass, Marcel; Achten, Eric; Sonuga-Barke, Edmund

    2014-09-01

    The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Default mode network deactivation to smoking cue relative to food cue predicts treatment outcome in nicotine use disorder.

    PubMed

    Wilcox, Claire E; Claus, Eric D; Calhoun, Vince D; Rachakonda, Srinivas; Littlewood, Rae A; Mickey, Jessica; Arenella, Pamela B; Goodreau, Natalie; Hutchison, Kent E

    2017-02-23

    Identifying predictors of treatment outcome for nicotine use disorders (NUDs) may help improve efficacy of established treatments, like varenicline. Brain reactivity to drug stimuli predicts relapse risk in nicotine and other substance use disorders in some studies. Activity in the default mode network (DMN) is affected by drug cues and other palatable cues, but its clinical significance is unclear. In this study, 143 individuals with NUD (male n = 91, ages 18-55 years) received a functional magnetic resonance imaging scan during a visual cue task during which they were presented with a series of smoking-related or food-related video clips prior to randomization to treatment with varenicline (n = 80) or placebo. Group independent components analysis was utilized to isolate the DMN, and temporal sorting was used to calculate the difference between the DMN blood-oxygen-level dependent signal during smoke cues and that during food cues for each individual. Food cues were associated with greater deactivation compared with smoke cues in the DMN. In correcting for baseline smoking and other clinical variables, which have been shown to be related to treatment outcome in previous work, a less positive Smoke - Food difference score predicted greater smoking at 6 and 12 weeks when both treatment groups were combined (P = 0.005, β = -0.766). An exploratory analysis of executive control and salience networks demonstrated that a more positive Smoke - Food difference score for executive control network predicted a more robust response to varenicline relative to placebo. These findings provide further support to theories that brain reactivity to palatable cues, and in particular in DMN, may have a direct clinical relevance in NUD. © 2017 Society for the Study of Addiction.

  14. Implication of the Slow-5 Oscillations in the Disruption of the Default-Mode Network in Healthy Aging and Stroke

    PubMed Central

    Nair, Veena A.; Mossahebi, Pouria; Young, Brittany M.; Chacon, Marcus; Jensen, Matthew; Birn, Rasmus M.; Meyerand, Mary E.; Prabhakaran, Vivek

    2016-01-01

    Abstract The processes of normal aging and aging-related pathologies subject the brain to an active re-organization of its brain networks. Among these, the default-mode network (DMN) is consistently implicated with a demonstrated reduction in functional connectivity within the network. However, no clear stipulation on the underlying mechanisms of the de-synchronization has yet been provided. In this study, we examined the spectral distribution of the intrinsic low-frequency oscillations (LFOs) of the DMN sub-networks in populations of young normals, older subjects, and acute and subacute ischemic stroke patients. The DMN sub-networks were derived using a mid-order group independent component analysis with 117 eyes-closed resting-state functional magnetic resonance imaging (rs-fMRI) sessions from volunteers in those population groups, isolating three robust components of the DMN among other resting-state networks. The posterior component of the DMN presented noticeable differences. Measures of amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) of the network component demonstrated a decrease in resting-state cortical oscillation power in the elderly (normal and patient), specifically in the slow-5 (0.01–0.027 Hz) range of oscillations. Furthermore, the contribution of the slow-5 oscillations during the resting state was diminished for a greater influence of the slow-4 (0.027–0.073 Hz) oscillations in the subacute stroke group, not only suggesting a vulnerability of the slow-5 oscillations to disruption but also indicating a change in the distribution of the oscillations within the resting-state frequencies. The reduction of network slow-5 fALFF in the posterior DMN component was found to present a potential association with behavioral measures, suggesting a brain–behavior relationship to those oscillations, with this change in behavior potentially resulting from an altered network integrity induced by a weakening of the slow-5

  15. Alterations in resting-state functional connectivity of the default mode network in amnestic mild cognitive impairment: an fMRI study.

    PubMed

    Li, Moyi; Zheng, Guohua; Zheng, Yuhui; Xiong, Zhenyu; Xia, Rui; Zhou, Wenji; Wang, Qin; Liang, Shengxiang; Tao, Jing; Chen, Lidian

    2017-08-16

    Amnestic mild cognitive impairment (aMCI) is characterized by cognitive functional decline, especially in memory. Resting-state functional magnetic resonance imaging (fMRI) has been widely used in neuroimaging studies that explore alterations between patients and normal individuals to elucidate the pathological mechanisms of different diseases. The current study was performed to investigate alterations in the functional connectivity of the default mode network (DMN) in aMCI patients compared to healthy elderly controls, as well as further define the association between neurological alterations and memory function. Twenty-five aMCI patients and 25 healthy individuals were recruited and underwent both fMRI and neuropsychological examinations. fMRI data was analyzed by independent component analysis. Compared to healthy individuals, aMCI patients exhibited a significant increase in functional connectivity between the DMN and right-middle and right-superior frontal gyri, left-middle occipital gyrus, and left-middle temporal gyrus, but reduced functional connectivity between the DMN and left-middle and left-inferior frontal gyri and left insula. These alterations were found to be associated with reduced memory function. aMCI patients exhibited abnormal functional connectivity between the DMN and certain brain regions which is associated with changes in memory function associated with aMCI.

  16. Shaped by the Past: The Default Mode Network Supports Cognition that Is Independent of Immediate Perceptual Input

    PubMed Central

    Konishi, Mahiko; McLaren, Donald George; Engen, Haakon; Smallwood, Jonathan

    2015-01-01

    Although many different accounts of the functions of the default mode network (DMN) have been proposed, few can adequately account for the spectrum of different cognitive functions that utilize this network. The current study used functional magnetic resonance imaging (fMRI) to explore the hypothesis that the role of the DMN in higher order cognition is to allow cognition to be shaped by information from stored representations rather than information in the immediate environment. Using a novel task paradigm, we observed increased BOLD activity in regions of the medial prefrontal cortex and posterior cingulate cortex when individuals made decisions on the location of shapes from the prior trial and decreased BOLD activity when individuals made decisions on the location of shapes on the current trial. These data are inconsistent with views of the DMN as a task-negative system or one that is sensitive only to stimuli with strong personal or emotional ties. Instead the involvement of the DMN when people make decisions about where a shape was, rather than where it is now, supports the hypothesis that the core hubs of the DMN allow cognition to be guided by information other than the immediate perceptual input. We propose that a variety of different forms of higher order thought (such as imagining the future or considering the perspective of another person) engage the DMN because these more complex introspective forms of higher order thought all depend on the capacity for cognition to be shaped by representations that are not present in the external environment. PMID:26125559

  17. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

  18. Functional dissociation of ventral frontal and dorsomedial default mode network components during resting state and emotional autobiographical recall

    PubMed Central

    Bado, Patricia; Engel, Annerose; de Oliveira-Souza, Ricardo; Bramati, Ivanei E; Paiva, Fernando F; Basilio, Rodrigo; Sato, João R; Tovar-Moll, Fernanda; Moll, Jorge

    2014-01-01

    Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain “default mode network” (DMN) is consistently engaged by the “resting state” of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation. Hum Brain Mapp 35:3302–3313, 2014. © 2013 Wiley Periodicals, Inc. PMID:25050426

  19. Causal relationship between effective connectivity within the default mode network and mind-wandering regulation and facilitation.

    PubMed

    Kajimura, Shogo; Kochiyama, Takanori; Nakai, Ryusuke; Abe, Nobuhito; Nomura, Michio

    2016-06-01

    Transcranial direct current stimulation (tDCS) can modulate mind wandering, which is a shift in the contents of thought away from an ongoing task and/or from events in the external environment to self-generated thoughts and feelings. Although modulation of the mind-wandering propensity is thought to be associated with neural alterations of the lateral prefrontal cortex (LPFC) and regions in the default mode network (DMN), the precise neural mechanisms remain unknown. Using functional magnetic resonance imaging (fMRI), we investigated the causal relationships among tDCS (one electrode placed over the right IPL, which is a core region of the DMN, and another placed over the left LPFC), stimulation-induced directed connection alterations within the DMN, and modulation of the mind-wandering propensity. At the behavioral level, anodal tDCS on the right IPL (with cathodal tDCS on the left LPFC) reduced mind wandering compared to the reversed stimulation. At the neural level, the anodal tDCS on the right IPL decreased the afferent connections of the posterior cingulate cortex (PCC) from the right IPL and the medial prefrontal cortex (mPFC). Furthermore, mediation analysis revealed that the changes in the connections from the right IPL and mPFC correlated with the facilitation and inhibition of mind wandering, respectively. These effects are the result of the heterogeneous function of effective connectivity: the connection from the right IPL to the PCC inhibits mind wandering, whereas the connection from the mPFC to the PCC facilitates mind wandering. The present study is the first to demonstrate the neural mechanisms underlying tDCS modulation of mind-wandering propensity.

  20. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  1. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression.

    PubMed

    Figueroa, Caroline A; Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H

    2017-09-13

    Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD versus controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-minute neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-minutes resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs. neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (p = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r= -0.21, p = 0.046) and rumination (r= -0.27, p = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. © The Author (2017). Published by Oxford University Press.

  2. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data

    PubMed Central

    Sharaev, Maksim G.; Zavyalova, Viktoria V.; Ushakov, Vadim L.; Kartashov, Sergey I.; Velichkovsky, Boris M.

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state. PMID:26869900

  3. Altered default mode network configuration in posttraumatic stress disorder after earthquake: A resting-stage functional magnetic resonance imaging study.

    PubMed

    Zhang, Xiao-Dong; Yin, Yan; Hu, Xiao-Lei; Duan, Lian; Qi, Rongfeng; Xu, Qiang; Lu, Guang-Ming; Li, Ling-Jiang

    2017-09-01

    The neural substrates of posttraumatic stress disorder (PTSD) are still not fully elucidated. Hence, this study is to explore topological alterations of the default mode network (DMN) in victims with PTSD after a magnitude of 8.0 earthquake using resting-state functional magnetic resonance imaging (rs-fMRI).This study was approved by the local ethical review board, and all participants signed written informed consent. Sixty-two PTSD victims from the 2008 Sichuan earthquake and 62 matched exposed controls underwent rs-fMRI. PTSD was diagnosed by Clinician-Administered PTSD Scale, and underwent PTSD Checklist-Civilian Version for symptom scoring. The DMN was analyzed by using graph theoretical approaches. Further, Pearson correlation analysis was performed to correlate neuroimaging metrics to neuropsychological scores in victims with PTSD.Victims with PTSD showed decreased DMN functional connectivity strength between the right superior frontal gyrus and left inferior parietal lobule (IPL), and showed increased functional connectivity between the right IPL and precuneus or left posterior cingulate cortex. It was also found that victims with PTSD exhibited decreased nodal efficiency in right superior frontal gyrus and precuneus, and increased nodal efficiency in right hippocampus/parahippocampus. Apart from that, PTSD showed higher nodal degree in bilateral hippocampus/parahippocampus. In addition, the functional connectivity strength between the right IPL and precuneus correlated negatively to the avoid scores (r = -0.26, P = .04).This study implicates alteration of topological features on the DMN in PTSD victims after major earthquake, and provides new insights into DMN malfunction in PTSD based on graph theory.

  4. Deficient visuospatial working memory functions and neural correlates of the default-mode network in adolescents with autism spectrum disorder.

    PubMed

    Chien, Hsiang-Yun; Gau, Susan Shur-Fen; Isaac Tseng, Wen-Yih

    2016-10-01

    In addition to the essential features of autism spectrum disorder (ASD), namely social communication deficits and repetitive behaviors, individuals with ASD may suffer from working memory deficits and an altered default-mode network (DMN). We hypothesized that an altered DMN is related to working memory deficits in those with ASD. A total of 37 adolescents with ASD and 36 age- and IQ-matched typically developing (TD) controls were analyzed. Visuospatial working memory performance was assessed using pattern recognition memory (PRM), spatial recognition memory (SRM), and paired-associates learning (PAL) tasks. The intrinsic functional connectivity (iFC) of the DMN was indexed by the temporal correlations between the resting-state functional magnetic resonance imaging signals of pairs of DMN regions, including those between the posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC) and between the PCC and parahippocampi (PHG). The corresponding structural connectivity of the DMN was indexed by the generalized fractional anisotropy (GFA) of the dorsal and ventral cingulum bundles on the basis of diffusion spectrum imaging data. The results showed that ASD adolescents exhibited delayed correct responses in PRM and SRM tasks and committed more errors in the PAL task than the TD controls did. The delayed responses during the PRM and SRM tasks were negatively correlated with bilateral PCC-mPFC iFCs, and PAL performance was negatively correlated with right PCC-PHG iFC in ASD adolescents. Furthermore, ASD adolescents showed significant lower GFA in the right cingulum bundles than the TD group did; the GFA value was negatively correlated with SRM performance in ASD. Our results provide empirical evidence for deficient visuospatial working memory and corresponding neural correlates within the DMN in adolescents with ASD. Autism Res 2016, 9: 1058-1072. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease.

    PubMed

    Koch, Walter; Teipel, Stephan; Mueller, Sophia; Benninghoff, Jens; Wagner, Maxmilian; Bokde, Arun L W; Hampel, Harald; Coates, Ute; Reiser, Maximilian; Meindl, Thomas

    2012-03-01

    Functional magnetic resonance imaging (fMRI) of default mode network (DMN) brain activity during resting is recently gaining attention as a potential noninvasive biomarker to diagnose incipient Alzheimer's disease. The aim of this study was to determine which method of data processing provides highest diagnostic power and to define metrics to further optimize the diagnostic value. fMRI was acquired in 21 healthy subjects, 17 subjects with mild cognitive impairment and 15 patients with Alzheimer's disease (AD) and data evaluated both with volumes of interest (VOI)-based signal time course evaluations and independent component analyses (ICA). The first approach determines the amount of DMN region interconnectivity (as expressed with correlation coefficients); the second method determines the magnitude of DMN coactivation. Apolipoprotein E (ApoE) genotyping was available in 41 of the subjects examined. Diagnostic power (expressed as accuracy) of data of a single DMN region in independent component analyses was 64%, that of a single correlation of time courses between 2 DMN regions was 71%, respectively. With multivariate analyses combining both methods of analysis and data from various regions, accuracy could be increased to 97% (sensitivity 100%, specificity 95%). In nondemented subjects, no significant differences in activity within DMN could be detected comparing ApoE ε4 allele carriers and ApoE ε4 allele noncarriers. However, there were some indications that fMRI might yield useful information given a larger sample. Time course correlation analyses seem to outperform independent component analyses in the identification of patients with Alzheimer's disease. However, multivariate analyses combining both methods of analysis by considering the activity of various parts of the DMN as well as the interconnectivity between these regions are required to achieve optimal and clinically acceptable diagnostic power.

  6. Modulation of the Default Mode Network in First-Episode, Drug-Naïve Major Depressive Disorder via Acupuncture at Baihui (GV20) Acupoint

    PubMed Central

    Deng, Demao; Liao, Hai; Duan, Gaoxiong; Liu, Yanfei; He, Qianchao; Liu, Huimei; Tang, Lijun; Pang, Yong; Tao, Jien

    2016-01-01

    Background: Previous neuroimaging studies have revealed that acupuncture modulates the default mode network (DMN) in healthy subjects and patients with certain disorder. However, few studies have been performed to investigate whether or not acupuncture might modulate the DMN in patients with major depressive disorder (MDD). Thereby, the aim of the present study was to assess alterations of the DMN induced by acupuncture stimulation in patients with first-episode, drug-naïve MDD. Materials and Methods: Twenty nine patients with first-episode, drug-naïve MDD and 29 healthy subjects were enrolled in this study. All the healthy subjects underwent 6-min resting-state functional magnetic resonance imaging (R-fMRI) scan. While patients underwent acupuncture stimulation for 20-min electro-acupuncture stimulation (EAS) at Baihui acupoint (GV20) and two 6-min R-fMRI scans before and after EAS. Based on the precuneus/posterior cingulate cortex (PC/PCC) as the seed region, functional connectivity (FC) method was adopted to examine abnormal DMN in patients by comparing with healthy subjects and to evaluate the influence of EAS on intrinsic connectivity within the DMN in patients with MDD. Results: Compared to healthy subjects, MDD patients had abnormal DMN. Moreover, results showed that EAS at GV20 induced increased FC between the PC/PCC and bilateral anterior cingulate cortex (ACC), and decreased FC between the PC/PCC and left middle prefrontal cortex, left angualr gyrus and bilateral hippocampus/parahippocampus (HIPP/paraHIPP) in patients with MDD, which were the main brain regions showing significant differences between the patients and healthy subjects. Conclusion: Our findings provide imaging evidence to support that GV20-related acupuncture stimulation may modulate the DMN in patients with first-episode, drug-naïve MDD. This study may partly interpret the neural mechanisms of acupuncture at GV20 which is used to treat patients with MDD in clinical. PMID:27242492

  7. Impairment of functional integration of the default mode network correlates with cognitive outcome at three months after stroke

    PubMed Central

    Dacosta-Aguayo, Rosalia; Graña, Manuel; Iturria-Medina, Yasser; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Toran, Pera; Forés, Rosa; Dávalos, Antoni; Auer, Tibor; Mataró, Maria

    2015-01-01

    Resting-state studies conducted with stroke patients are scarce. The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of brain rewiring after stroke and plasticity changes. This study sought to identify dynamic changes in the functional organization of the default mode network (DMN) of stroke patients at three months after stroke. Eleven patients (eight male and three female; age range: 48–72) with right cortical and subcortical ischemic infarctions and 17 controls (eleven males and six females; age range: 57–69) were assessed by neurological and neuropsychological examinations and scanned with resting-state functional magnetic ressonance imaging. First, we explored group differences in functional activity within the DMN by means of probabilistic independent component analysis followed by a dual regression approach. Second, we estimated functional connectivity between 11 DMN nodes both locally by means of seed-based connectivity analysis, as well as globally by means of graph-computation analysis. We found that patients had greater DMN activity in the left precuneus and the left anterior cingulate gyrus when compared with healthy controls (P < 0.05 family-wise error corrected). Seed-based connectivity analysis showed that stroke patients had significant impairment (P = 0.014; threshold = 2.00) in the connectivity between the following five DMN nodes: left superior frontal gyrus (lSFG) and posterior cingulate cortex (t = 2.01); left parahippocampal gyrus and right superior frontal gyrus (t = 2.11); left parahippocampal gyrus and lSFG (t = 2.39); right parietal and lSFG (t = 2.29). Finally, mean path length obtained from graph-computation analysis showed positive correlations with semantic fluency test (rs = 0.454; P = 0.023), phonetic fluency test (rs = 0.523; P = 0.007) and the mini mental state examination (rs = 0.528; P = 0.007). In conclusion, the ability

  8. Clinical significance of increased cerebellar default-mode network connectivity in resting-state patients with drug-naive somatization disorder

    PubMed Central

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Li, Lehua; Zhao, Jingping

    2016-01-01

    Abstract The cerebellum has been proven to be connected to the brain network, as in the default-mode network (DMN), among healthy subjects and patients with psychiatric disorders. However, whether or not abnormal cerebellar DMN connectivity exists and what its clinical significance is among drug-naive patients with somatization disorder (SD) at rest remain unclear. A total of 25 drug-naive patients with SD and 28 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, patients with SD showed increased left/right Crus I-left/right angular gyrus (AG) connectivity and Lobule IX-left superior medial prefrontal cortex (MPFC) connectivity. The FC values of the left/right Crus I-right AG connectivity of the patients were positively correlated with their scores in the somatization subscale of the symptom checklist-90 (Scl-90). A trend level of correlations was observed between the FC values of the left Crus I-left AG connectivity of the patients and their scores for the somatization subscale of Scl-90, as well as between the FC values of their Lobule IX-left superior MPFC connectivity and their scores for the Eysenck personality questionnaire (EPQ) extraversion. Our findings show the increased cerebellar DMN connectivity in patients with SD and therefore highlight the importance of the DMN in the neurobiology of SD. Increased cerebellar DMN connectivities are also correlated with their somatization severity and personality, both of which bear clinical significance. PMID:27428190

  9. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections

    PubMed Central

    Ushakov, Vadim; Sharaev, Maksim G.; Kartashov, Sergey I.; Zavyalova, Viktoria V.; Verkhlyutov, Vitaliy M.; Velichkovsky, Boris M.

    2016-01-01

    The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective

  10. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections.

    PubMed

    Ushakov, Vadim; Sharaev, Maksim G; Kartashov, Sergey I; Zavyalova, Viktoria V; Verkhlyutov, Vitaliy M; Velichkovsky, Boris M

    2016-01-01

    The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects' effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective

  11. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease.

    PubMed

    Liguori, Claudio; Chiaravalloti, Agostino; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Schillaci, Orazio; Pierantozzi, Mariangela

    2016-10-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in

  12. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state.

    PubMed

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states.

  13. Individual variation in intentionality in the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and limbic networks.

    PubMed

    Golchert, Johannes; Smallwood, Jonathan; Jefferies, Elizabeth; Seli, Paul; Huntenburg, Julia M; Liem, Franziskus; Lauckner, Mark E; Oligschläger, Sabine; Bernhardt, Boris C; Villringer, Arno; Margulies, Daniel S

    2017-02-01

    Mind-wandering has a controversial relationship with cognitive control. Existing psychological evidence supports the hypothesis that episodes of mind-wandering reflect a failure to constrain thinking to task-relevant material, as well the apparently alternative view that control can facilitate the expression of self-generated mental content. We assessed whether this apparent contradiction arises because of a failure to consider differences in the types of thoughts that occur during mind-wandering, and in particular, the associated level of intentionality. Using multi-modal magnetic resonance imaging (MRI) analysis, we examined the cortical organisation that underlies inter-individual differences in descriptions of the spontaneous or deliberate nature of mind-wandering. Cortical thickness, as well as functional connectivity analyses, implicated regions relevant to cognitive control and regions of the default-mode network for individuals who reported high rates of deliberate mind-wandering. In contrast, higher reports of spontaneous mind-wandering were associated with cortical thinning in parietal and posterior temporal regions in the left hemisphere (which are important in the control of cognition and attention) as well as heightened connectivity between the intraparietal sulcus and a region that spanned limbic and default-mode regions in the ventral inferior frontal gyrus. Finally, we observed a dissociation in the thickness of the retrosplenial cortex/lingual gyrus, with higher reports of spontaneous mind-wandering being associated with thickening in the left hemisphere, and higher repots of deliberate mind-wandering with thinning in the right hemisphere. These results suggest that the intentionality of the mind-wandering state depends on integration between the control and default-mode networks, with more deliberation being associated with greater integration between these systems. We conclude that one reason why mind-wandering has a controversial relationship

  14. The posterior medial cortex in urologic chronic pelvic pain syndrome: detachment from default mode network-a resting-state study from the MAPP Research Network.

    PubMed

    Martucci, Katherine T; Shirer, William R; Bagarinao, Epifanio; Johnson, Kevin A; Farmer, Melissa A; Labus, Jennifer S; Apkarian, A Vania; Deutsch, Georg; Harris, Richard E; Mayer, Emeran A; Clauw, Daniel J; Greicius, Michael D; Mackey, Sean C

    2015-09-01

    Altered resting-state (RS) brain activity, as a measure of functional connectivity (FC), is commonly observed in chronic pain. Identifying a reliable signature pattern of altered RS activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed RS functional magnetic resonance imaging data from female patients with urologic chronic pelvic pain syndrome (N = 45) and matched healthy participants (N = 45) as part of an NIDDK-funded multicenter project (www.mappnetwork.org). Using dual regression and seed-based analyses, we observed significantly decreased FC of the default mode network to 2 regions in the posterior medial cortex (PMC): the posterior cingulate cortex (PCC) and the left precuneus (threshold-free cluster enhancement, family-wise error corrected P < 0.05). Further investigation revealed that patients demonstrated increased FC between the PCC and several brain regions implicated in pain, sensory, motor, and emotion regulation processes (eg, insular cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus, putamen, amygdala, hippocampus). The left precuneus demonstrated decreased FC to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships, and self-esteem levels in patients. Collectively, these findings indicate that in patients with urologic chronic pelvic pain syndrome, regions of the PMC are detached from the default mode network, whereas neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes.

  15. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.

    PubMed

    Bazán, Paulo Rodrigo; Biazoli, Claudinei Eduardo; Sato, João Ricardo; Amaro, Edson

    2015-12-01

    The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results.

  16. Cerebral Blood Flow in Posterior Cortical Nodes of the Default Mode Network Decreases with Task Engagement but Remains Higher than in Most Brain Regions

    PubMed Central

    Pfefferbaum, Adolf; Chanraud, Sandra; Pitel, Anne-Lise; Müller-Oehring, Eva; Shankaranarayanan, Ajit; Alsop, David C.; Rohlfing, Torsten

    2011-01-01

    Functional neuroimaging studies provide converging evidence for existence of intrinsic brain networks activated during resting states and deactivated with selective cognitive demands. Whether task-related deactivation of the default mode network signifies depressed activity relative to the remaining brain or simply lower activity relative to its resting state remains controversial. We employed 3D arterial spin labeling imaging to examine regional cerebral blood flow (CBF) during rest, a spatial working memory task, and a second rest. Change in regional CBF from rest to task showed significant normalized and absolute CBF reductions in posterior cingulate, posterior-inferior precuneus, and medial frontal lobes . A Statistical Parametric Mapping connectivity analysis, with an a priori seed in the posterior cingulate cortex, produced deactivation connectivity patterns consistent with the classic “default mode network” and activation connectivity anatomically consistent with engagement in visuospatial tasks. The large task-related CBF decrease in posterior-inferior precuneus relative to its anterior and middle portions adds evidence for the precuneus' heterogeneity. The posterior cingulate and posterior-inferior precuneus were also regions of the highest CBF at rest and during task performance. The difference in regional CBF between intrinsic (resting) and evoked (task) activity levels may represent functional readiness or reserve vulnerable to diminution by conditions affecting perfusion. PMID:20484322

  17. Roles of default-mode network and supplementary motor area in human vigilance performance: evidence from real-time fMRI.

    PubMed

    Hinds, Oliver; Thompson, Todd W; Ghosh, Satrajit; Yoo, Julie J; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D E

    2013-03-01

    We used real-time functional magnetic resonance imaging (fMRI) to determine which regions of the human brain have a role in vigilance as measured by reaction time (RT) to variably timed stimuli. We first identified brain regions where activation before stimulus presentation predicted RT. Slower RT was preceded by greater activation in the default-mode network, including lateral parietal, precuneus, and medial prefrontal cortices; faster RT was preceded by greater activation in the supplementary motor area (SMA). We examined the roles of these brain regions in vigilance by triggering trials based on brain states defined by blood oxygenation level-dependent activation measured using real-time fMRI. When activation of relevant neural systems indicated either a good brain state (increased activation of SMA) or a bad brain state (increased activation of lateral parietal cortex and precuneus) for performance, a target was presented and RT was measured. RTs on trials triggered by a good brain state were significantly faster than RTs on trials triggered by a bad brain state. Thus human performance was controlled by monitoring brain states that indicated high or low vigilance. These findings identify neural systems that have a role in vigilance and provide direct evidence that the default-mode network has a role in human performance. The ability to control and enhance human behavior based on brain state may have broad implications.

  18. Investigating the relationship between subjective drug craving and temporal dynamics of the default mode network, executive control network, and salience network in methamphetamine dependents using rsfMRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Somayyeh; Hossein-Zadeh, Gholam-Ali; Shahbabaie, Alireza; Ekhtiari, Hamed

    2016-03-01

    Resting state functional connectivity (rsFC) studies using fMRI provides a great deal of knowledge on the spatiotemporal organization of the brain. The relationships between and within a number of resting state functional networks, namely the default mode network (DMN), salience network (SN) and executive control network (ECN) have been intensely studied in basic and clinical cognitive neuroscience [1]. However, the presumption of spatial and temporal stationarity has mostly restricted the assessment of rsFC [1]. In this study, sliding window correlation analysis and k-means clustering were exploited to examine the temporal dynamics of rsFC of these three networks in 24 abstinent methamphetamine dependents. Afterwards, using canonical correlation analysis (CCA) the possible relationship between the level of self-reported craving and the temporal dynamics was examined. Results indicate that the rsFC transits between 6 discrete "FC states" in the meth dependents. CCA results show that higher levels of craving are associated with higher probability of transiting from state 4 to 6 (positive FC of DMN-ECN getting weak and negative FC of DMN-SN appearing) and staying in state 4 (positive FC of DMN-ECN), lower probability of staying in state 2 (negative FC of DMN-ECN), transiting from state 4 to 2 (change of positive FC of DMN-ECN to negative FC), and transiting from state 3 to 5 (appearance of negative FC of DMN-SN and positive FC of DMN-ECN with the presence of negative FC of SN-ECN). Quantitative measures of temporal dynamics in large-scale brain networks could bring new added values to increase potentials for applications of rsfMRI in addiction medicine.

  19. Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study

    PubMed Central

    Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.

    2015-01-01

    Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930

  20. Abnormal connectivity between the default mode and the visual system underlies the manifestation of visual hallucinations in Parkinson’s disease: a task-based fMRI study

    PubMed Central

    Shine, James M; Muller, Alana J; O’Callaghan, Claire; Hornberger, Michael; Halliday, Glenda M; Lewis, Simon JG

    2015-01-01

    Background: The neural substrates of visual hallucinations remain an enigma, due primarily to the difficulties associated with directly interrogating the brain during hallucinatory episodes. Aims: To delineate the functional patterns of brain network activity and connectivity underlying visual hallucinations in Parkinson’s disease. Methods: In this study, we combined functional magnetic resonance imaging (MRI) with a behavioral task capable of eliciting visual misperceptions, a confirmed surrogate for visual hallucinations, in 35 patients with idiopathic Parkinson’s disease. We then applied an independent component analysis to extract time series information for large-scale neuronal networks that have been previously implicated in the pathophysiology of visual hallucinations. These data were subjected to a task-based functional connectivity analysis, thus providing the first objective description of the neural activity and connectivity during visual hallucinations in patients with Parkinson’s disease. Results: Correct performance of the task was associated with increased activity in primary visual regions; however, during visual misperceptions, this same visual network became actively coupled with the default mode network (DMN). Further, the frequency of misperception errors on the task was positively correlated with the strength of connectivity between these two systems, as well as with decreased activity in the dorsal attention network (DAN), and with impaired connectivity between the DAN and the DMNs, and ventral attention networks. Finally, each of the network abnormalities identified in our analysis were significantly correlated with two independent clinical measures of hallucination severity. Conclusions: Together, these results provide evidence that visual hallucinations are due to increased engagement of the DMN with the primary visual system, and emphasize the role of dysfunctional engagement of attentional networks in the pathophysiology of

  1. Resting-State Connectivity of the Left Frontal Cortex to the Default Mode and Dorsal Attention Network Supports Reserve in Mild Cognitive Impairment.

    PubMed

    Franzmeier, Nicolai; Göttler, Jens; Grimmer, Timo; Drzezga, Alexander; Áraque-Caballero, Miguel A; Simon-Vermot, Lee; Taylor, Alexander N W; Bürger, Katharina; Catak, Cihan; Janowitz, Daniel; Müller, Claudia; Duering, Marco; Sorg, Christian; Ewers, Michael

    2017-01-01

    Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer's disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.

  2. Sex commonalities and differences in the relationship between resilient personality and the intrinsic connectivity of the salience and default mode networks.

    PubMed

    Kilpatrick, Lisa A; Istrin, Joshua J; Gupta, Arpana; Naliboff, Bruce D; Tillisch, Kirsten; Labus, Jennifer S; Mayer, Emeran A

    2015-12-01

    Increased resilience is associated with better health outcomes and reduced morbidity in response to injury and homeostatic perturbations. Proper functioning of the salience network (SN) and modulation of the default mode network (DMN) by SN may play a role in adaptively responding to stress. Here, we demonstrate that resilient personality in healthy subjects is associated with SN and DMN connectivity patterns and that these patterns are influenced by sex. While connectivity of SN with several brain regions including right anterior insula was significantly associated with resilient personality in both men and women, results suggest that increased functional integration of anterior DMN preferentially benefits women while increased functional integration of posterior DMN preferentially benefits men in terms of resilience. These findings may relate to previous demonstrations that men and women engage different information processing and behavioral strategies to achieve resilience and highlight the importance of considering sex in resilience research. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sex commonalities and differences in the relationship between resilient personality and the intrinsic connectivity of the salience and default mode networks

    PubMed Central

    Kilpatrick, Lisa A.; Istrin, Joshua J.; Gupta, Arpana; Naliboff, Bruce; Tillisch, Kirsten; Labus, Jennifer S.; Mayer, Emeran A.

    2016-01-01

    Increased resilience is associated with better health outcomes and reduced morbidity in response to injury and homeostatic perturbations. Proper functioning of the salience network (SN) and modulation of the default mode network (DMN) by SN may play a role in adaptively responding to stress. Here, we demonstrate that resilient personality in healthy subjects is associated with SN and DMN connectivity patterns and that these patterns are influenced by sex. While connectivity of SN with several brain regions including right anterior insula was significantly associated with resilient personality in both men and women, results suggest that increased functional integration of anterior DMN preferentially benefits women while increased functional integration of posterior DMN preferentially benefits men in terms of resilience. These findings may relate to previous demonstrations that men and women engage different information processing and behavioral strategies to achieve resilience and highlight the importance of considering sex in resilience research. PMID:26440126

  4. Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting-state study of attention, default mode and salience network connectivity.

    PubMed

    Sidlauskaite, Justina; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2016-06-01

    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli.

  5. Functional Connectivity of the Default Mode Network and Its Association With Pain Networks in Irritable Bowel Patients Assessed via Lidocaine Treatment

    PubMed Central

    Letzen, Janelle E.; Craggs, Jason G.; Perlstein, William M.; Price, Donald D.; Robinson, Michael E.

    2013-01-01

    The default mode network (DMN), a group of brain regions implicated in passive thought processes, has been proposed as a potentially informative neural marker to aid in novel treatment development. However, the DMN’s internal connectivity and its temporal relationship (ie, functional network connectivity) with pain-related neural networks in chronic pain conditions is poorly understood, as is the DMN’s sensitivity to analgesic effects. The current study assessed how DMN functional connectivity and its temporal association with 3 pain-related networks changed after rectal lidocaine treatment in irritable bowel syndrome patients. Eleven females with irritable bowel syndrome underwent a rectal balloon distension paradigm during functional magnetic resonance imaging in 2 conditions: natural history (ie, baseline) and lidocaine. Results showed increased DMN connectivity with pain-related regions during natural history and increased within-network connectivity of DMN structures under lidocaine. Further, there was a significantly greater lag time between 2 of the pain networks, those involved in cognitive and in affective pain processes, comparing lidocaine to natural history. These findings suggest that 1) DMN plasticity is sensitive to analgesic effects, and 2) reduced pain ratings via analgesia reflect DMN connectivity more similar to pain-free individuals. Findings show potential implications of this network as an approach for understanding clinical pain management techniques. Perspective This study shows that lidocaine, a peripheral analgesic, significantly altered DMN connectivity and affected its relationship with pain-related networks. These findings suggest that the DMN, which is hypothesized to represent non-goal-oriented activity, is sensitive to analgesic effects and could be useful to understand pain treatment mechanisms. PMID:23743257

  6. [Changes of brain pain center and default mode network an electro acupuncture in Weizhong and Dachangshu acupoints: a task-fMRI study].

    PubMed

    Zhou, S; Cao, H X; Yu, L C; Jin, Y J; Jia, R H; Wen, Y R; Chen, X F

    2016-02-23

    To investigate the functional brain pain center and default mode network response to electro acupuncture stimulate in weizhong acupoints(BL40) and dachangshu acupoints(BL25). During January to February 2015, volunteers were enrolled in this study from the staff and student interns of Gansu Province Traditional Chinese Medicine Hospital. A total of 20 healthy, right-handed subjects, male 9, female 11, age (23±3) years, participated in this study. Block design task functional magnetic resonance imaging(fMRI) 3.0 T was performed in all subjects by electro acupuncture stimulating at BL40 and BL25 from the same experienced acupuncturist.The needle connected electric acupuncture apparatus through tow long coaxial-cable. A block design with five 120 s blocks of rest time (OFF block, electric acupuncture turn off ) interspersed between five 60 s blocks of stimulation (ON block, electric acupuncture turn on) fMRI scan. Magnetic resonance data of brain function was collected and FSL(fMRI Software Library) software was used to analyze the data. All subjects' data were analyzed except 2 cases whose head movement were more than 2 mm. Activated brain function regions by electro acupuncture stimulate included temporal lobe lateral sulcus, lobus insularis, thalamus, supramarginal gyrus, prefrontal medial frontal gyrus. Negative activated brain regions included middle frontal gyrus, parahippocampal gyrus, cingulate cortex abdominal segment, parietal cortex.The functional pain central and default mode network were changed when electro acupuncture stimulate in(BL40) and(BL25). There are several brain activation regions and negative activated brain regions when administering electro acupuncture stimulation at BL40 and BL25.

  7. The Posterior Medial Cortex in Urologic Chronic Pelvic Pain Syndrome: Detachment from Default Mode Network. A Resting-State Study from the MAPP Research Network

    PubMed Central

    Martucci, Katherine T.; Shirer, William R.; Bagarinao, Epifanio; Johnson, Kevin A.; Farmer, Melissa A.; Labus, Jennifer S.; Apkarian, A. Vania; Deutsch, Georg; Harris, Richard E.; Mayer, Emeran A.; Clauw, Daniel J.; Greicius, Michael D.; Mackey, Sean C.

    2015-01-01

    Altered resting-state brain activity, as a measure of functional connectivity, is commonly observed in chronic pain. Identifying a reliable signature pattern of altered resting-state activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed resting-state fMRI data from female patients with urologic chronic pelvic pain syndrome (UCPPS, N = 45) and matched healthy participants (N = 45) as part of a NIDDK funded multicenter project (www.mappnetwork.org). Using dual regression and seed-based analyses, we observed significantly decreased functional connectivity of the default mode network (DMN) to two regions in the posterior medial cortex (PMC): the posterior cingulate cortex (PCC) and left precuneus (TFCE, FWE corrected p<0.05). Further investigation revealed that patients demonstrated increased functional connectivity between the PCC and several brain regions implicated in pain, sensory, motor, and emotion regulation processes (e.g., insular cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus, putamen, amygdala, hippocampus). The left precuneus demonstrated decreased functional connectivity to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships and self-esteem levels in patients. Collectively, these findings indicate that in UCPPS patients, regions of the PMC are detached from the DMN, while neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes. PMID:26010458

  8. A Coordinate-Based Meta-Analysis of Overlaps in Regional Specialization and Functional Connectivity across Subjective Value and Default Mode Networks

    PubMed Central

    Acikalin, M. Yavuz; Gorgolewski, Krzysztof J.; Poldrack, Russell A.

    2017-01-01

    Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings. PMID:28154520

  9. Altered hub configurations within default mode network following acupuncture at ST36: a multimodal investigation combining fMRI and MEG.

    PubMed

    You, Youbo; Bai, Lijun; Dai, Ruwei; Cheng, Hao; Liu, Zhenyu; Wei, Wenjuan; Tian, Jie

    2013-01-01

    Acupuncture, an externally somatosensory stimulation in the Traditional Chinese Medicine, has been proposed about its modulations on the brain's default mode network (DMN). However, it is still unknown on how the internal brain resting networks are modulated and what inferences can be made about the physiological processes underlying these changes. Combining high spatial resolution of functional magnetic resonance imaging (fMRI) with high temporal resolution of magnetoencephalography (MEG), in the current multimodal study, we sought to explore spatiotemporally whether or not band-specific DMN hub configurations would be induced by verum acupuncture, compared with sham control. Spatial independent component analysis was applied to fMRI data, followed by the discrete regional sources seeded into MEG data. Partial correlation analysis was further adopted to estimate the intrinsic functional connectivity and network hub configurations. One of the most striking findings is that the posterior cingulate cortex is not only validated as a robust DMN hub, but served as a hub only within the delta and gamma bands following the verum acupuncture, compared with its consistently being a DMN hub in sham control group. Our preliminary results may provide a new perspective to lend support for the specificity of neural mechanism underlying acupuncture.

  10. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms

    PubMed Central

    Du, Ming-Ying; Liao, Wei; Huang, Xiao-Qi; Li, Fei; Kuang, Wei-Hong; Li, Jing; Chen, Hua-Fu; Kendrick, Keith Maurice; Gong, Qi-Yong

    2015-01-01

    Although acute impact of traumatic experiences on brain function in disaster survivors is similar to that observed in post-traumatic stress disorders (PTSD), little is known about the long-term impact of this experience. We have used structural and functional magnetic resonance imaging to investigate resting-state functional connectivity and gray and white matter (WM) changes occurring in the brains of healthy Wenchuan earthquake survivors both 3 weeks and 2 years after the disaster. Results show that while functional connectivity changes 3 weeks after the disaster involved both frontal–limbic–striatal and default-mode networks (DMN), at the 2-year follow-up only changes in the latter persisted, despite complete recovery from high initial levels of anxiety. No gray or WM volume changes were found at either time point. Taken together, our findings provide important new evidence that while altered functional connectivity in the frontal–limbic–striatal network may underlie the post-trauma anxiety experienced by survivors, parallel changes in the DMN persist despite the apparent absence of anxiety symptoms. This suggests that long-term changes occur in neural networks involved in core aspects of self-processing, cognitive and emotional functioning in disaster survivors which are independent of anxiety symptoms and which may also confer increased risk of subsequent development of PTSD. PMID:25862672

  11. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms.

    PubMed

    Du, Ming-Ying; Liao, Wei; Lui, Su; Huang, Xiao-Qi; Li, Fei; Kuang, Wei-Hong; Li, Jing; Chen, Hua-Fu; Kendrick, Keith Maurice; Gong, Qi-Yong

    2015-11-01

    Although acute impact of traumatic experiences on brain function in disaster survivors is similar to that observed in post-traumatic stress disorders (PTSD), little is known about the long-term impact of this experience. We have used structural and functional magnetic resonance imaging to investigate resting-state functional connectivity and gray and white matter (WM) changes occurring in the brains of healthy Wenchuan earthquake survivors both 3 weeks and 2 years after the disaster. Results show that while functional connectivity changes 3 weeks after the disaster involved both frontal-limbic-striatal and default-mode networks (DMN), at the 2-year follow-up only changes in the latter persisted, despite complete recovery from high initial levels of anxiety. No gray or WM volume changes were found at either time point. Taken together, our findings provide important new evidence that while altered functional connectivity in the frontal-limbic-striatal network may underlie the post-trauma anxiety experienced by survivors, parallel changes in the DMN persist despite the apparent absence of anxiety symptoms. This suggests that long-term changes occur in neural networks involved in core aspects of self-processing, cognitive and emotional functioning in disaster survivors which are independent of anxiety symptoms and which may also confer increased risk of subsequent development of PTSD. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Disrupted Interhemispheric Synchrony in Default Mode Network Underlying the Impairment of Cognitive Flexibility in Late-Onset Depression

    PubMed Central

    Hou, Zhenghua; Sui, Yuxiu; Song, Xiaopeng; Yuan, Yonggui

    2016-01-01

    The intuitive association between cognitive impairment and aberrant functional activity in the brain network has prompted interest in exploring the role of functional connectivity in late-onset depression (LOD). The relationship of altered voxel-mirrored homotopic connectivity (VMHC) and cognitive dysfunction in LOD is not yet well understood. This study was designed to examine the implicit relationship between the disruption of interhemispheric functional coordination and cognitive impairment in LOD. LOD patients (N = 31) and matched healthy controls (HCs; N = 37) underwent neuropsychological tests and functional magnetic resonance imaging (fMRI) in this study. The intergroup difference of interhemispheric coordination was determined by calculating VMHC value in the whole brain. The neuro-behavioral relevancy approach was applied to explore the association between disrupted VMHC and cognitive measures. Receiver operating characteristic (ROC) curve analysis was used to determine the capability of disrupted regional VMHC to distinguish LOD. Compared to the HC group, significantly attenuated VMHC in the superior frontal gyrus (SFG), superior temporal gyrus (STG), posterior cerebellar lobe (CePL) and post- and precentral gyri were observed in the bilateral brain of LOD patients. The interhemispheric asynchrony in bilateral CePLs was positively correlated with the performance of trail making test B (TMT-B) in LOD patients (r = 0.367, P = 0.040). ROC analysis revealed that regions with abnormal VMHC could efficiently distinguish LOD from HCs (Area Under Curve [AUC] = 0.90, P < 0.001). Altered linkage patterns of intrinsic homotopic connectivity and impaired cognitive flexibility was first investigated in LOD, and it would provide a novel clue for revealing the neural substrates underlying cognitive impairment in LOD. PMID:27729858

  13. Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest

    PubMed Central

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Wang, Guodong; Lyu, Hailong; Wu, Renrong; Chen, Jindong; Wang, Shuai; Li, Lehua; Zhao, Jingping

    2016-01-01

    Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis. PMID:27188233

  14. Effects of Ganglioside on Working Memory and the Default Mode Network in Individuals with Subjective Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung

    2016-01-01

    This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).

  15. Objective sleep disturbances are associated with greater waking resting-state connectivity between the retrosplenial cortex/hippocampus and various nodes of the default mode network

    PubMed Central

    Regen, Wolfram; Kyle, Simon D.; Nissen, Christoph; Feige, Bernd; Baglioni, Chiara; Hennig, Jürgen; Riemann, Dieter; Spiegelhalder, Kai

    2016-01-01

    Background Psychological models highlight the bidirectional role of self-referential processing, introspection, worry and rumination in the development and maintenance of insomnia; however, little is known about the underlying neural substrates. Default mode network (DMN) functional connectivity has been previously linked to these cognitive processes. Methods We used fMRI to investigate waking DMN functional connectivity in a well-characterized sample of patients with primary insomnia (PI) and good sleeper controls. Results We included 20 patients with PI (8 men and 12 women, mean age 42.7 ± 13.4 yr) and 20 controls (8 men and 12 women, mean age 44.1 ± 10.6 yr) in our study. While no between-group differences in waking DMN connectivity were observed, exploratory analyses across all participants suggested that greater waking connectivity between the retrosplenial cortex/hippocampus and various nodes of the DMN was associated with lower sleep efficiency, lower amounts of rapid eye movement sleep and greater sleep-onset latency. Limitations Owing to the cross-sectional nature of the study, conclusions about causality cannot be drawn. Conclusion As sleep disturbances represent a transdiagnostic symptom that is characteristic of nearly all psychiatric disorders, our results may hold particular relevance to previous findings of increased DMN connectivity levels in patients with psychiatric disorders. PMID:26809225

  16. Default mode and task-positive networks connectivity during the N-Back task in remitted depressed patients with or without emotional residual symptoms.

    PubMed

    Delaveau, Pauline; Arruda Sanchez, Tiago; Steffen, Ricardo; Deschet, Karine; Jabourian, Maritza; Perlbarg, Vincent; Gasparetto, Emerson Leandro; Dubal, Stéphanie; Costa E Silva, Jorge; Fossati, Philippe

    2017-04-08

    Clinical remission of depression may be associated with emotional residual symptoms. We studied the association of emotional blunting, rumination with neural networks dynamics in remitted depressed patients and cognitive performance during an N-Back task. Twenty-six outpatients in remission of depression (Hamilton Depressive rating scale score <7) performed an N-Back task during fMRI assessment. All patients had been treated by paroxetine for a minimum of 4 months. Two subgroups of patients [Nonemotionally blunted (NEB) = 14 and emotionally blunted (EB) = 12] were determined. To identify functional network maps across participants, the Network Detection using Independent Component Analysis approach was employed. Within and between Task Positive Network (TPN) and Default Mode Network (DMN) connectivity were assessed and related to variability of performance on the N-Back task and rumination. EB and NEB patients were not different for the level of accurate responses at the N-Back. However over the entire working memory task, the negative correlation between DMN and TPN was significantly lower in the EB than NEB group and was differently related to cognitive performance and rumination. The stronger the negative correlation between DMN and TPN was, the less variable the reaction time during 3-Back task in NEB patients. Moreover the greater the negative correlation between DMN and TPN was, the lower the rumination score in EB patients. Emotional blunting may be associated with compromised monitoring of rumination and cognitive functioning in remitted depressed patients through altered cooperation between DMN and TPN. The study suggests clinical remission in depression is associated with biological heterogeneity. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  17. Understanding marijuana's effects on functional connectivity of the default mode network in patients with schizophrenia and co-occurring cannabis use disorder: A pilot investigation.

    PubMed

    Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2017-08-17

    Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.

  18. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network.

    PubMed

    Mayhew, Stephen D; Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2013-08-01

    The human brain is continually, dynamically active and spontaneous fluctuations in this activity play a functional role in affecting both behavioural and neuronal responses. However, the mechanisms through which this occurs remain poorly understood. Simultaneous EEG-fMRI is a promising technique to study how spontaneous activity modulates the brain's response to stimulation, as temporal indices of ongoing cortical excitability can be integrated with spatially localised evoked responses. Here we demonstrate an interaction between the ongoing power of the electrophysiological alpha oscillation and the magnitude of both positive (PBR) and negative (NBR) fMRI responses to two contrasts of visual checkerboard reversal. Furthermore, the amplitude of pre-stimulus EEG alpha-power significantly modulated the amplitude and shape of subsequent PBR and NBR to the visual stimulus. A nonlinear reduction of visual PBR and an enhancement of auditory NBR and default-mode network NBR were observed in trials preceded by high alpha-power. These modulated areas formed a functionally connected network during a separate resting-state recording. Our findings suggest that the "baseline" state of the brain exhibits considerable trial-to-trial variability which arises from fluctuations in the balance of cortical inhibition/excitation that are represented by respective increases/decreases in the power of the EEG alpha oscillation. The consequence of this spontaneous electrophysiological variability is modulated amplitudes of both PBR and NBR to stimulation. Fluctuations in alpha-power may subserve a functional relationship in the visual-auditory network, acting as mediator for both short and long-range cortical inhibition, the strength of which is represented in part by NBR.

  19. Exploration of the dynamics between brain regions associated with the default-mode network and frontostriatal pathway with regards to task familiarity.

    PubMed

    Provost, Jean-Sebastien; Monchi, Oury

    2015-03-01

    Specific brain regions have consistently been reported to be activated during resting state period, and they were described as being part of a particular network called the default-mode network (DMN). It has been shown that the DMN would deactivate during goal-directed tasks, but the actual relationship between them is still a matter of debate. In a previous study, we reported a specific pattern of activation of the frontostriatal regions during a set-shifting task in which these regions were increasing their activity as set-shifts were performed continuously and decreasing when the same rule was executed repeatedly. The present study aimed at assessing the relationship between the frontostriatal regions and the DMN. We hypothesized that the DMN would be anticorrelated with the frontostriatal regions so the DMN would be more deactivated as set-shifts are executed for a long period, but would start increasing when the same rule is being executed for a long period. Here, 15 participants underwent functional magnetic resonance imaging while performing a card-sorting task. We observed increased activity in the frontostriatal regions as more set-shifts are being performed while the DMN gets more deactivated. Interestingly, as decreased activity was observed in the frontostriatal regions during the execution of the same rule for a long period, the DMN showed increasing activity. We argue that there is an anticorrelation between the frontostriatal regions and the DMN, but also that the DMN could show positive activation during performance of a familiar goal-directed task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. ALTERED DEFAULT MODE NETWORK (DMN) RESTING STATE FUNCTIONAL CONNECTIVITY FOLLOWING A MINDFULNESS-BASED EXPOSURE THERAPY FOR POSTTRAUMATIC STRESS DISORDER (PTSD) IN COMBAT VETERANS OF AFGHANISTAN AND IRAQ.

    PubMed

    King, Anthony P; Block, Stefanie R; Sripada, Rebecca K; Rauch, Sheila; Giardino, Nicholas; Favorite, Todd; Angstadt, Michael; Kessler, Daniel; Welsh, Robert; Liberzon, Israel

    2016-04-01

    Recent studies suggest that mindfulness may be an effective component for posttraumatic stress disorder (PTSD) treatment. Mindfulness involves practice in volitional shifting of attention from "mind wandering" to present-moment attention to sensations, and cultivating acceptance. We examined potential neural correlates of mindfulness training using a novel group therapy (mindfulness-based exposure therapy (MBET)) in combat veterans with PTSD deployed to Afghanistan (OEF) and/or Iraq (OIF). Twenty-three male OEF/OIF combat veterans with PTSD were treated with a mindfulness-based intervention (N = 14) or an active control group therapy (present-centered group therapy (PCGT), N = 9). Pre-post therapy functional magnetic resonance imaging (fMRI, 3 T) examined resting-state functional connectivity (rsFC) in default mode network (DMN) using posterior cingulate cortex (PCC) and ventral medial prefrontal cortex (vmPFC) seeds, and salience network (SN) with anatomical amygdala seeds. PTSD symptoms were assessed at pre- and posttherapy with Clinician Administered PTSD Scale (CAPS). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.46). Increased DMN rsFC (PCC seed) with dorsolateral dorsolateral prefrontal cortex (DLPFC) regions and dorsal anterior cingulate cortex (ACC) regions associated with executive control was seen following MBET. A group × time interaction found MBET showed increased connectivity with DLPFC and dorsal ACC following therapy; PCC-DLPFC connectivity was correlated with improvement in PTSD avoidant and hyperarousal symptoms. Increased connectivity between DMN and executive control regions following mindfulness training could underlie increased capacity for volitional shifting of attention. The increased PCC-DLPFC rsFC following MBET was related to PTSD symptom improvement, pointing to a potential therapeutic mechanism of mindfulness-based therapies. © 2016 Wiley

  1. Resting-State Brain and the FTO Obesity Risk Allele: Default Mode, Sensorimotor, and Salience Network Connectivity Underlying Different Somatosensory Integration and Reward Processing between Genotypes.

    PubMed

    Olivo, Gaia; Wiemerslage, Lyle; Nilsson, Emil K; Solstrand Dahlberg, Linda; Larsen, Anna L; Olaya Búcaro, Marcela; Gustafsson, Veronica P; Titova, Olga E; Bandstein, Marcus; Larsson, Elna-Marie; Benedict, Christian; Brooks, Samantha J; Schiöth, Helgi B

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene are linked to obesity, but how these SNPs influence resting-state neural activation is unknown. Few brain-imaging studies have investigated the influence of obesity-related SNPs on neural activity, and no study has investigated resting-state connectivity patterns. We tested connectivity within three, main resting-state networks: default mode (DMN), sensorimotor (SMN), and salience network (SN) in 30 male participants, grouped based on genotype for the rs9939609 FTO SNP, as well as punishment and reward sensitivity measured by the Behavioral Inhibition (BIS) and Behavioral Activation System (BAS) questionnaires. Because obesity is associated with anomalies in both systems, we calculated a BIS/BAS ratio (BBr) accounting for features of both scores. A prominence of BIS over BAS (higher BBr) resulted in increased connectivity in frontal and paralimbic regions. These alterations were more evident in the obesity-associated AA genotype, where a high BBr was also associated with increased SN connectivity in dopaminergic circuitries, and in a subnetwork involved in somatosensory integration regarding food. Participants with AA genotype and high BBr, compared to corresponding participants in the TT genotype, also showed greater DMN connectivity in regions involved in the processing of food cues, and in the SMN for regions involved in visceral perception and reward-based learning. These findings suggest that neural connectivity patterns influence the sensitivity toward punishment and reward more closely in the AA carriers, predisposing them to developing obesity. Our work explains a complex interaction between genetics, neural patterns, and behavioral measures in determining the risk for obesity and may help develop individually-tailored strategies for obesity prevention.

  2. Resting-State Brain and the FTO Obesity Risk Allele: Default Mode, Sensorimotor, and Salience Network Connectivity Underlying Different Somatosensory Integration and Reward Processing between Genotypes

    PubMed Central

    Olivo, Gaia; Wiemerslage, Lyle; Nilsson, Emil K.; Solstrand Dahlberg, Linda; Larsen, Anna L.; Olaya Búcaro, Marcela; Gustafsson, Veronica P.; Titova, Olga E.; Bandstein, Marcus; Larsson, Elna-Marie; Benedict, Christian; Brooks, Samantha J.; Schiöth, Helgi B.

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene are linked to obesity, but how these SNPs influence resting-state neural activation is unknown. Few brain-imaging studies have investigated the influence of obesity-related SNPs on neural activity, and no study has investigated resting-state connectivity patterns. We tested connectivity within three, main resting-state networks: default mode (DMN), sensorimotor (SMN), and salience network (SN) in 30 male participants, grouped based on genotype for the rs9939609 FTO SNP, as well as punishment and reward sensitivity measured by the Behavioral Inhibition (BIS) and Behavioral Activation System (BAS) questionnaires. Because obesity is associated with anomalies in both systems, we calculated a BIS/BAS ratio (BBr) accounting for features of both scores. A prominence of BIS over BAS (higher BBr) resulted in increased connectivity in frontal and paralimbic regions. These alterations were more evident in the obesity-associated AA genotype, where a high BBr was also associated with increased SN connectivity in dopaminergic circuitries, and in a subnetwork involved in somatosensory integration regarding food. Participants with AA genotype and high BBr, compared to corresponding participants in the TT genotype, also showed greater DMN connectivity in regions involved in the processing of food cues, and in the SMN for regions involved in visceral perception and reward-based learning. These findings suggest that neural connectivity patterns influence the sensitivity toward punishment and reward more closely in the AA carriers, predisposing them to developing obesity. Our work explains a complex interaction between genetics, neural patterns, and behavioral measures in determining the risk for obesity and may help develop individually-tailored strategies for obesity prevention. PMID:26924971

  3. Intrinsic Functional Connectivity in Salience and Default Mode Networks and Aberrant Social Processes in Youth at Ultra-High Risk for Psychosis.

    PubMed

    Pelletier-Baldelli, Andrea; Bernard, Jessica A; Mittal, Vijay A

    2015-01-01

    Social processes are key to navigating the world, and investigating their underlying mechanisms and cognitive architecture can aid in understanding disease states such as schizophrenia, where social processes are highly impacted. Evidence suggests that social processes are impaired in individuals at ultra high-risk for the development of psychosis (UHR). Understanding these phenomena in UHR youth may clarify disease etiology and social processes in a period that is characterized by significantly fewer confounds than schizophrenia. Furthermore, understanding social processing deficits in this population will help explain these processes in healthy individuals. The current study examined resting state connectivity of the salience (SN) and default mode networks (DMN) in association with facial emotion recognition (FER), an integral aspect of social processes, as well as broader social functioning (SF) in UHR individuals and healthy controls. Consistent with the existing literature, UHR youth were impaired in FER and SF when compared with controls. In the UHR group, we found increased connectivity between the SN and the medial prefrontal cortex, an area of the DMN relative to controls. In UHR youth, the DMN exhibited both positive and negative correlations with the somatosensory cortex/cerebellum and precuneus, respectively, which was linked with better FER performance. For SF, results showed that sensory processing links with the SN might be important in allowing for better SF for both groups, but especially in controls where sensory processing is likely to be unimpaired. These findings clarify how social processing deficits may manifest in psychosis, and underscore the importance of SN and DMN connectivity for social processing more generally.

  4. A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation.

    PubMed

    Burks, Joshua D; Bonney, Phillip A; Conner, Andrew K; Glenn, Chad A; Briggs, Robert G; Battiste, James D; McCoy, Tressie; O'Donoghue, Daniel L; Wu, Dee H; Sughrue, Michael E

    2017-06-01

    OBJECTIVE Gliomas invading the anterior corpus callosum are commonly deemed unresectable due to an unacceptable risk/benefit ratio, including the risk of abulia. In this study, the authors investigated the anatomy of the cingulum and its connectivity within the default mode network (DMN). A technique is described involving awake subcortical mapping with higher attention tasks to preserve the cingulum and reduce the incidence of postoperative abulia for patients with so-called butterfly gliomas. METHODS The authors reviewed clinical data on all patients undergoing glioma surgery performed by the senior author during a 4-year period at the University of Oklahoma Health Sciences Center. Forty patients were identified who underwent surgery for butterfly gliomas. Each patient was designated as having undergone surgery either with or without the use of awake subcortical mapping and preservation of the cingulum. Data recorded on these patients included the incidence of abulia/akinetic mutism. In the context of the study findings, the authors conducted a detailed anatomical study of the cingulum and its role within the DMN using postmortem fiber tract dissections of 10 cerebral hemispheres and in vivo diffusion tractography of 10 healthy subjects. RESULTS Forty patients with butterfly gliomas were treated, 25 (62%) with standard surgical methods and 15 (38%) with awake subcortical mapping and preservation of the cingulum. One patient (1/15, 7%) experienced postoperative abulia following surgery with the cingulum-sparing technique. Greater than 90% resection was achieved in 13/15 (87%) of these patients. CONCLUSIONS This study presents evidence that anterior butterfly gliomas can be safely removed using a novel, attention-task based, awake brain surgery technique that focuses on preserving the anatomical connectivity of the cingulum and relevant aspects of the cingulate gyrus.

  5. Prefrontal Function Engaging in External-Focused Attention in 5- to 6-Month-Old Infants: A Suggestion for Default Mode Network.

    PubMed

    Xu, Mingdi; Hoshino, Eiichi; Yatabe, Kiyomi; Matsuda, Soichiro; Sato, Hiroki; Maki, Atsushi; Yoshimura, Mina; Minagawa, Yasuyo

    2016-01-01

    The present study used functional near-infrared spectroscopy (fNIRS) to measure 5- to 6-month-old infants' hemodynamic response in the prefrontal cortex (PFC) to visual stimuli differing in saliency and social value. Nineteen Japanese 5- to 6-month-old infants watched video clips of Peek-a-Boo (social signal) performed by an anime character (AC) or a human, and hand movements without social signal performed by an AC. The PFC activity of infants was measured by 22-channel fNIRS, while behaviors including looking time were recorded simultaneously. NIRS data showed that infants' hemodynamic responses in the PFC generally decreased due to these stimuli, and the decrease was most prominent in the frontopolar (FP), covering medial PFC (MPFC), when infants were viewing Peek-a-Boo performed by an AC. Moreover, the decrease was more pronounced in the dorsolateral PFC (DLPFC) when infants were viewing Peek-a-Boo performed by an AC than by a human. Accordingly, behavioral data revealed significantly longer looking times when Peek-a-Boo was performed by an AC than by a human. No significant difference between Peek-a-Boo and non-Peek-a-Boo conditions was observed in either measure. These findings indicate that infants at this age may prefer stimuli with more salient features, which may be more effective in attracting their attentions. In conjunction with our previous findings on responses to self-name calling in infants of similar age, we hypothesize that the dynamic function of the MPFC and its vicinity (as part of default mode network (DMN): enhanced by self-focused stimuli, attenuated by externally focused stimuli), which is consistently observed in adults, may have already emerged in 5- to 6-month-old infants.

  6. Prefrontal Function Engaging in External-Focused Attention in 5- to 6-Month-Old Infants: A Suggestion for Default Mode Network

    PubMed Central

    Xu, Mingdi; Hoshino, Eiichi; Yatabe, Kiyomi; Matsuda, Soichiro; Sato, Hiroki; Maki, Atsushi; Yoshimura, Mina; Minagawa, Yasuyo

    2017-01-01

    The present study used functional near-infrared spectroscopy (fNIRS) to measure 5- to 6-month-old infants’ hemodynamic response in the prefrontal cortex (PFC) to visual stimuli differing in saliency and social value. Nineteen Japanese 5- to 6-month-old infants watched video clips of Peek-a-Boo (social signal) performed by an anime character (AC) or a human, and hand movements without social signal performed by an AC. The PFC activity of infants was measured by 22-channel fNIRS, while behaviors including looking time were recorded simultaneously. NIRS data showed that infants’ hemodynamic responses in the PFC generally decreased due to these stimuli, and the decrease was most prominent in the frontopolar (FP), covering medial PFC (MPFC), when infants were viewing Peek-a-Boo performed by an AC. Moreover, the decrease was more pronounced in the dorsolateral PFC (DLPFC) when infants were viewing Peek-a-Boo performed by an AC than by a human. Accordingly, behavioral data revealed significantly longer looking times when Peek-a-Boo was performed by an AC than by a human. No significant difference between Peek-a-Boo and non-Peek-a-Boo conditions was observed in either measure. These findings indicate that infants at this age may prefer stimuli with more salient features, which may be more effective in attracting their attentions. In conjunction with our previous findings on responses to self-name calling in infants of similar age, we hypothesize that the dynamic function of the MPFC and its vicinity (as part of default mode network (DMN): enhanced by self-focused stimuli, attenuated by externally focused stimuli), which is consistently observed in adults, may have already emerged in 5- to 6-month-old infants. PMID:28119586

  7. Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis.

    PubMed

    Yang, Albert C; Huang, Chu-Chung; Yeh, Heng-Liang; Liu, Mu-En; Hong, Chen-Jee; Tu, Pei-Chi; Chen, Jin-Fan; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2013-02-01

    The nonlinear properties of spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals remain unexplored. We test the hypothesis that complexity of BOLD activity is reduced with aging and is correlated with cognitive performance in the elderly. A total of 99 normal older and 56 younger male subjects were included. Cognitive function was assessed using Cognitive Abilities Screening Instrument and Wechsler Digit Span Task. We employed a complexity measure, multiscale entropy (MSE) analysis, and investigated appropriate parameters for MSE calculation from relatively short BOLD signals. We then compared the complexity of BOLD signals between the younger and older groups, and examined the correlation between cognitive test scores and complexity of BOLD signals in various brain regions. Compared with the younger group, older subjects had the most significant reductions in MSE of BOLD signals in posterior cingulate gyrus and hippocampal cortex. For older subjects, MSE of BOLD signals from default mode network areas, including hippocampal cortex, cingulate cortex, superior and middle frontal gyrus, and middle temporal gyrus, were found to be positively correlated with major cognitive functions, such as attention, orientation, short-term memory, mental manipulation, and language. MSE from subcortical regions, such as amygdala and putamen, were found to be positively correlated with abstract thinking and list-generating fluency, respectively. Our findings confirmed the hypothesis that complexity of BOLD activity was correlated with aging and cognitive performance based on MSE analysis, and may provide insights on how dynamics of spontaneous brain activity relates to aging and cognitive function in specific brain regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Altered effective connectivity model in the default mode network between bipolar and unipolar depression based on resting-state fMRI.

    PubMed

    Liu, Yunting; Wu, Xia; Zhang, Jiacai; Guo, Xiaojuan; Long, Zhiying; Yao, Li

    2015-08-15

    Bipolar depression (BD) is characterized by alternating episodes of depression and mania. Patients who spend the majority of their time in episodes of depression rather than mania are often misdiagnosed with unipolar depression (UD) that only exhibits depressive episodes. It would be important to explore the construction of more objective biomarkers which can be used to more accurately differentiate BD and UD. The effective connectivity model of BD and UD in the default mode network (DMN) was constructed based on resting-state fMRI data of 17 BD (32.12±8.57 years old) and 17 UD (32.59±9.77 years old) patients using a linear non-Gaussian acyclic model (LiNGAM). The effective connectivity differences were obtained by conducting a permutation test. The following connections were stronger in the BD group than in the UD group: medial prefrontal cortex (MPFC) →posterior cingulate cortex (PCC), right inferior parietal cortex (rIPC)→left hippocampus (lHC) and rIPC→right insula (rInsula). In contrast, the following connections were weak or unapparent in the BD group: MPFC→lHC, rHC→MPFC, rHC→rInsula and rInsula→lHC. First, the medication effect is a confounding factor. Second, as with most fMRI studies, the subjects׳ thoughts during imaging are difficult to control. The brain regions in these altered connections, such as the HC, insula, MPFC and IPC, all play important roles in emotional processing, suggesting that these altered connections may be conducive to better distinguish between BD and UD. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance.

    PubMed

    Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo

    2015-01-01

    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.

  10. Test-Retest Reproducibility of the Intrinsic Default Mode Network: Influence of Functional Magnetic Resonance Imaging Slice-Order Acquisition and Head-Motion Correction Methods.

    PubMed

    Marchitelli, Rocco; Collignon, Olivier; Jovicich, Jorge

    2017-03-01

    Head motion is a known challenge in resting-state functional magnetic resonance imaging studies for biasing functional connectivity (FC) among distinct anatomical regions. These persist even with small motion, limiting comparisons of groups with different head-motion characteristics. This motivates an interest in the optimization of acquisition and correction strategies to minimize motion sensitivity. In this test-retest (TRT) study of healthy young volunteers (N = 23), we investigate the effects of slice-order acquisitions (sequential or interleaved) and head-motion correction methods (volume- or slice-based) on the TRT reproducibility of intrinsic connectivity of the default mode network (DMN). We evaluated the TRT reproducibility of the entire DMN and each main node using the absolute percentage error, intraclass correlation coefficient (ICC), and the Jaccard coefficient. Regardless of slice-order acquisition, the slice-based motion correction method systematically estimated larger motion and returned significantly higher temporal signal-to-noise ratio. Although consistently extracted across all acquisition and motion correction approaches, DMN connectivity was sensitive to these choices. However, the TRT reproducibility of the whole DMN was stable and showed no sensitivity to the methods tested (absolute reproducibility ∼7%, ICC = 0.47, and Jaccard = 40%). Percentage errors and ICCs were consistent across single nodes, but the Jaccard coefficients were not. The posterior cingulate was the most reproducible node (Jaccard = 52%), whereas the anterior cingulate was the least reproducible (Jaccard = 30%). Our study suggests that the slice-order and motion correction methods evaluated offer comparable sensitivity to detect DMN connectivity changes in a longitudinal study of individuals with low head-motion characteristics, but that controlling for the consistency in acquisition and correction protocols is important in cross-sectional studies.

  11. Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study.

    PubMed

    Jovicich, Jorge; Minati, Ludovico; Marizzoni, Moira; Marchitelli, Rocco; Sala-Llonch, Roser; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Fiedler, Ute; Roccatagliata, Luca; Picco, Agnese; Nobili, Flavio; Blin, Oliver; Bombois, Stephanie; Lopes, Renaud; Bordet, Régis; Sein, Julien; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Ferretti, Antonio; Caulo, Massimo; Aiello, Marco; Cavaliere, Carlo; Soricelli, Andrea; Parnetti, Lucilla; Tarducci, Roberto; Floridi, Piero; Tsolaki, Magda; Constantinidis, Manos; Drevelegas, Antonios; Rossini, Paolo Maria; Marra, Camillo; Schönknecht, Peter; Hensch, Tilman; Hoffmann, Karl-Titus; Kuijer, Joost P; Visser, Pieter Jelle; Barkhof, Frederik; Frisoni, Giovanni B

    2016-01-01

    To date, limited data are available regarding the inter-site consistency of test-retest reproducibility of functional connectivity measurements, in particular with regard to integrity of the Default Mode Network (DMN) in elderly participants. We implemented a harmonized resting-state fMRI protocol on 13 clinical scanners at 3.0T using vendor-provided sequences. Each site scanned a group of 5 healthy elderly participants twice, at least a week apart. We evaluated inter-site differences and test-retest reproducibility of both temporal signal-to-noise ratio (tSNR) and functional connectivity measurements derived from: i) seed-based analysis (SBA) with seed in the posterior cingulate cortex (PCC), ii) group independent component analysis (ICA) separately for each site (site ICA), and iii) consortium ICA, with group ICA across the whole consortium. Despite protocol harmonization, significant and quantitatively important inter-site differences remained in the tSNR of resting-state fMRI data; these were plausibly driven by hardware and pulse sequence differences across scanners which could not be harmonized. Nevertheless, the tSNR test-retest reproducibility in the consortium was high (ICC=0.81). The DMN was consistently extracted across all sites and analysis methods. While significant inter-site differences in connectivity scores were found, there were no differences in the associated test-retest error. Overall, ICA measurements were more reliable than PCC-SBA, with site ICA showing higher reproducibility than consortium ICA. Across the DMN nodes, the PCC yielded the most reliable measurements (≈4% test-retest error, ICC=0.85), the medial frontal cortex the least reliable (≈12%, ICC=0.82) and the lateral parietal cortices were in between (site ICA). Altogether these findings support usage of harmonized multisite studies of resting-state functional connectivity to characterize longitudinal effects in studies that assess disease progression and treatment response.

  12. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    PubMed

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  13. Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children

    ERIC Educational Resources Information Center

    Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

    2011-01-01

    A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…

  14. Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children

    ERIC Educational Resources Information Center

    Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

    2011-01-01

    A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…

  15. Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case-control and traditional case-control designs.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping

    2017-03-01

    Abnormal regional activity and functional connectivity of the default-mode network (DMN) have been reported in schizophrenia. However, previous studies may have been biased by unmatched case-control design. To limit such bias, the present study used both the family-based case-control design and the traditional case-control design to investigate abnormal regional activity of the DMN in patients with schizophrenia at rest.Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 age-, sex-matched unaffected siblings of the patients (family-based controls, FBC), and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The group-independent component analysis and fractional amplitude of low-frequency fluctuation (fALFF) methods were used to analyze the data.Patients with schizophrenia show increased fALFF in an overlapped region of the right superior medial prefrontal cortex (MPFC) relative to the FBC and the HC. Compared with the HC, the patients and the FBC exhibit increased fALFF in an overlapped region of the left posterior cingulate cortex/precuneus (PCC/PCu). Furthermore, the z values of the 2 overlapped regions can separate the patients from the FBC/HC, and separate the patients/FBC from the HC with relatively high sensitivity and specificity.Both the family-based case-control and traditional case-control designs reveal hyperactivity of the DMN in first-episode, drug-naive patients with paranoid schizophrenia, which highlights the importance of the DMN in the neurobiology of schizophrenia. Family-based case-control design can limit the confounding effects of environmental factors in schizophrenia. Combination of the family-based case-control and traditional case-control designs may be a viable option for the neuroimaging studies.

  16. Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case–control and traditional case–control designs

    PubMed Central

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping

    2017-01-01

    Abstract Abnormal regional activity and functional connectivity of the default-mode network (DMN) have been reported in schizophrenia. However, previous studies may have been biased by unmatched case–control design. To limit such bias, the present study used both the family-based case–control design and the traditional case–control design to investigate abnormal regional activity of the DMN in patients with schizophrenia at rest. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 age-, sex-matched unaffected siblings of the patients (family-based controls, FBC), and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The group-independent component analysis and fractional amplitude of low-frequency fluctuation (fALFF) methods were used to analyze the data. Patients with schizophrenia show increased fALFF in an overlapped region of the right superior medial prefrontal cortex (MPFC) relative to the FBC and the HC. Compared with the HC, the patients and the FBC exhibit increased fALFF in an overlapped region of the left posterior cingulate cortex/precuneus (PCC/PCu). Furthermore, the z values of the 2 overlapped regions can separate the patients from the FBC/HC, and separate the patients/FBC from the HC with relatively high sensitivity and specificity. Both the family-based case–control and traditional case–control designs reveal hyperactivity of the DMN in first-episode, drug-naive patients with paranoid schizophrenia, which highlights the importance of the DMN in the neurobiology of schizophrenia. Family-based case–control design can limit the confounding effects of environmental factors in schizophrenia. Combination of the family-based case–control and traditional case–control designs may be a viable option for the neuroimaging studies. PMID:28353559

  17. A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days.

    PubMed

    Zhu, David C; Covassin, Tracey; Nogle, Sally; Doyle, Scarlett; Russell, Doozie; Pearson, Randolph L; Monroe, Jeffrey; Liszewski, Christine M; DeMarco, J Kevin; Kaufman, David I

    2015-03-01

    Current diagnosis and monitoring of sports-related concussion rely on clinical signs and symptoms, and balance, vestibular, and neuropsychological examinations. Conventional brain imaging often does not reveal abnormalities. We sought to assess if the longitudinal change of functional and structural connectivity of the default-mode network (DMN) can serve as a potential biomarker. Eight concussed Division I collegiate football student-athletes in season (one participated twice) and 11 control subjects participated in this study. ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing) was administered over the course of recovery. High-resolution three dimensional T1-weighted, T2*-weighted diffusion-tensor images and resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from each subject within 24 h, 7±1 d and 30±1 d after concussion. Both network based and whole-brain based functional correlation analyses on DMN were performed. ImPACT findings demonstrated significant cognitive impairment across multiple categories and a significant increase of symptom severity on Day 1 following a concussion but full recovery by 6.0±2.4 d. While the structural connectivity within DMN and gross anatomy appeared unchanged, a significantly reduced functional connectivity within DMN from Day 1 to Day 7 was found in the concussed group in this small pilot study. This reduction was seen in eight of our nine concussion cases. Compared with the control group, there appears a general trend of increased DMN functional connectivity on Day 1, a significant drop on Day 7, and partial recovery on Day 30. The results of this pilot study suggest that the functional connectivity of DMN measured with longitudinal rs-fMRI can serve as a potential biomarker to monitor the dynamically changing brain function after sports-related concussion, even in patients who have shown clinical improvement.

  18. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.

    PubMed

    Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L

    2013-12-01

    Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal

  19. Amyloid burden in the hippocampus and default mode network: relationships with gray matter volume and cognitive performance in mild stage Alzheimer disease.

    PubMed

    Chang, Ya-Ting; Huang, Chi-Wei; Chang, Yen-Hsiang; Chen, Nai-Ching; Lin, Kun-Ju; Yan, Tzu-Chen; Chang, Wen-Neng; Chen, Sz-Fan; Lui, Chun-Chung; Lin, Pin-Hsuan; Chang, Chiung-Chih

    2015-04-01

    Amyloid load, as measured by florbetapir positron emission tomography (PET) standardized uptake value ratio (SUVr), has high specificity in the diagnosis of Alzheimer disease (AD). As the posterior cingulate cortex (PCC) represents densely amyloid-affected regions early in AD, we hypothesized that amyloid load within the key hubs of the default mode networks (DMN) may result in local or distant interconnected gray matter (GM) volume atrophy, thereby affecting cognitive performance. Thirty AD patients with a clinical dementia rating sum of box score ≤2 were enrolled and underwent cognitive evaluation, 3-dimensional T1-weighted imaging and florbetapir PET. Volumes of interest (VOIs) included the hippocampus, lateral temporal region, and key hubs of the DMN [anterior cingulate cortex (ACC), PCC, posterior parietal, and precuneus]. The SUVr was calculated by florbetapir standard uptake value (SUV) within the T1-weighted image segmented GM VOIs divided by the cerebellar GM SUV. Our results suggested inverse correlations between ACC (ρ = -0.444, P = 0.016) and PCC SUVr (ρ = -0.443, P = 0.016) with PCC GM volume. In stepwise regression, the orientation scores were associated with PCC SUVr (β = 2.584, P = 0.02) and posterior parietal volume (β = -0.446, P = 0.04), whereas the word recall score was related to hippocampal volume (β = -0.391, P = 0.04). After removing the patients with a hippocampal VOI below the lowest tertile and adjusting for age, an inverse correlation was found between hippocampal volume and SUVr in the ACC (partial σ = -0.639, P = 0.002), precuneus (partial σ = -0.692, P = 0.002), and lateral temporal SUVr (partial σ = -0.604, P = 0.005). Our results suggest that amyloid burden within the key DMN regions may contribute to local and distant GM atrophy, and that this may explain the cognitive scores.

  20. Dysfunction of the Default Mode Network in Drug-Naïve Parkinson’s Disease with Mild Cognitive Impairments: A Resting-State fMRI Study

    PubMed Central

    Hou, Yanbing; Yang, Jing; Luo, Chunyan; Song, Wei; Ou, Ruwei; Liu, Wanglin; Gong, Qiyong; Shang, Huifang

    2016-01-01

    Objective: Cognitive impairments are common in Parkinson’s disease (PD) and can even occur in the early stages. The default mode network (DMN) is highly relevant for cognitive processes; however, it remains largely unknown if changes in the DMN connectivity are related to the cognitive decline in drug-naïve early stage PD patients with a mild cognitive impairment (MCI). This study used resting-state functional MRI (fMRI) to explore the brain connectivity of the DMN in early stage drug-naïve PD patients with MCI. Method: We recruited 32 early stage drug-naïve PD patients and 22 matched healthy controls (HC). Among the PD patients, 14 were classified as having MCI (PD-MCI) and 18 were classified as having unimpaired cognition (PD-CU). The functional integration of the DMN was evaluated by a seed-based correlation approach. Results: The brain connectivity analysis revealed reduced functional connectivity (FC) in both PD subgroups compared with HC. The PD-MCI group showed a significant reduction in FC between the DMN and a set of regions, including the precentral gyrus, middle temporal gyrus, insula, anterior inferior parietal lobule and middle frontal gyrus. Compared to the PD-CU group, the PD-MCI group demonstrated a significantly decreased FC in the middle frontal and middle temporal gyri. Additionally, compared to HC, the PD-MCI group had a significantly decreased FC within the DMN, mainly in the FC between the hippocampal formation and inferior frontal gyrus, between the posterior cingulate cortex and posterior inferior parietal lobule, and between the anterior temporal lobe and inferior frontal gyrus. Compared to the PD-CU group, the only significantly decreased FC within the DMN in the PD-MCI group was between the anterior temporal lobe and inferior frontal gyrus. In all PD patients, the decreased FC between anterior temporal lobe and middle temporal gyrus was positively correlated with attention/working performance, and the reduced FC between the

  1. Alterations in default-mode network connectivity may be influenced by cerebrovascular changes within 1 week of sports related concussion in college varsity athletes: a pilot study.

    PubMed

    Militana, Adam R; Donahue, Manus J; Sills, Allen K; Solomon, Gary S; Gregory, Andrew J; Strother, Megan K; Morgan, Victoria L

    2016-06-01

    The goal of this pilot study is to use complementary MRI strategies to quantify and relate cerebrovascular reactivity, resting cerebral blood flow and functional connectivity alterations in the first week following sports concussion in college varsity athletes. Seven college athletes (3F/4M, age = 19.7 ± 1.2 years) were imaged 3-6 days following a diagnosed sports related concussion and compared to eleven healthy controls with no history of concussion (5M/6F, 18-23 years, 7 athletes). Cerebrovascular reactivity and functional connectivity were measured using functional MRI during a hypercapnia challenge and via resting-state regional partial correlations, respectively. Resting cerebral blood flow was quantified using arterial spin labeling MRI methods. Group comparisons were made within and between 18 regions of interest. Cerebrovascular reactivity was increased after concussion when averaged across all regions of interest (p = 0.04), and within some default-mode network regions, the anterior cingulate and the right thalamus (p < 0.05) independently. The FC was increased in the concussed athletes within the default-mode network including the left and right hippocampus, precuneus and ventromedial prefrontal cortex (p < 0.01), with measures being linearly related to cerebrovascular reactivity in the hippocampus in the concussed athletes. Significant resting cerebral blood flow changes were not detected between the two groups. This study provides evidence for increased cerebrovascular reactivity and functional connectivity in the medial regions of the default-mode network within days of a single sports related concussion in college athletes. Our findings emphasize the utility of complementary cerebrovascular measures in the interpretation of alterations in functional connectivity following concussion.

  2. scMRI Reveals Large-Scale Brain Network Abnormalities in Autism

    PubMed Central

    Zielinski, Brandon A.; Anderson, Jeffrey S.; Froehlich, Alyson L.; Prigge, Molly B. D.; Nielsen, Jared A.; Cooperrider, Jason R.; Cariello, Annahir N.; Fletcher, P. Thomas; Alexander, Andrew L.; Lange, Nicholas; Bigler, Erin D.; Lainhart, Janet E.

    2012-01-01

    Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a ‘posteriorization’ of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI. PMID:23185305

  3. Exploring default mode and information flow on the web.

    PubMed

    Oka, Mizuki; Ikegami, Takashi

    2013-01-01

    Social networking services (e.g., Twitter, Facebook) are now major sources of World Wide Web (called "Web") dynamics, together with Web search services (e.g., Google). These two types of Web services mutually influence each other but generate different dynamics. In this paper, we distinguish two modes of Web dynamics: the reactive mode and the default mode. It is assumed that Twitter messages (called "tweets") and Google search queries react to significant social movements and events, but they also demonstrate signs of becoming self-activated, thereby forming a baseline Web activity. We define the former as the reactive mode and the latter as the default mode of the Web. In this paper, we investigate these reactive and default modes of the Web's dynamics using transfer entropy (TE). The amount of information transferred between a time series of 1,000 frequent keywords in Twitter and the same keywords in Google queries is investigated across an 11-month time period. Study of the information flow on Google and Twitter revealed that information is generally transferred from Twitter to Google, indicating that Twitter time series have some preceding information about Google time series. We also studied the information flow among different Twitter keywords time series by taking keywords as nodes and flow directions as edges of a network. An analysis of this network revealed that frequent keywords tend to become an information source and infrequent keywords tend to become sink for other keywords. Based on these findings, we hypothesize that frequent keywords form the Web's default mode, which becomes an information source for infrequent keywords that generally form the Web's reactive mode. We also found that the Web consists of different time resolutions with respect to TE among Twitter keywords, which will be another focal point of this paper.

  4. Default Mode of Brain Function in Monkeys

    PubMed Central

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  5. Integration and Segregation of Default Mode Network Resting-state Functional Connectivity in Transition-age Males with High-functioning Autism Spectrum Disorder: A Proof of Concept Study.

    PubMed

    Joshi, Gagan; Arnold Anteraper, Sheeba; Patil, Kaustubh; Semwal, Meha; Goldin, Rachel; Furtak, Stephannie; Chai, Xiaoqian Jenny; Saygin, Zeynep; Gabrieli, John D; Biederman, Joseph; Whitfield-Gabrieli, Susan

    2017-09-24

    To assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level dependent functional MRI (fMRI) data were acquired from adolescent and young adult males with high-functioning ASD (N=15) and from age-, sex-, and IQ-matched healthy controls (HC; N=16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular and inferior temporal gyrii regions). RsFc data analysis was performed using a seed driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra- DMN positive and negative RsFc correlations respectively. In ASD the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrii regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of sub-grouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of the DMN RsFc. Future studies with larger sample sizes are warranted. Key Words: autism spectrum disorder, resting-state fMRI, default mode network.

  6. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.

    PubMed

    Chen, Colleen P; Keown, Christopher L; Jahedi, Afrooz; Nair, Aarti; Pflieger, Mark E; Bailey, Barbara A; Müller, Ralph-Axel

    2015-01-01

    Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain abnormalities in ASD occur at the level of interconnected networks; however, previous attempts using functional connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE) including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was used for diagnostic classification, implementing several machine learning tools. While support vector machines in combination with particle swarm optimization and recursive feature elimination performed modestly (with accuracies for validation datasets <70%), diagnostic classification reached a high accuracy of 91% with random forest (RF), a nonparametric ensemble learning method. Among the 100 most informative features (connectivities), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and subcortical regions stood out. Whereas some of these findings were expected, given previous findings of default mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regions was remarkable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain biomarkers of ASD may be regionally complex and distributed, rather than localized.

  7. Independent component model of the default-mode brain function: Assessing the impact of active thinking.

    PubMed

    Esposito, Fabrizio; Bertolino, Alessandro; Scarabino, Tommaso; Latorre, Valeria; Blasi, Giuseppe; Popolizio, Teresa; Tedeschi, Gioacchino; Cirillo, Sossio; Goebel, Rainer; Di Salle, Francesco

    2006-10-16

    The "default-mode" network is an ensemble of cortical regions, which are typically deactivated during demanding cognitive tasks in functional magnetic resonance imaging (fMRI) studies. Using functional connectivity, this network can be conceptualized and studied as a "stand-alone" function or system. Regardless of the task, independent component analysis (ICA) produces a picture of the "default-mode" function even when the subject is performing a simple sensori-motor task or just resting in the scanner. This has boosted the use of default-mode fMRI for non-invasive research in brain disorders. Here, we studied the effect of cognitive load modulation of fMRI responses on the ICA-based pictures of the default-mode function. In a standard graded working memory study based on the n-back task, we used group-level ICA to explore the variability of the default-mode network related to the engagement in the task, in 10 healthy volunteers. The analysis of the default-mode components highlighted similarities and differences in the layout under three different cognitive loads. We found a load-related general increase of deactivation in the cortical network. Nonetheless, a variable recruitment of the cingulate regions was evident, with greater extension of the anterior and lesser extension of the posterior clusters when switching from lower to higher working memory loads. A co-activation of the hippocampus was only found under no working memory load. As a generalization of our results, the variability of the default-mode pattern may link the default-mode system as a whole to cognition and may more directly support use of the ICA model for evaluating cognitive decline in brain disorders.

  8. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network.

    PubMed

    Markett, Sebastian; Montag, Christian; Heeren, Behrend; Saryiska, Rayna; Lachmann, Bernd; Weber, Bernd; Reuter, Martin

    2016-06-01

    Functional connections between brain regions constitute the substrate of the human functional connectome, whose topography has been discussed as an endophenotype for psychiatric disorders. Genetic influences on the entire connectome, however, have been rarely investigated so far. We tested for connectome-wide influences of the val158met (rs4860) polymorphism on the catechol-O-methyltransferase (COMT) gene by applying formal network analysis and eigenvector centrality mapping on the voxel level to resting-state functional magnetic imaging data. This approach finds brain regions that are central in the network by aggregating local and global connectivity patterns, most importantly without the requirement to select regions or networks of interest. The COMT variant linked to high enzyme activity increased network centrality in distributed brain areas that are known to constitute the brain's default mode network. Further results also indicated a COMT influence on areas implicated in the somatomotor network. These findings are in line with the polymorphism's alleged role in cognitive processing and its role in psychotic disorders. The study is the first to demonstrate the influence of a functional and behaviorally relevant genetic variant on connectome-wide functional connectivity and is an important step toward establishing the functional connectome as an endophenotype for psychiatric and behavioral phenotypes.

  9. Coordinate-Based Meta-Analysis of the Default Mode and Salience Network for Target Identification in Non-Invasive Brain Stimulation of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Networks.

    PubMed

    Pievani, Michela; Pini, Lorenzo; Ferrari, Clarissa; Pizzini, Francesca B; Boscolo Galazzo, Ilaria; Cobelli, Chiara; Cotelli, Maria; Manenti, Rosa; Frisoni, Giovanni B

    2017-01-01

    The accurate choice of the site of non-invasive brain stimulation (NIBS) is an important factor in trial design. Based on the observation that Alzheimer's disease (AD) and behavioral frontotemporal dementia (bvFTD) affect specific large-scale networks, i.e., the default mode network (DMN) and the salience network (SN), respectively, we aimed to identify population-average coordinates of these networks that could be used as potential targets in NIBS trials aiming to modulate these circuits. A systematic literature search of resting-state functional MRI studies reporting DMN and SN stereotactic coordinates was performed according to PRISMA guidelines. Coordinate-based meta-analyses were conducted to identify consistent nodes of the DMN and SN using GingerALE BrainMap software and the activation likelihood estimation method. DMN coordinates mapped primarily to mesial areas (posterior cingulate cortex/precuneus [Brodmann Area - BA 23/31] and medial prefrontal cortex [BA 9/10/32]). More superficial areas mapped to the bilateral parietal (angular gyrus [BA 39]), temporal (middle gyrus [BA 21]) and dorsolateral prefrontal (superior gyrus [BA 8]) cortex. SN coordinates mapped primarily to mesial and deep frontal areas (anterior insula, anterior cingulate cortex [BA 24/32]), but more superficial areas mapped to the bilateral parietal (supramarginal gyrus [BA 40]) and the right dorsolateral prefrontal (middle gyrus [BA 9/10]) cortex. NIBS should target the bilateral angular, the middle temporal cortex, or superior frontal gyri in AD for DMN modulation, and the right middle frontal or supramarginal gyri in bvFTD for SN modulation.

  10. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network-A multimodal approach.

    PubMed

    Boraxbekk, Carl-Johan; Salami, Alireza; Wåhlin, Anders; Nyberg, Lars

    2016-05-01

    One step toward healthy brain aging may be to entertain a physically active lifestyle. Studies investigating physical activity effects on brain integrity have, however, mainly been based on single brain markers, and few used a multimodal imaging approach. In the present study, we used cohort data from the Betula study to examine the relationships between scores reflecting current and accumulated physical activity and brain health. More specifically, we first examined if physical activity scores modulated negative effects of age on seven resting state networks previously identified by Salami, Pudas, and Nyberg (2014). The results revealed that one of the most age-sensitive RSN was positively altered by physical activity, namely, the posterior default-mode network involving the posterior cingulate cortex (PCC). Second, within this physical activity-sensitive RSN, we further analyzed the association between physical activity and gray matter (GM) volumes, white matter integrity, and cerebral perfusion using linear regression models. Regions within the identified DMN displayed larger GM volumes and stronger perfusion in relation to both current and 10-years accumulated scores of physical activity. No associations of physical activity and white matter integrity were observed. Collectively, our findings demonstrate strengthened PCC-cortical connectivity within the DMN, larger PCC GM volume, and higher PCC perfusion as a function of physical activity. In turn, these findings may provide insights into the mechanisms of how long-term regular exercise can contribute to healthy brain aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Chief Role of Frontal Operational Module of the Brain Default Mode Network in the Potential Recovery of Consciousness from the Vegetative State: A Preliminary Comparison of Three Case Reports

    PubMed Central

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2016-01-01

    It has been argued that complex subjective sense of self is linked to the brain default-mode network (DMN). Recent discovery of heterogeneity between distinct subnets (or operational modules - OMs) of the DMN leads to a reconceptualization of its role for the experiential sense of self. Considering the recent proposition that the frontal DMN OM is responsible for the first-person perspective and the sense of agency, while the posterior DMN OMs are linked to the continuity of ‘I’ experience (including autobiographical memories) through embodiment and localization within bodily space, we have tested in this study the hypothesis that heterogeneity in the operational synchrony strength within the frontal DMN OM among patients who are in a vegetative state (VS) could inform about a stable self-consciousness recovery later in the course of disease (up to six years post-injury). Using EEG operational synchrony analysis we have demonstrated that among the three OMs of the DMN only the frontal OM showed important heterogeneity in VS patients as a function of later stable clinical outcome. We also found that the frontal DMN OM was characterized by the process of active uncoupling (stronger in persistent VS) of operations performed by the involved neuronal assemblies. PMID:27347264

  12. The Chief Role of Frontal Operational Module of the Brain Default Mode Network in the Potential Recovery of Consciousness from the Vegetative State: A Preliminary Comparison of Three Case Reports.

    PubMed

    Fingelkurts, Alexander A; Fingelkurts, Andrew A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2016-01-01

    It has been argued that complex subjective sense of self is linked to the brain default-mode network (DMN). Recent discovery of heterogeneity between distinct subnets (or operational modules - OMs) of the DMN leads to a reconceptualization of its role for the experiential sense of self. Considering the recent proposition that the frontal DMN OM is responsible for the first-person perspective and the sense of agency, while the posterior DMN OMs are linked to the continuity of 'I' experience (including autobiographical memories) through embodiment and localization within bodily space, we have tested in this study the hypothesis that heterogeneity in the operational synchrony strength within the frontal DMN OM among patients who are in a vegetative state (VS) could inform about a stable self-consciousness recovery later in the course of disease (up to six years post-injury). Using EEG operational synchrony analysis we have demonstrated that among the three OMs of the DMN only the frontal OM showed important heterogeneity in VS patients as a function of later stable clinical outcome. We also found that the frontal DMN OM was characterized by the process of active uncoupling (stronger in persistent VS) of operations performed by the involved neuronal assemblies.

  13. The brain's code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease.

    PubMed

    Turkheimer, Federico E; Leech, Robert; Expert, Paul; Lord, Louis-David; Vernon, Anthony C

    2015-08-01

    A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone.

    PubMed

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2016-01-01

    To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity.

  15. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  16. Increased default-mode variability is related to reduced task-performance and is evident in adults with ADHD.

    PubMed

    Mowinckel, Athanasia M; Alnæs, Dag; Pedersen, Mads L; Ziegler, Sigurd; Fredriksen, Mats; Kaufmann, Tobias; Sonuga-Barke, Edmund; Endestad, Tor; Westlye, Lars T; Biele, Guido

    2017-01-01

    Insufficient suppression and connectivity of the default mode network (DMN) is a potential mediator of cognitive dysfunctions across various disorders, including attention deficit/hyperactivity disorder (ADHD). However, it remains unclear if alterations in sustained DMN suppression, variability and connectivity during prolonged cognitive engagement are implicated in adult ADHD pathophysiology, and to which degree methylphenidate (MPH) remediates any DMN abnormalities. This randomized, double-blinded, placebo-controlled, cross-over clinical trial of MPH (clinicaltrials.gov/ct2/show/NCT01831622) explored large-scale brain network dynamics in 20 adults with ADHD on and off MPH, compared to 27 healthy controls, while performing a reward based decision-making task. DMN task-related activation, variability, and connectivity were estimated and compared between groups and conditions using independent component analysis, dual regression, and Bayesian linear mixed models. The results show that the DMN exhibited more variable activation patterns in unmedicated patients compared to healthy controls. Group differences in functional connectivity both between and within functional networks were evident. Further, functional connectivity between and within attention and DMN networks was sensitive both to task performance and case-control status. MPH altered within-network connectivity of the DMN and visual networks, but not between-network connectivity or temporal variability. This study thus provides novel fMRI evidence of reduced sustained DMN suppression in adults with ADHD during value-based decision-making, a pattern that was not alleviated by MPH. We infer from multiple analytical approaches further support to the default mode interference hypothesis, in that higher DMN activation variability is evident in adult ADHD and associated with lower task performance.

  17. Emotional detachment in psychopathy: Involvement of dorsal default-mode connections.

    PubMed

    Sethi, Arjun; Gregory, Sarah; Dell'Acqua, Flavio; Periche Thomas, Eva; Simmons, Andy; Murphy, Declan G M; Hodgins, Sheilagh; Blackwood, Nigel J; Craig, Michael C

    2015-01-01

    Criminal psychopathy is defined by emotional detachment [Psychopathy Checklist - Revised (PCL-R) factor 1], and antisocial behaviour (PCL-R factor 2). Previous work has associated antisocial behaviour in psychopathy with abnormalities in a ventral temporo-amygdala-orbitofrontal network. However, little is known of the neural correlates of emotional detachment. Imaging studies have indicated that the 'default-mode network' (DMN), and in particular its dorsomedial (medial prefrontal - posterior cingulate) component, contributes to affective and social processing in healthy individuals. Furthermore, recent work suggests that this network may be implicated in psychopathy. However, no research has examined the relationship between psychopathy, emotional detachment, and the white matter underpinning the DMN. We therefore used diffusion tensor imaging (DTI) tractography in 13 offenders with psychopathy and 13 non-offenders to investigate the relationship between emotional detachment and the microstructure of white matter connections within the DMN. These included the dorsal cingulum (containing the medial prefrontal - posterior cingulate connections of the DMN), and the ventral cingulum (containing the posterior cingulate - medial temporal connections of the DMN). We found that fractional anisotropy (FA) was reduced in the left dorsal cingulum in the psychopathy group (p = .024). Moreover, within this group, emotional detachment was negatively correlated with FA in this tract portion bilaterally (left: r = -.61, p = .026; right: r = -.62, p = .023). These results suggest the importance of the dorsal DMN in the emotional detachment observed in individuals with psychopathy. We propose a 'dual-network' model of white matter abnormalities in the disorder, which incorporates these with previous findings.

  18. Increased "default mode" activity in adolescents prenatally exposed to cocaine.

    PubMed

    Li, Zhihao; Santhanam, Priya; Coles, Claire D; Lynch, Mary Ellen; Hamann, Stephan; Peltier, Scott; Hu, Xiaoping

    2011-05-01

    Prenatal cocaine exposure (PCE) is associated with attention/arousal dysregulation and possible inefficiencies in some cognitive functions. However, the neurobiological bases of these teratogenic effects have not been well characterized. Because activities in the default mode network (DMN) reflect intrinsic brain functions that are closely associated with arousal regulation and cognition, alterations in the DMN could underlie cognitive effects related to PCE. With resting-state and task activation functional magnetic resonance imaging (fMRI), this study investigated the possible PCE related changes in functional brain connectivity and brain activation in the DMN. In the resting state, the PCE group was found to have stronger functional connectivity in the DMN, as compared to the nonexposed controls. During a working memory task with emotional distracters, the PCE group exhibited less deactivation in the DMN and their fMRI signal was more increased by emotional arousal. These data revealed additional neural effects related to PCE, and consistent with previous findings, indicate that PCE may affect behavior and functioning by increasing baseline arousal and altering the excitatory/inhibitory balancing mechanisms involved in cognitive resource allocation. Copyright © 2010 Wiley-Liss, Inc.

  19. Reduced Default Mode Connectivity in Adolescents With Conduct Disorder.

    PubMed

    Broulidakis, M John; Fairchild, Graeme; Sully, Kate; Blumensath, Thomas; Darekar, Angela; Sonuga-Barke, Edmund J S

    2016-09-01

    Conduct disorder (CD) is characterized by impulsive, aggressive, and antisocial behaviors that might be related to deficits in empathy and moral reasoning. The brain's default mode network (DMN) has been implicated in self-referential cognitive processes of this kind. This study examined connectivity between key nodes of the DMN in 29 adolescent boys with CD and 29 age- and sex-matched typically developing adolescent boys. The authors ensured that group differences in DMN connectivity were not explained by comorbidity with other disorders by systematically controlling for the effects of substance use disorders (SUDs), attention-deficit/hyperactivity disorder (ADHD) symptoms, psychopathic traits, and other common mental health problems. Only after adjusting for co-occurring ADHD symptoms, the group with CD showed hypoconnectivity between core DMN regions compared with typically developing controls. ADHD symptoms were associated with DMN hyperconnectivity. There was no effect of psychopathic traits on DMN connectivity in the group with CD, and the key results were unchanged when controlling for SUDs and other common mental health problems. Future research should directly investigate the possibility that the aberrant DMN connectivity observed in the present study contributes to CD-related deficits in empathy and moral reasoning and examine self-referential cognitive processes in CD more generally. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  20. Echoes of the Brain within Default Mode, Association, and Heteromodal Cortices

    PubMed Central

    Braga, Rodrigo M.; Sharp, David J.; Leeson, Clare; Wise, Richard J.S.

    2013-01-01

    Intrinsic connectivity networks (ICNs), such as the default mode, frontoparietal control, and salience networks, provide a useful large-scale description of the functional architecture of the brain. Although ICNs are functionally specialized, the information that they process needs to be integrated for coherent cognition, perception, and behavior. A region capable of performing this integration might be expected to contain traces, or “echoes,” of the neural signals from multiple ICNs. Here, using fMRI in humans, we show the existence of specific “transmodal” regions containing echoes of multiple ICNs. These regions include core nodes of the default mode network, as well as multimodal association regions of the temporoparietal and temporo-occipito-parietal junction, right middle frontal gyrus, and dorsal anterior cingulate cortex. In contrast, “unimodal” regions such as the primary sensory and motor cortices show a much more singular pattern of activity, containing traces of few or even single ICNs. The presence of ICN echoes might explain how transmodal regions are involved in multiple different cognitive states. Our results suggest that these transmodal regions have a particular local spatial organization containing topographic maps that relate to multiple ICNs. This makes transmodal regions uniquely placed to be able to mediate the cross talk between the brain's functional networks through local modulation of adjacent regions that communicate with different ICNs. PMID:23986239

  1. Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

    PubMed

    Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay

    2016-03-01

    Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance.

  2. "Default mode functional connectivity is associated with social functioning in schizophrenia": Correction to Fox et al. (2017).

    PubMed

    2017-07-01

    Reports an error in "Default mode functional connectivity is associated with social functioning in schizophrenia" by Jaclyn M. Fox, Samantha V. Abram, James L. Reilly, Shaun Eack, Morris B. Goldman, John G. Csernansky, Lei Wang and Matthew J. Smith (Journal of Abnormal Psychology, 2017[May], Vol 126[4], 392-405). In the article, the email address of corresponding author Matthew J. Smith was set as matthewsmith@northwestern.edu. It should have been mattjsmi@umich.edu. The online version of this article has been corrected. (The following abstract of the original article appeared in record 2017-14073-001.) Individuals with schizophrenia display notable deficits in social functioning. Research indicates that neural connectivity within the default mode network (DMN) is related to social cognition and social functioning in healthy and clinical populations. However, the association between DMN connectivity, social cognition, and social functioning has not been studied in schizophrenia. For the present study, the authors used resting-state neuroimaging data to evaluate connectivity between the main DMN hubs (i.e., the medial prefrontal cortex [mPFC] and the posterior cingulate cortex-anterior precuneus [PPC]) in individuals with schizophrenia (n = 28) and controls (n = 32). The authors also examined whether DMN connectivity was associated with social functioning via social attainment (measured by the Specific Levels of Functioning Scale) and social competence (measured by the Social Skills Performance Assessment), and if social cognition mediates the association between DMN connectivity and these measures of social functioning. Results revealed that DMN connectivity did not differ between individuals with schizophrenia and controls. However, connectivity between the mPFC and PCC hubs was significantly associated with social competence and social attainment in individuals with schizophrenia but not in controls as reflected by a significant group-by-connectivity interaction

  3. On the relationship between the “default mode network” and the “social brain”

    PubMed Central

    Mars, Rogier B.; Neubert, Franz-Xaver; Noonan, MaryAnn P.; Sallet, Jerome; Toni, Ivan; Rushworth, Matthew F. S.

    2012-01-01

    The default mode network (DMN) of the brain consists of areas that are typically more active during rest than during active task performance. Recently however, this network has been shown to be activated by certain types of tasks. Social cognition, particularly higher-order tasks such as attributing mental states to others, has been suggested to activate a network of areas at least partly overlapping with the DMN. Here, we explore this claim, drawing on evidence from meta-analyses of functional MRI data and recent studies investigating the structural and functional connectivity of the social brain. In addition, we discuss recent evidence for the existence of a DMN in non-human primates. We conclude by discussing some of the implications of these observations. PMID:22737119

  4. Alerted default mode: functional connectivity changes in the aftermath of social stress

    PubMed Central

    Clemens, Benjamin; Wagels, Lisa; Bauchmüller, Magdalena; Bergs, Rene; Habel, Ute; Kohn, Nils

    2017-01-01

    Stress affects the brain at a network level: the salience network is supposedly upregulated, while at the same time the executive control network is downregulated. While theoretically described, the effects in the aftermath of stress have thus far not been tested empirically. Here, we compared for the first time resting-state functional connectivity in a large sample of healthy volunteers before and after a mild social stressor. Following the theoretical prediction, we focused on connectivity of the salience network (SN), the executive control network (ECN) and the default mode network (DMN). The DMN exhibited increased resting-state functional connectivity following the cyberball task to the key nodes of the SN, namely the dorsal anterior cingulate cortex (dACC) and the anterior insula, as well as sensorimotor regions and higher-order visual areas. We conclude that this increased connectivity of the DMN with key nodes of the SN and regions responsible for preparatory motor activity and visual motion processing indicates a shift towards an ‘alerted default mode’ in the aftermath of stress. This brain response may be triggered or aggravated by (social) stress induced by the cyberball task, enabling individuals to better reorient attention, detect salient external stimuli, and deal with the emotional and affective consequences of stress. PMID:28054651

  5. Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia

    PubMed Central

    Wang, Huaning; Zeng, Ling-Li; Chen, Yunchun; Yin, Hong; Tan, Qingrong; Hu, Dewen

    2015-01-01

    The default mode network (DMN) is suggested to play a pivotal role in schizophrenia; however, the dissociation pattern of functional connectivity of DMN subsystems remains uncharacterized in this disease. In this study, resting-state fMRI data were acquired from 55 schizophrenic patients and 53 matched healthy controls. DMN connectivity was estimated from time courses of independent components. The lateral DMN exhibited decreased connectivity with the unimodal sensorimotor cortex but increased connectivity with the heteromodal association areas in schizophrenics. The increased connectivity between the lateral DMN and right control network was significantly correlated with negative and anergia factor scores in the schizophrenic patients. The anterior and posterior DMNs exhibited increased and decreased connectivity with the right control and lateral visual networks, respectively, in schizophrenics. The altered DMN connectivity may underlie the hallucinations, delusions, thought disturbances, and negative symptoms involved in schizophrenia. Furthermore, DMN connectivity patterns could be used to differentiate patients from controls with 76.9% accuracy. These findings may shed new light on the distinct role of DMN subsystems in schizophrenia, thereby furthering our understanding of the pathophysiology of schizophrenia. Elucidating key disease-related DMN subsystems is critical for identifying treatment targets and aiding in the clinical diagnosis and development of treatment strategies. PMID:26419213

  6. Top-down regulation of default mode activity in spatial visual attention

    PubMed Central

    Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou

    2013-01-01

    Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood-oxygen-level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN→DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN→TCN, are negatively correlated with behavioral performance. Third, stronger DMN→TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN→DMN and DMN BOLD activity is unsystematic. These results suggest that during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842

  7. Inter-hemispherical asymmetry in default-mode functional connectivity and BAIAP2 gene are associated with anger expression in ADHD adults.

    PubMed

    Hasler, R; Preti, M G; Meskaldji, D E; Prados, J; Adouan, W; Rodriguez, C; Toma, S; Hiller, N; Ismaili, T; Hofmeister, J; Sinanaj, I; Baud, P; Haller, S; Giannakopoulos, P; Schwartz, S; Perroud, N; Van De Ville, D

    2017-11-30

    Attention deficit hyperactivity disorder (ADHD) is accompanied by resting-state alterations, including abnormal activity, connectivity and asymmetry of the default-mode network (DMN). Concurrently, recent studies suggested a link between ADHD and the presence of polymorphisms within the gene BAIAP2 (i.e., brain-specific angiogenesis inhibitor 1-associated protein 2), known to be differentially expressed in brain hemispheres. The clinical and neuroimaging correlates of this polymorphism are still unknown. We investigated the association between BAIAP2 polymorphisms and DMN functional connectivity (FC) asymmetry as well as behavioral measures in ADHD adults. Resting-state fMRI was acquired from 30 ADHD and 15 healthy adults. For each subject, rs7210438 and rs8079626 within the gene BAIAP2 were genotyped. ADHD severity, impulsiveness and anger were assessed for the ADHD group. Using multivariate analysis of variance, we found that genetic features do have an impact on DMN FC asymmetry. In particular, polymorphism rs8079626 affects medial frontal gyrus and inferior parietal lobule connectivity asymmetry, lower for AA than AG/GG carriers. Further, when combining FC asymmetry and the presence of the rs8079626 variant, we successfully predicted increased externalization of anger in ADHD. In conclusion, a complex interplay between genetic vulnerability and inter-hemispherical DMN FC asymmetry plays a role in emotion regulation in adult ADHD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity.

    PubMed

    Berkovich-Ohana, Aviva; Glicksohn, Joseph; Goldstein, Abraham

    2014-10-01

    The default mode network (DMN) has been largely studied by imaging, but not yet by neurodynamics, using electroencephalography (EEG) functional connectivity (FC). mindfulness meditation (MM), a receptive, non-elaborative training is theorized to lower DMN activity. We explored: (i) the usefulness of EEG-FC for investigating the DMN and (ii) the MM-induced EEG-FC effects. To this end, three MM groups were compared with controls, employing EEG-FC (-MPC, mean phase coherence). Our results show that: (i) DMN activity was identified as reduced overall inter-hemispheric gamma MPC during the transition from resting state to a time production task and (ii) MM-induced a state increase in alpha MPC as well as a trait decrease in EEG-FC. The MM-induced EEG-FC decrease was irrespective of expertise or band. Specifically, there was a relative reduction in right theta MPC, and left alpha and gamma MPC. The left gamma MPC was negatively correlated with MM expertise, possibly related to lower internal verbalization. The trait lower gamma MPC supports the notion of MM-induced reduction in DMN activity, related with self-reference and mind-wandering. This report emphasizes the possibility of studying the DMN using EEG-FC as well as the importance of studying meditation in relation to it.

  9. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.

    PubMed

    Shumskaya, Elena; van Gerven, Marcel A J; Norris, David G; Vos, Pieter E; Kessels, Roy P C

    2017-03-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three moderate/severe TBI patients and 34 healthy controls (HC) underwent resting-state fMRI. Group ICA was applied to identify RSNs. Between-subject analysis was performed using dual regression. Multiple linear regressions were used to investigate the relationship between abnormal connectivity strength and neuropsychological outcome. Forty (93%) TBI patients showed moderate disability, while 2 (5%) and 1 (2%) upper severe disability and low good recovery, respectively. TBI patients performed worse than HC on the domains attention and language. We found increased connectivity in sensorimotor, visual, default mode (DMN), executive, and cerebellar RSNs after TBI. We demonstrated an effect of connectivity in the sensorimotor RSN on attention (p < 10(-3)) and a trend towards a significant effect of the DMN connectivity on attention (p = 0.058). A group-by-network interaction on attention was found in the sensorimotor network (p = 0.002). In TBI, attention was positively related to abnormal connectivity within the sensorimotor RSN, while in HC this relation was negative. Our results show altered patterns of functional connectivity after TBI. Attention impairments in TBI were associated with increased connectivity in the sensorimotor network. Further research is needed to test whether attention in TBI patients is directly affected by changes in functional connectivity in the sensorimotor network or whether the effect is actually driven by changes in the DMN.

  10. Abnormal functional networks in resting-state of the sub-cortical chronic stroke patients with hemiplegia.

    PubMed

    Zhang, Ye; Wang, Li; Yang, Jun; Yan, Rubing; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Liu, Hongliang; Qiu, Mingguo

    2017-05-15

    The aim of this study is to identify the properties of the motor network and the default-mode network (DMN) of the sub-cortical chronic stroke patients, and to study the relationship between the network connectivity and the neurological scales of the stroke patients. Twenty-eight chronic stroke patients (28-77days post-stroke) and twenty-eight healthy control subjects (HCs) were recruited. Independent component analysis (ICA) was performed to obtain the motor network and the DMN. Two sample t-tests was used to compare the differences of the motor network and the DMN between the patients and HCs. Additionally, correlations between the network connectivity and the behavioral scores of the stroke patients were studied. Compared with the HCs, the motor network connectivity of the stroke patients was significantly increased in the contralesional superior parietal lobule, but decreased in ipsilesional M1. The DMN connectivity of the stroke patients was significantly increased in the contralesional middle frontal gyrus, but decreased in bilateral precuneus, ipsilesional supramarginal and angular gyrus. Moreover, the motor network connectivity of the contralesional superior parietal lobule was positively correlated with the Fugl-Meyer assessment (FMA) score of the stroke patients. Our results showed abnormal motor network and DMN during the resting-state of the stroke patients, suggesting that resting-state network connectivity could serve as biomarkers for future stroke studies. Brain-behavior relationships could be taken into account while evaluating stroke patients. Copyright © 2017. Published by Elsevier B.V.

  11. Distinct intrinsic functional brain network abnormalities in methamphetamine-dependent patients with and without a history of psychosis.

    PubMed

    Ipser, Jonathan C; Uhlmann, Anne; Taylor, Paul; Harvey, Brian H; Wilson, Don; Stein, Dan J

    2016-12-05

    Chronic methamphetamine use is associated with executive functioning deficits that suggest dysfunctional cognitive control networks (CCNs) in the brain. Likewise, abnormal connectivity between intrinsic CCNs and default mode networks (DMNs) has also been associated with poor cognitive function in clinical populations. Accordingly, we tested the extent to which methamphetamine use predicts abnormal connectivity between these networks, and whether, as predicted, these abnormalities are compounded in patients with a history of methamphetamine-associated psychosis (MAP). Resting-state fMRI data were acquired from 46 methamphetamine-dependent patients [19 with MAP, 27 without (MD)], as well as 26 healthy controls (CTRL). Multivariate network modelling and whole-brain voxel-wise connectivity analyses were conducted to identify group differences in intrinsic connectivity across four cognitive control and three DMN networks identified using an independent components analysis approach (meta-ICA). The relationship of network connectivity and psychotic symptom severity, as well as antipsychotic treatment and methamphetamine use variables, was also investigated. Robust evidence of hyper-connectivity was observed between the right frontoparietal and anterior DMN networks in MAP patients, and 'normalized' with increased duration of treatment with antipsychotics. Attenuation of anticorrelated anterior DMN-dorsal attention network activity was also restricted to this group. Elevated coupling detected in MD participants between anterior and posterior DMN networks became less apparent with increasing duration of abstinence from methamphetamine. In summary, we observed both alterations of RSN connectivity between DMN networks with chronic methamphetamine exposure, as well as DMN-CCN coupling abnormalities consistent with possible MAP-specific frontoparietal deficits in the biasing of task-appropriate network activity. © 2016 Society for the Study of Addiction.

  12. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.

    PubMed

    Maldjian, Joseph A; Davenport, Elizabeth M; Whitlow, Christopher T

    2014-08-01

    Interhemispheric connectivity with resting state MEG has been elusive, and demonstration of the default mode network (DMN) yet more challenging. Recent seed-based MEG analyses have shown interhemispheric connectivity using power envelope correlations. The purpose of this study is to compare graph theoretic maps of brain connectivity generated using MEG with and without signal leakage correction to evaluate for the presence of interhemispheric connectivity. Eight minutes of resting state eyes-open MEG data were obtained in 22 normal male subjects enrolled in an IRB-approved study (ages 16-18). Data were processed using an in-house automated MEG processing pipeline and projected into standard (MNI) source space at 7mm resolution using a scalar beamformer. Mean beta-band amplitude was sampled at 2.5second epochs from the source space time series. Leakage correction was performed in the time domain of the source space beam formed signal prior to amplitude transformation. Graph theoretic voxel-wise source space correlation connectivity analysis was performed for leakage corrected and uncorrected data. Degree maps were thresholded across subjects for the top 20% of connected nodes to identify hubs. Additional degree maps for sensory, visual, motor, and temporal regions were generated to identify interhemispheric connectivity using laterality indices. Hubs for the uncorrected MEG networks were predominantly symmetric and midline, bearing some resemblance to fMRI networks. These included the cingulate cortex, bilateral inferior frontal lobes, bilateral hippocampal formations and bilateral cerebellar hemispheres. These uncorrected networks however, demonstrated little to no interhemispheric connectivity using the ROI-based degree maps. Leakage corrected MEG data identified the DMN, with hubs in the posterior cingulate and biparietal areas. These corrected networks demonstrated robust interhemispheric connectivity for the ROI-based degree maps. Graph theoretic analysis of

  13. Aberrant default-mode functional and structural connectivity in heroin-dependent individuals.

    PubMed

    Ma, Xiaofen; Qiu, Yingwei; Tian, Junzhang; Wang, Jinhui; Li, Shumei; Zhan, Wenfeng; Wang, Tianyue; Zeng, Shaoqing; Jiang, Guihua; Xu, Yikai

    2015-01-01

    Little is known about connectivity within the default mode network (DMN) in heroin-dependent individuals (HDIs). In the current study, diffusion-tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) were combined to investigate both structural and functional connectivity within the DMN in HDIs. Fourteen HDIs and 14 controls participated in the study. Structural (path length, tracts count, (fractional anisotropy) FA and (mean diffusivity) MD derived from DTI tractography)and functional (temporal correlation coefficient derived from rs-fMRI) DMN connectivity changes were examined in HDIs. Pearson correlation analysis was performed to compare the structural/functional indices and duration of heroin use/Iowa gambling task(IGT) performance in HDIs. HDIs had lower FA and higher MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to right parahippocampal gyrus (PHG), compared to the controls. HDIs also had decreased FA and track count in the tract connecting the PCC/PCUN and medial prefrontal cortex (MPFC), as well as decreased functional connectivity between the PCC/PCUN and bilateral PHG and MPFC, compared to controls. FA values for the tract connecting PCC/PCUN to the right PHG and connecting PCC/PCUN to the MPFC were negatively correlated to the duration of heroin use. The temporal correlation coefficients between the PCC/PCUN and the MPFC, and the FA values for the tract connecting the PCC/PCUN to the MPFC were positively correlated to IGT performance in HDIs. Structural and functional connectivity within the DMN are both disturbed in HDIs. This disturbance progresses as duration of heroin use increases and is related to deficits in decision making in HDIs.

  14. Longitudinal changes of amygdala and default mode activation in adolescents prenatally exposed to cocaine

    PubMed Central

    Li, Zhihao; Coles, Claire D.; Lynch, Mary Ellen; Luo, Yuejia; Hu, Xiaoping

    2015-01-01

    Prenatal cocaine exposure (PCE) is associated with long-term and negative effect on arousal regulation. Recent neuroimaging studies have examined brain mechanisms related to arousal dysregulation with cross-sectional experimental designs; but longitudinal changes in the brain, reflecting group differences in neurodevelopment, have never been directly examined. To directly assess the interaction of PCE and neurodevelopment, the present study used a longitudinal design to analyze functional magnetic resonance imaging (fMRI) data collected from 33 adolescents (21 with PCE and 12 non-exposed controls) while they performed the same working memory task with emotional distracters at two points in time. The mean age of participants was 14.3 years at time_1 and 16.7 years at time_2. With confounding factors statistically controlled, the fMRI data revealed significant exposure-by-time interaction in the activations of the amygdala and default mode network (DMN). For the control adolescents, brain activations associated with emotional arousal (amygdala) and cognitive effort (DMN) were both reduced at time_2 as compared to that at time_1. However, these activation reductions were not observed in the PCE group, indicating persistently high levels of emotional arousal and cognitive effort. In addition, correlations between longitudinal changes in the brain and in behavior have shown that adolescents with persistently high emotional arousal were more likely in need of high cognitive effort; and their cognitive performance was more likely to be affected by distractive challenges. The present results complement and extend previous findings from cross-sectional studies with further evidence supporting the view of PCE associated long-term teratogenic effects on arousal regulation. PMID:26577285

  15. Default Mode Functional Connectivity Is Associated With Social Functioning in Schizophrenia.