Science.gov

Sample records for abnormal dendritic spine

  1. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo

    PubMed Central

    Nagaoka, Akira; Takehara, Hiroaki; Hayashi-Takagi, Akiko; Noguchi, Jun; Ishii, Kazuhiko; Shirai, Fukutoshi; Yagishita, Sho; Akagi, Takanori; Ichiki, Takanori; Kasai, Haruo

    2016-01-01

    Dendritic spine generation and elimination play an important role in learning and memory, the dynamics of which have been examined within the neocortex in vivo. Spine turnover has also been detected in the absence of specific learning tasks, and is frequently exaggerated in animal models of autistic spectrum disorder (ASD). The present study aimed to examine whether the baseline rate of spine turnover was activity-dependent. This was achieved using a microfluidic brain interface and open-dura surgery, with the goal of abolishing neuronal Ca2+ signaling in the visual cortex of wild-type mice and rodent models of fragile X syndrome (Fmr1 knockout [KO]). In wild-type and Fmr1 KO mice, the majority of baseline turnover was found to be activity-independent. Accordingly, the application of matrix metalloproteinase-9 inhibitors selectively restored the abnormal spine dynamics observed in Fmr1 KO mice, without affecting the intrinsic dynamics of spine turnover in wild-type mice. Such findings indicate that the baseline turnover of dendritic spines is mediated by activity-independent intrinsic dynamics. Furthermore, these results suggest that the targeting of abnormal intrinsic dynamics might pose a novel therapy for ASD. PMID:27221801

  2. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo.

    PubMed

    Nagaoka, Akira; Takehara, Hiroaki; Hayashi-Takagi, Akiko; Noguchi, Jun; Ishii, Kazuhiko; Shirai, Fukutoshi; Yagishita, Sho; Akagi, Takanori; Ichiki, Takanori; Kasai, Haruo

    2016-01-01

    Dendritic spine generation and elimination play an important role in learning and memory, the dynamics of which have been examined within the neocortex in vivo. Spine turnover has also been detected in the absence of specific learning tasks, and is frequently exaggerated in animal models of autistic spectrum disorder (ASD). The present study aimed to examine whether the baseline rate of spine turnover was activity-dependent. This was achieved using a microfluidic brain interface and open-dura surgery, with the goal of abolishing neuronal Ca(2+) signaling in the visual cortex of wild-type mice and rodent models of fragile X syndrome (Fmr1 knockout [KO]). In wild-type and Fmr1 KO mice, the majority of baseline turnover was found to be activity-independent. Accordingly, the application of matrix metalloproteinase-9 inhibitors selectively restored the abnormal spine dynamics observed in Fmr1 KO mice, without affecting the intrinsic dynamics of spine turnover in wild-type mice. Such findings indicate that the baseline turnover of dendritic spines is mediated by activity-independent intrinsic dynamics. Furthermore, these results suggest that the targeting of abnormal intrinsic dynamics might pose a novel therapy for ASD. PMID:27221801

  3. Dendritic spine dysgenesis in neuropathic pain.

    PubMed

    Tan, Andrew M; Waxman, Stephen G

    2015-08-01

    Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies. PMID:25445354

  4. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.

    PubMed

    Nithianantharajah, J; Hannan, A J

    2013-10-22

    Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. In this review we will focus on synapse and spine pathology in HD, including molecular and experience-dependent aspects of pathogenesis. Dendritic spine pathology has been found in both the human HD brain at post mortem as well as various transgenic and knock-in animal models. These changes may help explain the symptoms in HD, and synaptopathy within the cerebral cortex may be particularly important in mediating the psychiatric and cognitive manifestations of this disease. The earliest stages of synaptic dysfunction in HD, as assayed in various mouse models, appears to involve changes in synaptic proteins and associated physiological abnormalities such as synaptic plasticity deficits. In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease. PMID:22633949

  5. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  6. Dendritic Spine Pathology in Neurodegenerative Diseases.

    PubMed

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  7. Plasticity of Dendritic Spines: Subcompartmentalization of Signaling

    PubMed Central

    Colgan, Lesley A.; Yasuda, Ryohei

    2014-01-01

    The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level. PMID:24215443

  8. Plasticity of dendritic spines: subcompartmentalization of signaling.

    PubMed

    Colgan, Lesley A; Yasuda, Ryohei

    2014-01-01

    The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density and actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level. PMID:24215443

  9. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines. PMID:25367027

  10. Mu-opioid receptors modulate the stability of dendritic spines.

    PubMed

    Liao, Dezhi; Lin, Hang; Law, Ping Yee; Loh, Horace H

    2005-02-01

    Opioids classically regulate the excitability of neurons by suppressing synaptic GABA release from inhibitory neurons. Here, we report a role for opioids in modulating excitatory synaptic transmission. By activating ubiquitously clustered mu-opioid receptor (MOR) in excitatory synapses, morphine caused collapse of preexisting dendritic spines and decreased synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Meanwhile, the opioid antagonist naloxone increased the density of spines. Chronic treatment with morphine decreased the density of dendritic spines even in the presence of Tetrodotoxin, a sodium channel blocker, indicating that the morphine's effect was not caused by altered activity in neural network through suppression of GABA release. The effect of morphine on dendritic spines was absent in transgenic mice lacking MORs and was blocked by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2), a mu-receptor antagonist. These data together with others suggest that endogenous opioids and/or constitutive activity of MORs participate in maintaining normal morphology and function of spines, challenging the classical model of opioids. Abnormal alteration of spines may occur in drug addiction when opioid receptors are overactivated by exogenous opiates. PMID:15659552

  11. The discovery of dendritic spines by Cajal

    PubMed Central

    Yuste, Rafael

    2015-01-01

    Dendritic spines were considered an artifact of the Golgi method until a brash Spanish histologist, Santiago Ramón y Cajal, bet his scientific career arguing that they were indeed real, correctly deducing their key role in mediating synaptic connectivity. This article reviews the historical context of the discovery of spines and the reasons behind Cajal's obsession with them, all the way till his deathbed. PMID:25954162

  12. The discovery of dendritic spines by Cajal.

    PubMed

    Yuste, Rafael

    2015-01-01

    Dendritic spines were considered an artifact of the Golgi method until a brash Spanish histologist, Santiago Ramón y Cajal, bet his scientific career arguing that they were indeed real, correctly deducing their key role in mediating synaptic connectivity. This article reviews the historical context of the discovery of spines and the reasons behind Cajal's obsession with them, all the way till his deathbed. PMID:25954162

  13. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo

    PubMed Central

    Liston, Conor; Gan, Wen-Biao

    2011-01-01

    Glucocorticoids are a family of hormones that coordinate diverse physiological processes in responding to stress. Prolonged glucocorticoid exposure over weeks has been linked to dendritic atrophy and spine loss in fixed tissue studies of adult brains, but it is unclear how glucocorticoids may affect the dynamic processes of dendritic spine formation and elimination in vivo. Furthermore, relatively few studies have examined the effects of stress and glucocorticoids on spines during the postnatal and adolescent period, which is characterized by rapid synaptogenesis followed by protracted synaptic pruning. To determine whether and to what extent glucocorticoids regulate dendritic spine development and plasticity, we used transcranial two-photon microscopy to track the formation and elimination of dendritic spines in vivo after treatment with glucocorticoids in developing and adult mice. Corticosterone, the principal murine glucocorticoid, had potent dose-dependent effects on dendritic spine dynamics, increasing spine turnover within several hours in the developing barrel cortex. The adult barrel cortex exhibited diminished baseline spine turnover rates, but these rates were also enhanced by corticosterone. Similar changes occurred in multiple cortical areas, suggesting a generalized effect. However, reducing endogenous glucocorticoid activity by dexamethasone suppression or corticosteroid receptor antagonists caused a substantial reduction in spine turnover rates, and the former was reversed by corticosterone replacement. Notably, we found that chronic glucocorticoid excess led to an abnormal loss of stable spines that were established early in life. Together, these findings establish a critical role for glucocorticoids in the development and maintenance of dendritic spines in the living cortex. PMID:21911374

  14. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  15. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  16. Endoplasmic reticulum calcium stores in dendritic spines

    PubMed Central

    Segal, Menahem; Korkotian, Eduard

    2014-01-01

    Despite decades of research, the role of calcium stores in dendritic spines structure, function and plasticity is still debated. The reasons for this may have to do with the multitude of overlapping calcium handling machineries in the neuron, including stores, voltage and ligand gated channels, pumps and transporters. Also, different cells in the brain are endowed with calcium stores that are activated by different receptor types, and their differential compartmentalization in dendrites, spines and presynaptic terminals complicates their analysis. In the present review we address several key issues, including the role of calcium stores in synaptic plasticity, their role during development, in stress and in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal survival. PMID:25071469

  17. Astrocytes refine cortical connectivity at dendritic spines

    PubMed Central

    Risher, W Christopher; Patel, Sagar; Kim, Il Hwan; Uezu, Akiyoshi; Bhagat, Srishti; Wilton, Daniel K; Pilaz, Louis-Jan; Singh Alvarado, Jonnathan; Calhan, Osman Y; Silver, Debra L; Stevens, Beth; Calakos, Nicole; Soderling, Scott H; Eroglu, Cagla

    2014-01-01

    During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.001 PMID:25517933

  18. Organization of TNIK in dendritic spines.

    PubMed

    Burette, Alain C; Phend, Kristen D; Burette, Susan; Lin, Qingcong; Liang, Musen; Foltz, Gretchen; Taylor, Noël; Wang, Qi; Brandon, Nicholas J; Bates, Brian; Ehlers, Michael D; Weinberg, Richard J

    2015-09-01

    Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling. PMID:25753355

  19. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling

    PubMed Central

    Chen, Yu; Liang, Zhuoyi; Fei, Erkang; Chen, Yuewen; Zhou, Xiaopu; Fang, Weiqun; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization. PMID:26204446

  20. Glia selectively approach synapses on thin dendritic spines.

    PubMed

    Medvedev, Nikolai; Popov, Victor; Henneberger, Christian; Kraev, Igor; Rusakov, Dmitri A; Stewart, Michael G

    2014-10-19

    This paper examines the relationship between the morphological modality of 189 dendritic spines and the surrounding astroglia using full three-dimensional reconstructions of neuropil fragments. An integrative measure of three-dimensional glial coverage confirms that thin spine postsynaptic densities are more tightly surrounded by glia. This distinction suggests that diffusion-dependent synapse-glia communication near 'learning' synapses (associated with thin spines) could be stronger than that near 'memory' synapses (associated with larger spines). PMID:25225105

  1. Location-dependent synaptic plasticity rules by dendritic spine cooperativity

    PubMed Central

    Weber, Jens P.; Andrásfalvy, Bertalan K.; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B.; Makara, Judit K.

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca2+ signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca2+ signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na+ spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  2. Location-dependent synaptic plasticity rules by dendritic spine cooperativity.

    PubMed

    Weber, Jens P; Andrásfalvy, Bertalan K; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B; Makara, Judit K

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  3. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  4. Musical representation of dendritic spine distribution: a new exploratory tool.

    PubMed

    Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier

    2014-04-01

    Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general. PMID:24395057

  5. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  6. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) knockout mice.

    PubMed

    Koyama, Yoshihisa; Hattori, Tsuyoshi; Nishida, Tomoki; Hori, Osamu; Tohyama, Masaya

    2015-01-01

    Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO) mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy (UHVEM) combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs) in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons. PMID:25983680

  7. Electrical behaviour of dendritic spines as revealed by voltage imaging

    PubMed Central

    Popovic, Marko A.; Carnevale, Nicholas; Rozsa, Balazs; Zecevic, Dejan

    2015-01-01

    Thousands of dendritic spines on individual neurons process information and mediate plasticity by generating electrical input signals using a sophisticated assembly of transmitter receptors and voltage-sensitive ion channel molecules. Our understanding, however, of the electrical behaviour of spines is limited because it has not been possible to record input signals from these structures with adequate sensitivity and spatiotemporal resolution. Current interpretation of indirect data and speculations based on theoretical considerations are inconclusive. Here we use an electrochromic voltage-sensitive dye which acts as a transmembrane optical voltmeter with a linear scale to directly monitor electrical signals from individual spines on thin basal dendrites. The results show that synapses on these spines are not electrically isolated by the spine neck to a significant extent. Electrically, they behave as if they are located directly on dendrites. PMID:26436431

  8. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  9. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis.

    PubMed

    Tan, Andrew M; Samad, Omar A; Liu, Shujun; Bandaru, Samira; Zhao, Peng; Waxman, Stephen G

    2013-10-01

    Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. Ipsilateral WDR neurons in the spinal cord dorsal horn exhibited hyperexcitability in response to a range of stimuli applied to their hindpaw receptive fields. Because dendritic spine morphology is strongly associated with synaptic function and transmission, we profiled dendritic spine shape, density, and distribution of WDR neurons. Dendritic spine dysgenesis was observed on ipsilateral WDR neurons in burn-injured animals exhibiting behavioral and electrophysiological evidence of neuropathic pain. Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury. PMID:23933578

  10. Sodium pump organization in dendritic spines.

    PubMed

    Blom, Hans; Bernhem, Kristoffer; Brismar, Hjalmar

    2016-10-01

    Advancement in fluorescence imaging with the invention of several super-resolution microscopy modalities (e.g., PALM/STORM and STED) has opened up the possibility of deciphering molecular distributions on the nanoscale. In our quest to better elucidate postsynaptic protein distribution in dendritic spines, we have applied these nanoscopy methods, where generated results could help improve our understanding of neuronal functions. In particular, we have investigated the principal energy transformer in the brain, i.e., the [Formula: see text]-ATPase (or sodium pump), an essential protein responsible for maintaining resting membrane potential and a major controller of intracellular ion homeostasis. In these investigations, we have focused on estimates of protein amount, giving assessments of how variations may depend on labeling strategies, sample analysis, and choice of nanoscopic imaging method, concluding that all can be critical factors for quantification. We present a comparison of these results and discuss the influences this may have for homeostatic sodium regulation in neurons and energy consumption. PMID:27175374

  11. A Neurocomputational Method for Fully Automated 3D Dendritic Spine Detection and Segmentation of Medium-sized Spiny Neurons

    PubMed Central

    Zhang, Yong; Chen, Kun; Baron, Matthew; Teylan, Merilee A.; Kim, Yong; Song, Zhihuan; Greengard, Paul

    2010-01-01

    Acquisition and quantitative analysis of high resolution images of dendritic spines are challenging tasks but are necessary for the study of animal models of neurological and psychiatric diseases. Currently available methods for automated dendritic spine detection are for the most part customized for 2D image slices, not volumetric 3D images. In this work, a fully automated method is proposed to detect and segment dendritic spines from 3D confocal microscopy images of medium-sized spiny neurons (MSNs). MSNs constitute a major neuronal population in striatum, and abnormalities in their function are associated with several neurological and psychiatric diseases. Such automated detection is critical for the development of new 3D neuronal assays which can be used for the screening of drugs and the studies of their therapeutic effects. The proposed method utilizes a generalized gradient vector flow (GGVF) with a new smoothing constraint and then detects feature points near the central regions of dendrites and spines. Then, the central regions are refined and separated based on eigen-analysis and multiple shape measurements. Finally, the spines are segmented in 3D space using the fast marching algorithm, taking the detected central regions of spines as initial points. The proposed method is compared with three popular existing methods for centerline extraction and also with manual results for dendritic spine detection in 3D space. The experimental results and comparisons show that the proposed method is able to automatically and accurately detect, segment, and quantitate dendritic spines in 3D images of MSNs. PMID:20100579

  12. A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks

    PubMed Central

    Petersen, Jennifer D.; Racz, Bence; Sheng, Morgan; Choquet, Daniel

    2014-01-01

    Excitatory glutamatergic synapses at dendritic spines exchange and modulate their receptor content via lateral membrane diffusion. Several studies have shown that the thin spine neck impedes the access of membrane and solute molecules to the spine head. However, it is unclear whether the spine neck geometry alone restricts access to dendritic spines or if a physical barrier to the diffusion of molecules exists. Here, we investigated whether a complex of septin cytoskeletal GTPases localized at the base of the spine neck regulates diffusion across the spine neck. We found that, during development, a marker of the septin complex, Septin7 (Sept7), becomes localized to the spine neck where it forms a stable structure underneath the plasma membrane. We show that diffusion of receptors and bulk membrane, but not cytoplasmic proteins, is slower in spines bearing Sept7 at their neck. Finally, when Sept7 expression was suppressed by RNA interference, membrane molecules explored larger membrane areas. Our findings indicate that Sept7 regulates membrane protein access to spines. PMID:25494357

  13. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.

    PubMed

    Acker, Corey D; Hoyos, Erika; Loew, Leslie M

    2016-01-01

    EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5-30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (R neck) plays in spine EPSP amplitudes. Simulations used to estimate R neck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23-420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean R neck estimate of 204 MΩ (range, 52-521 MΩ; N = 34). PMID:27257618

  14. Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases

    PubMed Central

    Woolfrey, Kevin M.; Srivastava, Deepak P.

    2016-01-01

    Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders. PMID:26989514

  15. Dendritic Spines in Depression: What We Learned from Animal Models.

    PubMed

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133

  16. Dendritic Spines in Depression: What We Learned from Animal Models

    PubMed Central

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133

  17. Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons.

    PubMed

    Korkotian, Eduard; Holcman, David; Segal, Menahem

    2004-11-01

    We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the parent dendrites of only short, but not long, spines. Delayed elevated fluorescence in the dendrite of the short spines was also seen with a membrane-bound fluorophore and fluorescence recovery from bleaching of a calcium-bound fluorophore had a much slower kinetics, indicating that the dendritic fluorescence change reflects a genuine diffusion of free [Ca2+]i from the spine head to the parent dendrite. Calcium diffusion between spine head and the parent dendrite was regulated by calcium stores as well as by a Na-Ca exchanger. Spine length varied with the recent history of the [Ca2+]i variations in the spine, such that small numbers of calcium transients resulted in elongation of spines whereas large numbers of calcium transients caused shrinkage of the spines. Consequently, spine elongation resulted in a complete isolation of the spine from the dendrite, while shrinkage caused an enhanced coupling with the parent dendrite. These studies highlight a dynamically regulated coupling between a dendritic spine head and its parent dendrite. PMID:15548208

  18. Paradoxical Signaling Regulates Structural Plasticity in Dendritic Spines

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Levy, Michael; Khan, Shahid; Oster, George

    2016-02-01

    Transient spine enlargement (3-5 min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium-influx due to NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks and their role is to control both the activation and inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion including CaMKII, RhoA, and Cdc42 and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics.

  19. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    PubMed

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  20. Paradoxical signaling regulates structural plasticity in dendritic spines.

    PubMed

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  1. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  2. Stably maintained dendritic spines are associated with lifelong memories

    PubMed Central

    Yang, Guang; Pan, Feng; Gan, Wen-Biao

    2016-01-01

    Changes in synaptic connections are considered essential for learning and memory formation1–6. However, it is unknown how neural circuits undergo continuous synaptic changes during learning while maintaining lifelong memories. Here we show, by following postsynaptic dendritic spines over time in the mouse cortex7–8, that learning and novel sensory experience lead to spine formation and elimination by a protracted process. The extent of spine remodelling correlates with behavioural improvement after learning, suggesting a crucial role of synaptic structural plasticity in memory formation and storage. Importantly, a small fraction of new spines induced by novel experience, together with most spines formed early during development and surviving experience-dependent elimination, are preserved throughout the entire life of an animal. These studies indicate that learning and daily sensory experience leave minute but permanent marks on cortical connections and suggest that lifelong memories are stored in largely stably connected synaptic networks. PMID:19946265

  3. Neurogranin regulates CaM dynamics at dendritic spines

    PubMed Central

    Petersen, Amber; Gerges, Nashaat Z.

    2015-01-01

    Calmodulin (CaM) plays a key role in synaptic function and plasticity due to its ability to mediate Ca2+ signaling. Therefore, it is essential to understand the dynamics of CaM at dendritic spines. In this study we have explored CaM dynamics using live-cell confocal microscopy and fluorescence recovery after photobleaching (FRAP) to study CaM diffusion. We find that only a small fraction of CaM in dendritic spines is immobile. Furthermore, the diffusion rate of CaM was regulated by neurogranin (Ng), a CaM-binding protein enriched at dendritic spines. Interestingly, Ng did not influence the immobile fraction of CaM at recovery plateau. We have previously shown that Ng enhances synaptic strength in a CaM-dependent manner. Taken together, these data indicate that Ng-mediated enhancement of synaptic strength is due to its ability to target, rather than sequester, CaM within dendritic spines. PMID:26084473

  4. β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis.

    PubMed

    Gao, Yuanzheng; Perkins, Emma M; Clarkson, Yvonne L; Tobia, Steven; Lyndon, Alastair R; Jackson, Mandy; Rothstein, Jeffrey D

    2011-11-16

    Mutations in the gene encoding β-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length β-III spectrin (β-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking β-III spectrin, reveal a critical role for β-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from β-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old β-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old β-III⁻/⁻ mice. These findings highlight a critical role of β-III spectrin in dendritic biology and are consistent with an early developmental defect in β-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis. PMID:22090485

  5. Measuring F-actin properties in dendritic spines

    PubMed Central

    Koskinen, Mikko; Hotulainen, Pirta

    2014-01-01

    During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines. PMID:25140131

  6. The dendritic spine story: an intriguing process of discovery

    PubMed Central

    DeFelipe, Javier

    2015-01-01

    Dendritic spines are key components of a variety of microcircuits and they represent the majority of postsynaptic targets of glutamatergic axon terminals in the brain. The present article will focus on the discovery of dendritic spines, which was possible thanks to the application of the Golgi technique to the study of the nervous system, and will also explore the early interpretation of these elements. This discovery represents an interesting chapter in the history of neuroscience as it shows us that progress in the study of the structure of the nervous system is based not only on the emergence of new techniques but also on our ability to exploit the methods already available and correctly interpret their microscopic images. PMID:25798090

  7. Polarity Determinants in Dendritic Spine Development and Plasticity

    PubMed Central

    Zhang, Huaye

    2016-01-01

    The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry. PMID:26839714

  8. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  9. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine

    PubMed Central

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm–RTSVM— which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  10. Impact of Dendritic Spine Preservation in Medium Spiny Neurons on Dopamine Graft Efficacy and the Expression of Dyskinesias in Parkinsonian Rats

    PubMed Central

    Soderstrom, Katherine E.; O’Malley, Jennifer A.; Levine, Nathan D.; Sortwell, Caryl E.; Collier, Timothy J.; Steece-Collier, Kathy

    2010-01-01

    Dopamine deficiency associated with Parkinson’s disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca2+ channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias, and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts. PMID:20105237

  11. [The growing spine : Normal and abnormal development].

    PubMed

    Stücker, R

    2016-06-01

    Growth of the pediatric spine occurs in phases. The first 5 years of life are characterized by rapid growth. The lower extremities and trunk contribute equally to the entire growth by 50 % each. In the following years, until the onset of puberty, a steady but reduced rate of growth is observed. During these years a T1-S1 growth of only 1 cm per year can be detected and the spine contributes only one third to the entire growth. Puberty consists of an acceleration phase lasting 2 years. In the first year of this phase the growth peak of the extremities and in the following year the growth peak of the spine can be noticed. The ensuing deceleration phase of puberty lasts for 3 years. During that period the development of the Risser sign, menarche, and fusion of the trochanter epiphysis are taking place. Clinical parameters such as sitting height, standing height, and arm span may be used to evaluate growth. Important radiological parameters include the Risser sign, the determination of skeletal age according to Greulich and Pyle, and the T1-T12 height. The use of the olecranon method during the ascending phase of puberty can be recommended. Problems of the developing spine may include malformations, developmental disruptions or deformations. According to their manifestations they have a different prognosis, which can be estimated by knowledge of residual growth and the typical course of spinal growth in childhood. PMID:27250620

  12. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins

    PubMed Central

    Heintz, Tristan G.; Eva, Richard; Fawcett, James W.

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  13. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    PubMed

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  14. Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits.

    PubMed

    Maysinger, Dusica; Gröger, Dominic; Lake, Andrew; Licha, Kai; Weinhart, Marie; Chang, Philip K-Y; Mulvey, Rose; Haag, Rainer; McKinney, R Anne

    2015-09-14

    Hyperactivity of microglia and loss of functional circuitry is a common feature of many neurological disorders including those induced or exacerbated by inflammation. Herein, we investigate the response of microglia and changes in hippocampal dendritic postsynaptic spines by dendritic polyglycerol sulfate (dPGS) treatment. Mouse microglia and organotypic hippocampal slices were exposed to dPGS and an inflammogen (lipopolysaccharides). Measurements of intracellular fluorescence and confocal microscopic analyses revealed that dPGS is avidly internalized by microglia but not CA1 pyramidal neurons. Concentration and time-dependent response studies consistently showed no obvious toxicity of dPGS. The adverse effects induced by proinflammogen LPS exposure were reduced and dendritic spine morphology was normalized with the addition of dPGS. This was accompanied by a significant reduction in nitrite and proinflammatory cytokines (TNF-α and IL-6) from hyperactive microglia suggesting normalized circuitry function with dPGS treatment. Collectively, these results suggest that dPGS acts anti-inflammatory, inhibits inflammation-induced degenerative changes in microglia phenotype and rescues dendritic spine morphology. PMID:26218295

  15. The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis.

    PubMed

    Valdez, Chris M; Murphy, Geoffrey G; Beg, Asim A

    2016-09-01

    Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity. PMID:27297944

  16. From Synaptic Transmission to Cognition: An Intermediary Role for Dendritic Spines

    ERIC Educational Resources Information Center

    Gonzalez-Burgos, Ignacio

    2012-01-01

    Dendritic spines are cytoplasmic protrusions that develop directly or indirectly from the filopodia of neurons. Dendritic spines mediate excitatory neurotransmission and they can isolate the electrical activity generated by synaptic impulses, enabling them to translate excitatory afferent information via several types of plastic changes, including…

  17. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons. PMID:26003414

  18. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  19. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  20. Spatial Distribution of DARPP-32 in Dendritic Spines

    PubMed Central

    Blom, Hans; Rönnlund, Daniel; Scott, Lena; Westin, Linda; Widengren, Jerker; Aperia, Anita; Brismar, Hjalmar

    2013-01-01

    The phosphoprotein DARPP-32 (dopamine and cyclic adenosine 3´, 5´-monophosphate-regulated phosphoprotein, 32 kDa) is an important component in the molecular regulation of postsynaptic signaling in neostriatum. Despite the importance of this phosphoprotein, there is as yet little known about the nanoscale distribution of DARPP-32. In this study we applied superresolution stimulated emission depletion microscopy (STED) to assess the expression and distribution of DARPP-32 in striatal neurons. Primary culture of striatal neurons were immunofluorescently labeled for DARPP-32 with Alexa-594 and for the dopamine D1 receptor (D1R) with atto-647N. Dual-color STED microscopy revealed discrete localizations of DARPP-32 and D1R in the spine structure, with clustered distributions in both head and neck. Dissected spine structures reveal that the DARPP-32 signal rarely overlapped with the D1R signal. The D1R receptor is positioned in an “aggregated” manner primarily in the spine head and to some extent in the neck, while DARPP-32 forms several neighboring small nanoclusters spanning the whole spine structure. The DARPP-32 clusters have a mean size of 52 +/- 6 nm, which is close to the resolution limit of the microscope and corresponds to the physical size of a few individual phosphoprotein immunocomplexes. Dissection of synaptic proteins using superresolution microscopy gives possibilities to reveal in better detail biologically relevant information, as compared to diffraction-limited microscopy. In this work, the dissected postsynaptic topology of the DARPP-32 phosphoprotein provides strong evidence for a compartmentalized and confined distribution in dendritic spines. The protein topology and the relatively low copy number of phosphoprotein provides a conception of DARPP-32’s possibilities to fine-tune the regulation of synaptic signaling, which should have an impact on the performance of the neuronal circuits in which it is expressed. PMID:24058659

  1. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation.

    PubMed

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-10-01

    Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  2. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    PubMed Central

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-01-01

    Cl− plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl− is not well understood. The role of spines in Cl− diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl− changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl− dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl− diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl− extrusion altered Cl− diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl− diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl− diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed. PMID:26987404

  3. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    NASA Astrophysics Data System (ADS)

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-01

    Cl‑ plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl‑ is not well understood. The role of spines in Cl‑ diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl‑ changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl‑ dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl‑ diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl‑ extrusion altered Cl‑ diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl‑ diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl‑ diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  4. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    PubMed Central

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  5. Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis

    PubMed Central

    Korobova, Farida

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility. PMID:19889835

  6. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    PubMed

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity. PMID:27105623

  7. Normal and abnormal spine and thoracic cage development

    PubMed Central

    Canavese, Federico; Dimeglio, Alain

    2013-01-01

    Development of the spine and thoracic cage consists of a complex series of events involving multiple metabolic processes, genes and signaling pathways. During growth, complex phenomena occur in rapid succession. This succession of events, this establishment of elements, is programmed according to a hierarchy. These events are well synchronized to maintain harmonious limb, spine and thoracic cage relationships, as growth in the various body segments does not occur simultaneously at the same magnitude or rate. In most severe cases of untreated progressive early-onset spinal deformities, respiratory insufficiency and pulmonary and cardiac hypertension (cor pulmonale), which characterize thoracic insufficiency syndrome (TIS), can develop, sometimes leading to death. TIS is the inability of the thorax to ensure normal breathing. This clinical condition can be linked to costo-vertebral malformations (e.g., fused ribs, hemivertebrae, congenital bars), neuromuscular diseases (e.g., expiratory congenital hypotonia), Jeune or Jarcho-Levin syndromes or to 50% to 75% fusion of the thoracic spine before seven years of age. Complex spinal deformities alter normal growth plate development, and vertebral bodies become progressively distorted, perpetuating the disorder. Therefore, many scoliotic deformities can become growth plate disorders over time. This review aims to provide a comprehensive review of how spinal deformities can affect normal spine and thoracic cage growth. Previous conceptualizations are integrated with more recent scientific data to provide a better understanding of both normal and abnormal spine and thoracic cage growth. PMID:24147251

  8. Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy.

    PubMed

    Schouten, Marijn; De Luca, Giulia M R; Alatriste González, Diana K; de Jong, Babette E; Timmermans, Wendy; Xiong, Hui; Krugers, Harm; Manders, Erik M M; Fitzsimons, Carlos P

    2014-01-01

    Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light's intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy's theoretical resolution limit of 200 nm. Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the

  9. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry. PMID:26211445

  10. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses.

    PubMed

    Müller, W; Connor, J A

    1991-11-01

    The possibility that postsynaptic spines on neuronal dendrites are discrete biochemical compartments for Ca(2+)-activated processes involved in synaptic plasticity is a widely proposed concept that has eluded experimental demonstration. Using microfluorometry on CA3 neurons in hippocampal slices, we show here that with weak presynaptic stimulation of associative/commissural fibres, Ca2+ accumulates in single postsynaptic spines but not in the parent dendrite. Stronger stimulation also promotes changes in dendrites. The NMDA-receptor antagonist AP-5 blocks changes in Ca2+ in spines. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, develop with repeated stimulation. The observed compartmentalization allows for the specificity, cooperativity and associativity displayed by memory models such as long-term potentiation. PMID:1682815

  11. Modulation of dendritic spines and synaptic function by Rac1: A possible link to Fragile X syndrome pathology

    PubMed Central

    Bongmba, Odelia Y. N.; Martinez, Luis A.; Elhardt, Mary E.; Butler, Karlis; Tejada-Simon, Maria V.

    2011-01-01

    Rac1, a protein of the Rho GTPase subfamily, has been implicated in neuronal and spine development as well as the formation of synapses with appropriate partners. Dendrite and spine abnormalities have been implicated in several psychiatric disorders such as Fragile-X syndrome, where neurons show a high density of long, thin, and immature dendritic spines. Although abnormalities in dendrites and spines have been correlated with impaired cognitive abilities in mental retardation, the causes of these malformations are not yet well understood. Fragile X syndrome is the most common type of inherited mental retardation caused by the absence of FMRP protein, a RNA-binding protein implicated in the regulation of mRNA translation and transport, leading to protein synthesis. We suggest that FMRP might act as a negative regulator on the synthesis of Rac1. Maintaining an optimal level of Rac1 and facilitating the reorganization of the cytoskeleton likely leads to normal neuronal morphology during activity-dependent plasticity. In our study, we first demonstrated that Rac1 is not only associated but necessary for normal spine development and long-term synaptic plasticity. We further showed that, in Fmr1 knockout mice, lack of FMRP induces an overactivation of Rac1 in the mouse brain and other organs that have been shown to be altered in Fragile X syndrome. In those animals, pharmacological manipulation of Rac1 partially reverses their altered long-term plasticity. Thus, regulation of Rac1 may provide a functional link among deficient neuronal morphology, aberrant synaptic plasticity and cognition impairment in Fragile X syndrome. PMID:21645877

  12. SUSTAINED EXPRESSION OF BDNF IS REQUIRED FOR MAINTENANCE OF DENDRITIC SPINES AND NORMAL BEHAVIOR

    PubMed Central

    VIGERS, ALISON J.; AMIN, DIPESH S.; TALLEY-FARNHAM, TIFFANY; GORSKI, JESSICA A.; XU, BAOJI; JONES, KEVIN R.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays important roles in the development, maintenance, and plasticity of the mammalian forebrain. These functions include regulation of neuronal maturation and survival, axonal and dendritic arborization, synaptic efficacy, and modulation of complex behaviors including depression and spatial learning. Although analysis of mutant mice has helped establish essential developmental functions for BDNF, its requirement in the adult is less well documented. We have studied late-onset forebrain-specific BDNF knockout (CaMK-BDNFKO) mice, in which BDNF is lost primarily from the cortex and hippocampus in early adulthood, well after BDNF expression has begun in these structures. We found that although CaMK-BDNFKO mice grew at a normal rate and can survive more than a year, they had smaller brains than wild type siblings. The CaMK-BDNFKO mice had generally normal behavior in tests for ataxia and anxiety, but displayed reduced spatial learning ability in the Morris water task and increased depression in the Porsolt swim test. These behavioral deficits were very similar to those we previously described in an early-onset forebrain-specific BDNF knockout. To identify an anatomical correlate of the abnormal behavior, we quantified dendritic spines in cortical neurons. The spine density of CaMK-BDNFKO mice was normal at P35, but by P84, there was a 30% reduction in spine density. The strong similarities we find between early- and late-onset BDNF knockouts suggests that BDNF signaling is required continuously in the CNS for the maintenance of some forebrain circuitry also affected by developmental BDNF depletion. PMID:22542678

  13. In Vivo Two-Photon Imaging of Dendritic Spines in Marmoset Neocortex1,2,3

    PubMed Central

    Sadakane, Osamu; Watakabe, Akiya; Ohtsuka, Masanari; Takaji, Masafumi; Sasaki, Tetsuya; Kasai, Masatoshi; Isa, Tadashi; Kato, Go; Nabekura, Junichi; Mizukami, Hiroaki; Ozawa, Keiya; Kawasaki, Hiroshi

    2015-01-01

    Abstract Two-photon microscopy in combination with a technique involving the artificial expression of fluorescent protein has enabled the direct observation of dendritic spines in living brains. However, the application of this method to primate brains has been hindered by the lack of appropriate labeling techniques for visualizing dendritic spines. Here, we developed an adeno-associated virus vector-based fluorescent protein expression system for visualizing dendritic spines in vivo in the marmoset neocortex. For the clear visualization of each spine, the expression of reporter fluorescent protein should be both sparse and strong. To fulfill these requirements, we amplified fluorescent signals using the tetracycline transactivator (tTA)–tetracycline-responsive element system and by titrating down the amount of Thy1S promoter-driven tTA for sparse expression. By this method, we were able to visualize dendritic spines in the marmoset cortex by two-photon microscopy in vivo and analyze the turnover of spines in the prefrontal cortex. Our results demonstrated that short spines in the marmoset cortex tend to change more frequently than long spines. The comparison of in vivo samples with fixed samples showed that we did not detect all existing spines by our method. Although we found glial cell proliferation, the damage of tissues caused by window construction was relatively small, judging from the comparison of spine length between samples with or without window construction. Our new labeling technique for two-photon imaging to visualize in vivo dendritic spines of the marmoset neocortex can be applicable to examining circuit reorganization and synaptic plasticity in primates. PMID:26465000

  14. Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells.

    PubMed

    Bywalez, Wolfgang G; Patirniche, Dinu; Rupprecht, Vanessa; Stemmler, Martin; Herz, Andreas V M; Pálfi, Dénes; Rózsa, Balázs; Egger, Veronica

    2015-02-01

    Neuronal dendritic spines have been speculated to function as independent computational units, yet evidence for active electrical computation in spines is scarce. Here we show that strictly local voltage-gated sodium channel (Nav) activation can occur during excitatory postsynaptic potentials in the spines of olfactory bulb granule cells, which we mimic and detect via combined two-photon uncaging of glutamate and calcium imaging in conjunction with whole-cell recordings. We find that local Nav activation boosts calcium entry into spines through high-voltage-activated calcium channels and accelerates postsynaptic somatic depolarization, without affecting NMDA receptor-mediated signaling. Hence, Nav-mediated boosting promotes rapid output from the reciprocal granule cell spine onto the lateral mitral cell dendrite and thus can speed up recurrent inhibition. This striking example of electrical compartmentalization both adds to the understanding of olfactory network processing and broadens the general view of spine function. PMID:25619656

  15. Impaired plasticity of cortical dendritic spines in P301S tau transgenic mice

    PubMed Central

    2013-01-01

    Background Illuminating the role of the microtubule-associated protein tau in neurodegenerative diseases is of increasing importance, supported by recent studies establishing novel functions of tau in synaptic signalling and cytoskeletal organization. In severe dementias like Alzheimer’s disease (AD), synaptic failure and cognitive decline correlate best with the grade of tau-pathology. To address synaptic alterations in tauopathies, we analyzed the effects of mutant tau expression on excitatory postsynapses in vivo. Results Here we followed the fate of single dendritic spines in the neocortex of a tauopathy mouse model, expressing human P301S mutated tau, for a period of two weeks. We observed a continuous decrease in spine density during disease progression, which we could ascribe to a diminished fraction of gained spines. Remaining spines were enlarged and elongated, thus providing evidence for morphological reorganization in compensation for synaptic dysfunction. Remarkably, loss of dendritic spines in cortical pyramidal neurons occurred in the absence of neurofibrillary tangles (NFTs). Therefore, we consider prefibrillar tau species as causative for the observed impairment in spine plasticity. Conclusions Dendritic spine plasticity and morphology are altered in layer V cortical neurons of P301S tau transgenic mice in vivo. This does not coincide with the detection of hyperphosphorylated tau in dendritic spines. PMID:24344647

  16. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures.

    PubMed

    Waller, Jessica A; Chen, Fenghua; Sánchez, Connie

    2016-04-01

    Cognitive dysfunction is prevalent in patients with major depressive disorder (MDD), and cognitive impairments can persist after relief of depressive symptoms. The multimodal-acting antidepressant vortioxetine is an antagonist at 5-HT3, 5-HT7, and 5-HT1D receptors, a partial agonist at 5-HT1B receptors, an agonist at 5-HT1A receptors, and an inhibitor of the serotonin (5-HT) transporter (SERT) and has pro-cognitive properties. In preclinical studies, vortioxetine enhances long-term potentiation (LTP), a cellular correlate of neuroplasticity, and enhances memory in various cognitive tasks. However, the molecular mechanisms by which vortioxetine augments LTP and memory remain unknown. Dendritic spines are specialized, actin-rich microdomains on dendritic shafts and are major sites of most excitatory synapses. Since dendritic spine remodeling is implicated in synaptic plasticity and spine size dictates the strength of synaptic transmission, we assessed if vortioxetine, relative to other antidepressants including ketamine, duloxetine, and fluoxetine, plays a role in the maintenance of dendritic spine architecture in vitro. We show that vortioxetine, ketamine, and duloxetine induce spine enlargement. However, only vortioxetine treatment increased the number of spines in contact with presynaptic terminals. In contrast, fluoxetine had no effect on spine remodeling. These findings imply that the various 5-HT receptor mechanisms of vortioxetine may play a role in its effect on spine dynamics and in increasing the proportion of potentially functional synaptic contacts. PMID:26702943

  17. GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites

    PubMed Central

    Marlin, Joseph J.

    2014-01-01

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca2+ signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca2+ signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca2+ signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca2+ signaling in pyramidal neurons, with implications for cortical function and disease. PMID:25429132

  18. Benzothiazole Amphiphiles Promote the Formation of Dendritic Spines in Primary Hippocampal Neurons.

    PubMed

    Cifelli, Jessica L; Dozier, Lara; Chung, Tim S; Patrick, Gentry N; Yang, Jerry

    2016-06-01

    The majority of excitatory synapses in the brain exist on dendritic spines. Accordingly, the regulation of dendritic spine density in the hippocampus is thought to play a central role in learning and memory. The development of novel methods to control spine density could, therefore, have important implications for treatment of a host of neurodegenerative and developmental cognitive disorders. Herein, we report the design and evaluation of a new class of benzothiazole amphiphiles that exhibit a dose-dependent response leading to an increase in dendritic spine density in primary hippocampal neurons. Cell exposure studies reveal that the increase in spine density can persist for days in the presence of these compounds, but returns to normal spine density levels within 24 h when the compounds are removed, demonstrating the capability to reversibly control spinogenic activity. Time-lapse imaging of dissociated hippocampal neuronal cultures shows that these compounds promote a net increase in spine density through the formation of new spines. Biochemical studies support that promotion of spine formation by these compounds is accompanied by Ras activation. These spinogenic molecules were also capable of inhibiting a suspected mechanism for dendritic spine loss induced by Alzheimer-related aggregated amyloid-β peptides in primary neurons. Evaluation of this new group of spinogenic agents reveals that they also exhibit relatively low toxicity at concentrations displaying activity. Collectively, these results suggest that small molecules that promote spine formation could be potentially useful for ameliorating cognitive deficiencies associated with spine loss in neurodegenerative diseases such as Alzheimer disease, and may also find use as general cognitive enhancers. PMID:27022020

  19. BDNF pro-peptide regulates dendritic spines via caspase-3.

    PubMed

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function. PMID:27310873

  20. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  1. Large and Small Dendritic Spines Serve Different Interacting Functions in Hippocampal Synaptic Plasticity and Homeostasis

    PubMed Central

    Paulin, Joshua J. W.; Haslehurst, Peter; Fellows, Alexander D.; Liu, Wenfei; Jackson, Joshua D.; Joel, Zelah; Cummings, Damian M.; Edwards, Frances A.

    2016-01-01

    The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca2+ influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes. PMID:26881123

  2. NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH.

    PubMed

    Andres, Adrienne L; Regev, Limor; Phi, Lucas; Seese, Ronald R; Chen, Yuncai; Gall, Christine M; Baram, Tallie Z

    2013-10-23

    The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress. PMID:24155300

  3. NMDA Receptor Activation and Calpain Contribute to Disruption of Dendritic Spines by the Stress Neuropeptide CRH

    PubMed Central

    Andres, Adrienne L.; Regev, Limor; Phi, Lucas; Seese, Ronald R.; Chen, Yuncai; Gall, Christine M.

    2013-01-01

    The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress. PMID:24155300

  4. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  5. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus.

    PubMed

    Chang, Philip K-Y; Prenosil, George A; Verbich, David; Gill, Raminder; McKinney, R Anne

    2014-09-01

    CX 546, an allosteric positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long-term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long-term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3-CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3-CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546-treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses. PMID:24925283

  6. Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning.

    PubMed

    Shi, Peng; Huang, Yue; Hong, Jinsheng

    2014-05-01

    A dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from a single synapse of an axon. Recent research shows that the morphological changes of dendritic spines have a close relationship with some specific diseases. The distribution of different dendritic spine phenotypes is a key indicator of such changes. Therefore, it is necessary to classify detected spines with different phenotypes online. Since the dendritic spines have complex three dimensional (3D) structures, current neuron morphological analysis approaches cannot classify the dendritic spines accurately with limited features. In this paper, we propose a novel semi-supervised learning approach in order to perform the online morphological classification of dendritic spines. Spines are detected by a new approach based on wavelet transform in the 3D space. A small training data set is chosen from the detected spines, which has the spines labeled by the neurobiologists. The remaining spines are then classified online by the semi-supervised learning (SSL) approach. Experimental results show that our method can quickly and accurately analyze neuron images with modest human intervention. PMID:24877014

  7. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons123

    PubMed Central

    2016-01-01

    Abstract EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5–30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23–420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean Rneck estimate of 204 MΩ (range, 52–521 MΩ; N = 34). PMID:27257618

  8. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  9. The role of glutamate in the morphological and physiological development of dendritic spines.

    PubMed

    Mattison, Hayley A; Popovkina, Dina; Kao, Joseph P Y; Thompson, Scott M

    2014-06-01

    Dendritic spines form the postsynaptic half of the synapse but how they form during CNS development remains uncertain, as are the factors that promote their morphological and physiological maturation. One hypothesis posits that filopodia, long motile dendritic processes that are present prior to spine formation, are the precursors to spines. Another hypothesis posits that they form directly from the dendritic shaft. We used microphotolysis of caged glutamate to stimulate individual dendritic processes in young hippocampal slice cultures while recording their morphological and physiological responses. We observed that brief trains of stimuli delivered to immature processes triggered morphological changes within minutes that resulted, in about half of experiments, in a more mature, spine-like appearance such as decreased spine neck length and increased spine head width. We also observed that glutamate-induced inward currents elicited from immature processes were mostly or entirely mediated by NMDARs, whereas responses in those processes with a more mature morphology, regardless of actual developmental age, were mediated by both AMPARs and NMDARs. Consistent with this observation, glutamate-induced morphological changes were largely, but not entirely, prevented by blocking NMDARs. Our observations thus favor a model in which filopodia in the developing nervous system sense and respond to release of glutamate from developing axons, resulting in physiological and morphological maturation. PMID:24661419

  10. The RhoGEF DOCK10 is essential for dendritic spine morphogenesis

    PubMed Central

    Jaudon, Fanny; Raynaud, Fabrice; Wehrlé, Rosine; Bellanger, Jean-Michel; Doulazmi, Mohamed; Vodjdani, Guilan; Gasman, Stéphane; Fagni, Laurent; Dusart, Isabelle; Debant, Anne; Schmidt, Susanne

    2015-01-01

    By regulating actin cytoskeleton dynamics, Rho GTPases and their activators RhoGEFs are implicated in various aspects of neuronal differentiation, including dendritogenesis and synaptogenesis. Purkinje cells (PCs) of the cerebellum, by developing spectacular dendrites covered with spines, represent an attractive model system in which to decipher the molecular signaling underlying these processes. To identify novel regulators of dendritic spine morphogenesis among members of the poorly characterized DOCK family of RhoGEFs, we performed gene expression profiling of fluorescence-activated cell sorting (FACS)-purified murine PCs at various stages of their postnatal differentiation. We found a strong increase in the expression of the Cdc42-specific GEF DOCK10. Depleting DOCK10 in organotypic cerebellar cultures resulted in dramatic dendritic spine defects in PCs. Accordingly, in mouse hippocampal neurons, depletion of DOCK10 or expression of a DOCK10 GEF-dead mutant led to a strong decrease in spine density and size. Conversely, overexpression of DOCK10 led to increased spine formation. We show that DOCK10 function in spinogenesis is mediated mainly by Cdc42 and its downstream effectors N-WASP and PAK3, although DOCK10 is also able to activate Rac1. Our global approach thus identifies an unprecedented function for DOCK10 as a novel regulator of dendritic spine morphogenesis via a Cdc42-mediated pathway. PMID:25851601

  11. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  12. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling.

    PubMed

    Hayama, Tatsuya; Noguchi, Jun; Watanabe, Satoshi; Takahashi, Noriko; Hayashi-Takagi, Akiko; Ellis-Davies, Graham C R; Matsuzaki, Masanori; Kasai, Haruo

    2013-10-01

    Activity-dependent competition of synapses plays a key role in neural organization and is often promoted by GABA; however, its cellular bases are poorly understood. Excitatory synapses of cortical pyramidal neurons are formed on small protrusions known as dendritic spines, which exhibit structural plasticity. We used two-color uncaging of glutamate and GABA in rat hippocampal CA1 pyramidal neurons and found that spine shrinkage and elimination were markedly promoted by the activation of GABAA receptors shortly before action potentials. GABAergic inhibition suppressed bulk increases in cytosolic Ca(2+) concentrations, whereas it preserved the Ca(2+) nanodomains generated by NMDA-type receptors, both of which were necessary for spine shrinkage. Unlike spine enlargement, spine shrinkage spread to neighboring spines (<15 μm) and competed with their enlargement, and this process involved the actin-depolymerizing factor ADF/cofilin. Thus, GABAergic inhibition directly suppresses local dendritic Ca(2+) transients and strongly promotes the competitive selection of dendritic spines. PMID:23974706

  13. Residence Times of Receptors in Dendritic Spines Analyzed by Stochastic Simulations in Empirical Domains

    PubMed Central

    Hoze, Nathanael; Holcman, David

    2014-01-01

    Analysis of high-density superresolution imaging of receptors reveals the organization of dendrites at nanoscale resolution. We present here an apparently novel method that uses local statistics extracted from short-range trajectories for the simulations of long-range trajectories in empirical live cell images. Based on these empirical simulations, we compute the residence time of a receptor in dendritic spines that accounts for receptors’ local interactions and geometrical membrane organization. We report here that depending on the type of the spine, the residence time varies from 1 to 5 min. Moreover, we show that there exists transient organized structures, previously described as potential wells that can regulate the trafficking of receptors to dendritic spine: the simulation results suggest that receptor trafficking is regulated by transient structures. PMID:25517165

  14. Sleep promotes branch-specific formation of dendritic spines after learning.

    PubMed

    Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao

    2014-06-01

    How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169

  15. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning

    PubMed Central

    Keifer Jr, O. P.; Hurt, R. C.; Gutman, D. A.; Keilholz, S. D.; Gourley, S. L.; Ressler, K. J.

    2015-01-01

    Neuroimaging has provided compelling data about the brain. Yet the underlying mechanisms of many neuroimaging techniques have not been elucidated. Here we report a voxel-based morphometry (VBM) study of Thy1-YFP mice following auditory fear conditioning complemented by confocal microscopy analysis of cortical thickness, neuronal morphometric features and nuclei size/density. Significant VBM results included the nuclei of the amygdala, the insula and the auditory cortex. There were no significant VBM changes in a control brain area. Focusing on the auditory cortex, confocal analysis showed that fear conditioning led to a significantly increased density of shorter and wider dendritic spines, while there were no spine differences in the control area. Of all the morphology metrics studied, the spine density was the only one to show significant correlation with the VBM signal. These data demonstrate that learning-induced structural changes detected by VBM may be partially explained by increases in dendritic spine density. PMID:26151911

  16. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy

    PubMed Central

    2011-01-01

    Background The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (α3 isoform) in the postsynaptic region of the spine. Conclusions A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines. PMID:21272290

  17. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A

    PubMed Central

    Segura, Inmaculada; Lange, Christian; Knevels, Ellen; Moskalyuk, Anastasiya; Pulizzi, Rocco; Eelen, Guy; Chaze, Thibault; Tudor, Cicerone; Boulegue, Cyril; Holt, Matthew; Daelemans, Dirk; Matondo, Mariette; Ghesquière, Bart; Giugliano, Michele; Ruiz de Almodovar, Carmen; Dewerchin, Mieke; Carmeliet, Peter

    2016-01-01

    Summary Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition. PMID:26972007

  18. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A.

    PubMed

    Segura, Inmaculada; Lange, Christian; Knevels, Ellen; Moskalyuk, Anastasiya; Pulizzi, Rocco; Eelen, Guy; Chaze, Thibault; Tudor, Cicerone; Boulegue, Cyril; Holt, Matthew; Daelemans, Dirk; Matondo, Mariette; Ghesquière, Bart; Giugliano, Michele; Ruiz de Almodovar, Carmen; Dewerchin, Mieke; Carmeliet, Peter

    2016-03-22

    Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition. PMID:26972007

  19. Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling

    PubMed Central

    Demyanenko, Galina P.; Mohan, Vishwa; Zhang, Xuying; Brennaman, Leann H.; Dharbal, Katherine E.S.; Tran, Tracy S.; Manis, Paul B.

    2014-01-01

    Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits. PMID:25143608

  20. Ovarian Steroids Increase PSD-95 Expression and Dendritic Spines in the Dorsal Raphe of Ovariectomized Macaques

    PubMed Central

    Rivera, Heidi M.; Bethea, Cynthia L.

    2014-01-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E±P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E+P for 1 month (n=3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P and E+P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P=0.04). In the Golgi study, adult Ovx monkeys received placebo, E or E+P for 1 month (n=3–4) and the midbrain was Golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E+P treatment significantly increased spine density in higher-order (3–5°) dendritic branches relative to Ovx group (Bonferroni, P<0.05). In summary, E+P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. PMID:23959764

  1. Control of spine maturation and pruning through proBDNF synthesized and released in dendrites.

    PubMed

    Orefice, Lauren L; Shih, Chien-Cheng; Xu, Haifei; Waterhouse, Emily G; Xu, Baoji

    2016-03-01

    Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75(NTR) receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways. PMID:26705735

  2. The evolving role of dendritic spines and memory: Interaction(s) with estradiol.

    PubMed

    Frankfurt, Maya; Luine, Victoria

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes. PMID:25993604

  3. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity.

    PubMed

    Maiti, Panchanan; Manna, Jayeeta; McDonald, Michael P

    2015-07-01

    The structure of dendritic spines determines synaptic efficacy, a plastic process that mediates information processing in the vertebrate nervous system. Aberrant spine morphology, including alterations in shape, size, and number, are common in different brain diseases. Because of this, accurate and unbiased characterization of dendritic spine structure is vital to our ability to explore and understand their involvement in neuronal development, synaptic plasticity, and synaptic failure in neurological diseases. Investigators have attempted to elucidate the precise structure and function of dendritic spines for more than a hundred years, but their fundamental role in synaptic plasticity and neurological diseases remains elusive. Limitations and ambiguities in imaging techniques have exacerbated the challenges of acquiring accurate information about spines and spine features. However, recent advancements in molecular biology, protein engineering, immuno-labeling techniques, and the use of super-resolution nano-microscopy along with powerful image analysis software have provided a better understanding of dendritic spine architecture. Here we describe the pros and cons of the classical staining techniques used to study spine morphology, and the alteration of dendritic spines in various neuropathological conditions. Finally, we highlight recent advances in super-resolved nanoscale microscopy, and their potentials and pitfalls when used to explore dendritic spine dynamics. PMID:25728560

  4. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

    PubMed Central

    Kanjhan, Refik; Noakes, Peter G.; Bellingham, Mark C.

    2016-01-01

    Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions. PMID:26843990

  5. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat.

    PubMed

    Cao, Zheng; Yang, Xu; Zhang, Haiyang; Wang, Haoran; Huang, Wanyue; Xu, Feibo; Zhuang, Cuicui; Wang, Xiaoguang; Li, Yanfei

    2016-05-01

    Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits. PMID:26946116

  6. Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations.

    PubMed

    Segev, I; Rall, W

    1998-11-01

    Important advances in experimental methods have made it possible to measure the electrical events in dendrites directly and to record optically from dendritic spines. These new techniques allow us to focus on the input region of the neuron and highlight the excitable properties of the dendritic membrane. Interestingly, some of the recent experimental findings were anticipated by earlier theoretical research, for example, the observation that some spines possess excitable channels that might generate local all-or-none events. Computer models were used previously to explore the conditions for initiating an action potential at the dendritic tree, in particular, at the spine head, and for active propagation between excitable spines and excitable dendritic arbors. The consequences for synaptic amplification, for the extent of active spread in the tree and for non-linear discriminations between different patterns of synaptic inputs were also considered. Here we review the biophysical insights gained from the theory and demonstrate how these elucidate the recent experimental results. PMID:9829684

  7. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    PubMed Central

    Garín-Aguilar, María E.; Díaz-Cintra, Sofía; Quirarte, Gina L.; Aguilar-Vázquez, Azucena; Medina, Andrea C.; Prado-Alcalá, Roberto A.

    2012-01-01

    Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance (IA), trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training. PMID:22438840

  8. Activity-dependent accumulation of calcium in Purkinje cell dendritic spines

    SciTech Connect

    Andrews, S.B.; Leapman, R.D.; Landis, D.M.; Reese, T.S.

    1988-03-01

    The calcium content of synapses of parallel fibers on Purkinje cell dendritic spines was determined by electron probe x-ray microanalysis of freeze-dried cryosections from directly frozen slices of mouse cerebellar cortex. In fresh slices frozen within 20-30 sec of excision, calcium concentrations ranging from 0.8 to 18.6 mmol/kg of dry weight were measured in cisterns of smooth endoplasmic reticulum within Purkinje cell dendritic spines. The average calcium content of spine cisterns in rapidly excised slices (6.7 +/- 0.6 mmol/kg of dry weight +/- SEM) was higher than the average calcium content of spine cisterns in brain slices incubated without stimulation for 1-2 hr before direct freezing (2.5 +/- 0.4 mmol/kg of dry weight). Depolarization of incubated cerebellar slices by isotonic 55 mM KCl resulted in the accumulation within spine cisterns of very high amounts of calcium or isotonically substituted strontium, both derived from the extracellular fluid. These results suggest that one function of spine cisterns is to sequester free calcium that enters the spine through ligand-gated or voltage-gated channels during synaptic transmission.

  9. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex.

    PubMed

    Ma, Lei; Qiao, Qian; Tsai, Jin-Wu; Yang, Guang; Li, Wei; Gan, Wen-Biao

    2016-03-01

    Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience-dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277-286, 2016. PMID:26033635

  10. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures.

    PubMed Central

    Müller, M; Gähwiler, B H; Rietschin, L; Thompson, S M

    1993-01-01

    The morphological and functional consequences of epileptic activity were investigated by applying the convulsants bicuculline and/or picrotoxin to mature rat hippocampal slice cultures. After 3 days, some cells in all hippocampal subfields showed signs of degeneration, including swollen somata, vacuolation, and dendritic deformities, whereas others displayed only a massive reduction in the number of their dendritic spines. Intracellular recordings from CA3 pyramidal cells revealed a decrease in the amplitude of evoked excitatory synaptic potentials. gamma-Aminobutyric acid-releasing interneurons and inhibitory synaptic potentials were unaffected. Seven days after withdrawal of convulsants, remaining cells possessed a normal number of dendritic spines, thus demonstrating a considerable capacity for recovery. The pathological changes induced by convulsants are similar to those found in the hippocampi of human epileptics, suggesting that they are a consequence, rather than a cause, of epilepsy. Images PMID:8093558

  11. Testosterone regulates the density of dendritic spines in the male preoptic area.

    PubMed

    Garelick, Timothy; Swann, Jennifer

    2014-03-01

    Male-typical behavior is dependent on testosterone. Castrated males gradually stop mating and engaging in sexual behaviors. Castrates treated with testosterone regain motivation and sex behaviors over time. Although this effect is well characterized, the specific mechanisms by which testosterone treatment recovers sexual behaviors remain unknown. The medial preoptic area (MPOA) is a likely site for testosterone's action on copulation. The integrity of the area is essential for the expression of male sex behavior; and the MPOA is densely populated with receptors for gonadal steroids. Moreover testosterone appears to regulate synaptic efficacy in the MPOA. Exposure to sexually relevant stimuli stimulates the MPOA but only in the presence of circulating testosterone. Sites afferent to the area respond to similar exposure independent of the hormonal milieu suggesting that testosterone mediates communication between the MPOA and its afferents. The protracted time course suggests that the effects of steroidal manipulation are mediated by structural changes. The present experiment evaluated this hypothesis by comparing dendritic spine density among Syrian hamsters that were castrated, castrated and treated with testosterone, or were left gonadally intact. Brains were sectioned and stained using the rapid Golgi stain protocol (FD Neurotechnologies, Baltimore), and the spine density, dendrite length, and the number of branches were compared among groups. Intact and testosterone replaced animals had more spines and greater spine density but did not differ in dendrite length and branching from castrated animals. These results suggest that existing dendrites increase the number of spines available for synapse formation but do not extend their dendrites in response to testosterone treatment. PMID:24492023

  12. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck

    PubMed Central

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G.

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion. PMID:26840625

  13. Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms

    PubMed Central

    Calabrese, Barbara; Saffin, Jean-Michel; Halpain, Shelley

    2014-01-01

    A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity. PMID:24740405

  14. Ceramide levels regulated by carnitine palmitoyltransferase 1C control dendritic spine maturation and cognition.

    PubMed

    Carrasco, Patricia; Sahún, Ignasi; McDonald, Jerome; Ramírez, Sara; Jacas, Jordi; Gratacós, Esther; Sierra, Adriana Y; Serra, Dolors; Herrero, Laura; Acker-Palmer, Amparo; Hegardt, Fausto G; Dierssen, Mara; Casals, Núria

    2012-06-15

    The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning. PMID:22539351

  15. Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition*

    PubMed Central

    Carrasco, Patricia; Sahún, Ignasi; McDonald, Jerome; Ramírez, Sara; Jacas, Jordi; Gratacós, Esther; Sierra, Adriana Y.; Serra, Dolors; Herrero, Laura; Acker-Palmer, Amparo; Hegardt, Fausto G.; Dierssen, Mara; Casals, Núria

    2012-01-01

    The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning. PMID:22539351

  16. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles

    PubMed Central

    Huang, Yu-Bin; Hu, Chun-Rui; Zhang, Li; Yin, Wu; Hu, Bing

    2015-01-01

    Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo. PMID:26485435

  17. The Guanine Nucleotide Exchange Factor (GEF) Asef2 Promotes Dendritic Spine Formation via Rac Activation and Spinophilin-dependent Targeting*

    PubMed Central

    Evans, J. Corey; Robinson, Cristina M.; Shi, Mingjian; Webb, Donna J.

    2015-01-01

    Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses. PMID:25750125

  18. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    PubMed

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior. PMID:27238893

  19. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    PubMed Central

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation. PMID:26881110

  20. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation. PMID:26881110

  1. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics.

    PubMed

    Kellner, Yves; Fricke, Steffen; Kramer, Stella; Iobbi, Cristina; Wierenga, Corette J; Schwab, Martin E; Korte, Martin; Zagrebelsky, Marta

    2016-06-01

    Nogo-A and its receptors have been shown to control synaptic plasticity, including negatively regulating long-term potentiation (LTP) in the cortex and hippocampus at a fast time scale and restraining experience-dependent turnover of dendritic spines over days. However, the molecular mechanisms and the precise time course mediating these actions of Nogo-A are largely unexplored. Here we show that Nogo-A signaling in the adult nervous system rapidly modulates the spine actin cytoskeleton within minutes to control structural plasticity at dendritic spines of CA3 pyramidal neurons. Indeed, acute Nogo-A loss-of-function transiently increases F-actin stability and results in an increase in dendritic spine density and length. In addition, Nogo-A acutely restricts AMPAR insertion and mEPSC amplitude at hippocampal synaptic sites. These data indicate a crucial function of Nogo-A in modulating the very tight balance between plasticity and stability of the neuronal circuitry underlying learning processes and the ability to store long-term information in the mature CNS. © 2016 Wiley Periodicals, Inc. PMID:26748478

  2. Cofilin1 Controls Transcolumnar Plasticity in Dendritic Spines in Adult Barrel Cortex

    PubMed Central

    Tsubota, Tadashi; Okubo-Suzuki, Reiko; Ohashi, Yohei; Tamura, Keita; Ogata, Koshin; Yaguchi, Masae; Matsuyama, Makoto; Inokuchi, Kaoru; Miyashita, Yasushi

    2015-01-01

    During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of

  3. Drug-Paired Contextual Stimuli Increase Dendritic Spine Dynamics in Select Nucleus Accumbens Neurons.

    PubMed

    Singer, Bryan F; Bubula, Nancy; Li, Dongdong; Przybycien-Szymanska, Magdalena M; Bindokas, Vytautas P; Vezina, Paul

    2016-07-01

    Repeated exposure to amphetamine leads to both associative conditioning and nonassociative sensitization. Here we assessed the contribution of neuronal ensembles in the nucleus accumbens (NAcc) to these behaviors. Animals exposed to amphetamine IP or in the ventral tegmental area (VTA) showed a sensitized locomotor response when challenged with amphetamine weeks later. Both exposure routes also increased ΔFosB levels in the NAcc. Further characterization of these ΔFosB+ neurons, however, revealed that amphetamine had no effect on dendritic spine density or size, indicating that these neurons do not undergo changes in dendritic spine morphology that accompany the expression of nonassociative sensitization. Additional experiments determined how neurons in the NAcc contribute to the expression of associative conditioning. A discrimination learning procedure was used to expose rats to IP or VTA amphetamine either Paired or Unpaired with an open field. As expected, compared with Controls, Paired rats administered IP amphetamine subsequently showed a conditioned locomotor response when challenged with saline in the open field, an effect accompanied by an increase in c-Fos+ neurons in the medial NAcc. Further characterization of these c-Fos+ cells revealed that Paired rats showed an increase in the density of dendritic spines and the frequency of medium-sized spines in the NAcc. In contrast, Paired rats previously exposed to VTA amphetamine showed neither conditioned locomotion nor conditioned c-Fos+ expression. Together, these results suggest a role for c-Fos+ neurons in the medial NAcc and rapid changes in the morphology of their dendritic spines in the expression of conditioning evoked by amphetamine-paired contextual stimuli. PMID:26979294

  4. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    PubMed Central

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Zhang, Yudong; Han, Liangxiu; Wu, Jane; Du, Sidan

    2015-01-01

    Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer's disease, Parkinson's diseases, and autism). In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN) for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby). We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines. PMID:26692046

  5. Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine

    PubMed Central

    2013-01-01

    We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of dendritic spines in living brain slices, demonstrating that spines can express functional dopamine receptors. This novel compound allows mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution. PMID:23672485

  6. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders.

    PubMed

    Kang, Jaeseung; Park, Haram; Kim, Eunjoon

    2016-01-01

    IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26275848

  7. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  8. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines.

    PubMed

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  9. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  10. Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1

    PubMed Central

    Hung, Albert Y.; Futai, Kensuke; Sala, Carlo; Valtschanoff, Juli G.; Ryu, Jubin; Woodworth, Mollie A.; Kidd, Fleur L.; Sung, Clifford C.; Miyakawa, Tsuyoshi; Bear, Mark F.; Weinberg, Richard J.; Sheng, Morgan

    2009-01-01

    Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders. PMID:18272690

  11. EphA7 signaling guides cortical dendritic development and spine maturation

    PubMed Central

    Clifford, Meredith A.; Athar, Wardah; Leonard, Carrie E.; Russo, Alexandra; Sampognaro, Paul J.; Van der Goes, Marie-Sophie; Burton, Denver A.; Zhao, Xiumei; Lalchandani, Rupa R.; Sahin, Mustafa; Vicini, Stefano; Donoghue, Maria J.

    2014-01-01

    The process by which excitatory neurons are generated and mature during the development of the cerebral cortex occurs in a stereotyped manner; coordinated neuronal birth, migration, and differentiation during embryonic and early postnatal life are prerequisites for selective synaptic connections that mediate meaningful neurotransmission in maturity. Normal cortical function depends upon the proper elaboration of neurons, including the initial extension of cellular processes that lead to the formation of axons and dendrites and the subsequent maturation of synapses. Here, we examine the role of cell-based signaling via the receptor tyrosine kinase EphA7 in guiding the extension and maturation of cortical dendrites. EphA7, localized to dendritic shafts and spines of pyramidal cells, is uniquely expressed during cortical neuronal development. On patterned substrates, EphA7 signaling restricts dendritic extent, with Src and Tsc1 serving as downstream mediators. Perturbation of EphA7 signaling in vitro and in vivo alters dendritic elaboration: Dendrites are longer and more complex when EphA7 is absent and are shorter and simpler when EphA7 is ectopically expressed. Later in neuronal maturation, EphA7 influences protrusions from dendritic shafts and the assembling of synaptic components. Indeed, synaptic function relies on EphA7; the electrophysiological maturation of pyramidal neurons is delayed in cultures lacking EphA7, indicating that EphA7 enhances synaptic function. These results provide evidence of roles for Eph signaling, first in limiting the elaboration of cortical neuronal dendrites and then in coordinating the maturation and function of synapses. PMID:24707048

  12. DENDRITIC SPINE ALTERATIONS IN THE HIPPOCAMPUS AND PARIETAL CORTEX OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR KNOCKOUT MICE

    PubMed Central

    Morley, B. J.; Mervis, R. F.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in higher cognitive and memory functions, and is associated with the etiology of neurological diseases involving cognitive decline, including Alzheimer’s disease (AD). We hypothesized that spine changes in the α7 knockout might help to explain the behavioral deficits observed in α7 knockout mice and prodromal hippocampal changes in AD. We quantified several measures of dendritic morphology in the CA1 region of the mouse hippocampus in Golgi-stained material from wildtype and α7 knockout mice at P24. The most significant difference was a 64% increase in thin (L-type) dendritic spines on the CA1 basilar tree in knockout mice (p < .05). There were small decreases in the number of in N-type (−15%), M-type (−14%) and D-type (−4%) spine densities. The CA1 basilar dendritic tree of knockout mice had significantly less branching in the regions nearthesoma in comparison with wildtype animals (p < .01), but not in the more distal branching. Changes in the configuration of CA1 basilar dendritic spines have been observed in a number of experimental paradigms, suggesting that basilar dendritic spines are highly plastic. One component of cognitive dysfunction may be through α7-modulated GABAergic interneurons synapsing on CA1 basal dendrites. PMID:23270857

  13. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    PubMed

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment. PMID:27606324

  14. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall.

    PubMed

    Moczulska, Kaja Ewa; Tinter-Thiede, Juliane; Peter, Manuel; Ushakova, Lyubov; Wernle, Tanja; Bathellier, Brice; Rumpel, Simon

    2013-11-01

    Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation. PMID:24151334

  15. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    SciTech Connect

    MacGillavry, Harold D. Hoogenraad, Casper C.

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.

  16. The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines

    PubMed Central

    Nestor, Michael W.; Cai, Xiang; Stone, Michele R.; Bloch, Robert J.; Thompson, Scott M.

    2011-01-01

    Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3. PMID:21297961

  17. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2.

    PubMed

    Zhang, Yunjia; Chen, Mengmeng; Qiu, Zilong; Hu, Keping; McGee, Warren; Chen, Xiaoping; Liu, Jianghong; Zhu, Li; Wu, Jane Y

    2016-07-01

    MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development. PMID:27245166

  18. (56)Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus.

    PubMed

    Allen, Antiño R; Raber, Jacob; Chakraborti, Ayanabha; Sharma, Sourabh; Fike, John R

    2015-12-01

    A unique feature of the space radiation environment is the presence of high-energy charged particles, which can be significantly hazardous to space flight crews who are exposed during a mission. Health risks associated with high-LET radiation exposure include cognitive injury. The pathogenesis of this injury is unknown but may involve modifications to dendritic structure and/or alterations in dendritic spine density and morphology. In this study, 24 two-month-old C57BL6/J male mice were either whole-body irradiated with 0.5 Gy (56)Fe (600 MeV/n; n = 12) or sham irradiated (n = 12). Three months postirradiation animals were tested for locomotor activity and habituation. After behavioral testing, animals were euthanized and the brains were flash frozen. Compared to sham-irradiated mice, irradiated mice moved less when first introduced to the environment, although they did recognize the environment when re-exposed to it one day later. Exposure to (56)Fe radiation significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal tri-synaptic network. To our knowledge, these data represents the first reported evidence that high-LET radiation has deleterious effects on mature neurons associated with hippocampal learning and memory. PMID:26579941

  19. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  20. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  1. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Tian, Mi; Zeng, Yan; Hu, Yilan; Yuan, Xiuxue; Liu, Shumin; Li, Jie; Lu, Pan; Sun, Yao; Gao, Lei; Fu, Daan; Li, Yi; Wang, Shasha; McClintock, Shawn M

    2015-02-01

    Fragile X syndrome (FXS) is characterized by immature dendritic spine architectures and cognitive impairment. 7, 8-Dihydroxyflavone (7, 8-DHF) has recently been identified as a high affinity tropomyosin receptor kinase B (TrkB) agonist. The purpose of this paper was to examine the utility of 7, 8-DHF as an effective pharmacotherapeutic agent that targets dendritic pathology and cognitive impairments in FXS mutant. We synthesized pharmacologic, behavioral, and biochemical approaches to examine the effects of 7, 8-DHF on spatial and fear memory functions, and morphological spine abnormalities in fragile X mental retardation 1 (Fmr1) gene knock-out mice. The study found that 4 weeks of treatment with 7, 8-DHF improved spatial and fear memory, and ameliorated morphological spine abnormalities including the number and elongation of spines in the hippocampus and amygdala. Further mechanism analysis revealed that 7, 8-DHF enhanced the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor, but reduced the normal levels of GluA2 at the synapses in Fmr1. Potentially related to drug-induced changes in AMPA receptor subunits, 7, 8-DHF at the synapses led to phosphorylation of specific serine sites on subunits Ser818 and Ser813 of GluA1, and Ser880 of GluA2, as well as phosphorylation of TrkB, calcium/calmodulin-dependent protein kinase II, and protein kinase C. However, 7, 8-DHF neither affected behavioral performance nor increased TrkB phosphorylation in WT mice, which suggested that it had FXS-specific correcting effect. Altogether, these results demonstrated that 7, 8-DHF improved learning and memory, and reduced abnormalities in spine morphology, thus providing a potential pharmacotherapeutic strategy for FXS. PMID:25229717

  2. KCC2 interacts with the dendritic cytoskeleton to promote spine development.

    PubMed

    Li, Hong; Khirug, Stanislav; Cai, Chunlin; Ludwig, Anastasia; Blaesse, Peter; Kolikova, Julia; Afzalov, Ramil; Coleman, Sarah K; Lauri, Sari; Airaksinen, Matti S; Keinänen, Kari; Khiroug, Leonard; Saarma, Mart; Kaila, Kai; Rivera, Claudio

    2007-12-20

    The neuron-specific K-Cl cotransporter, KCC2, induces a developmental shift to render GABAergic transmission from depolarizing to hyperpolarizing. Now we demonstrate that KCC2, independently of its Cl(-) transport function, is a key factor in the maturation of dendritic spines. This morphogenic role of KCC2 in the development of excitatory synapses is mediated by structural interactions between KCC2 and the spine cytoskeleton. Here, the binding of KCC2 C-terminal domain to the cytoskeleton-associated protein 4.1N may play an important role. A more general conclusion based on our data is that KCC2 acts as a synchronizing factor in the functional development of glutamatergic and GABAergic synapses in cortical neurons and networks. PMID:18093524

  3. A Golgi study of the plasticity of dendritic spines in the hypothalamic ventromedial nucleus during the estrous cycle of female rats.

    PubMed

    González-Burgos, I; Velázquez-Zamora, D A; González-Tapia, D; Cervantes, M

    2015-07-01

    Estradiol-induced plasticity involves changes in dendritic spine density and in the relative proportions of the different dendritic spine types that influence neurons and neural circuits. Such events affect brain structures that control the timing of neuroendocrine and behavioral processes, influencing both reproductive and cognitive functions during the estrous cycle. Accordingly, to investigate the dendritic spine-related plastic changes that may affect the neural processes involved in mating, estradiol-mediated dendritic spine plasticity was studied in type II cells situated in the ventrolateral portion of the ventromedial hypothalamic nucleus (VMN) of female, adult rats. The rats were assigned to four different groups (n=6) in function of their stage in the estrous cycle: proestrus, estrus, metaestrus, and diestrus. Dendritic spine density and the proportions of the different spine types on type II neurons were analyzed in the ventrolateral region of the VMN of these animals. Dendritic spine density on primary dendrites of VMN type II neurons was significantly lower in metaestrus than in diestrus, proestrus and estrus (with no differences between these latter stages). However, a significant variation in the proportional density of the different spine types was found, with a higher proportion of thin spines in diestrus, proestrus and estrus than in metaestrus. Likewise, a higher proportion of mushroom spines was seen in diestrus and proestrus than in metaestrus, and a higher proportion of stubby spines in estrus than in diestrus and metaestrus. Very few branched spines were found during proestrus and they were not detected during estrus or metaestrus. The different types of dendritic spines in non-projection neurons of the VMN could serve to maintain greater synaptic excitatory activity when receptivity and estradiol levels are maximal. However, they may also fulfill an additional functional role when receptivity and estradiol decline. To date specific roles of

  4. The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines

    PubMed Central

    Gauvain, Grégory; Chamma, Ingrid; Chevy, Quentin; Cabezas, Carolina; Irinopoulou, Theano; Bodrug, Natalia; Carnaud, Michèle; Lévi, Sabine; Poncer, Jean Christophe

    2011-01-01

    The K-Cl cotransporter KCC2 plays an essential role in neuronal chloride homeostasis, and thereby influences the efficacy and polarity of GABA signaling. Although KCC2 is expressed throughout the somatodendritic membrane, it is remarkably enriched in dendritic spines, which host most glutamatergic synapses in cortical neurons. KCC2 has been shown to influence spine morphogenesis and functional maturation in developing neurons, but its function in mature dendritic spines remains unknown. Here, we report that suppressing KCC2 expression decreases the efficacy of excitatory synapses in mature hippocampal neurons. This effect correlates with a reduced postsynaptic aggregation of GluR1-containing AMPA receptors and is mimicked by a dominant negative mutant of KCC2 interaction with cytoskeleton but not by pharmacological suppression of KCC2 function. Single-particle tracking experiments reveal that suppressing KCC2 increases lateral diffusion of the mobile fraction of AMPA receptor subunit GluR1 in spines but not in adjacent dendritic shafts. Increased diffusion was also observed for transmembrane but not membrane-anchored recombinant neuronal cell adhesion molecules. We suggest that KCC2, likely through interactions with the actin cytoskeleton, hinders transmembrane protein diffusion, and thereby contributes to their confinement within dendritic spines. PMID:21878564

  5. Hexa (ethylene glycol) derivative of benzothiazole aniline promotes dendritic spine formation through the RasGRF1-Ras dependent pathway.

    PubMed

    Lee, Nathanael J; Song, Jung Min; Cho, Hyun-Ji; Sung, You Me; Lee, Taehee; Chung, Andrew; Hong, Sung-Ha; Cifelli, Jessica L; Rubinshtein, Mark; Habib, Lila K; Capule, Christina C; Turner, R Scott; Pak, Daniel T S; Yang, Jerry; Hoe, Hyang-Sook

    2016-02-01

    Our recent study demonstrated that an amyloid-β binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-β binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain. PMID:26675527

  6. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway

    PubMed Central

    Fernandez, Francesca; Soon, Irene; Li, Zeng; Kuan, Tan Chee; Min, Deng Hong; Wong, Esther Sook-Miin; Demidov, Oleg N.; Paterson, Malcolm C.; Dawe, Gavin; Bulavin, Dmitry V.; Xiao, Zhi-Cheng

    2012-01-01

    Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders. PMID:22983193

  7. Fluorescent labeling of dendritic spines in cell cultures with the carbocyanine dye “DiI”

    PubMed Central

    Cheng, Connie; Trzcinski, Olivia; Doering, Laurie C.

    2014-01-01

    Analyzing cell morphology is a key component to understand neuronal function. Several staining techniques have been developed to facilitate the morphological analysis of neurons, including the use of fluorescent markers, such as DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate). DiI is a carbocyanine membrane dye that exhibits enhanced fluorescence upon insertion of its lipophilic hydrocarbon chains into the lipid membrane of cells. The high photostability and prominent fluorescence of the dye serves as an effective means of illuminating cellular architecture in individual neurons, including detailed dendritic arborizations and spines in cell culture and tissue sections. Here, we specifically optimized a simple and reliable method to fluorescently label and visualize dissociated hippocampal neurons using DiI and high-resolution confocal microscopic imaging. With high efficacy, this method accurately labels neuronal and synaptic morphology to permit quantitative analysis of dendritic spines. Accurate imaging techniques of these fine neuronal specializations are vital to the study of their morphology and can help delineate structure-function relationships in the central nervous system. PMID:24847216

  8. Layer 4 Pyramidal Neurons Exhibit Robust Dendritic Spine Plasticity In Vivo after Input Deprivation

    PubMed Central

    Kribakaran, Sahana; Mostany, Ricardo; Badaloni, Aurora; Consalez, G. Giacomo

    2015-01-01

    Pyramidal neurons in layers 2/3 and 5 of primary somatosensory cortex (S1) exhibit somewhat modest synaptic plasticity after whisker input deprivation. Whether neurons involved at earlier steps of sensory processing show more or less plasticity has not yet been examined. Here, we used longitudinal in vivo two-photon microscopy to investigate dendritic spine dynamics in apical tufts of GFP-expressing layer 4 (L4) pyramidal neurons of the vibrissal (barrel) S1 after unilateral whisker trimming. First, we characterize the molecular, anatomical, and electrophysiological properties of identified L4 neurons in Ebf2-Cre transgenic mice. Next, we show that input deprivation results in a substantial (∼50%) increase in the rate of dendritic spine loss, acutely (4–8 d) after whisker trimming. This robust synaptic plasticity in L4 suggests that primary thalamic recipient pyramidal neurons in S1 may be particularly sensitive to changes in sensory experience. Ebf2-Cre mice thus provide a useful tool for future assessment of initial steps of sensory processing in S1. PMID:25948276

  9. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    PubMed Central

    Griffith, Thom; Tsaneva-Atanasova, Krasimira; Mellor, Jack R.

    2016-01-01

    The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. PMID:27232631

  10. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines

    PubMed Central

    Robinson, Cristina M.; Patel, Mikin R.; Webb, Donna J.

    2016-01-01

    Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer. PMID:27408691

  11. Single-Molecule Discrimination within Dendritic Spines of Discrete Perisynaptic Sites of Actin Filament Assembly Driving Postsynaptic Reorganization

    NASA Astrophysics Data System (ADS)

    Blanpied, Thomas A.

    2013-03-01

    In the brain, the strength of synaptic transmission between neurons is principally set by the organization of proteins within the receptive, postsynaptic cell. Synaptic strength at an individual site of contact can remain remarkably stable for months or years. However, it also can undergo diverse forms of plasticity which change the strength at that contact independent of changes to neighboring synapses. Such activity-triggered neural plasticity underlies memory storage and cognitive development, and is disrupted in pathological physiology such as addiction and schizophrenia. Much of the short-term regulation of synaptic plasticity occurs within the postsynaptic cell, in small subcompartments surrounding the synaptic contact. Biochemical subcompartmentalization necessary for synapse-specific plasticity is achieved in part by segregation of synapses to micron-sized protrusions from the cell called dendritic spines. Dendritic spines are heavily enriched in the actin cytoskeleton, and regulation of actin polymerization within dendritic spines controls both basal synaptic strength and many forms of synaptic plasticity. However, understanding the mechanism of this control has been difficult because the submicron dimensions of spines limit examination of actin dynamics in the spine interior by conventional confocal microscopy. To overcome this, we developed single-molecule tracking photoactivated localization microscopy (smtPALM) to measure the movement of individual actin molecules within living spines. This revealed inward actin flow from broad areas of the spine plasma membrane, as well as a dense central core of heterogeneous filament orientation. The velocity of single actin molecules along filaments was elevated in discrete regions within the spine, notably near the postsynaptic density but surprisingly not at the endocytic zone which is involved in some forms of plasticity. We conclude that actin polymerization is initiated at many well-separated foci within

  12. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  13. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering.

    PubMed

    Pereira, Ana C; Lambert, Hilary K; Grossman, Yael S; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K; Calakos, Katina; Janssen, William G; McEwen, Bruce S; Morrison, John H

    2014-12-30

    The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  14. Laminar-dependent dendritic spine alterations in the motor cortex of adult rats following callosal transection and forced forelimb use.

    PubMed

    Adkins, DeAnna L; Bury, Scott D; Jones, Theresa A

    2002-07-01

    Previously, the authors found that partial denervation of the motor cortex in adult animals can enhance this region's neuronal growth response to relevant behavioral change. Rats with partial corpus callosum transections that were forced to rely on one forelimb for 18 days had increased dendritic arborization of layer V pyramidal neurons in the opposite motor cortex compared to controls. This was not found as a result of denervation alone or of forced forelimb use alone. However, it seemed possible that each independent manipulation (i.e., forced forelimb use alone and callosal transections alone) resulted in neural structural alterations that were simply not revealed in measurements of dendritic branch number and/or not inclusive of layer V dendrites. This possibility was assessed in the current study with a reexamination of the Golgi-Cox impregnated tissue generated in the previous study. Tissue was quantified from rats that received either partial transections of the rostral two-thirds of the corpus callosum (CCX) or sham operations (Sham) followed either by 18 days of forced use of one forelimb (Use) or unrestricted use of both forelimbs (Cont). Measurements of apical and basilar dendrites from pyramidal neurons of layer II/III and layer V were performed to detect spine addition resulting from either increased spine density or the addition of dendritic material. As hypothesized, significant spine addition was found following forced forelimb use alone (Sham+Use) and callosal transections alone (CCX+Cont). However, forced use primarily increased spines on layer II/III pyramidal neurons, whereas callosal transections primarily increased dendritic spines on layer V pyramidal neurons in comparison to Sham+Cont. A much more robust increase in layer V dendritic spines was found in animals with the combination of forced forelimb use and denervation (CCX+Use). In contrast to the effects of forced use alone, however, CCX+Use rats failed to show major net increases in

  15. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines.

    PubMed

    Popovic, Marko; Vogt, Kaspar; Holthoff, Knut; Konnerth, Arthur; Salzberg, Brian M; Grinvald, Amiram; Antic, Srdjan D; Canepari, Marco; Zecevic, Dejan

    2015-01-01

    A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines. PMID:26238049

  16. Remodeling the Dendritic Spines in the Hindlimb Representation of the Sensory Cortex after Spinal Cord Hemisection in Mice

    PubMed Central

    Zhou, Yanmei; Chen, Chao; Li, Wei; Ma, Lei; Zhang, Licheng; Zhao, Jingxin; Gan, Wenbiao; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Spinal cord injury (SCI) can induce remodeling of multiple levels of the cerebral cortex system especially in the sensory cortex. The aim of this study was to assess, in vivo and bilaterally, the remodeling of dendritic spines in the hindlimb representation of the sensory cortex after spinal cord hemisection. Thy1-YFP transgenic mice were randomly divided into the control group and the SCI group, and the spinal vertebral plates (T11–T12) of all mice were excised. Next, the left hemisphere of the spinal cord (T12) was hemisected in the SCI group. The hindlimb representations of the sensory cortex in both groups were imaged bilaterally on the day before (0d), and three days (3d), two weeks (2w), and one month (1m) after the SCI. The rates of stable, newly formed, and eliminated spines were calculated by comparing images of individual dendritic spine in the same areas at different time points. In comparison to the control group, the rate of newly formed spines in the contralateral sensory cortex of the SCI group increased at three days and two weeks after injury. The rates of eliminated spines in the bilateral sensory cortices increased and the rate of stable spines in the bilateral cortices declined at two weeks and one month. From three days to two weeks, the stable rates of bilaterally stable spines in the SCI group decreased. In comparison to the control group and contralateral cortex in the SCI group, the re-emerging rate of eliminated spines in ipsilateral cortex of the SCI group decreased significantly. The stable rates of newly formed spines in bilateral cortices of the SCI group decreased from two weeks to one month. We found that the remodeling in the hindlimb representation of the sensory cortex after spinal cord hemisection occurred bilaterally. This remodeling included eliminating spines and forming new spines, as well as changing the reorganized regions of the brain cortex after the SCI over time. Soon after the SCI, the cortex was remodeled by

  17. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  18. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    ERIC Educational Resources Information Center

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  19. The effects of cocaine self-administration on dendritic spine density in the rat hippocampus are dependent on genetic background.

    PubMed

    Miguéns, Miguel; Kastanauskaite, Asta; Coria, Santiago M; Selvas, Abraham; Ballesteros-Yañez, Inmaculada; DeFelipe, Javier; Ambrosio, Emilio

    2015-01-01

    Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds. PMID:23966583

  20. Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

    PubMed Central

    Campeau, Jody L.; Wu, Gengshu; Bell, John R.; Rasmussen, Jay; Sim, Valerie L.

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis. PMID:24312586

  1. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines

    PubMed Central

    Zha, Xiang-ming; Wemmie, John A.; Green, Steven H.; Welsh, Michael J.

    2006-01-01

    Extracellular proton concentrations in the brain may be an important signal for neuron function. Proton concentrations change both acutely when synaptic vesicles release their acidic contents into the synaptic cleft and chronically during ischemia and seizures. However, the brain receptors that detect protons and their physiologic importance remain uncertain. Using organotypic hippocampal slices and biolistic transfection, we found the acid-sensing ion channel 1a (ASIC1a), localized in dendritic spines where it functioned as a proton receptor. ASIC1a also affected the density of spines, the postsynaptic site of most excitatory synapses. Decreasing ASIC1a reduced the number of spines, whereas overexpressing ASIC1a had the opposite effect. Ca2+-mediated Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling was probably responsible, because acid evoked an ASIC1a-dependent elevation of spine intracellular Ca2+ concentration, and reducing or increasing ASIC1a levels caused parallel changes in CaMKII phosphorylation in vivo. Moreover, inhibiting CaMKII prevented ASIC1a from increasing spine density. These data indicate that ASIC1a functions as a postsynaptic proton receptor that influences intracellular Ca2+ concentration and CaMKII phosphorylation and thereby the density of dendritic spines. The results provide insight into how protons influence brain function and how they may contribute to pathophysiology. PMID:17060608

  2. Hippocampal Neuro-Networks and Dendritic Spine Perturbations in Epileptogenesis Are Attenuated by Neuroprotectin D1

    PubMed Central

    Musto, Alberto E.; Walker, Chelsey P.; Petasis, Nicos A.; Bazan, Nicolas G.

    2015-01-01

    Purpose Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE). Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA)-derived lipid mediator, neuroprotectin D1 (NPD1), modulates epileptogenesis. Methods Status epilepticus (SE) was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe) chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg) or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining. Results We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures. Conclusions Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies. PMID:25617763

  3. Integration of multiscale dendritic spine structure and function data into systems biology models

    PubMed Central

    Mancuso, James J.; Cheng, Jie; Yin, Zheng; Gilliam, Jared C.; Xia, Xiaofeng; Li, Xuping; Wong, Stephen T. C.

    2014-01-01

    Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement. PMID:25429262

  4. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  5. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    PubMed

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. PMID:25787124

  6. Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation.

    PubMed

    Winston, Charisse N; Chellappa, Deepa; Wilkins, Tiffany; Barton, David J; Washington, Patricia M; Loane, David J; Zapple, David N; Burns, Mark P

    2013-12-01

    The clinical manifestations that occur after traumatic brain injury (TBI) include a wide range of cognitive, emotional, and behavioral deficits. The loss of excitatory synapses could potentially explain why such diverse symptoms occur after TBI, and a recent preclinical study has demonstrated a loss of dendritic spines, the postsynaptic site of the excitatory synapse, after fluid percussion injury. The objective of this study was to determine if controlled cortical impact (CCI) also resulted in dendritic spine retraction and to probe the underlying mechanisms of this spine loss. We used a unilateral CCI and visualized neurons and dendtritic spines at 24 h post-injury using Golgi stain. We found that TBI caused a 32% reduction of dendritic spines in layer II/III of the ipsilateral cortex and a 20% reduction in the dendritic spines of the ipsilateral dentate gyrus. Spine loss was not restricted to the ipsilateral hemisphere, however, with similar reductions in spine numbers recorded in the contralateral cortex (25% reduction) and hippocampus (23% reduction). Amyloid-β (Aβ), a neurotoxic peptide commonly associated with Alzheimer disease, accumulates rapidly after TBI and is also known to cause synaptic loss. To determine if Aβ contributes to spine loss after brain injury, we administered a γ-secretase inhibitor LY450139 after TBI. We found that while LY450139 administration could attenuate the TBI-induced increase in Aβ, it had no effect on dendritic spine loss after TBI. We conclude that the acute, global loss of dendritic spines after TBI is independent of γ-secretase activity or TBI-induced Aβ accumulation. PMID:23879560

  7. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines.

    PubMed

    Tolias, Kimberley F; Bikoff, Jay B; Burette, Alain; Paradis, Suzanne; Harrar, Dana; Tavazoie, Sohail; Weinberg, Richard J; Greenberg, Michael E

    2005-02-17

    NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines. PMID:15721239

  8. Subclinical CT abnormalities in the lumbosacral spine of older large-breed dogs.

    PubMed

    Jones, J C; Inzana, K D

    2000-01-01

    Computed tomography (CT) of the L5-S3 vertebral levels was performed in six, large-breed dogs presented for problems unrelated to the lumbosacral spine. All dogs were asymptomatic for lumbosacral stenosis on neurologic examination. Breeds included German Shepherd, Golden Retriever, Boxermix and Belgian Malinois. Ages ranged from 5-12 years. Five out of six dogs exhibited CT abnormalities. Among the 18 disc levels examined, the most common findings were idiopathic stenosis, loss of vertebral canal epidural fat, and nerve tissue displacement. Less common abnormalities were vertebral canal or foraminal bone proliferation, loss of intervertebral foramen fat, vertebral canal disc bulging, degenerative articular process joint disease, transitional vertebra, dural ossification, foraminal disc bulging, Schmorl's nodes, calcified extruded disc fragment, and sacroiliac joint osteophytes. Vertebral subluxation was absent in all dogs. Findings indicate that some lumbosacral CT abnormalities may be clinically insignificant, especially in older dogs. PMID:10695875

  9. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism.

    PubMed

    Musto, Alberto E; Rosencrans, Robert F; Walker, Chelsey P; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M; Belayev, Ludmila; Fang, Zhide; Gordon, William C; Bazan, Nicolas G

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15-16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  10. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism

    PubMed Central

    Musto, Alberto E.; Rosencrans, Robert F.; Walker, Chelsey P.; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M.; Belayev, Ludmila; Fang, Zhide; Gordon, William C.; Bazan, Nicolas G.

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  11. A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation

    PubMed Central

    Puskarjov, Martin; Seja, Patricia; Heron, Sarah E; Williams, Tristiana C; Ahmad, Faraz; Iona, Xenia; Oliver, Karen L; Grinton, Bronwyn E; Vutskits, Laszlo; Scheffer, Ingrid E; Petrou, Steven; Blaesse, Peter; Dibbens, Leanne M; Berkovic, Samuel F; Kaila, Kai

    2014-01-01

    Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl− extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures. PMID:24668262

  12. Stimulation of α(2A)-adrenoceptors promotes the maturation of dendritic spines in cultured neurons of the medial prefrontal cortex.

    PubMed

    Ren, Wen-Wen; Liu, Yue; Li, Bao-Ming

    2012-02-01

    Dendritic spines are tiny protrusions along dendrites that receive excitatory synaptic inputs and compartmentalize postsynaptic responses in the mature brain. It is known that change in spine morphology is associated with brain functions such as learning and memory. α(2A)-Adrenoceptors (α(2A)-ARs) are highly expressed in cortical neurons and play important roles in neuronal differentiation, growth and neurotrophy. However, little is known about the role of α(2A)-ARs in the maturation of dendritic spines. Here, we report that stimulation of α(2A)-ARs promotes the maturation of dendritic spines in cultured neurons of the medial prefrontal cortex of rodents. Our results show that, stimulation of α(2A)-ARs by guanfacine induced significantly more stubby or mushroom spines in cultured mPFC neurons, with an enlargement of the spine head size. In parallel, the expression of PSD95 (a postsynaptic protein) in guanfacine-treated neurons was enhanced, while that of synapsin (a pre-synaptic protein) kept unchanged. These effects of guanfacine were blocked by co-administered yohimbine, a non-selective α(2)-AR antagonist. The present results implicate a prominent role of α(2A)-ARs in regulating the maturation of dendritic spines in the mPFC. PMID:22015717

  13. Tumor Necrosis Factor-α Underlies Loss of Cortical Dendritic Spine Density in a Mouse Model of Congestive Heart Failure

    PubMed Central

    Meissner, Anja; Visanji, Naomi P; Momen, M Abdul; Feng, Rui; Francis, Beverly M; Bolz, Steffen-Sebastian; Hazrati, Lili-Naz

    2015-01-01

    Background Heart failure (HF) is a progressive disorder characterized by reduced cardiac output and increased peripheral resistance, ultimately leading to tissue perfusion deficits and devastating consequences for several organs including the brain. We previously described a tumor necrosis factor-α (TNF-α)–dependent enhancement of posterior cerebral artery tone and concomitant reduced cerebral blood flow in a mouse model of early HF in which blood pressure remains minimally affected. HF is often associated with cognitive impairments such as memory deficits, even before any overt changes in brain structure and function occur. The pathophysiology underlying the development of cognitive impairments in HF is unknown, and appropriate treatment strategies are lacking. Methods and Results We used a well-established mouse model in which HF was induced by experimental myocardial infarction produced by permanent surgical ligation of the left anterior descending coronary artery (infarct size ≈25% of the left ventricular wall). Ligated mice developed enlarged hearts, congested lungs, and reduced cardiac output and blood pressure, with elevated peripheral resistance within 6 to 8 weeks after ligation. In this study, we demonstrated the significance of the proinflammatory cytokine TNF-α during HF-mediated neuroinflammation and associated impaired hippocampus-independent nonspatial episodic memory function. Augmented cerebral TNF-α expression and microglial activation in HF mice, indicative of brain inflammation, were accompanied by morphological changes and significant reduction of cortical dendritic spines (61.39±8.61% for basal and 61.04±9.18% for apical spines [P<0.001]). The significance of TNF-α signaling during the observed HF-mediated neurodegenerative processes is supported by evidence showing that sequestration or genetic deletion of TNF-α ameliorates the observed reduction of cortical dendritic spines (33.51±7.63% for basal and 30.13±6.98% for apical

  14. RanBP9 Overexpression Accelerates Loss of Dendritic Spines in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Wang, Ruizhi; Palavicini, Juan Pablo; Wang, Hongjie; Maiti, Panchanan; Bianchi, Elisabetta; Xu, Shaohua; Lloyd, BN; Dawson-Scully, Ken; Kang, David E; Lakshmana, Madepalli K.

    2014-01-01

    We previously demonstrated that RanBP9 overexpression increased Aβ generation and amyloid plaque burden, subsequently leading to robust reductions in the levels of several synaptic proteins as well as deficits in the learning and memory skills in a mouse model of Alzheimer's disease (AD). In the present study, we found striking reduction of spinophilin-immunoreactive puncta (52%, p<0.001) and spinophilin area (62.5%, p<0.001) in the primary cortical neurons derived from RanBP9 transgenic mice (RanBP9-Tg) compared to wild-type (WT) neurons. Similar results were confirmed in WT cortical neurons transfected with EGFP-RanBP9. At 6-months of age, the total spine density in the cortex of RanBP9 single transgenic, APΔE9 double transgenic and APΔE9/RanBP9 triple transgenic mice were similar to WT mice. However, in the hippocampus the spine density was significantly reduced (27%, p<0.05) in the triple transgenic mice compared to WT mice due to reduced number of thin spines (33%, p<0.05) and mushroom spines (22%, p<0.05). This suggests that RanBP9 overexpression in the APΔE9 mice accelerates loss of spines and that hippocampus is more vulnerable. At 12-months of age, cortex showed significant reductions in total spine density in the RanBP9 (22%, p<0.05), APΔE9 (19%, p<0.05) and APΔE9/RanBP9 (33%, p<0.01) mice compared to WT controls due to reductions in mushroom and thin spines. Similarly, in the hippocampus the total spine density was reduced in the RanBP9 (23%, p<0.05), APΔE9 (26%, p<0.05) and APΔE9/RanBP9 (39%, p<0.01) mice due to reductions in thin and mushroom spines. Most importantly, RanBP9 overexpression in the APΔE9 mice further exacerbated the reductions in spine density in both the cortex (14%, p<0.05) and the hippocampus (16%, p<0.05). Because dendritic spines are considered physical traces of memory, loss of spines due to RanBP9 provided the physical basis for the learning and memory deficits. Since RanBP9 protein levels are increased in AD brains, Ran

  15. RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Ruizhi; Palavicini, Juan Pablo; Wang, Hongjie; Maiti, Panchanan; Bianchi, Elisabetta; Xu, Shaohua; Lloyd, B N; Dawson-Scully, Ken; Kang, David E; Lakshmana, Madepalli K

    2014-09-01

    We previously demonstrated that RanBP9 overexpression increased Aβ generation and amyloid plaque burden, subsequently leading to robust reductions in the levels of several synaptic proteins as well as deficits in the learning and memory skills in a mouse model of Alzheimer's disease (AD). In the present study, we found striking reduction of spinophilin-immunoreactive puncta (52%, p<0.001) and spinophilin area (62.5%, p<0.001) in the primary cortical neurons derived from RanBP9 transgenic mice (RanBP9-Tg) compared to wild-type (WT) neurons. Similar results were confirmed in WT cortical neurons transfected with EGFP-RanBP9. At 6-months of age, the total spine density in the cortex of RanBP9 single transgenic, APΔE9 double transgenic and APΔE9/RanBP9 triple transgenic mice was similar to WT mice. However, in the hippocampus the spine density was significantly reduced (27%, p<0.05) in the triple transgenic mice compared to WT mice due to reduced number of thin spines (33%, p<0.05) and mushroom spines (22%, p<0.05). This suggests that RanBP9 overexpression in the APΔE9 mice accelerates loss of spines and that the hippocampus is more vulnerable. At 12-months of age, the cortex showed significant reductions in total spine density in the RanBP9 (22%, p<0.05), APΔE9 (19%, p<0.05) and APΔE9/RanBP9 (33%, p<0.01) mice compared to WT controls due to reductions in mushroom and thin spines. Similarly, in the hippocampus the total spine density was reduced in the RanBP9 (23%, p<0.05), APΔE9 (26%, p<0.05) and APΔE9/RanBP9 (39%, p<0.01) mice due to reductions in thin and mushroom spines. Most importantly, RanBP9 overexpression in the APΔE9 mice further exacerbated the reductions in spine density in both the cortex (14%, p<0.05) and the hippocampus (16%, p<0.05). Because dendritic spines are considered physical traces of memory, loss of spines due to RanBP9 provided the physical basis for the learning and memory deficits. Since RanBP9 protein levels are increased in AD

  16. Electroacupuncture improves cognitive function through Rho GTPases and enhances dendritic spine plasticity in rats with cerebral ischemia-reperfusion.

    PubMed

    Lin, Ruhui; Wu, Yunan; Tao, Jing; Chen, Bin; Chen, Jixiang; Zhao, Congkuai; Yu, Kunqiang; Li, Xiaojie; Chen, Li-Dian

    2016-03-01

    The aim of the present study was to evaluate the effect of electroacupuncture (EA) on cognitive function following cerebral ischemia‑reperfusion (I/R) injury, and to clarify the mechanism through which Rho GTPase is associated with EA analgesia modulation of dendritic spine plasticity. Rats were randomly divided into three groups: The sham surgery group, the middle cerebral artery occlusion (MCAO) model of ischemia group, and the MCAO with EA (MCAO+EA) treatment group. The MCAO+EA group received treatment with EA at points of Baihui (DU20) and Shenting (DU24) following surgery. It was demonstrated that treatment with EA significantly (P<0.05) protected the cognitive function of rats from impairment caused by cerebral I/R injury. Furthermore, EA treatment increased the density of dendritic spines in the hippocampus of cerebral I/R‑injured rats. Simultaneously, EA increased the expression of cell division cycle 42, Ras‑related C3 botulinum toxin substrate 1 and F‑actin proteins. By contrast, EA treatment inhibited the expression of Ras homologous member A. Collectively, these findings suggest that Rho GTPases and dendritic spine plasticity are critical in mediating the effects of EA treatment at the points of Shenting and Baihui, and that EA protects against impairment of cognitive function following ischemic stroke. PMID:26846874

  17. Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere.

    PubMed

    Gelfo, Francesca; Florenzano, Fulvio; Foti, Francesca; Burello, Lorena; Petrosini, Laura; De Bartolo, Paola

    2016-09-01

    Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing. PMID:26420278

  18. The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex

    PubMed Central

    Nie, Duyu; Chen, Zehua; Ebrahimi-Fakhari, Darius; Di Nardo, Alessia; Julich, Kristina; Robson, Victoria K.; Cheng, Yung-Chih; Woolf, Clifford J.; Heiman, Myriam

    2015-01-01

    Hyperactivation of the mechanistic target of rapamycin (mTOR) kinase, as a result of loss-of-function mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 genes, causes protein synthesis dysregulation, increased cell size, and aberrant neuronal connectivity. Dysregulated synthesis of synaptic proteins has been implicated in the pathophysiology of autism spectrum disorder (ASD) associated with TSC and fragile X syndrome. However, cell type-specific translational profiles in these disease models remain to be investigated. Here, we used high-fidelity and unbiased Translating Ribosome Affinity Purification (TRAP) methodology to purify ribosome-associated mRNAs and identified translational alterations in a rat neuronal culture model of TSC. We find that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed. Importantly, transcripts for the activating transcription factor-3 (Atf3) and mitochondrial uncoupling protein-2 (Ucp2) are highly induced in Tsc2-deficient neurons, as well as in a neuron-specific Tsc1 conditional knock-out mouse model, and show differential responses to the mTOR inhibitor rapamycin. Gelsolin, a known target of Atf3 transcriptional activity, is also upregulated. shRNA-mediated block of Atf3 induction suppresses expression of gelsolin, an actin-severing protein, and rescues spine deficits found in Tsc2-deficient neurons. Together, our data demonstrate that a cell-autonomous program consisting of a stress-induced Atf3-gelsolin cascade affects the change in dendritic spine morphology following mTOR hyperactivation. This previously unidentified molecular cascade could be a therapeutic target for treating mTORopathies. SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) is a genetic disease associated with epilepsy and autism. Dysregulated protein synthesis has been implicated as a cause of this disease. However, cell type-specific translational profiles that are aberrant in this

  19. MET Receptor Tyrosine Kinase Controls Dendritic Complexity, Spine Morphogenesis, and Glutamatergic Synapse Maturation in the Hippocampus

    PubMed Central

    Lu, Zhongming; Levitt, Pat

    2014-01-01

    The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk. PMID:25471559

  20. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density.

    PubMed

    Gross, Kellie S; Brandner, Dieter D; Martinez, Luis A; Olive, M Foster; Meisel, Robert L; Mermelstein, Paul G

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  1. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin.

    PubMed

    Ochs, S M; Dorostkar, M M; Aramuni, G; Schön, C; Filser, S; Pöschl, J; Kremer, A; Van Leuven, F; Ovsepian, S V; Herms, J

    2015-04-01

    Central nervous glycogen synthase kinase 3β (GSK3β) is implicated in a number of neuropsychiatric diseases, such as bipolar disorder, depression, schizophrenia, fragile X syndrome or anxiety disorder. Many drugs employed to treat these conditions inhibit GSK3β either directly or indirectly. We studied how conditional knockout of GSK3β affected structural synaptic plasticity. Deletion of the GSK3β gene in a subset of cortical and hippocampal neurons in adult mice led to reduced spine density. In vivo imaging revealed that this was caused by a loss of persistent spines, whereas stabilization of newly formed spines was reduced. In electrophysiological recordings, these structural alterations correlated with a considerable drop in the frequency and amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-dependent miniature excitatory postsynaptic currents. Expression of constitutively active β-catenin caused reduction in spine density and electrophysiological alterations similar to GSK3β knockout, suggesting that the effects of GSK3β knockout were mediated by the accumulation of β-catenin. In summary, changes of dendritic spines, both in quantity and in morphology, are correlates of experience-dependent synaptic plasticity; thus, these results may help explain the mechanism of action of psychotropic drugs inhibiting GSK3β. PMID:24912492

  2. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase

    PubMed Central

    Xue, Weizhen; Yang, Qian-Qian; Wang, Shuang; Xu, Yi; Wang, Hui-Li

    2015-01-01

    NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression. PMID:26368815

  3. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    PubMed Central

    Takasaki, Kevin; Sabatini, Bernardo L.

    2014-01-01

    The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P) to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synaptic potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated. PMID:24847215

  4. Two-color super-resolution imaging of dendritic spines of hippocampal neurons using a custom STED microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie; Woolfrey, Kevin; Ozbay, Baris; Restrepo, Diego; Dell'Acqua, Mark; Gibson, Emily

    2014-03-01

    We built a 2-color STED microscope and imaged dendritic spines in mouse hippocampal neurons at sub-diffraction limit resolution. The microscope is designed similar to one developed by Johanna Bückers, et. al. (Opt. Exp. 2011) in the lab of Dr. Stefan Hell. The STED microscope images at Atto590/Atto647N wavelengths and is capable of doing so simultaneously. We characterized the resolution of the system by imaging 40nm fluorescent beads as ~58nm (Atto590) and ~44 nm (Atto647N). The microscope is part of the UC Denver Advanced Light Microscopy Core, primarily for use by neuroscientists. We then performed 2-color STED imaging on hippocampal neurons immuno-labeled at PSD-95 (a postsynaptic density marker) along with either the GluA1-subunit of the AMPA-type glutamate receptor or the signaling scaffold protein AKAP150 in order to visualize nm-scale compartmentalization of these proteins within single postsynaptic dendritic spines. Importantly, for both GluA1 and AKAP150, STED imaging visualized sub-diffraction dimension clusters in spines located at both synaptic (overlapping or proximal to PSD-95) and extrasynaptic locations. In the future 2-color STED imaging should be useful for studying changes in the localization of these proteins during synaptic plasticity. NIH Shared Instrumentation Grant Program.

  5. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model

    PubMed Central

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-01-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:24448491

  6. DENDRITIC SPINE PATHOLOGIES IN HIPPOCAMPAL PYRAMIDAL NEURONS FROM RETT SYNDROME BRAIN AND AFTER EXPRESSION OF RETT-ASSOCIATED MECP2 MUTATIONS

    PubMed Central

    Chapleau, Christopher A.; Calfa, Gaston D.; Lane, Meredith C.; Albertson, Asher J.; Larimore, Jennifer L.; Kudo, Shinichi; Armstrong, Dawna L.; Percy, Alan K.; Pozzo-Miller, Lucas

    2009-01-01

    Rett syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder associated with the characteristic neuropathology of dendritic spines common in diseases presenting with mental retardation (MR). Here, we present the first quantitative analyses of dendritic spine density in postmortem brain tissue from female RTT individuals, which revealed that hippocampal CA1 pyramidal neurons have lower spine density than age-matched non-MR female control individuals. The majority of RTT individuals carry mutations in MECP2, the gene coding for a methylated DNA-binding transcriptional regulator. While altered synaptic transmission and plasticity has been demonstrated in Mecp2-deficient mouse models of RTT, observations regarding dendritic spine density and morphology have produced varied results. We investigated the consequences of MeCP2 dysfunction on dendritic spine structure by overexpressing (∼twofold) MeCP2-GFP constructs encoding either the wildtype (WT) protein, or missense mutations commonly found in RTT individuals. Pyramidal neurons within hippocampal slice cultures transfected with either WT or mutant MECP2 (either R106W or T158M) showed a significant reduction in total spine density after 48hrs of expression. Interestingly, spine density in neurons expressing WT MECP2 for 96hrs was comparable to that in control neurons, while neurons expressing mutant MECP2 continued to have lower spines density than controls after 96hrs of expression. Knockdown of endogenous Mecp2 with a specific small hairpin interference RNA (shRNA) also reduced dendritic spine density, but only after 96hrs of expression. On the other hand, the consequences of manipulating MeCP2 levels for dendritic complexity in CA3 pyramidal neurons were only minor. Together, these results demonstrate reduced dendritic spine density in hippocampal pyramidal neurons from RTT patients, a distinct dendritic phenotype also found in neurons expressing RTT-associated MECP2 mutations or after sh

  7. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  8. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  9. Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat.

    PubMed

    Clemo, H Ruth; Lomber, Stephen G; Meredith, M Alex

    2016-04-01

    In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES. PMID:25274986

  10. Myosin X and its motorless isoform differentially modulate dendritic spine development by regulating trafficking and retention of vasodilator-stimulated phosphoprotein

    PubMed Central

    Lin, Wan-Hsin; Hurley, Joshua T.; Raines, Alexander N.; Cheney, Richard E.; Webb, Donna J.

    2013-01-01

    Summary Myosin X (Myo10) is an unconventional myosin with two known isoforms: full-length (FL)-Myo10 that has motor activity, and a recently identified brain-expressed isoform, headless (Hdl)-Myo10, which lacks most of the motor domain. FL-Myo10 is involved in the regulation of filopodia formation in non-neuronal cells; however, the biological function of Hdl-Myo10 remains largely unknown. Here, we show that FL- and Hdl-Myo10 have important, but distinct, roles in the development of dendritic spines and synapses in hippocampal neurons. FL-Myo10 induces formation of dendritic filopodia and modulates filopodia dynamics by trafficking the actin-binding protein vasodilator-stimulated phosphoprotein (VASP) to the tips of filopodia. By contrast, Hdl-Myo10 acts on dendritic spines to enhance spine and synaptic density as well as spine head expansion by increasing the retention of VASP in spines. Thus, this study demonstrates a novel biological function for Hdl-Myo10 and an important new role for both Myo10 isoforms in the development of dendritic spines and synapses. PMID:23943878

  11. Novel Song-Stimulated Dendritic Spine Formation and Arc/Arg 3.1 Expression in Zebra Finch Auditory Telencephalon are Disrupted by Cannabinoid Agonism

    PubMed Central

    Gilbert, Marcoita T; Soderstrom, Ken

    2013-01-01

    Cannabinoids are well-established to alter processes of sensory perception; however neurophysiological mechanisms responsible remain unclear. Arc, an immediate-early gene (IEG) product involved in dendritic spine dynamics and necessary for plasticity changes such as long-term potentiation, is rapidly induced within zebra finch caudal medial nidopallium (NCM) following novel song exposure, a response that habituates after repeated stimuli. Arc appears unique in its rapid postsynaptic dendritic expression following excitatory input. Previously, we found that vocal development-altering cannabinoid treatments are associated with elevated dendritic spine densities in motor- (HVC) and learning-related (Area X) song regions of zebra finch telencephalon. Given Arc’s dendritic morphological role, we hypothesized that cannabinoid-altered spine densities may involve Arc-related signaling. To test this, we examined the ability of the cannabinoid agonist WIN55212-2 (WIN) to: (1) acutely disrupt song-induced Arc expression; (2) interfere with habituation to auditory stimuli and; (3) alter dendritic spine densities in auditory regions. We found that WIN (3 mg/kg) acutely reduced Arc expression within both NCM and Field L2 in an antagonist-reversible manner. WIN did not alter Arc expression in thalamic auditory relay Nucleus Ovoidalis (Ov), suggesting cannabinoid signaling selectively alters responses to auditory stimulation. Novel song stimulation rapidly increased dendritic spine densities within auditory telencephalon, an effect blocked by WIN pretreatments. Taken together, cannabinoid inhibition of both Arc induction and its habituation to repeated stimuli, combined with prevention of rapid increases in dendritic spine densities, implicates cannabinoid signaling in modulation of physiological processes important to auditory responsiveness and memory. PMID:24134952

  12. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma.

    PubMed

    Winston, Charisse N; Noël, Anastasia; Neustadtl, Aidan; Parsadanian, Maia; Barton, David J; Chellappa, Deepa; Wilkins, Tiffany E; Alikhani, Andrew D; Zapple, David N; Villapol, Sonia; Planel, Emmanuel; Burns, Mark P

    2016-03-01

    Mild traumatic brain injury (mTBI) is an emerging risk for chronic behavioral, cognitive, and neurodegenerative conditions. Athletes absorb several hundred mTBIs each year; however, rodent models of repeat mTBI (rmTBI) are often limited to impacts in the single digits. Herein, we describe the effects of 30 rmTBIs, examining structural and pathological changes in mice up to 365 days after injury. We found that single mTBI causes a brief loss of consciousness and a transient reduction in dendritic spines, reflecting a loss of excitatory synapses. Single mTBI does not cause axonal injury, neuroinflammation, or cell death in the gray or white matter. Thirty rmTBIs with a 1-day interval between each mTBI do not cause dendritic spine loss; however, when the interinjury interval is increased to 7 days, dendritic spine loss is reinstated. Thirty rmTBIs cause white matter pathology characterized by positive silver and Fluoro-Jade B staining, and microglial proliferation and activation. This pathology continues to develop through 60 days, and is still apparent at 365 days, after injury. However, rmTBIs did not increase β-amyloid levels or tau phosphorylation in the 3xTg-AD mouse model of Alzheimer disease. Our data reveal that single mTBI causes a transient loss of synapses, but that rmTBIs habituate to repetitive injury within a short time period. rmTBI causes the development of progressive white matter pathology that continues for months after the final impact. PMID:26857506

  13. An in vitro reproduction of stress-induced memory defects: Effects of corticoids on dendritic spine dynamics.

    PubMed

    Saito, Shinichi; Kimura, Satoshi; Adachi, Naoki; Numakawa, Tadahiro; Ogura, Akihiko; Tominaga-Yoshino, Keiko

    2016-01-01

    Previously, in organotypic slice culture of rodent hippocampus we found that three repeated inductions of LTP, but not a single induction, led to a slow-developing long-lasting enhancement of synaptic strength coupled with synapse formation. Naming this structural plasticity RISE (repetitive LTP-induced synaptic enhancement) and assuming it to be a potential in vitro reproduction of repetition-dependent memory consolidation, we are analyzing its cellular mechanisms. Here, we applied a glucocorticoid to the culture to mimic acute excess stress and demonstrated its blockade of RISE. Since excess stress interferes with behavioral memory consolidation, the parallelism between RISE in vitro and memory consolidation in vivo is supported. We recently reported that RISE developed after stochastic processes. Here we found that the glucocorticoid interfered with RISE by suppressing the increment of dendritic spine fluctuation that precedes a net increase in spine density. The present study provides clues for understanding the mechanism of stress-induced memory defects. PMID:26765339

  14. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy.

    PubMed

    Morrell, David S; Pearson, J Michael; Sauser, Donald D

    2002-01-01

    Bone and joint changes in cerebral palsy result from muscle spasticity and contracture. The spine and the joints of the lower extremity are most commonly affected. Scoliosis may progress rapidly and may continue after skeletal maturity. Increased thoracic kyphosis and lumbar lordosis, spondylolisthesis, spondylolysis, and pelvic obliquity may accompany the scoliosis. Progressive hip flexion and adduction lead to windswept deformity, increased femoral anteversion, apparent coxa valga, subluxation, deformity of the femoral head, hip dislocation, and formation of a pseudoacetabulum. In the knee, flexion contracture, patella alta, and patellar fragmentation are the most commonly seen abnormalities. Recurvatum deformity can also develop in the knee secondary to contracture of the rectus femoris muscle. Progressive equinovalgus and equinovarus of the foot and ankle are associated with rocker-bottom deformity and subluxation of the talonavicular joint. Early recognition of progressive deformity in patients with cerebral palsy allows timely treatment and prevention of irreversible change. PMID:11896216

  15. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1

    PubMed Central

    Körber, Nils; Stein, Valentin

    2016-01-01

    Formation and stability of synapses are required for proper brain function. While it is well established that synaptic adhesion molecules are important regulators of synapse formation, their specific role during different phases of synapse development remains unclear. To investigate the function of the synaptic cell adhesion molecule SynCAM 1 in the formation, stability, and maintenance of spines we used 2-photon in vivo imaging to follow individual spines over a long period of time. In SynCAM 1 knockout mice the survival rate of existing spines was reduced and fewer filopodia-like structures were converted into stable spines. SynCAM 1flag overexpression resulted in more stable spines and fewer filopodia-like structures. When SynCAM 1flag overexpression is turned on the spine density rapidly increases within a few days. Interestingly, the spine density stayed at an elevated level when SynCAM 1flag overexpression was turned off. Our data indicate that the SynCAM 1 induced altered spine density is not caused by the formation of newly emerging protrusions, instead SynCAM 1 stabilizes nascent synaptic contacts which promotes their maturation. Concomitant with the synaptic stabilization, SynCAM 1 generally prolongs the lifetime of spines. In summary, we demonstrate that SynCAM 1 is a key regulator of spine stability. PMID:27053173

  16. Dendritic Spines and Development: Towards a Unifying Model of Spinogenesis—A Present Day Review of Cajal's Histological Slides and Drawings

    PubMed Central

    García-López, Pablo; García-Marín, Virginia; Freire, Miguel

    2010-01-01

    Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development. PMID:21584262

  17. Spatio-temporal filtering properties of a dendritic cable with active spines: a modeling study in the spike-diffuse-spike framework.

    PubMed

    Timofeeva, Yulia; Lord, Gabriel J; Coombes, Stephen

    2006-12-01

    The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time-varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, 'Mechanisms for generating temporal filters in the electrosensory system,' The Journal of Experimental Biology 202: 1281-1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations. PMID:16896521

  18. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    PubMed

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen Und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test. PMID:26970009

  19. mGluR5 Positive and Negative Allosteric Modulators Differentially Affect Dendritic Spine Density and Morphology in the Prefrontal Cortex

    PubMed Central

    LaCrosse, Amber L.; Taylor, Sara B.; Nemirovsky, Natali E.; Gass, Justin T.; Olive, M. Foster

    2015-01-01

    Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4H-imidazol-2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 μm) head diameters, decreases in frequency of spines with medium (0.2–0.4 μm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 μm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed. PMID:25921744

  20. Stress during pregnancy alters dendritic spine density and gene expression in the brain of new-born lambs.

    PubMed

    Petit, Bérengère; Boissy, Alain; Zanella, Adroaldo; Chaillou, Elodie; Andanson, Stéphane; Bes, Sébastien; Lévy, Frédéric; Coulon, Marjorie

    2015-09-15

    Rodent studies show how prenatal stress (PS) can alter morphology in the cortico-limbic structures that support emotional and cognitive functions. PS-induced alteration is less well described in species with a gyrencephalic brain and complex earlier fetal development, and never in sheep at birth to rule out postnatal environment effects or influences of maternal behavior. This study aimed to assess the consequences of a mild chronic stress in pregnant ewes on the neurobiological development of their lambs at birth. During the last third of gestation, 7 ewes were exposed daily to various unpredictable and negative routine management-based challenges (stressed group), while 7 other ewes were housed without any additional perturbation (control group). For each group, a newborn from each litter was sacrificed at birth to collect its brain and analyze its expression levels of genes involved in neuronal dendritic morphology (Dlg4, Rac1, RhoA, Doc2b), synaptic transmission (Nr1, Grin2A, Grin2B) and glucocorticoid receptor (Nr3C1) in hippocampus (HPC), prefrontal cortex (PFC) and amygdala (AMYG). Results revealed that lambs from stressed dam (PS lambs) showed under-expression of Rac1 and Nr1 in PFC and overexpression of Dlg4 in AMYG compared to controls. To assess the morphological consequences of gene dysregulations, the dendritic morphology of pyramidal neurons was explored by Golgi-Cox staining in HPC and PFC. PS lambs had higher dendritic spine density in both structures and more stubby-type spines in the CA1 area of HPC than controls. This is the first demonstration in sheep that PS alters fetal brain, possibly reflecting functional changes in synaptic transmission to cope with adversity experienced in fetal life. PMID:26005125

  1. A Novel Explanation for Observed CaMKII Dynamics in Dendritic Spines with Added EGTA or BAPTA

    PubMed Central

    Matolcsi, Matt; Giordano, Nicholas

    2015-01-01

    We present a simplified reaction network in a single well-mixed volume that captures the general features of CaMKII dynamics observed during both synaptic input and spine depolarization. Our model can also account for the greater-than-control CaMKII activation observed with added EGTA during depolarization. Calcium input currents are modeled after experimental observations, and existing models of calmodulin and CaMKII autophosphorylation are used. After calibration against CaMKII activation data in the absence of chelators, CaMKII activation dynamics due to synaptic input via n-methyl-d-aspartate receptors are qualitatively accounted for in the presence of the chelators EGTA and BAPTA without additional adjustments to the model. To account for CaMKII activation dynamics during spine depolarization with added EGTA or BAPTA, the model invokes the modulation of CaV2.3 (R-type) voltage-dependent calcium channel (VDCC) currents observed in the presence of EGTA or BAPTA. To our knowledge, this is a novel explanation for the increased CaMKII activation seen in dendritic spines with added EGTA, and suggests that differential modulation of VDCCs by EGTA and BAPTA offers an alternative or complementary explanation for other experimental results in which addition of EGTA or BAPTA produces different effects. Our results also show that a simplified reaction network in a single, well-mixed compartment is sufficient to account for the general features of observed CaMKII dynamics. PMID:25692602

  2. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

    PubMed Central

    Afroz, Sonia; Parato, Julie; Shen, Hui; Smith, Sheryl Sue

    2016-01-01

    Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI: http://dx.doi.org/10.7554/eLife.15106.001 PMID:27136678

  3. Transgenerational sex-specific impact of preconception stress on the development of dendritic spines and dendritic length in the medial prefrontal cortex.

    PubMed

    Bock, Joerg; Poeschel, Julia; Schindler, Julia; Börner, Florian; Shachar-Dadon, Alice; Ferdman, Neta; Gaisler-Salomon, Inna; Leshem, Micah; Braun, Katharina; Poeggel, Gerd

    2016-03-01

    Perinatal adverse experience programs social and emotional behavioral traits and is a major risk factor for the development of behavioral and psychiatric disorders. Little information is available on how adversity to the mother prior to her first pregnancy (preconception stress, PCS) may affect brain structural development, which may underlie behavioral dysfunction in the offspring. Moreover, little is known about possible sex-dependent consequences of PCS in the offspring. This study examined spine number/density and dendritic length/complexity of layer II/III pyramidal neurons in the anterior cingulate (ACd), prelimbic/infralimbic (PL/IL) and orbitofrontal cortex (OFC) of male and female rats born to mothers exposed to unpredictable variable stress at different time points prior to reproduction. Our main findings are that in line with our hypothesis adversity to the mother before her pregnancy results in highly complex changes in neuronal morphology in the medial prefrontal, but not in the orbitofrontal cortical regions of her future offspring that persist into adulthood. Moreover, our study revealed that (1) in the PCS2 group (offspring of dams mated two weeks after stress) spine numbers and dendritic length and complexity were increased in response to PCS in the ACd and PL/IL, (2) these regional effects depended on the temporal proximity of adversity and conception, (3) in the ACd of the PCS2 group only males and the left hemispheres were affected. We speculate that these transgenerational brain structural changes are mediated by stress-induced epigenetic (re)programming of future gene activity in the oocyte. PMID:25395153

  4. Elimination of dendritic spines with long-term memory is specific to active circuits

    PubMed Central

    Sanders, Jeff; Cowansage, Kiriana; Baumgärtel, Karsten; Mayford, Mark

    2012-01-01

    Structural changes in brain circuits active during learning are thought to be important for long-term memory storage. If these changes support long-term information storage they might be expected to be present at distant timepoints after learning, as well as specific to the circuit activated with learning, and sensitive to the contingencies of the behavioral paradigm. Here, we show such changes in the hippocampus as a result of contextual fear conditioning. There were significantly fewer spines specifically on active neurons of fear-conditioned mice. This spine loss did not occur in homecage mice or in mice exposed to the training context alone. Mice exposed to unpaired shocks showed a generalized reduction in spines. These learning-related changes in spine density could reflect a direct mechanism of encoding or alternately could reflect a compensatory adaptation to previously described enhancement in transmission due to glutamate receptor insertion. PMID:22956846

  5. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls

    PubMed Central

    Young, Keith A.; Thompson, Peter M.; Cruz, Dianne A.; Williamson, Douglas E.; Selemon, Lynn D.

    2015-01-01

    Genetic variants of the immunophilin FKBP5 have been implicated in susceptibility to post-traumatic stress disorder (PTSD) and other stress-related disorders. We examined the relationship between mushroom, stubby, thin and filopodial spine densities measured with Golgi staining and FKBP5 gene expression in the medial orbitofrontal cortex (BA11) in individuals diagnosed with PTSD and normal controls (n = 8/8). ANCOVA revealed PTSD cases had a significantly elevated density of stubby spines (29%, P < 0.037) and a trend for a reduction in mushroom spine density (25%, p < 0.082). Levels of FKBP5 mRNA were marginally elevated in the PTSD cases (z = 1.94, p = 0.053) and levels correlated inversely with mushroom (Spearman's rho = −0.83, p < 0.001) and overall spine density (rho = −0.75, p < 0.002) and directly with stubby spine density (rho = 0.55, p < 0.027). These data suggest that FKBP5 may participate in a cellular pathway modulating neuronal spine density changes in the brain, and that this pathway may be dysregulated in PTSD. PMID:26844242

  6. Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines.

    PubMed

    Xia, Di; Li, Chuanzhou; Götz, Jürgen

    2015-05-01

    Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ) and Tau in the brain. In mature neurons, Tau is concentrated in the axon and found at lower levels in the dendrite where it is required for targeting Fyn to the spines. Here Fyn mediates Aβ toxicity, which is vastly abrogated when Tau is either deleted or a truncated form of Tau (Tau(1-255)) is co-expressed. Interestingly, MAP2, a microtubule-binding protein with mainly dendritic localization that shares Fyn-binding motifs with Tau, does not mediate Aβ's synaptic toxicity in the absence of Tau. Here we show in hippocampal neurons that endogenous Tau enters the entire spine, albeit at low levels, whereas MAP2 only enters its neck or is restricted to the dendritic shaft. Based on an extensive mutagenesis study, we also reveal that the spine localization of Tau is facilitated by deletion of the microtubule-binding repeat domain. When distinct phosphorylation sites (AT180-T231/S235, 12E8-S262/S356, PHF1-S396/S404) were pseudophosphorylated (with glutamic acid, using alanine replacements as controls), Tau targeting to spines was markedly increased, whereas the pseudophosphorylation of the late phospho-epitope S422 had no effect. In determining the role physiological Fyn has in the spine localization of Tau, we found that neither were endogenous Tau levels reduced in Fyn knockout compared with wild-type synaptosomal brain fractions nor was the spine localization of over-expressed pseudophosphorylated or P301L Tau. This demonstrates that although Fyn targeting to the spine is Tau dependent, elevated levels of phosphorylated Tau or P301L Tau can enter the spine in a Fyn-independent manner. PMID:25558816

  7. Reactivating fear memory under propranolol resets pre-trauma levels of dendritic spines in basolateral amygdala but not dorsal hippocampus neurons

    PubMed Central

    Vetere, Gisella; Piserchia, Valentina; Borreca, Antonella; Novembre, Giovanni; Aceti, Massimiliano; Ammassari-Teule, Martine

    2013-01-01

    Fear memory enhances connectivity in cortical and limbic circuits but whether treatments disrupting fear reset connectivity to pre-trauma level is unknown. Here we report that C56BL/6J mice exposed to a tone-shock association in context A (conditioning), and briefly re-exposed to the same tone-shock association in context B (reactivation), exhibit strong freezing to the tone alone delivered 48 h later in context B (long term fear memory). This intense fear response is associated with a massive increase in dendritic spines and phospho-Erk (p-ERK) signaling in basolateral amygdala (BLA) but neurons. We then show that propranolol (a central/peripheral β-adrenergic receptor blocker) administered before, but not after, the reactivation trial attenuates long term fear memory assessed drug free 48 h later, and completely prevents the increase in spines and p-ERK signaling in BLA neurons. An increase in spines, but not of p-ERK, was also detected in the dorsal hippocampus (DH) of the conditioned mice. DH spines, however, were unaffected by propranolol suggesting their independence from the ERK/β-ARs cascade. We conclude that propranolol selectively blocks dendritic spines and p-ERK signaling enhancement in the BLA; its effect on fear memory is, however, less pronounced suggesting that the persistence of spines at other brain sites decreases the sensitivity of the fear memory trace to treatments selectively targeting β ARs in the BLA. PMID:24391566

  8. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    PubMed

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  9. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    ERIC Educational Resources Information Center

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  10. Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy.

    PubMed

    Kuwajima, M; Spacek, J; Harris, K M

    2013-10-22

    Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms. PMID:22561733

  11. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation

    PubMed Central

    De Rubeis, Silvia; Pasciuto, Emanuela; Li, Ka Wan; Fernández, Esperanza; Di Marino, Daniele; Buzzi, Andrea; Ostroff, Linnaea E.; Klann, Eric; Zwartkruis, Fried J.T.; Komiyama, Noboru H.; Grant, Seth G.N.; Poujol, Christel; Choquet, Daniel; Achsel, Tilmann; Posthuma, Danielle; Smit, August B.; Bagni, Claudia

    2013-01-01

    Summary The CYFIP1/SRA1 gene is located in a chromosomal region linked to various neurological disorders, including intellectual disability, autism, and schizophrenia. CYFIP1 plays a dual role in two apparently unrelated processes, inhibiting local protein synthesis and favoring actin remodeling. Here, we show that brain-derived neurotrophic factor (BDNF)-driven synaptic signaling releases CYFIP1 from the translational inhibitory complex, triggering translation of target mRNAs and shifting CYFIP1 into the WAVE regulatory complex. Active Rac1 alters the CYFIP1 conformation, as demonstrated by intramolecular FRET, and is key in changing the equilibrium of the two complexes. CYFIP1 thus orchestrates the two molecular cascades, protein translation and actin polymerization, each of which is necessary for correct spine morphology in neurons. The CYFIP1 interactome reveals many interactors associated with brain disorders, opening new perspectives to define regulatory pathways shared by neurological disabilities characterized by spine dysmorphogenesis. PMID:24050404

  12. Adenosine triphosphate released from HIV-infected macrophages regulates glutamatergic tone and dendritic spine density on neurons

    PubMed Central

    Tovar-y-Romo, Luis B.; Kolson, Dennis L.; Bandaru, Veera Venkata Ratnam; Drewes, Julia; Graham, David R.; Haughey, Norman J.

    2013-01-01

    Despite wide spread use of combination antiretroviral therapy (cART) in developed countries, approximately half of HIV-infected patients will develop impairments in cognitive function. Accumulating evidence suggests that neuronal dysfunction can be precipitated by HIV-infection of macrophages by mechanisms that involve alterations in innate and adaptive immune responses. HIV-infection of macrophages is known to increase the release of soluble neurotoxins. However, the composition of products released from infected macrophages is complex and not fully known. In this study we provide evidence that ATP and other immuno-/neuromodulatory nucleotides are exported from HIV-infected macrophages and modify neuronal structure. Supernatants collected from HIV-infected macrophages (HIV/MDM) contained large amounts of ATP, ADP, AMP and small amounts of adenosine, in addition to glutamate. Dilutions of these supernatants that were sub-threshold for glutamate receptor activation evoked rapid calcium flux in neurons that were completely inhibited by the enzymatic degradation of ATP, or by blockade of calcium permeable purinergic receptors. Applications of these high-dilution HIV/MDM onto neuronal cultures increased the amount of extracellular glutamate by mechanisms dependent on purinergic receptor activation, and downregulated spine density on neurons by mechanisms dependent on purinergic and glutamate receptor activation. We conclude from these data that ATP released from HIV-infected macrophages downregulates dendritic spine density on neurons by a mechanism that involves purinergic receptor mediated modulation of glutamatergic tone. These data suggest that neuronal function may be depressed in HIV infected individuals by mechanisms that involve macrophage release of ATP that triggers secondary effects on glutamate handling. PMID:23686368

  13. Xanthoceras sorbifolia extracts ameliorate dendritic spine deficiency and cognitive decline via upregulation of BDNF expression in a rat model of Alzheimer's disease.

    PubMed

    Li, Yinjie; Xu, Jikai; Xu, Pu; Song, Shijie; Liu, Peng; Chi, Tianyan; Ji, Xuefei; Jin, Ge; Qiu, Shimeng; Hou, Yapeng; Zheng, Chen; Wang, Lili; Meng, Dali; Zou, Libo

    2016-08-26

    Xanthoceras sorbifolia, a traditional Chinese folk medicine with anti-inflammatory effects, has been used for a long time in China, especially in the Inner Mongolian area for the treatment of rheumatism. Inflammation is one of the main causes of Alzheimer's disease (AD). AD is characterized by aggregation of amyloid β-peptide (Aβ) plaques, neurofibrillary tangle formation, synaptic dysfunction and neuronal loss. To investigate whether Xanthoceras sorbifolia extracts (XSE) improve cognition and protect dendritic spines, we performed behavioral tests to investigate learning and memory in an Aβ25-35-induced dementia animal model of AD as well as Golgi staining to observe dendritic spine formation in CA1 pyramidal neurons and western blots to test the expression levels of PSD95, BDNF and downstream signaling pathways. Our results indicated that oral treatment with XSE significantly reduced cognitive impairments in behavioral tests (passive avoidance test, novel object recognition test, Y-maze test and Morris water maze test). Golgi staining results revealed that XSE ameliorated dendritic spine density deficits in CA1 pyramidal neurons in the hippocampus. Western blot analysis suggested that XSE upregulated PSD95, which is the major scaffolding protein in synapses. BDNF levels and the ratio of p-TrkB/TrkB increased, and the expression of the RhoA, a member of the Rho-GTPase family, and its downstream target protein ROCK2 decreased in the dementia animal model following treatment with XSE. Therefore, the cognition-improving effects of XSE probably resulted from dendritic spine protection effects through regulation of BDNF signaling pathways. PMID:27412235

  14. Late-Postnatal Cannabinoid Exposure Persistently Elevates Dendritic Spine Densities in Area X and HVC Song Regions of Zebra Finch Telencephalon

    PubMed Central

    Gilbert, Marcoita T.; Soderstrom, Ken

    2011-01-01

    Centrally acting cannabinoids are well known for their ability to impair functions associated with both learning and memory but appreciation of the physiological mechanisms underlying these actions, particularly those that persist, remains incomplete. Our earlier studies have shown that song stereotypy is persistently reduced in male zebra finches that have been developmentally exposed to cannabinoids. In the present work, we examined the extent to which changes in neuronal morphology (dendritic spine densities and soma size) within brain regions associated with zebra finch vocal learning are affected by late-postnatal cannabinoid agonist exposure. We found that daily treatment with the cannabinoid agonist WIN55212-2 (WIN, 1 mg/kg IM) is associated with 27 % and 31 % elevations in dendritic spine densities in the song regions Area X and HVC, respectively. We also found an overall increase in cell diameter within HVC. Changes in dendritic spine densities were only produced following developmental exposure; treatments given to adults that had completed vocal learning were not effective. These findings have important implications for understanding how repeated cannabinoid exposure can produce significant, lasting alteration of brain morphology, which may contribute to altered development and behavior. PMID:21737064

  15. Cyclin-dependent Kinase 5 (Cdk5)-dependent Phosphorylation of p70 Ribosomal S6 Kinase 1 (S6K) Is Required for Dendritic Spine Morphogenesis.

    PubMed

    Lai, Kwok-On; Liang, Zhuoyi; Fei, Erkang; Huang, Huiqian; Ip, Nancy Y

    2015-06-01

    The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity. PMID:25903132

  16. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    PubMed

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats. PMID:25457025

  17. [The dendritic spines of the pyramidal neurons in layer V of the rat sensorimotor cortex following a 14-day space flight].

    PubMed

    Belichenko, P V; Krasnov, I B

    1991-11-01

    There was made a quantitative study of the influence of 14 days space flight ("Kosmos-2044") on dendritic spine (DS) density of the layer V pyramidal neurons of rat sensomotor cortex. There was found an increase of the number of apical DS lying in the layers III-IV in the flight group only. Number of DS on oblique dendrites was increased in the III-IV cortical layers both in the flight and tail-suspended rats. There was also an increase in the number of DS on basal dendrites in all experimental groups. Obtained data are compared with similar 7 days flight results ("Kosmos-1667") and other data of nervous tissue plasticity in weightlessness. PMID:1810500

  18. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment.

    PubMed

    You, Chang; Zhang, Huaibo; Sakharkar, Amul J; Teppen, Tara; Pandey, Subhash C

    2014-02-01

    Development of anxiety-like behaviours during ethanol withdrawal has been correlated with increased histone deacetylase (HDAC) activity and decreased brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc) gene expression in the amygdala. Furthermore, HDAC-mediated histone modifications play a role in synaptic plasticity. In this study we used the HDAC inhibitor trichostatin A (TSA) to determine whether HDAC inhibition could prevent ethanol withdrawal-induced deficits in dendritic spine density (DSD), BDNF or Arc expression in the amygdala of rats. It was found that decreased BDNF and Arc expression in the central (CeA) and medial nucleus of amygdala (MeA), observed during withdrawal after chronic ethanol exposure, were normalized following acute TSA treatment. TSA treatment was also able to attenuate anxiety-like behaviours during ethanol withdrawal and correct the observed decrease in DSD in the CeA and MeA of ethanol-withdrawn rats. Taken together, these findings demonstrate that correcting the deficits in histone acetylation through TSA treatment also amends downstream synaptic plasticity-related deficits such as BDNF and Arc expression, and DSD in the CeA and MeA as well as attenuates anxiety-like behaviours in rats during withdrawal after chronic ethanol exposure. PMID:24103311

  19. 5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria

    PubMed Central

    Andolina, Diego; Conversi, David; Cabib, Simona; Trabalza, Antonio; Ventura, Rossella; Puglisi-Allegra, Stefano; Pascucci, Tiziana

    2011-01-01

    Although phenylketonuria (PKU) is the most common genetic cause of mental retardation, the cellular mechanisms underlying impaired brain function are still unclear. Using PAHenu2 mice (ENU2), the genetic mouse model of PKU, we previously demonstrated that high phenylalanine levels interfere with brain tryptophan hydroxylase activity by reducing the availability of serotonin (5-hydroxytryptamine, 5-HT), crucial for maturation of neuronal connectivity in the prefrontal cortex (PFC), around the third postnatal week, a critical period for cortical maturation. 5-Hydroxytryptophan (5-HTP), the product of tryptophan hydroxylation, is known to be a better treatment to increase brain 5-HT levels. In this study we investigated the role of 5-HT during the early postnatal period in cognitive disturbances and in cortical dendritic alterations of PKU subjects by restoring temporarily (postnatal days 14–21) physiological brain levels of 5-HT in ENU2 through 5-HTP treatment. In adult ENU2 mice early 5-HTP treatment reverses cognitive deficits in spatial and object recognition tests accompanied by an increase in spine maturation of pyramidal neurons in layer V of the prelimbic/infralimbic area of the PFC, although locomotor deficits are not recovered by treatment. Taken together, our results support the hypothesis that mental retardation in PKU depends on reduced availability of brain 5-HT during critical developmental periods that interferes with cortical maturation and point to 5-HTP supplementation as a highly promising additional tool to heal PKU patients. PMID:21040618

  20. Satb1 Ablation Alters Temporal Expression of Immediate Early Genes and Reduces Dendritic Spine Density during Postnatal Brain Development

    PubMed Central

    Balamotis, Michael A.; Tamberg, Nele; Woo, Young Jae; Li, Jingchuan; Davy, Brian

    2012-01-01

    Complex behaviors, such as learning and memory, are associated with rapid changes in gene expression of neurons and subsequent formation of new synaptic connections. However, how external signals are processed to drive specific changes in gene expression is largely unknown. We found that the genome organizer protein Satb1 is highly expressed in mature neurons, primarily in the cerebral cortex, dentate hilus, and amygdala. In Satb1-null mice, cortical layer morphology was normal. However, in postnatal Satb1-null cortical pyramidal neurons, we found a substantial decrease in the density of dendritic spines, which play critical roles in synaptic transmission and plasticity. Further, we found that in the cerebral cortex, Satb1 binds to genomic loci of multiple immediate early genes (IEGs) (Fos, Fosb, Egr1, Egr2, Arc, and Bdnf) and other key neuronal genes, many of which have been implicated in synaptic plasticity. Loss of Satb1 resulted in greatly alters timing and expression levels of these IEGs during early postnatal cerebral cortical development and also upon stimulation in cortical organotypic cultures. These data indicate that Satb1 is required for proper temporal dynamics of IEG expression. Based on these findings, we propose that Satb1 plays a critical role in cortical neurons to facilitate neuronal plasticity. PMID:22064485

  1. MEK-ERK1/2-dependent FLNA overexpression promotes abnormal dendritic patterning in tuberous sclerosis independent of mTOR.

    PubMed

    Zhang, Longbo; Bartley, Christopher M; Gong, Xuan; Hsieh, Lawrence S; Lin, Tiffany V; Feliciano, David M; Bordey, Angélique

    2014-10-01

    Abnormal dendritic complexity is a shared feature of many neurodevelopmental disorders associated with neurological defects. Here, we found that the actin-crosslinking protein filamin A (FLNA) is overexpressed in tuberous sclerosis complex (TSC) mice, a PI3K-mTOR model of neurodevelopmental disease that is associated with abnormal dendritic complexity. Both under- and overexpression of FLNA in wild-type neurons led to more complex dendritic arbors in vivo, suggesting that an optimal level of FLNA expression is required for normal dendritogenesis. In Tsc1(null) neurons, knocking down FLNA in vivo prevented dendritic abnormalities. Surprisingly, FLNA overexpression in Tsc1(null) neurons was dependent on MEK1/2 but not mTOR activity, despite both pathways being hyperactive. In addition, increasing MEK-ERK1/2 activity led to dendritic abnormalities via FLNA, and decreasing MEK-ERK1/2 signaling in Tsc1(null) neurons rescued dendritic defects. These data demonstrate that altered FLNA expression increases dendritic complexity and contributes to pathologic dendritic patterning in TSC in an mTOR-independent, ERK1/2-dependent manner. PMID:25277454

  2. MEK-ERK1/2-dependent FLNA overexpression promotes abnormal dendritic patterning in tuberous sclerosis independent of mTOR

    PubMed Central

    Zhang, Longbo; Bartley, Christopher M.; Gong, Xuan; Hsieh, Lawrence S.; Lin, Tiffany V.; Feliciano, David M.; Bordey, Angélique

    2014-01-01

    Summary Abnormal dendritic complexity is a shared feature of many neurodevelopmental disorders associated with neurological defects. Here, we found that the actin-crosslinking protein filamin A (FLNA) is overexpressed in tuberous sclerosis complex (TSC) mice, a PI3K-mTOR model of neurodevelopmental disease that is associated with abnormal dendritic complexity. Both under-and overexpression of FLNA in wild-type neurons led to more complex dendritic arbors in vivo, suggesting that an optimal level of FLNA expression is required for normal dendritogenesis. In Tsc1null neurons, knocking down FLNA in vivo prevented dendritic abnormalities. Surprisingly, FLNA overexpression in Tsc1null neurons was dependent on MEK1/2 but not mTOR activity despite both pathways being hyperactive. In addition, increasing MEK-ERK1/2 activity led to dendritic abnormalities via FLNA and decreasing MEK-ERK1/2 signaling in Tsc1null neurons rescued dendritic defects. These data demonstrate that altered FLNA expression increases dendritic complexity and contributes to pathologic dendritic patterning in TSC in an mTOR-independent, ERK1/2-dependent manner. PMID:25277454

  3. Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to amyloid-β revealed by a novel fluorescence resonance energy transfer assay.

    PubMed

    Wu, Hai-Yan; Hudry, Eloise; Hashimoto, Tadafumi; Uemura, Kengo; Fan, Zhan-Yun; Berezovska, Oksana; Grosskreutz, Cynthia L; Bacskai, Brian J; Hyman, Bradley T

    2012-04-11

    Calcineurin (CaN) activation is critically involved in the regulation of spine morphology in response to oligomeric amyloid-β (Aβ) as well as in synaptic plasticity in normal memory, but no existing techniques can monitor the spatiotemporal pattern of CaN activity. Here, we use a spectral fluorescence resonance energy transfer approach to monitor CaN activation dynamics in real time with subcellular resolution. When oligomeric Aβ derived from Tg2576 murine transgenic neurons or human AD brains were applied to wild-type murine primary cortical neurons, we observe a dynamic progression of CaN activation within minutes, first in dendritic spines, and then in the cytoplasm and, in hours, in the nucleus. CaN activation in spines leads to rapid but reversible morphological changes in spines and in postsynaptic proteins; longer exposure leads to NFAT (nuclear factor of activated T-cells) translocation to the nucleus and frank spine loss. These results provide a framework for understanding the role of calcineurin in synaptic alterations associated with AD pathogenesis. PMID:22496575

  4. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  5. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth*

    PubMed Central

    Mertz, Joseph; Tan, Haiyan; Pagala, Vishwajeeth; Bai, Bing; Chen, Ping-Chung; Li, Yuxin; Cho, Ji-Hoon; Shaw, Timothy; Wang, Xusheng; Peng, Junmin

    2015-01-01

    The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development. PMID:25931508

  6. Positional Magnetic Resonance Imaging for People With Ehlers-Danlos Syndrome or Suspected Craniovertebral or Cervical Spine Abnormalities: An Evidence-Based Analysis

    PubMed Central

    2015-01-01

    Background Ehlers-Danlos syndrome (EDS) is an inherited disorder affecting the connective tissue. EDS can manifest with symptoms attributable to the spine or craniovertebral junction (CVJ). In addition to EDS, numerous congenital, developmental, or acquired disorders can increase ligamentous laxity in the CVJ and cervical spine. Resulting abnormalities can lead to morbidity and serious neurologic complications. Appropriate imaging and diagnosis is needed to determine patient management and need for complex surgery. Some spinal abnormalities cause symptoms or are more pronounced while patients sit, stand, or perform specific movements. Positional magnetic resonance imaging (pMRI) allows imaging of the spine or CVJ with patients in upright, weight-bearing positions and can be combined with dynamic maneuvers, such as flexion, extension, or rotation. Imaging in these positions could allow diagnosticians to better detect spinal or CVJ abnormalities than recumbent MRI or even a combination of other available imaging modalities might allow. Objectives To determine the diagnostic impact and clinical utility of pMRI for the assessment of (a) craniovertebral or spinal abnormalities among people with EDS and (b) major craniovertebral or cervical spine abnormalities among symptomatic people. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, and EBM Reviews, for studies published from January 1, 1998, to September 28, 2014. Review Methods Studies comparing pMRI to recumbent MRI or other available imaging modalities for diagnosis and management of spinal or CVJ abnormalities were reviewed. All studies of spinal or CVJ imaging in people with EDS were included as well as studies among people with suspected major CVJ or cervical spine abnormalities (cervical or craniovertebral spine instability, basilar invagination, cranial settling, cervical stenosis, spinal cord compression, Chiari

  7. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  8. Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational Study

    PubMed Central

    Morse, Thomas M.; Carnevale, Nicholas T.; Mutalik, Pradeep G.; Migliore, Michele; Shepherd, Gordon M.

    2009-01-01

    The integrative properties of cortical pyramidal dendrites are essential to the neural basis of cognitive function, but the impact of amyloid beta protein (aβ) on these properties in early Alzheimer's is poorly understood. In animal models, electrophysiological studies of proximal dendrites have shown that aβ induces hyperexcitability by blocking A-type K+ currents (IA), disrupting signal integration. The present study uses a computational approach to analyze the hyperexcitability induced in distal dendrites beyond the experimental recording sites. The results show that back-propagating action potentials in the dendrites induce hyperexcitability and excessive calcium concentrations not only in the main apical trunk of pyramidal cell dendrites, but also in their oblique dendrites. Evidence is provided that these thin branches are particularly sensitive to local reductions in IA. The results suggest the hypothesis that the oblique branches may be most vulnerable to disruptions of IA by early exposure to aβ, and point the way to further experimental analysis of these actions as factors in the neural basis of the early decline of cognitive function in Alzheimer's. PMID:20725509

  9. Suppression of spreading depolarization and stabilization of dendritic spines by GLYX-13, an NMDA receptor glycine-site functional partial agonist.

    PubMed

    Zhang, Xiao-Lei; Shuttleworth, C William; Moskal, Joseph R; Stanton, Patric K

    2015-11-01

    Cortical spreading depolarization (SD) is a slow self-propagating wave of mass cellular depolarization in brain tissue, thought to be the underlying cause of migraine scintillating scotoma and aura, and associated with stroke, traumatic brain injury, and termination of status epilepticus. The N-methyl-d-aspartate subtype of glutamate receptor (NMDAR), which gates influx of calcium and is an important trigger of long-term synaptic plasticity, is also a contributor to the initiation and propagation of SD. The current study tested the potential of pharmacological modulation of NMDAR activity through the obligatory co-agonist binding site, to suppress the initiation of SD, and modulate the effects of SD on dendritic spine morphology, in in vitro hippocampal slices. A novel NMDAR functional glycine site partial agonist, GLYX-13, sometimes completely prevented the induction of SD and consistently slowed its rate of propagation. The passage of SD through the hippocampal CA1 region produced a rapid retraction of dendritic spines which reversed after neuronal depolarization had recovered. GLYX-13 improved the rate and extent of return of dendritic spines to their original sizes and locations following SD, suggesting that NMDAR modulators can protect synaptic connections in the brain from structural alterations elicited by SD. These data indicate that NMDAR modulation to renormalize activity may be an effective new treatment strategy for suppression or amelioration of the contribution of SD to short and long-term symptoms of migraine attacks, as well as the effects of SD on tissue damaged by stroke or traumatic brain injury. PMID:26244282

  10. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats.

    PubMed

    Bowman, Rachel E; Luine, Victoria; Diaz Weinstein, Samantha; Khandaker, Hameda; DeWolf, Sarah; Frankfurt, Maya

    2015-03-01

    We have previously demonstrated that adolescent exposure of rats to bisphenol-A (BPA), an environmental endocrine disrupter, increases anxiety, impairs spatial memory, and decreases dendritic spine density in the CA1 region of the hippocampus (CA1) and medial prefrontal cortex (mPFC) when measured in adolescents in both sexes. The present study examined whether the behavioral and morphological alterations following BPA exposure during adolescent development are maintained into adulthood. Male and female, adolescent rats received BPA, 40μg/kg/bodyweight, or control treatments for one week. In adulthood, subjects were tested for anxiety and locomotor activity, spatial memory, non-spatial visual memory, and sucrose preference. Additionally, stress-induced serum corticosterone levels and dendritic spine density in the mPFC and CA1 were measured. BPA-treated males, but not females, had decreased arm visits on the elevated plus maze, but there was no effect on anxiety. Non-spatial memory, object recognition, was also decreased in BPA treated males, but not in females. BPA exposure did not alter spatial memory, object placement, but decreased exploration during the tasks in both sexes. No significant group differences in sucrose preference or serum corticosterone levels in response to a stress challenge were found. However, BPA exposure, regardless of sex, significantly decreased spine density of both apical and basal dendrites on pyramidal cells in CA1 but had no effect in the mPFC. Current data are discussed in relation to BPA dependent changes, which were present during adolescence and did, or did not, endure into adulthood. Overall, adolescent BPA exposure, below the current reference safe daily limit set by the U.S.E.P.A., leads to alterations in some behaviors and neuronal morphology that endure into adulthood. PMID:25554518

  11. The Shank3 Interaction Partner ProSAPiP1 Regulates Postsynaptic SPAR Levels and the Maturation of Dendritic Spines in Hippocampal Neurons

    PubMed Central

    Reim, Dominik; Weis, Tobias M.; Halbedl, Sonja; Delling, Jan Philipp; Grabrucker, Andreas M.; Boeckers, Tobias M.; Schmeisser, Michael J.

    2016-01-01

    The postsynaptic density or PSD is a submembranous compartment containing a wide array of proteins that contribute to both morphology and function of excitatory glutamatergic synapses. In this study, we have analyzed functional aspects of the Fezzin ProSAP-interacting protein 1 (ProSAPiP1), an interaction partner of the well-known PSD proteins Shank3 and SPAR. Using lentiviral-mediated overexpression and knockdown of ProSAPiP1, we found that this protein is dispensable for the formation of both pre- and postsynaptic specializations per se. We further show that ProSAPiP1 regulates SPAR levels at the PSD and the maturation of dendritic spines. In line with previous findings on the ProSAPiP1 homolog PSD-Zip70, we conclude that Fezzins essentially contribute to the maturation of excitatory spine synapses. PMID:27252646

  12. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia.

    PubMed

    Paspalas, Constantinos D; Wang, Min; Arnsten, Amy F T

    2013-07-01

    Schizophrenia associates with impaired prefrontal cortical (PFC) function and alterations in cyclic AMP (cAMP) signaling pathways. These include genetic insults to disrupted-in-schizophrenia (DISC1) and phosphodiesterases (PDE4s) regulating cAMP hydrolysis, and increased dopamine D1 receptor (D1R) expression that elevates cAMP. We used immunoelectron microscopy to localize DISC1, PDE4A, PDE4B, and D1R in monkey PFC and to view spatial interactions with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that gate network inputs when opened by cAMP. Physiological interactions between PDE4s and HCN channels were tested in recordings of PFC neurons in monkeys performing a spatial working memory task. The study reveals a constellation of cAMP-related proteins (DISC1, PDE4A, and D1R) and HCN channels next to excitatory synapses and the spine neck in thin spines of superficial PFC, where working memory microcircuits interconnect and spine loss is most evident in schizophrenia. In contrast, channels in dendrites were distant from synapses and cAMP-related proteins, and were associated with endosomal trafficking. The data suggest that a cAMP signalplex is selectively positioned in the spines to gate PFC pyramidal cell microcircuits. Single-unit recordings confirmed physiological interactions between cAMP and HCN channels, consistent with gating actions. These data may explain why PFC networks are especially vulnerable to genetic insults that dysregulate cAMP signaling. PMID:22693343

  13. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex.

    PubMed

    Restivo, Leonardo; Vetere, Gisella; Bontempi, Bruno; Ammassari-Teule, Martine

    2009-06-24

    Although hippocampal-cortical interactions are crucial for the formation of enduring declarative memories, synaptic events that govern long-term memory storage remain mostly unclear. We present evidence that neuronal structural changes, i.e., dendritic spine growth, develop sequentially in the hippocampus and anterior cingulate cortex (aCC) during the formation of recent and remote contextual fear memory. We found that mice placed in a conditioning chamber for one 7 min conditioning session and exposed to five footshocks (duration, 2 s; intensity, 0.7 mA; interstimulus interval, 60 s) delivered through the grid floor exhibited robust fear response when returned to the experimental context 24 h or 36 d after the conditioning. We then observed that their fear response at the recent, but not the remote, time point was associated with an increase in spine density on hippocampal neurons, whereas an inverse temporal pattern of spine density changes occurred on aCC neurons. At each time point, hippocampal or aCC structural alterations were achieved even in the absence of recent or remote memory tests, thus suggesting that they were not driven by retrieval processes. Furthermore, ibotenic lesions of the hippocampus impaired remote memory and prevented dendritic spine growth on aCC neurons when they were performed immediately after the conditioning, whereas they were ineffective when performed 24 d later. These findings reveal that gradual structural changes modifying connectivity in hippocampal-cortical networks underlie the formation and expression of remote memory, and that the hippocampus plays a crucial but time-limited role in driving structural plasticity in the cortex. PMID:19553460

  14. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

    PubMed Central

    Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

    2014-01-01

    Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  15. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner.

    PubMed

    Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

    2014-01-01

    Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1 (flox/flox) mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1 (-/-) GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  16. Chronic 17β-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized female rats: Possible correspondence between CA1 spine properties and spatial acquisition

    PubMed Central

    McLaughlin, Katie J.; Wilson, Jessica O.; Harman, James; Wright, Ryan L.; Wieczorek, Lindsay A.; Gomez, Juan; Korol, Donna L.; Conrad, Cheryl D.

    2009-01-01

    Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17β-estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized female Sprague-Dawley rats. Ovariectomized rats were implanted with 25% 17β-estradiol, 100% cholesterol or blank silastic capsules, and then chronically restrained (6h/d/21d) or kept in home cages. 17β-estradiol or cholesterol prevented stress-induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17β-estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17β-estradiol. To further investigate the interaction between 17β-estradiol and stress on hippocampal morphology, Experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d) and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress-induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in Experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17β-estradiol or cholesterol protect against chronic stress-induced CA3 dendritic retraction in females. These stress- and 17β-estradiol-induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability. PMID:19650122

  17. Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments.

    PubMed

    Copf, Tijana

    2016-09-01

    Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments. PMID:27143622

  18. Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    PubMed

    Fogarty, Matthew J; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bellingham, Mark C

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is characterised by the death of upper (corticospinal) and lower motor neurons (MNs) with progressive muscle weakness. This incurable disease is clinically heterogeneous and its aetiology remains unknown. Increased excitability of corticospinal MNs has been observed prior to symptoms in human and rodent studies. Increased excitability has been correlated with structural changes in neuronal dendritic arbors and spines for decades. Here, using a modified Golgi-Cox staining method, we have made the first longitudinal study examining the dendrites of pyramidal neurons from the motor cortex, medial pre-frontal cortex, somatosensory cortex and entorhinal cortex of hSOD1(G93A) (SOD1) mice compared to wild-type (WT) littermate controls at postnatal (P) days 8-15, 28-35, 65-75 and 120. Progressive decreases in dendritic length and spine density commencing at pre-symptomatic ages (P8-15 or P28-35) were observed in layer V pyramidal neurons within the motor cortex and medial pre-frontal cortex of SOD1 mice compared to WT mice. Spine loss without concurrent dendritic pathology was present in the pyramidal neurons of the somatosensory cortex from disease-onset (P65-75). Our results from the SOD1 model suggest that dendritic and dendritic spine changes foreshadow and underpin the neuromotor phenotypes present in ALS and may contribute to the varied cognitive, executive function and extra-motor symptoms commonly seen in ALS patients. Determining if these phenomena are compensatory or maladaptive may help explain differential susceptibility of neurons to degeneration in ALS. PMID:27488828

  19. Role of dendritic cell-mediated abnormal immune response in visceral hypersensitivity

    PubMed Central

    Li, Meng; Zhang, Lu; Lu, Bin; Chen, Zhe; Chu, Li; Meng, Lina; Fan, Yihong

    2015-01-01

    The role of dendritic cells (DCs) in irritable bowel syndrome (IBS) is unclear. This study tested the hypothesis that intestinal DCs induced visceral hypersensitivity in IBS rats through mast cell (MC) activation. The IBS rat model was established by combining colorectal distension with restraint stress. The number of CD103-positive cells in colon was higher in the IBS group. Expression of PAR-2, IL-4 and IL-9 in the colonic mucosa was higher in the IBS group. Mesenteric lymph node DCs (MLNDCs) and splenic CD4+/CD8+ T cells were isolated and purified by a magnetic labeling-based technique; they were cultured alone or co-cultured (T4+DC/T8+DC). The coculture of MLNDCs and CD4+ T cells had the highest IL-4 secretion in the IBS group, while IL-9 expression was higher in the cultures containing CD8+ T cells. Our findings indicate that an increased number of DCs in the colon stimulated CD4+ T cells to secrete high levels of IL-4, which led to the activation of MCs and subsequently resulted in visceral hypersensitivity. PMID:26550249

  20. The "addicted" spine.

    PubMed

    Spiga, Saturnino; Mulas, Giovanna; Piras, Francesca; Diana, Marco

    2014-01-01

    Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of "spinous" nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of the burgeoning and rapidly increasing interest in "structural plasticity". Medium Spiny Neurons (MSNs) of the Nucleus Accumbens (Nacc) show a reduced number of dendritic spines and a decrease in TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The reduction is localized "strictly" to second order dendritic branches where dopamine (DA)-containing terminals, impinging upon spines, make synaptic contacts. In addition, long-thin spines seems preferentially affected raising the possibility that cellular learning of these neurons may be selectively hampered. These findings suggest that dendritic spines are affected by drugs widely abused by humans and provide yet another example of drug-induced aberrant neural plasticity with marked reflections on the physiology of synapses, system structural organization, and neuronal circuitry remodeling. PMID:25324733

  1. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss.

    PubMed

    Freund, Ronald K; Gibson, Emily S; Potter, Huntington; Dell'Acqua, Mark L

    2016-05-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5. PMID:26957206

  2. Estradiol and the Relationship between Dendritic Spines, NR2B Containing NMDA Receptors, and the Magnitude of Long-Term Potentiation at Hippocampal CA3-CA1 Synapses

    PubMed Central

    Smith, Caroline C.; Vedder, Lindsey C.; McMahon, Lori L.

    2009-01-01

    Summary When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions. PMID:19596521

  3. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines.

    PubMed

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  4. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats.

    PubMed

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  5. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats

    PubMed Central

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  6. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines

    PubMed Central

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U. Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  7. An integrated molecular landscape implicates the regulation of dendritic spine formation through insulin-related signalling in obsessive–compulsive disorder

    PubMed Central

    van de Vondervoort, Ilse; Poelmans, Geert; Aschrafi, Armaz; Pauls, David L.; Buitelaar, Jan K.; Glennon, Jeffrey C.; Franke, Barbara

    2016-01-01

    Background Obsessive–compulsive disorder (OCD) is a neuropsychiatric disorder with onset in childhood and is characterized by obsessions (recurrent, intrusive, persistent thoughts, impulses and/or ideas that often cause anxiety or distress) and compulsions (ritualized and stereotypic behaviours or mental acts that are often performed to relieve anxiety or distress associated with obsessions). Although OCD is a heritable disorder, its complex molecular etiology is poorly understood. Methods We combined enrichment analyses and an elaborate literature review of the top-ranked genes emerging from the 2 published genome-wide association studies of OCD and candidate genes implicated through other evidence in order to identify biological processes that, when dysregulated, increase the risk for OCD. Results The resulting molecular protein landscape was enriched for proteins involved in regulating postsynaptic dendritic spine formation — and hence synaptic plasticity — through insulin-dependent molecular signalling cascades. Limitations This study is a first attempt to integrate molecuar information from different sources in order to identify biological mechanisms underlying OCD etiology. Our findings are constrained by the limited information from hypothesis-free studies and the incompleteness and existing limitations of the OCD literature and the gene function annotations of gene enrichment tools. As this study was solely based on in silico analyses, experimental validation of the provided hypotheses is warranted. Conclusion Our work suggests a key role for insulin and insulin-related signalling in OCD etiology and — if confirmed by independent studies — could eventually pave the way for the development of novel OCD treatments. PMID:26854754

  8. Biochemical computation for spine structural plasticity

    PubMed Central

    Nishiyama, Jun; Yasuda, Ryohei

    2015-01-01

    The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling is regulated in a complicated manner due to geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity. PMID:26139370

  9. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala.

    PubMed

    Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo

    2016-05-01

    Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. PMID:26845379

  10. A patient with Mullerian abnormalities, renal dysplasia, cervical spine fusion, cataracts and intellectual disability: MURCS-plus?

    PubMed

    Tan, Tiong Yang; Whitelaw, Charlotte; Savarirayan, Ravi

    2007-10-01

    We report a 15-year-old girl with features of the MURCS (Mullerian abnormalities, renal agenesis/ectopy and cervicothoracic somite dysplasia) association and birth defects not typically associated with MURCS. In addition to seizures and intellectual disability, she has cortical brain heterotopia, bilateral subclinical cataracts, submucous cleft palate and patent ductus arteriosus. We propose that this patient represents a more severe form of MURCS, or 'MURCS-plus', which may represent a defect of or insult to mesodermal morphogenesis. PMID:17786121

  11. Spine synapse remodeling in the pathophysiology and treatment of depression.

    PubMed

    Duman, Catharine H; Duman, Ronald S

    2015-08-01

    Clinical brain imaging and postmortem studies provide evidence of structural and functional abnormalities of key limbic and cortical structures in depressed patients, suggesting that spine synapse connectivity is altered in depression. Characterization of the cellular determinants underlying these changes in patients are limited, but studies in rodent models demonstrate alterations of dendrite complexity and spine density and function that could contribute to the morphological and functional alterations observed in humans. Rodent studies demonstrate region specific effects in chronic stress models of depression, including reductions in dendrite complexity and spine density in the hippocampus and prefrontal cortex (PFC) but increases in the basolateral amygdala and nucleus accumbens. Alterations of spine synapse connectivity in these regions are thought to contribute to the behavioral symptoms of depression, including disruption of cognition, mood, emotion, motivation, and reward. Studies of the mechanisms underlying these effects demonstrate a role for altered brain derived neurotrophic factor (BDNF) signaling that regulates synaptic protein synthesis. In contrast, there is evidence that chronic antidepressant treatment can block or reverse the spine synapse alterations caused by stress. Notably, the new fast acting antidepressant ketamine, which produces rapid therapeutic actions in treatment resistant MDD patients, rapidly increases spine synapse number in the PFC of rodents and reverses the effects of chronic stress. The rapid synaptic and behavioral actions of ketamine occur via increased BDNF regulation of synaptic protein synthesis. Together these studies provide evidence for a neurotophic and synaptogenic hypothesis of depression and treatment response and indicate that spine synapse connectivity in key cortical and limbic brain regions is critical for control of mood and emotion. PMID:25582786

  12. Spine synapse remodeling in the pathophysiology and treatment of depression

    PubMed Central

    Duman, Catharine H.; Duman, Ronald S.

    2015-01-01

    Clinical brain imaging and postmortem studies provide evidence of structural and functional abnormalities of key limbic and cortical structures in depressed patients, suggesting that spine synapse connectivity is altered in depression. Characterization of the cellular determinants underlying these changes in patients are limited, but studies in rodent models demonstrate alterations of dendrite complexity and spine density and function that could contribute to the morphological and functional alterations observed in humans. Rodent studies demonstrate region specific effects in chronic stress models of depression, including reductions in dendrite complexity and spine density in the hippocampus and prefrontal cortex (PFC) but increases in the basolateral amygdala and nucleus accumbens. Alterations of spine synapse connectivity in these regions are thought to contribute to the behavioral symptoms of depression, including disruption of cognition, mood, emotion, motivation, and reward. Studies of the mechanisms underlying these effects demonstrate a role for altered brain derived neurotrophic factor (BDNF) signaling that regulates synaptic protein synthesis. In contrast, there is evidence that chronic antidepressant treatment can block or reverse the spine synapse alterations caused by stress. Notably, the new fast acting antidepressant ketamine, which produces rapid therapeutic actions in treatment resistant MDD patients, rapidly increases spine synapse number in the PFC of rodents and reverses the effects of chronic stress. The rapid synaptic and behavioral actions of ketamine occur via increased BDNF regulation of synaptic protein synthesis. Together these studies provide evidence for a neurotophic and synaptogenic hypothesis of depression and treatment response and indicate that spine synapse connectivity in key cortical and limbic brain regions is critical for control of mood and emotion. PMID:25582786

  13. Chronic compression of the posterior longitudinal ligament of the cervical spine is associated with abnormal discharge of middle cervical ganglion

    PubMed Central

    Gu, Qingguo; Jiang, Dongjie; Wang, Xinwei; Chen, Deyu; Yuan, Wen

    2014-01-01

    There are abundant sympathetic nerve fibers in cervical posterior longitudinal ligament (PLL). The aim of this study was to investigate the role of PLL in the occurrence of sympathetic symptoms. Ten healthy adult beagles were selected and anesthetized to establish a PLL compression model by C4/5 discectomy, nucleus pulposus tissue replantation, and plate internal fixation. The middle cervical ganglia (MCG) activities were recorded before modeling, shortly after modeling, and two months after modeling. The waveform parameters and spectral densities of autonomic discharge of MCG among the three periods were compared. There was significant difference only in terms of the area of waveform per unit time between before and shortly after modeling. Abnormal discharge waveforms of MCG were detected in two months after modeling. The wave amplitude and waveform area per unit time in two months after modeling were increased significantly compared with those in shortly after modeling. Functional spectral decomposition found a significant increase in 100-250 Hz in two months after modeling. In conclusion, abnormal discharge of MCG caused by chronic compression of PLL may be one of the pathological basis of sympathetic nervous symptoms. PMID:25550947

  14. The “addicted” spine

    PubMed Central

    Spiga, Saturnino; Mulas, Giovanna; Piras, Francesca; Diana, Marco

    2014-01-01

    Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of “spinous” nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of the burgeoning and rapidly increasing interest in “structural plasticity”. Medium Spiny Neurons (MSNs) of the Nucleus Accumbens (Nacc) show a reduced number of dendritic spines and a decrease in TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The reduction is localized “strictly” to second order dendritic branches where dopamine (DA)-containing terminals, impinging upon spines, make synaptic contacts. In addition, long-thin spines seems preferentially affected raising the possibility that cellular learning of these neurons may be selectively hampered. These findings suggest that dendritic spines are affected by drugs widely abused by humans and provide yet another example of drug-induced aberrant neural plasticity with marked reflections on the physiology of synapses, system structural organization, and neuronal circuitry remodeling. PMID:25324733

  15. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice

    PubMed Central

    Cholanian, Marina; Krajewski-Hall, Sally J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2016-01-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones but there is limited information whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. Here we study the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-EGFP transgenic mice with biocytin. Filled neurones from ovariectomized (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualized with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualized within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and GnRH-immunoreactive fibers within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment of OVX Tac2-EGFP mice induces structural changes in the somata and dendrites of KNDy neurones. PMID:25659412

  16. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF.

    PubMed

    Paula-Lima, Andrea C; Adasme, Tatiana; SanMartín, Carol; Sebollela, Adriano; Hetz, Claudio; Carrasco, M Angélica; Ferreira, Sergio T; Hidalgo, Cecilia

    2011-04-01

    Soluble amyloid β-peptide oligomers (AβOs), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that AβOs at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-l-cysteine abolished these signals. AβOs decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by AβOs. Incubation with AβOs (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with AβOs for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal AβOs concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD. PMID:20712397

  17. Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation

    PubMed Central

    2010-01-01

    Background Rett syndrome (RTT), a common cause of mental retardation in girls, is associated with mutations in the MECP2 gene. Most human cases of MECP2 mutation in girls result in classical or variant forms of RTT. When these same mutations occur in males, they often present as severe neonatal encephalopathy. However, some MECP2 mutations can also lead to diseases characterized as mental retardation syndromes, particularly in boys. One of these mutations, A140V, is a common, recurring missense mutation accounting for about 0.6% of all MeCP2 mutations and ranking 21st by frequency. It has been described in familial X-linked mental retardation (XLMR), PPM- X syndrome (Parkinsonism, Pyramidal signs, Macroorchidism, X-linked mental retardation) and in other neuropsychiatric syndromes. Interestingly, this mutation has been reported to preserve the methyl-CpG binding function of the MeCP2 protein while compromising its ability to bind to the mental retardation associated protein ATRX. Results We report the construction and initial characterization of a mouse model expressing the A140V MeCP2 mutation. These initial descriptive studies in male hemizygous mice have revealed brain abnormalities seen in both RTT and mental retardation. The abnormalities found include increases in cell packing density in the brain and a significant reduction in the complexity of neuronal dendritic branching. In contrast to some MeCP2 mutation mouse models, the A140V mouse has an apparently normal lifespan and normal weight gain patterns with no obvious seizures, tremors, breathing difficulties or kyphosis. Conclusion We have identified various neurological abnormalities in this mouse model of Rett syndrome/X-linked mental retardation which may help to elucidate the manner in which MECP2 mutations cause neuronal changes resulting in mental retardation without the confounding effects of seizures, chronic hypoventilation, or other Rett syndrome associated symptoms. PMID:20163734

  18. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines

    PubMed Central

    Aher, Yogesh D.; Sase, Ajinkya; Gröger, Marion; Mokhtar, Maher; Höger, Harald; Lubec, Gert

    2015-01-01

    Background Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM), a frequently used paradigm for the evaluation of complex memory formation in the rodent. Methods 24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program. Results Working memory errors (WME) and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites. Conclusion The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM. PMID:26469788

  19. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-01

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor. PMID:26041908

  20. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  1. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    PubMed

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-01-01

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome. PMID:27485117

  2. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.

    PubMed

    Chen, Fenghua; du Jardin, Kristian Gaarn; Waller, Jessica A; Sanchez, Connie; Nyengaard, Jens R; Wegener, Gregers

    2016-02-01

    Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition. PMID:26711685

  3. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density and disrupts learning

    PubMed Central

    Brigman, Jonathan L.; Wright, Tara; Talani, Giuseppe; Prasad-Mulcare, Shweta; Jinde, Seiichiro; Seabold, Gail K.; Mathur, Poonam; Davis, Margaret I.; Bock, Roland; Gustin, Richard M.; Colbran, Roger J.; Alvarez, Veronica A.; Nakazawa, Kazu; Delpire, Eric; Lovinger, David M.; Holmes, Andrew

    2010-01-01

    N-methyl-D-aspartate receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A- GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated excitatory postsynaptic currents (EPSCs) than non-mutant controls, and were insensitive to GluN2B but not NMDAR antagonism. A sub-saturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. A NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons as compared to controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, Pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment. PMID:20357110

  4. Neuroimaging of the Postoperative Spine.

    PubMed

    Bellini, Matteo; Ferrara, Marco; Grazzini, Irene; Cerase, Alfonso

    2016-08-01

    Operative treatments of the spine are becoming increasingly more common for the availability of a wide range of surgical and minimally invasive procedures. MR imaging allows for excellent evaluation of both normal and abnormal findings in the postoperative spine. This article provides the basic tools to evaluate complications after different operative procedures and offers an overview on the main topics a radiologist may encounter during his or her professional carrier. PMID:27417403

  5. Osteoporosis and Your Spine

    MedlinePlus

    ... Movement › Osteoporosis and Your Spine Osteoporosis and Your Spine Your spine is made up of small bones ... called kyphosis. Kyphosis and Bone Breaks in the Spine The bones in the spine are called vertebrae. ...

  6. Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb.

    PubMed

    Tsutiya, Atsuhiro; Watanabe, Hikaru; Nakano, Yui; Nishihara, Masugi; Goshima, Yoshio; Ohtani-Kaneko, Ritsuko

    2016-05-01

    Collapsin response mediator protein 4 (CRMP4), a member of the CRMP family, is involved in the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Here, we first compared layer thickness of the olfactory bulb between wild-type (WT) and CRMP4-knockout (KO) mice. The mitral cell layer (MCL) was significantly thinner, whereas the external plexiform layer (EPL) was significantly thicker in CRMP4-KO mice at postnatal day 0 (PD0) compared with WTs. However, differences in layer thickness disappeared by PD14. No apoptotic cells were found in the MCL, and the number of mitral cells (MCs) identified with a specific marker (i.e. Tbx21 antibody) did not change in CRMP4-KO neonates. However, DiI-tracing showed that the length of mitral cell apical dendrites was greater in CRMP4-KO neonates than in WTs. In addition, expression of CRMP4 mRNA in WT mice was most abundant in the MCL at PD0 and decreased afterward. These results suggest that CRMP4 contributes to dendritic elongation. Our in vitro studies showed that deletion or knockdown of CRMP4 resulted in enhanced growth of MAP2-positive neurites, whereas overexpression of CRMP4 reduced their growth, suggesting a new role for CRMP4 as a suppressor of dendritic elongation. Overall, our data suggest that disruption of CRMP4 produces a temporary alteration in EPL thickness, which is constituted mainly of mitral cell apical dendrites, through the enhanced growth of these dendrites. PMID:26739921

  7. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    PubMed

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  8. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats

    PubMed Central

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R.; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-01-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that “long thin” but not “mushroom” spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  9. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS.

    PubMed

    Tran, Tracy S; Rubio, Maria E; Clem, Roger L; Johnson, Dontais; Case, Lauren; Tessier-Lavigne, Marc; Huganir, Richard L; Ginty, David D; Kolodkin, Alex L

    2009-12-24

    The majority of excitatory synapses in the mammalian CNS (central nervous system) are formed on dendritic spines, and spine morphology and distribution are critical for synaptic transmission, synaptic integration and plasticity. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, and its holoreceptor components neuropilin-2 (Npn-2, also known as Nrp2) and plexin A3 (PlexA3, also known as Plxna3), exhibit increased dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and excitatory synapses in dissociated neurons in vitro, and in Npn-2(-/-) brain slices cortical layer V and DG GCs exhibit increased mEPSC (miniature excitatory postsynaptic current) frequency. In contrast, a distinct Sema3A-Npn-1/PlexA4 signalling cascade controls basal dendritic arborization in layer V cortical neurons, but does not influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 (also known as Nrp1) to all dendrites of cortical pyramidal neurons. Therefore, Sema3F signalling controls spine distribution along select dendritic processes, and distinct secreted semaphorin signalling events orchestrate CNS connectivity through the differential control of spine morphogenesis, synapse formation, and the elaboration of dendritic morphology. PMID:20010807

  10. The spine.

    PubMed

    Adams, W H

    1999-08-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are becoming increasingly accessible in veterinary medicine. Because of their ability to image the bony spine and spinal cord noninvasively and with exceptional detail, these techniques have revolutionized the way spinal disorders are diagnosed in both people and animals. Although the veterinary literature on this topic is limited, interpretation of CT and MR images of the spine are facilitated by the similarity of human and animal disease processes. This article provides an overview of imaging strategies, normal anatomy, and the CT and MRI features of degenerative, infectious, neoplastic, and vascular diseases of the spine. PMID:10457658

  11. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  12. Lumbosacral spine CT

    MedlinePlus

    Spinal CT; CT - lumbosacral spine ... In other cases, a CT of the lumbosacral spine may be done after injecting contrast dye into ... of the body. A CT of the lumbosacral spine can evaluate fractures and changes of the spine, ...

  13. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  14. Diagnostic Approach to Pediatric Spine Disorders.

    PubMed

    Rossi, Andrea; Martinetti, Carola; Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico

    2016-08-01

    Understanding the developmental features of the pediatric spine and spinal cord, including embryologic steps and subsequent growth of the osteocartilaginous spine and contents is necessary for interpretation of the pathologic events that may affect the pediatric spine. MR imaging plays a crucial role in the diagnostic evaluation of patients suspected of harboring spinal abnormalities, whereas computed tomography and ultrasonography play a more limited, complementary role. This article discusses the embryologic and developmental anatomy features of the spine and spinal cord, together with some technical points and pitfalls, and the most common indications for pediatric spinal MR imaging. PMID:27417404

  15. Spine expansion and stabilization associated with long-term potentiation.

    PubMed

    Yang, Yunlei; Wang, Xiao-bin; Frerking, Matthew; Zhou, Qiang

    2008-05-28

    Stable expression of long-term synaptic plasticity is critical for the developmental refinement of neural circuits and for some forms of learning and memory. Although structural remodeling of dendritic spines is associated with the stable expression of long-term potentiation (LTP), the relationship between structural and physiological plasticity remains unclear. To define whether these two processes are related or distinct, we simultaneously monitored EPSPs and dendritic spines, using combined patch-clamp recording and two-photon time-lapse imaging in the same CA1 pyramidal neurons in acute hippocampal slices. We found that theta burst stimulation paired with postsynaptic spiking, which reliably induced LTP, also induced a rapid and persistent expansion of dendritic spines. Like LTP, this expansion was NMDA receptor dependent. Spine expansion occurred even when LTP was inhibited by postsynaptic inhibition of exocytosis or PKA (protein kinase A); however, under these conditions, the spine expansion was unstable and collapsed spontaneously. Furthermore, similar changes in LTP and spine expansion were observed when hippocampal neurons were treated with protein synthesis inhibitors. Like LTP, spine expansion was reversed by low-frequency stimulation (LFS) via a phosphatase-dependent mechanism, but only if the LFS was applied in a critical time window after induction. These results indicate that the initial expression of LTP and spine expansion is dissociable, but there is a high degree of mechanistic overlap between the stabilization of structural plasticity and LTP. PMID:18509035

  16. North American Spine Society

    MedlinePlus

    ... an appointment Search Don't miss the Largest Spine Meeting and Exhibition in the world. Check it ... committee Coverage Recommendations SpineLine Renew Membership NORTH AMERICAN SPINE SOCIETY BURR RIDGE, IL 7075 Veterans Blvd. Burr ...

  17. The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons.

    PubMed

    Lim, Junghwa; Ritt, Daniel A; Zhou, Ming; Morrison, Deborah K

    2014-03-31

    Protein scaffolds play an important role in signal transduction, functioning to facilitate protein interactions and localize key pathway components to specific signaling sites. Connector enhancer of KSR-2 (CNK2) is a neuronally expressed scaffold recently implicated in nonsyndromic, X-linked intellectual disability (NS-XLID) [1-3]. NS-XLID patients have deficits in cognitive function and their neurons often exhibit dendritic spine abnormalities [4], suggesting a role for CNK2 in synaptic signaling and/or spine formation. To gain insight regarding how CNK2 might contribute to these processes, we used mass spectrometry to identify proteins that interact with the endogenous CNK2 scaffold. Here, we report that the major binding partner of CNK2 is Vilse/ARHGAP39 and that CNK2 complexes are enriched for proteins involved in Rac/Cdc42 signaling, including Rac1 itself, α-PIX and β-PIX, GIT1 and GIT2, PAK3 and PAK4, and members of the cytohesin family. Binding between CNK2 and Vilse was found to be constitutive, mediated by the WW domains of Vilse and a proline motif in CNK2. Through mutant analysis, protein depletion and rescue experiments, we identify CNK2 as a spatial modulator of Rac cycling during spine morphogenesis and find that the interaction with Vilse is critical for maintaining RacGDP/GTP levels at a balance required for spine formation. PMID:24656827

  18. Effects of N-Cadherin Disruption on Spine Morphological Dynamics

    PubMed Central

    Mysore, Shreesh P.; Tai, Chin-Yin; Schuman, Erin M.

    2007-01-01

    Structural changes at synapses are thought to be a key mechanism for the encoding of memories in the brain. Recent studies have shown that changes in the dynamic behavior of dendritic spines accompany bidirectional changes in synaptic plasticity, and that the disruption of structural constraints at synapses may play a mechanistic role in spine plasticity. While the prolonged disruption of N-cadherin, a key synaptic adhesion molecule, has been shown to alter spine morphology, little is known about the short-term regulation of spine morphological dynamics by N-cadherin. With time-lapse, confocal imaging in cultured hippocampal neurons, we examined the progression of structural changes in spines following an acute treatment with AHAVD, a peptide known to interfere with the function of N-cadherin. We characterized fast and slow timescale spine dynamics (minutes and hours, respectively) in the same population of spines. We show that N-cadherin disruption leads to enhanced spine motility and reduced length, followed by spine loss. The structural effects are accompanied by a loss of functional connectivity. Further, we demonstrate that early structural changes induced by AHAVD treatment, namely enhanced motility and reduced length, are indicators for later spine fate, i.e., spines with the former changes are more likely to be subsequently lost. Our results thus reveal the short-term regulation of synaptic structure by N-cadherin and suggest that some forms of morphological dynamics may be potential readouts for subsequent, stimulus-induced rewiring in neuronal networks. PMID:18946519

  19. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala

    PubMed Central

    Rubinow, Marisa J.; Drogos, Lauren L.; Juraska, Janice M.

    2008-01-01

    Little research has examined the influence of aging or sex on anatomical measures in the basolateral amygdala. We quantified spine density and dendritic material in Golgi-Cox stained tissue of the basolateral nucleus in young adult (3–5 months) and aged (20–24 months) male and female Long-Evans rats. Dendritic branching and spine density were measured in principal neurons. Age, but not sex, influenced the dendritic tree, with aged animals displaying significantly more dendritic material. Previous findings from our laboratory in the same set of subjects indicate an opposite effect of aging on dendritic material in the medial prefrontal cortex and hippocampus. We also report here a sex difference across ages in dendritic spine density, favoring males. PMID:17570563

  20. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex

    PubMed Central

    Jasinska, Malgorzata; Siucinska, Ewa; Jasek, Ewa; Litwin, Jan A.; Pyza, Elzbieta; Kossut, Malgorzata

    2016-01-01

    Associative fear learning, in which stimulation of whiskers is paired with mild electric shock to the tail, modifies the barrel cortex, the functional representation of sensory receptors involved in the conditioning, by inducing formation of new inhibitory synapses on single-synapse spines of the cognate barrel hollows and thus producing double-synapse spines. In the barrel cortex of conditioned, pseudoconditioned, and untreated mice, we analyzed the number and morphological features of dendritic spines at various maturation and stability levels: sER-free spines, spines containing smooth endoplasmic reticulum (sER), and spines containing spine apparatus. Using stereological analysis of serial sections examined by transmission electron microscopy, we found that the density of double-synapse spines containing spine apparatus was significantly increased in the conditioned mice. Learning also induced enhancement of the postsynaptic density area of inhibitory synapses as well as increase in the number of polyribosomes in such spines. In single-synapse spines, the effects of conditioning were less pronounced and included increase in the number of polyribosomes in sER-free spines. The results suggest that fear learning differentially affects single- and double-synapse spines in the barrel cortex: it promotes maturation and stabilization of double-synapse spines, which might possibly contribute to permanent memory formation, and upregulates protein synthesis in single-synapse spines. PMID:26819780

  1. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex.

    PubMed

    Jasinska, Malgorzata; Siucinska, Ewa; Jasek, Ewa; Litwin, Jan A; Pyza, Elzbieta; Kossut, Malgorzata

    2016-01-01

    Associative fear learning, in which stimulation of whiskers is paired with mild electric shock to the tail, modifies the barrel cortex, the functional representation of sensory receptors involved in the conditioning, by inducing formation of new inhibitory synapses on single-synapse spines of the cognate barrel hollows and thus producing double-synapse spines. In the barrel cortex of conditioned, pseudoconditioned, and untreated mice, we analyzed the number and morphological features of dendritic spines at various maturation and stability levels: sER-free spines, spines containing smooth endoplasmic reticulum (sER), and spines containing spine apparatus. Using stereological analysis of serial sections examined by transmission electron microscopy, we found that the density of double-synapse spines containing spine apparatus was significantly increased in the conditioned mice. Learning also induced enhancement of the postsynaptic density area of inhibitory synapses as well as increase in the number of polyribosomes in such spines. In single-synapse spines, the effects of conditioning were less pronounced and included increase in the number of polyribosomes in sER-free spines. The results suggest that fear learning differentially affects single- and double-synapse spines in the barrel cortex: it promotes maturation and stabilization of double-synapse spines, which might possibly contribute to permanent memory formation, and upregulates protein synthesis in single-synapse spines. PMID:26819780

  2. Cnga2 Knockout Mice Display Alzheimer's-Like Behavior Abnormities and Pathological Changes.

    PubMed

    Xie, Ao-Ji; Liu, En-Jie; Huang, He-Zhou; Hu, Yu; Li, Ke; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2016-09-01

    Olfactory dysfunction is recognized as a potential risk factor for Alzheimer's disease (AD). We have reported previously that olfactory deprivation by olfactory bulbectomy (OBX) induced Alzheimer's-like pathological changes and behavioral abnormalities. However, the acute OBX model undergoes surgical-induced brain parenchyma loss and unexpected massive hemorrhage so that it cannot fully mimic the progressive olfactory loss and neurodegeneration in AD. Here, we employed the mice loss of cyclic nucleotide-gated channel alpha 2 (Cnga2) which is critical for olfactory sensory transduction, to investigate the role of olfactory dysfunction in AD pathological process. We found that impaired learning and memory abilities, loss of dendrite spines, as well as decrement of synaptic proteins were displayed in Cnga2 knockout mice. Moreover, Aβ overproduction, tau hyperphosphorylation, and somatodendritic translocation were also found in Cnga2 knockout mice. Our findings suggest that progressive olfactory loss leads to Alzheimer's-like behavior abnormities and pathological changes. PMID:26377105

  3. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  4. The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders.

    PubMed

    Hu, Hsiao-Tang; Shih, Pu-Yun; Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. F-actin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report. PMID:26819769

  5. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  6. Some borderlands of the cervical spine. Pt. 1

    SciTech Connect

    Kattan, K.R.; Pais, M.J.

    1982-03-01

    The normal cervical spine may appear abnormal due to several factors, namely: The complexity of the cervical vertebra, the normal variation, the superimposition of the adjacent vertebrae, and the superimposition of structures outside the spine such as the craniofacial and laryngeal structures.

  7. Clinical radiology of the spine and spinal cord

    SciTech Connect

    Banna, M.

    1985-01-01

    This book is a source of information about aspects of radiology of the spine and spinal column. It presents coverage of both normal and abnormal conditions. Contents: Spinal fractures and dislocations. Degenerative diseases of the spine. Gross anatomy of the spinal cord and meninges. Intraspinal mass lesions. Spinal dysraphism. Congenital anomalies. Tumors of the vertebral column, and more.

  8. Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Pastor, Luis; Yuste, Rafael; DeFelipe, Javier

    2014-01-01

    Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns. PMID:22644869

  9. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites.

    PubMed

    Iomin, A; Méndez, V

    2013-07-01

    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism. PMID:23944491

  10. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  11. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  12. Molecular identity of dendritic voltage-gated sodium channels.

    PubMed

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability. PMID:20466935

  13. Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo

    PubMed Central

    Jia, Hongbo; Varga, Zsuzsanna; Sakmann, Bert; Konnerth, Arthur

    2014-01-01

    Sensory information reaches the cortex through synchronously active thalamic axons, which provide a strong drive to layer 4 (L4) cortical neurons. Because of technical limitations, the dendritic signaling processes underlying the rapid and efficient activation of L4 neurons in vivo remained unknown. Here we introduce an approach that allows the direct monitoring of single dendritic spine Ca2+ signals in L4 spiny stellate cells of the vibrissal mouse cortex in vivo. Our results demonstrate that activation of N-methyl-D-aspartate (NMDA) receptors is required for sensory-evoked action potential (AP) generation in these neurons. By analyzing NMDA receptor-mediated Ca2+ signaling, we identify whisker stimulation-evoked large responses in a subset of dendritic spines. These sensory-stimulation–activated spines, representing predominantly thalamo-cortical input sites, were denser at proximal dendritic regions. The amplitude of sensory-evoked spine Ca2+ signals was independent of the activity of neighboring spines, without evidence for cooperativity. Furthermore, we found that spine Ca2+ signals evoked by back-propagating APs sum linearly with sensory-evoked synaptic Ca2+ signals. Thus, our results identify in sensory information-receiving L4 cortical neurons a linear mode of dendritic integration that underlies the rapid and reliable transfer of peripheral signals to the cortical network. PMID:24927564

  14. Spine Injuries and Disorders

    MedlinePlus

    Your backbone, or spine, is made up of 26 bone discs called vertebrae. The vertebrae protect your spinal cord and allow you to ... of problems can change the structure of the spine or damage the vertebrae and surrounding tissue. They ...

  15. Lumbar spine chordoma

    PubMed Central

    Hatem, M.A.

    2015-01-01

    Chordoma is a rare tumor arising from notochord remnants in the spine. It is slow-growing, which makes it difficult to diagnose and difficult to follow up after treatment. Typically, it occurs in the base of the skull and sacrococcygeal spine; it rarely occurs in other parts of the spine. CT-guided biopsy of a suspicious mass enabled diagnosis of lumbar spine chordoma.

  16. Kalirin-7 Is an Essential Component of both Shaft and Spine Excitatory Synapses in Hippocampal Interneurons

    PubMed Central

    Ma, Xin-Ming; Wang, Yanping; Ferraro, Francesco; Mains, Richard E.; Eipper, Betty A.

    2008-01-01

    Kalirin, a multifunctional Rho GDP/GTP exchange factor, plays a vital role in cytoskeletal organization, affecting process initiation and outgrowth in neurons. Through alternative splicing, the Kalirin gene generates multiple functionally distinct proteins. Kalirin-7 (Kal7) is the most prevalent isoform in the adult rat hippocampus; it terminates with a PDZ binding motif, is localized to the post-synaptic density, interacts with PSD95 and causes the formation of dendritic spines when over-expressed in pyramidal neurons. Levels of Kal7 are low in the dendrites of hippocampal aspiny interneurons. In these interneurons, Kal7 is localized to the postsynaptic side of excitatory synapses onto dendritic shafts, overlapping clusters of PSD95 and NMDA receptor subunit NR1. Selectively decreasing levels of Kal7 decreases the density of PSD95 positive, bassoon positive clusters along the dendritic shaft of hippocampal interneurons. Over-expression of Kal7 increases dendritic branching, inducing formation of spine-like structures along the dendrites and on the soma of normally aspiny hippocampal interneurons. Essentially all of the spine-like structures formed in response to Kal7 are apposed to VGLUT1 positive, bassoon positive presynaptic endings; GAD positive, VGAT positive inhibitory endings are unaffected. Almost every Kal7 positive dendritic cluster contains PSD95 along with NMDA (NR1) and AMPA (GluR1 and GluR2) receptor subunits. Kal7-induced formation of spine-like structures requires its PDZ binding motif, and interruption of interactions between the PDZ binding motif and its interactors decreases Kal7-induced formation of spine-like structures. Kal7 thus joins Shank3 and GluR2 as molecules whose level of expression at excitatory synapses titrates the number of dendritic spines. PMID:18199770

  17. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  18. Effect of the environment on the dendritic morphology of the rat auditory cortex

    PubMed Central

    Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco

    2010-01-01

    The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593

  19. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum.

    PubMed

    Verslegers, Mieke; Van Hove, Inge; Dekeyster, Eline; Gantois, Ilse; Hu, Tjing-Tjing; D'Hooge, Rudi; Arckens, Lutgarde; Moons, Lieve

    2015-01-01

    Matrix metalloproteinase-2 (MMP-2) is a highly studied proteolytic enzyme, involved in many detrimental and beneficial functions throughout the body, and also active in the central nervous system (CNS). MMP-2 is profoundly expressed in the developing cerebellum and was recently reported to modulate granule cell proliferation by affecting cell cycle kinetics in cerebella of postnatal day 3 mouse pups. In this report, a two-dimensional difference gel electrophoresis proteomics study was implemented at this postnatal stage and revealed 16 differentially expressed proteins between MMP-2-deficient (MMP-2(-/-)) and wild-type cerebella. Among those, collapsin response mediator protein 1 (CRMP1) could be identified as the most significant differential protein between the two genotypes. Western blot experiments confirmed this finding and further disclosed a significant increase in phosphorylated CRMP1 expression in MMP-2(-/-) cerebella. Strikingly, subsequent immunohistochemical and microscopic analyses revealed an aberrant Purkinje cell (PC) dendritogenesis, possibly related to upregulated (phospho-) CRMP1 levels in these neonatal MMP-2(-/-) animals. Further, detailed morphometric analyses showed persistent PC morphological changes in MMP-2(-/-) mice, from the neonatal stage until adulthood. These were characterized by a reduced growth of PC somata, reduced dendritic tree sizes, and a decreased dendritic arborization. During development, the observed defects were accompanied by a temporarily disturbed parallel fiber and climbing fiber synaptic input on the PCs, while in adult MMP-2(-/-) animals, an increased PC spine density and reduced spine lengths were noted. The observed PC abnormalities might contribute to the mild defects in motor performance, i.e. balance and coordination, detected in adult MMP-2(-/-) mice. Overall, these findings indicate the importance of MMP-2 in CNS development and dendritogenesis, and highlight the importance of a correct developmental wiring

  20. Free Energy and Dendritic Self-Organization

    PubMed Central

    Kiebel, Stefan J.; Friston, Karl J.

    2011-01-01

    In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying a recent free-energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimize a variational free-energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic) processing to generic (surprise or evidence-based) schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination. PMID:22013413

  1. Dendritic signal transmission induced by intracellular charge inhomogeneities

    NASA Astrophysics Data System (ADS)

    Lazarevich, Ivan A.; Kazantsev, Victor B.

    2013-12-01

    Signal propagation in neuronal dendrites represents the basis for interneuron communication and information processing in the brain. Here we take into account charge inhomogeneities arising in the vicinity of ion channels in cytoplasm and obtain a modified cable equation. We show that charge inhomogeneities acting on a millisecond time scale can lead to the appearance of propagating waves with wavelengths of hundreds of micrometers. They correspond to a certain frequency band predicting the appearance of resonant properties in brain neuron signaling. We also show that membrane potential in spiny dendrites obeys the modified cable equation suggesting a crucial role of the spines in dendritic subthreshold resonance.

  2. Some borderlands of the cervical spine. Pt. 2

    SciTech Connect

    Kattan, K.R.; Pais, M.J.

    1982-03-01

    The complexity of the structure of the cervical spine as well superimposition by the parts of adjacent vertebrae, as well as other structures may cause some abnormalities to be overlooked. Among those abnormalities are, the short sagittal diameter, neoplasm in the cancellous part of the vertebral bodies, spurs in the apophyseal joints, trauma, infection and others.

  3. Abnormal glutamate release in aged BTBR mouse model of autism

    PubMed Central

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality. PMID:26617779

  4. Cactus spine injuries.

    PubMed

    Lindsey, D; Lindsey, W E

    1988-07-01

    Cactus spines produce injuries whose clinical significance is loosely in inverse proportion to the dimensions of the spine. Long and medium spines of saguaro and barrel cacti seldom result in embedded fragments, but when they do they are difficult to locate and remove. Other medium spines, those of prickly pear and cholla, are a nuisance but they can be removed readily by traction, as can the smaller spines (glochids) of the prickly pear. The very small spines (also glochids) of the polka dot or bunny's ear cactus (Opuntia microdasys) and the beavertail cactus (Opuntia basilaris) offer the most frustrating problem of all, but can be peeled off with a dried film of a professional facial gel. PMID:3390256

  5. Robust registration of longitudinal spine CT.

    PubMed

    Glocker, Ben; Zikic, Darko; Haynor, David R

    2014-01-01

    Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration for clinical use, however, is challenging since standard registration techniques often fail due to poor initial alignment. The main causes of registration failure are the small overlap between scans which focus on different parts of the spine and/or substantial change in shape (e.g. after correction of abnormal curvature) and appearance (e.g. due to surgical implants). To overcome these issues we propose a registration approach which incorporates estimates of vertebrae locations obtained from a learning-based classification method. These location priors are used to initialize the registration and to provide semantic information within the optimization process. Quantitative evaluation on a database of 93 patients with a total of 276 registrations on longitudinal spine CT demonstrate that our registration method significantly reduces the number of failure cases. PMID:25333125

  6. Follicular Dendritic Cell Sarcoma

    PubMed Central

    Udayakumar, Achandira M.; Al-Bahri, Maiya; Burney, Ikram A.; Al-Haddabi, Ibrahim

    2015-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm with a non-specific and insidious presentation further complicated by the difficult diagnostic and therapeutic assessment. It has a low to intermediate risk of recurrence and metastasis. Unlike other soft tissue sarcomas or histiocytic and dendritic cell neoplasms, cytogenetic studies are very limited in FDCS cases. Although no specific chromosomal marker has yet been established, complex aberrations and different ploidy types have been documented. We report the case of a 39-year-old woman with FDCS who presented to the Sultan Qaboos University Hospital in Muscat, Oman, in February 2013. Ultrastructural, immunophenotypical and histological findings are reported. In addition, karyotypic findings showed deletions of the chromosomes 1p, 3q, 6q, 7q, 8q and 11q. To the best of the authors’ knowledge, these have not been reported previously in this tumour. Techniques such as spectral karyotyping may help to better characterise chromosomal abnormalities in this type of tumour. PMID:26355964

  7. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination.

    PubMed

    Ichikawa, Ryoichi; Hashimoto, Kouichi; Miyazaki, Taisuke; Uchigashima, Motokazu; Yamasaki, Miwako; Aiba, Atsu; Kano, Masanobu; Watanabe, Masahiko

    2016-02-23

    In Purkinje cells (PCs) of the cerebellum, a single "winner" climbing fiber (CF) monopolizes proximal dendrites, whereas hundreds of thousands of parallel fibers (PFs) innervate distal dendrites, and both CF and PF inputs innervate a narrow intermediate domain. It is unclear how this segregated CF and PF innervation is established on PC dendrites. Through reconstruction of dendritic innervation by serial electron microscopy, we show that from postnatal day 9-15 in mice, both CF and PF innervation territories vigorously expand because of an enlargement of the region of overlapping innervation. From postnatal day 15 onwards, segregation of these territories occurs with robust shortening of the overlapping proximal region. Thus, innervation territories by the heterologous inputs are refined during the early postnatal period. Intriguingly, this transition is arrested in mutant mice lacking the type 1 metabotropic glutamate receptor (mGluR1) or protein kinase Cγ (PKCγ), resulting in the persistence of an abnormally expanded overlapping region. This arrested territory refinement is rescued by lentivirus-mediated expression of mGluR1α into mGluR1-deficient PCs. At the proximal dendrite of rescued PCs, PF synapses are eliminated and free spines emerge instead, whereas the number and density of CF synapses are unchanged. Because the mGluR1-PKCγ signaling pathway is also essential for the late-phase of CF synapse elimination, this signaling pathway promotes the two key features of excitatory synaptic wiring in PCs, namely CF monoinnervation by eliminating redundant CF synapses from the soma, and segregated territories of CF and PF innervation by eliminating competing PF synapses from proximal dendrites. PMID:26858447

  8. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development.

    PubMed

    Gray, Kevin T; Suchowerska, Alexandra K; Bland, Tyler; Colpan, Mert; Wayman, Gary; Fath, Thomas; Kostyukova, Alla S

    2016-06-01

    Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc. PMID:27126680

  9. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman Syndrome

    PubMed Central

    Baudry, Michel; Kramar, Eniko; Xu, Xiaobo; Zadran, Homera; Moreno, Stephanie; Lynch, Gary; Gall, Christine; Bi, Xiaoning

    2012-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder largely due to abnormal maternal expression of the UBE3A gene leading to the deletion of E6-associated protein. AS subjects have severe cognitive impairments for which there are no therapeutic interventions. Mouse models (knockouts of the maternal Ube3a gene: ‘AS mice’) of the disorder have substantial deficits in long-term potentiation (LTP) and learning. Here we report a clinically plausible pharmacological treatment that ameliorates both deficits. AS mice were injected ip twice daily for 5 days with vehicle or the ampakine CX929; drugs of this type enhance fast EPSCs by positively modulating AMPA receptors. Theta burst stimulation (TBS) produced a normal enhancement of field EPSPs in hippocampal slices prepared from vehicle-treated AS mice but LTP decreased steadily to baseline; however, LTP in slices from ampakine-treated AS mice stabilized at levels found in wild-type controls. TBS-induced actin polymerization within dendritic spines, an essential event for stabilizing LTP, was severely impaired in slices from vehicle-treated AS mice but not in those from ampakine-treated AS mice. Long-term memory scores in a fear conditioning paradigm were reduced by 50% in vehicle-treated AS mice but were comparable to values for littermate controls in the ampakine-treated AS mice. We propose that AS is associated with a profound defect in activity-driven spine cytoskeletal reorganization, resulting in a loss of the synaptic plasticity required for the encoding of long-term memory. Notably, the spine abnormality along with the LTP and learning impairments can be reduced by a minimally invasive drug treatment. PMID:22525571

  10. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  11. Tumors of the spine

    PubMed Central

    Ciftdemir, Mert; Kaya, Murat; Selcuk, Esref; Yalniz, Erol

    2016-01-01

    Spine tumors comprise a small percentage of reasons for back pain and other symptoms originating in the spine. The majority of the tumors involving the spinal column are metastases of visceral organ cancers which are mostly seen in older patients. Primary musculoskeletal system sarcomas involving the spinal column are rare. Benign tumors and tumor-like lesions of the musculoskeletal system are mostly seen in young patients and often cause instability and canal compromise. Optimal diagnosis and treatment of spine tumors require a multidisciplinary approach and thorough knowledge of both spine surgery and musculoskeletal tumor surgery. Either primary or metastatic tumors involving the spine are demanding problems in terms of diagnosis and treatment. Spinal instability and neurological compromise are the main and critical problems in patients with tumors of the spinal column. In the past, only a few treatment options aiming short-term control were available for treatment of primary and metastatic spine tumors. Spine surgeons adapted their approach for spine tumors according to orthopaedic oncologic principles in the last 20 years. Advances in imaging, surgical techniques and implant technology resulted in better diagnosis and surgical treatment options, especially for primary tumors. Also, modern chemotherapy drugs and regimens with new radiotherapy and radiosurgery options caused moderate to long-term local and systemic control for even primary sarcomas involving the spinal column. PMID:26925382

  12. The increase in the number of spines on the gonadotropin-releasing hormone neuron across pubertal development in rats.

    PubMed

    Li, Songzi; Takumi, Ken; Iijima, Norio; Ozawa, Hitoshi

    2016-05-01

    The onset of puberty is initiated by an increase in the release of the gonadotropin-releasing hormone (GnRH) from GnRH neurons in the hypothalamus. However, the precise mechanism that leads to the activation of GnRH neurons at puberty remains controversial. Spines are small protrusions on the surface of dendrites that normally receive excitatory inputs. In this study, we analyzed the number and morphology of spines on GnRH neurons to investigate changes in synaptic inputs across puberty in rats. For morphological estimation, we measured the diameter of the head (DH) of each spine and classified them into small-type (DH < 0.65 μm), large-type (DH > 0.65 μm) and giant-type (DH > 0.9 μm). The greatest number of spines was observed at the proximal dendrite within 50 μm of the soma. At the soma and proximal dendrite, the number of spines was greater in adults than in juveniles in both male and female individuals. Classification of spines revealed that the increase in spine number was due to increases in large- and giant-type spines. To further explore the relationship between spines on GnRH neurons and pubertal development, we next analyzed adult rats neonatally exposed to estradiol benzoate, in which puberty onset and reproductive functions are disrupted. We found a decrease in the number of all types of spines. These results suggest that GnRH neurons become to receive more and greater excitatory inputs on the soma and proximal dendrites as a result of the changes that occur at puberty and that alteration to spines plays a pivotal role in normal pubertal development. PMID:26667127

  13. Tuberculosis of spine

    PubMed Central

    Agrawal, Vinod; Patgaonkar, P. R.; Nagariya, S. P.

    2010-01-01

    Tuberculosis of the spine is one of the most common spine pathology in India. Over last 4 decades a lot has changed in the diagnosis, medical treatment and surgical procedures to treat this disorder. Further developments in diagnosis using molecular genetic techniques, more effective antibiotics and more aggressive surgical protocols have become essential with emergence of multidrug resistant TB. Surgical procedures such as single stage anterior and posterior stabilization, extrapleral dorsal spine anterior stabilization and endoscopic thoracoscopic surgeries have reduced the mortality and morbidity of the surgical procedures. is rapidly progressing. It is a challenge to treat MDR-TB Spine with late onset paraplegia and progressive deformity. Physicians must treat tuberculosis of spine on the basis of Culture and sensitivity. PMID:21572628

  14. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees.

    PubMed

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E

    2011-09-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388

  15. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

    PubMed Central

    George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M

    2015-01-01

    Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247

  16. Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus.

    PubMed

    Dhar, Matasha; Wayman, Gary A; Zhu, Mingyan; Lambert, Talley J; Davare, Monika A; Appleyard, Suzanne M

    2014-07-23

    Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and β-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, β-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation. PMID:25057204

  17. Leptin-Induced Spine Formation Requires TrpC Channels and the CaM Kinase Cascade in the Hippocampus

    PubMed Central

    Dhar, Matasha; Zhu, Mingyan; Lambert, Talley J.; Davare, Monika A.

    2014-01-01

    Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and β-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, β-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation. PMID:25057204

  18. Spine and sport.

    PubMed

    de Jonge, Milko C; Kramer, Josef

    2014-07-01

    The spine, in athletes is a relatively frequent origin of problems. Chronic spine problems are much more common compared to acute injuries. Chronic injuries to the spine most often occur in low-contact sports like gymnastics and are most commonly the result of overuse. Acute injuries are more common in high-speed and full contact sports and are traumatic in origin. Injuries to the spinal cord can be devastating but are fortunately very uncommon. Although imaging of the spine appears to be straightforward, any radiologist will acknowledge that the optimal imaging strategy is often unclear due to several reasons. For the cervical spine much has improved since the NEXUS and CCR studies appeared in which clear rules were defined when to image the C-spine in acute trauma situations. For the thoracic and lumbar spines such rules are not defined. Although conventional imaging has long been the primary imaging modality of choice there is ample evidence that this should be abandoned in favor of multidetector CT for the C-spine. This is reflected in the ACR criteria in which conventional imaging of tile C-spine in trauma is rated as the least appropriate imaging method. However, this is not true in children and adolescents although a strict age criterion is not defined. It is also not true for injuries to the thoracic and lumbar spine in which conventional imaging still plays a large role as primary imaging modality followed by evaluation by CT in trauma situations. The role for MRI in acute situations is increasing especially with the increasing use of the TLICS system to classify injuries of the thoracic and lumbar spine in which the evaluation of the integrity of the posterior ligamentous structures is included. For the evaluation of chronic complaints, the roles of CT and MRI are basically reversed in which MRI will become the prime imaging modality of choice after conventional imaging after which CT can be reserved for a selected patient group. The merit of the

  19. The Robotic Lumbar Spine: Dynamics and Feedback Linearization Control

    PubMed Central

    Karadogan, Ernur; Williams, Robert L.

    2013-01-01

    The robotic lumbar spine (RLS) is a 15 degree-of-freedom, fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The design incorporates five active lumbar vertebrae and the sacrum, with dimensions of an average adult human spine. It is actuated by 20 cables connected to electric motors. Every vertebra is connected to the neighboring vertebrae by spherical joints. Medical schools can benefit from a tool, system, or method that will help instructors train students and assess their tactile proficiency throughout their education. The robotic lumbar spine has the potential to satisfy these needs in palpatory diagnosis. Medical students will be given the opportunity to examine their own patient that can be programmed with many dysfunctions related to the lumbar spine before they start their professional lives as doctors. The robotic lumbar spine can be used to teach and test medical students in their capacity to be able to recognize normal and abnormal movement patterns of the human lumbar spine under flexion-extension, lateral bending, and axial torsion. This paper presents the dynamics and nonlinear control of the RLS. A new approach to solve for positive and nonzero cable tensions that are also continuous in time is introduced. PMID:24151527

  20. Propagation of CaMKII translocation waves in heterogeneous spiny dendrites.

    PubMed

    Bressloff, Paul C

    2013-06-01

    CaMKII (Ca²⁺-calmodulin-dependent protein kinase II) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed experimentally that stimulating a local region of dendrite not only induces the local translocation of CaMKII from the dendritic shaft to synaptic targets within spines, but also initiates a wave of CaMKII translocation that spreads distally through the dendrite with an average speed of order 1 μm/s. We have previously developed a simple reaction-diffusion model of CaMKII translocation waves that can account for the observed wavespeed and predicts wave propagation failure if the density of spines is too high. A major simplification of our previous model was to treat the distribution of spines as spatially uniform. However, there are at least two sources of heterogeneity in the spine distribution that occur on two different spatial scales. First, spines are discrete entities that are joined to a dendritic branch via a thin spine neck of submicron radius, resulting in spatial variations in spine density at the micron level. The second source of heterogeneity occurs on a much longer length scale and reflects the experimental observation that there is a slow proximal to distal variation in the density of spines. In this paper, we analyze how both sources of heterogeneity modulate the speed of CaMKII translocation waves along a spiny dendrite. We adapt methods from the study of the spread of biological invasions in heterogeneous environments, including homogenization theory of pulsating fronts and Hamilton-Jacobi dynamics of sharp interfaces. PMID:22588358

  1. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  2. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation

    PubMed Central

    Sargin, Derya; Mercaldo, Valentina; Yiu, Adelaide P.; Higgs, Gemma; Han, Jin-Hee; Frankland, Paul W.; Josselyn, Sheena A.

    2013-01-01

    Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace. PMID:24391565

  3. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1.

    PubMed

    Li, Huiping; Zhao, Pingping; Xu, Qiong; Shan, Shifang; Hu, Chunchun; Qiu, Zilong; Xu, Xiu

    2016-01-01

    The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines. We found that SNRPN regulated the expression level of Nr4a1, a critical nuclear receptor during neural development, in cultured primary cortical neurons. The abnormal spine development caused by SNRPN overexpression could be fully rescued by Nr4a1 co-expression. Importantly, we found that either knockdown of Nr4a1 or 3, 3'- Diindolylmethane (DIM), an Nr4a1 antagonist, were able to rescue the effects of SNRPN knockdown on neurite outgrowth of embryonic cortical neurons, providing the potential therapeutic methods for SNRPN deletion disorders. We thus concluded that maintaining the proper level of SNRPN is critical in cortical neurodevelopment. Finally, Nr4a1 may serve as a potential drug target for SNRPN-related neurodevelopmental disabilities, including Prader-Willi syndrome (PWS) and autism spectrum disorders (ASDs). PMID:27430727

  4. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1

    PubMed Central

    Li, Huiping; Zhao, Pingping; Xu, Qiong; Shan, Shifang; Hu, Chunchun; Qiu, Zilong; Xu, Xiu

    2016-01-01

    The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines. We found that SNRPN regulated the expression level of Nr4a1, a critical nuclear receptor during neural development, in cultured primary cortical neurons. The abnormal spine development caused by SNRPN overexpression could be fully rescued by Nr4a1 co-expression. Importantly, we found that either knockdown of Nr4a1 or 3, 3′- Diindolylmethane (DIM), an Nr4a1 antagonist, were able to rescue the effects of SNRPN knockdown on neurite outgrowth of embryonic cortical neurons, providing the potential therapeutic methods for SNRPN deletion disorders. We thus concluded that maintaining the proper level of SNRPN is critical in cortical neurodevelopment. Finally, Nr4a1 may serve as a potential drug target for SNRPN-related neurodevelopmental disabilities, including Prader-Willi syndrome (PWS) and autism spectrum disorders (ASDs). PMID:27430727

  5. Schedule-induced polydipsia is associated with increased spine density in dorsolateral striatum neurons.

    PubMed

    Íbias, J; Soria-Molinillo, E; Kastanauskaite, A; Orgaz, C; DeFelipe, J; Pellón, R; Miguéns, M

    2015-08-01

    Schedule-induced polydipsia (SIP) is an adjunctive behavior in which rats exhibit excessive drinking as a consequence of intermittent feeding, and it has been proposed as a candidate model to study the development of compulsive and repetitive behavior. Although several brain structures are involved in compulsive behavior, it has been suggested that alterations in fronto-striatal circuits may underlie compulsive spectrum disorders. In the present work, we examined whether SIP would induce modifications in dorsolateral striatum (DLS) and anterior prefrontal cortex (aPFC) neurons. Specifically, the effects of 20 sessions of SIP were determined in the dendrites of DLS medium spiny neurons and in the basal dendritic arbors of layer V pyramidal cells in the aPFC. The structure, size and branching complexity in aPFC neurons were also studied. Results showed that SIP resulted in an increase in dendritic spine density in DLS neurons. Moreover, dendritic spine density was highly correlated with the level of drinking in animals subjected to SIP. By contrast, we observed no differences either in dendritic spine density or in the morphological structure of the dendrites of the aPFC in SIP rats compared to their control counterparts. We hypothesize that SIP-induced structural plasticity in DLS neurons could be related to inflexible response in compulsive behavior. The findings of this study could provide new insights into the involvement of particular cell populations of the dorsolateral striatum and anterior prefrontal cortex regions in compulsive spectrum disorders. PMID:25988756

  6. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine?

    PubMed

    Villalba, R M; Smith, Y

    2013-10-22

    In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted. PMID:23867772

  7. Biphasic plasticity of dendritic fields in layer V motor neurons in response to motor learning.

    PubMed

    Gloor, C; Luft, A R; Hosp, J A

    2015-11-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that advances through stages. An initial increment in spine formation is followed by pruning and maturation one week after training ended. A similar biphasic course was described for the size of the forelimb representation in M1. This study investigates the evolution of the dendritic architecture in response to motor skill training using Golgy-Cox silver impregnation in rat M1. After learning of a unilateral forelimb-reaching task to plateau performance, an increase in dendritic length of layer V pyramidal neurons (i.e. motor neurons) was observed that peaked one month after training ended. This increment in dendritic length reflected an expansion of the distal dendritic compartment. After one month dendritic arborization shrinks even though animals retain task performance. This pattern of evolution was observed for apical and basal dendrites alike - although the increase in dendritic length occurs faster in basal than in apical dendrites. Dendritic plasticity in response to motor training follows a biphasic course with initial expansion and subsequent shrinkage. This evolution takes fourth as long as the biphasic reorganization of spines or motor representations. PMID:26318492

  8. Computational reconstitution of spine calcium transients from individual proteins

    PubMed Central

    Bartol, Thomas M.; Keller, Daniel X.; Kinney, Justin P.; Bajaj, Chandrajit L.; Harris, Kristen M.; Sejnowski, Terrence J.; Kennedy, Mary B.

    2015-01-01

    We have built a stochastic model in the program MCell that simulates Ca2+ transients in spines from the principal molecular components believed to control Ca2+ entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 6 × 6 × 5 μm3 cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum Ca2+ ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca2+ transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca2+ transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca2+ influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca2+ influx. PMID:26500546

  9. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis

    PubMed Central

    Chao, Hsu-Wen; Hong, Chen-Jei; Huang, Tzyy-Nan; Lin, Yi-Ling; Hsueh, Yi-Ping

    2008-01-01

    Membrane-associated guanylate kinase (MAGUK) proteins interact with several synaptogenesis-triggering adhesion molecules. However, direct evidence for the involvement of MAGUK proteins in synapse formation is lacking. In this study, we investigate the function of calcium/calmodulin-dependent serine protein kinase (CASK), a MAGUK protein, in dendritic spine formation by RNA interference. Knockdown of CASK in cultured hippocampal neurons reduces spine density and shrinks dendritic spines. Our analysis of the time course of RNA interference and CASK overexpression experiments further suggests that CASK stabilizes or maintains spine morphology. Experiments using only the CASK PDZ domain or a mutant lacking the protein 4.1–binding site indicate an involvement of CASK in linking transmembrane adhesion molecules and the actin cytoskeleton. We also find that CASK is SUMOylated. Conjugation of small ubiquitin-like modifier 1 (SUMO1) to CASK reduces the interaction between CASK and protein 4.1. Overexpression of a CASK–SUMO1 fusion construct, which mimicks CASK SUMOylation, impairs spine formation. Our study suggests that CASK contributes to spinogenesis and that this is controlled by SUMOylation. PMID:18606847

  10. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis.

    PubMed

    Chao, Hsu-Wen; Hong, Chen-Jei; Huang, Tzyy-Nan; Lin, Yi-Ling; Hsueh, Yi-Ping

    2008-07-14

    Membrane-associated guanylate kinase (MAGUK) proteins interact with several synaptogenesis-triggering adhesion molecules. However, direct evidence for the involvement of MAGUK proteins in synapse formation is lacking. In this study, we investigate the function of calcium/calmodulin-dependent serine protein kinase (CASK), a MAGUK protein, in dendritic spine formation by RNA interference. Knockdown of CASK in cultured hippocampal neurons reduces spine density and shrinks dendritic spines. Our analysis of the time course of RNA interference and CASK overexpression experiments further suggests that CASK stabilizes or maintains spine morphology. Experiments using only the CASK PDZ domain or a mutant lacking the protein 4.1-binding site indicate an involvement of CASK in linking transmembrane adhesion molecules and the actin cytoskeleton. We also find that CASK is SUMOylated. Conjugation of small ubiquitin-like modifier 1 (SUMO1) to CASK reduces the interaction between CASK and protein 4.1. Overexpression of a CASK-SUMO1 fusion construct, which mimicks CASK SUMOylation, impairs spine formation. Our study suggests that CASK contributes to spinogenesis and that this is controlled by SUMOylation. PMID:18606847

  11. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  12. Adolescent Intermittent Alcohol Exposure: Persistence of Structural and Functional Hippocampal Abnormalities into Adulthood

    PubMed Central

    Risher, Mary-Louise; Fleming, Rebekah L.; Risher, Christopher; Miller, K. M.; Klein, Rebecca C.; Wills, Tiffany; Acheson, Shawn K.; Moore, Scott D.; Wilson, Wilkie A.; Eroglu, Cagla; Swartzwelder, H. S.

    2015-01-01

    Background Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. Methods We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. Results We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. Conclusions Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE. PMID:25916839

  13. Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D.

    PubMed

    Penazzi, Lorène; Tackenberg, Christian; Ghori, Adnan; Golovyashkina, Nataliya; Niewidok, Benedikt; Selle, Karolin; Ballatore, Carlo; Smith, Amos B; Bakota, Lidia; Brandt, Roland

    2016-06-01

    Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer's disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD. PMID:26772969

  14. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent. PMID:25257604

  15. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  16. Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics.

    PubMed

    Johenning, Friedrich W; Theis, Anne-Kathrin; Pannasch, Ulrike; Rückl, Martin; Rüdiger, Sten; Schmitz, Dietmar

    2015-06-01

    A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns. PMID:26098891

  17. Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics

    PubMed Central

    Pannasch, Ulrike; Rückl, Martin; Rüdiger, Sten; Schmitz, Dietmar

    2015-01-01

    A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns. PMID:26098891

  18. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus

    PubMed Central

    Song, Yan; Hou, Jinli; Qiao, Bin; Li, Yanchao; Xu, Ye; Duan, Ming; Guan, Zhenhong; Sun, Liankun

    2013-01-01

    Rabies is an acute viral infection of the central nervous system and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were infected intracerebrally with an MRV strain of the street rabies virus. Haematoxylin and eosin and fluorescence staining analysis of brain sections from the infected mice showed very few morphological changes in the neuronal bodies and neuronal processes. However, we found a significant decrease in the number of dendritic spines. Primary neuronal cultures derived from the hippocampus of mice (embryonic day 16.5) that were infected with the virus also showed an obvious decrease in the number of dendritic spines. Furthermore, the decrease in the number of dendritic spines was related to the depolymerization of actin filaments (F-actin). We propose that the observed structural changes can partially explain the severe clinical disease that was found in experimental models of street rabies virus infections. PMID:23114630

  19. The degenerative cervical spine.

    PubMed

    Llopis, E; Belloch, E; León, J P; Higueras, V; Piquer, J

    2016-04-01

    Imaging techniques provide excellent anatomical images of the cervical spine. The choice to use one technique or another will depend on the clinical scenario and on the treatment options. Plain-film X-rays continue to be fundamental, because they make it possible to evaluate the alignment and bone changes; they are also useful for follow-up after treatment. The better contrast resolution provided by magnetic resonance imaging makes it possible to evaluate the soft tissues, including the intervertebral discs, ligaments, bone marrow, and spinal cord. The role of computed tomography in the study of degenerative disease has changed in recent years owing to its great spatial resolution and its capacity to depict osseous components. In this article, we will review the anatomy and biomechanical characteristics of the cervical spine, and then we provide a more detailed discussion of the degenerative diseases that can affect the cervical spine and their clinical management. PMID:26878769

  20. Long Lasting Protein Synthesis- and Activity-Dependent Spine Shrinkage and Elimination after Synaptic Depression

    PubMed Central

    Ramiro-Cortés, Yazmín; Israely, Inbal

    2013-01-01

    Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation. PMID:23951097

  1. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  2. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  3. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  4. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  5. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  6. The Degenerative Spine.

    PubMed

    Clarençon, Frédéric; Law-Ye, Bruno; Bienvenot, Peggy; Cormier, Évelyne; Chiras, Jacques

    2016-08-01

    Degenerative disease of the spine is a leading cause of back pain and radiculopathy, and is a frequent indication for spine MR imaging. Disc degeneration, disc protrusion/herniation, discarhtrosis, spinal canal stenosis, and facet joint arthrosis, as well as interspinous processes arthrosis, may require an MR imaging workup. This review presents the MR imaging patterns of these diseases and describes the benefit of the MR imaging in these indications compared with the other imaging modalities like plain radiographs or computed tomography scan. PMID:27417397

  7. Dorsal spine osteoblastoma

    PubMed Central

    Bhargava, Pranshu; Singh, Rahul; Garg, Bharat B.

    2016-01-01

    Benign osteoblastoma is a rare primary neoplasm comprising less than 1% of primary bone tumors.[1] We report a case of a 20-year-old female patient presenting with progressive paraparesis over one year and back pain over the dorsal spine gradually increasing in severity over a year. Computerised tomomography (CT) of the spine revealed a well-defined 3.5 × 3.0 cm mass heterodense expansile bony lesion arising from the lamina of the D12 vertebra, having lytic and sclerotic component and causing compromise of the bony spinal canal. D12 laminectomy and total excision of the tumor was done. PMID:27057242

  8. Vertebroplasty for Spine Fracture Pain

    MedlinePlus

    MENU Return to Web version Vertebroplasty for Spine Fracture Pain Vertebroplasty for Spine Fracture Pain More than 40 million people in the United States have osteoporosis (a decrease in the amount ...

  9. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V.

    1985-01-01

    This book contains 16 chapters. Some of the topics are: CT of the Sacrum, The Postoperative Spine, Film Organizations and Case Reporting, Degeneration and Disc Disease of the Intervertebral Joint, Lumbar Spinal Stenosis, and Cervical and Thoracic Spine.

  10. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  11. Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens.

    PubMed

    Li, Juan; Liu, Nuyun; Lu, Kangrong; Zhang, Lei; Gu, Jingjing; Guo, Fukun; An, Shengli; Zhang, Lin; Zhang, Lu

    2012-05-31

    Repeated exposure to cocaine can induce persistent alterations in the brain's reward system, including increases in the number of dendrites and spine density on medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc). The structural remodeling of dendrites and spines in the NAc is thought to play a critical role in cocaine addiction. MSNs in the NAc can be classified by expression of either D1 or D2 dopamine receptors, which are localized to the direct and indirect pathway, respectively. It is unknown whether the dendritic changes induced by repeated cocaine treatment occur in MSNs of the direct or indirect pathway. Because the traditional Golgi-Cox impregnation of neurons precludes identifying particular subpopulations of MSNs, we performed dendritic morphology analysis after biocytin-labeling and Golgi-Cox impregnation. We found that the biocytin staining MSNs showed higher dendritic spine density and higher number of dendrites than that in Golgi impregnation group. In addition, we found that the increasing spine density induced by repeated cocaine treatment in female mice was higher than that in male mice. Next we used biocytin staining and dynorphin/D2 receptor colocalization to determine which cell type(s) displayed dendritic changes after repeated cocaine treatment. We found that cocaine-induced changes in dendritic parameters occurred in MSNs of both the direct (D1-expressing) and indirect (D2-expressing) pathways. PMID:22561554

  12. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  13. Spine Conditioning Program

    MedlinePlus

    ... which exercises will best help you meet your rehabilitation goals. Strength: Strengthening the muscles that support your spine will help keep your back and upper body stable. Keeping these muscles strong can relieve back pain and prevent further injury. Flexibility: Stretching the muscles ...

  14. Neuroimaging of spine tumors.

    PubMed

    Pinter, Nandor K; Pfiffner, Thomas J; Mechtler, Laszlo L

    2016-01-01

    Intramedullary, intradural/extramedullary, and extradural spine tumors comprise a wide range of neoplasms with an even wider range of clinical symptoms and prognostic features. Magnetic resonance imaging (MRI), commonly used to evaluate the spine in patients presenting with pain, can further characterize lesions that may be encountered on other imaging studies, such as bone scintigraphy or computed tomography (CT). The advantage of the MRI is its multiplane capabilities, superior contrast agent resolution, and flexible protocols that play an important role in assessing tumor location, extent in directing biopsy, in planning proper therapy, and in evaluating therapeutic results. A multimodality approach can be used to fully characterize the lesion and the combination of information obtained from the different modalities usually narrows the diagnostic possibilities significantly. The diagnosis of spinal tumors is based on patient age, topographic features of the tumor, and lesion pattern, as seen at CT and MRI. The shift to high-end imaging incorporating diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, whole-body short tau inversion recovery, positron emission tomography, intraoperative and high-field MRI as part of the mainstream clinical imaging protocol has provided neurologists, neuro-oncologists, and neurosurgeons a window of opportunity to assess the biologic behavior of spine neoplasms. This chapter reviews neuroimaging of spine tumors, primary and secondary, discussing routine and newer modalities that can reduce the significant morbidity associated with these neoplasms. PMID:27430436

  15. The rigid spine syndrome.

    PubMed Central

    van Munster, E T; Joosten, E M; van Munster-Uijtdehaage, M A; Kruls, H J; ter Laak, H J

    1986-01-01

    Four patients are reported, 3 females and 1 male, with (as a prominent symptom of muscle disease) limitation of flexion of cervical and dorsolumbar spine. The nosological classification of these cases is discussed. In two patients there was evidence of an inclusion body myositis. At necropsy one of these patients had a remarkable distribution of muscle changes. Images PMID:3025374

  16. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome.

    PubMed

    Kashima, Risa; Roy, Sougata; Ascano, Manuel; Martinez-Cerdeno, Veronica; Ariza-Torres, Jeanelle; Kim, Sunghwan; Louie, Justin; Lu, Yao; Leyton, Patricio; Bloch, Kenneth D; Kornberg, Thomas B; Hagerman, Paul J; Hagerman, Randi; Lagna, Giorgio; Hata, Akiko

    2016-01-01

    Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism. PMID:27273096

  17. [Magnetic resonance tomography in injuries of the cervical spine].

    PubMed

    Meydam, K; Sehlen, S; Schlenkhoff, D; Kiricuta, J C; Beyer, H K

    1986-12-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed. PMID:3025951

  18. The RhoG/ELMO1/Dock180 signaling module is required for spine morphogenesis in hippocampal neurons.

    PubMed

    Kim, Jeong-Yoon; Oh, Mi Hee; Bernard, Laura P; Macara, Ian G; Zhang, Huaye

    2011-10-28

    Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons. PMID:21900250

  19. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses

    PubMed Central

    Lemieux, Mado; Labrecque, Simon; Tardif, Christian; Labrie-Dion, Étienne; LeBel, Éric

    2012-01-01

    The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses. PMID:22965911

  20. Differential Striatal Spine Pathology in Parkinson’s disease and Cocaine Addiction: A Key Role of Dopamine?

    PubMed Central

    Villalba, Rosa M.; Smith, Yoland

    2013-01-01

    In the striatum, the dendritic tree of the two main populations of projection neurons, called “Medium Spiny Neurons (MSNs)”, are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson’s disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of “thin and immature” spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted. PMID:23867772

  1. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. PMID:25967681

  2. Postoperative Spine Infections.

    PubMed

    Pawar, Abhijit Yuvaraj; Biswas, Samar Kumar

    2016-02-01

    Postoperative spinal wound infection increases the morbidity of the patient and the cost of healthcare. Despite the development of prophylactic antibiotics and advances in surgical technique and postoperative care, wound infection continues to compromise patient outcome after spinal surgery. Spinal instrumentation also has an important role in the development of postoperative infections. This review analyses the risk factors that influence the development of postoperative infection. Classification and diagnosis of postoperative spinal infection is also discussed to facilitate the choice of treatment on the basis of infection severity. Preventive measures to avoid surgical site (SS) infection in spine surgery and methods for reduction of all the changeable risk factors are discussed in brief. Management protocols to manage SS infections in spine surgery are also reviewed. PMID:26949475

  3. Treating the Aging Spine.

    PubMed

    Choma, Theodore J; Rechtine, Glenn; McGuire, Robert A; Brodke, Darrel S

    2016-01-01

    Demographic trends make it incumbent on orthopaedic spine surgeons to recognize the special challenges involved in caring for older patients with spine pathology. Unique pathologies, such as osteoporosis and degenerative deformities, must be recognized and treated. Recent treatment options and recommendations for the medical optimization of bone health include vitamin D and calcium supplementation, diphosphonates, and teriparatide. Optimizing spinal fixation in elderly patients who have osteoporosis is critical; cement augmentation of pedicle screws is promising. In the management of geriatric odontoid fractures, nonsurgical support with a collar may be considered for low-demand patients, whereas surgical fixation is favored for high-demand patients. Management of degenerative deformity must address sagittal plane balance, which includes consideration of pelvic incidence. Various osteotomies may prove helpful in this setting. PMID:27049195

  4. Treating the Aging Spine.

    PubMed

    Choma, Theodore J; Rechtine, Glenn R; McGuire, Robert A; Brodke, Darrel S

    2015-12-01

    Demographic trends make it incumbent on orthopaedic spine surgeons to recognize the special challenges involved in caring for older patients with spine pathology. Unique pathologies, such as osteoporosis and degenerative deformities, must be recognized and dealt with. Recent treatment options and recommendations for the medical optimization of bone health include vitamin D and calcium supplementation, diphosphonates, and teriparatide. Optimizing spinal fixation in elderly patients with osteoporosis is critical; cement augmentation of pedicle screws is promising. In the management of geriatric odontoid fractures, nonsurgical support with a collar may be considered for the low-demand patient, whereas surgical fixation is favored for high-demand patients. Management of degenerative deformity must address sagittal plane balance, including consideration of pelvic incidence. Various osteotomies may prove helpful in this setting. PMID:26510625

  5. Postoperative Spine Infections

    PubMed Central

    Biswas, Samar Kumar

    2016-01-01

    Postoperative spinal wound infection increases the morbidity of the patient and the cost of healthcare. Despite the development of prophylactic antibiotics and advances in surgical technique and postoperative care, wound infection continues to compromise patient outcome after spinal surgery. Spinal instrumentation also has an important role in the development of postoperative infections. This review analyses the risk factors that influence the development of postoperative infection. Classification and diagnosis of postoperative spinal infection is also discussed to facilitate the choice of treatment on the basis of infection severity. Preventive measures to avoid surgical site (SS) infection in spine surgery and methods for reduction of all the changeable risk factors are discussed in brief. Management protocols to manage SS infections in spine surgery are also reviewed. PMID:26949475

  6. Rendering the Topological Spines

    SciTech Connect

    Nieves-Rivera, D.

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  7. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  8. Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states

    PubMed Central

    Oikonomou, Katerina D.; Singh, Mandakini B.; Sterjanaj, Enas V.; Antic, Srdjan D.

    2014-01-01

    Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: (1) they are the most abundant cell type within their respective brain area, (2) covered by thousands of thorny protrusions (dendritic spines), (3) possess high levels of dendritic NMDA conductances, and (4) experience sustained somatic depolarizations in vivo and in vitro (UP states). In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (“dendritic UP states”) characterized by (i) fast rise, (ii) plateau phase lasting several hundred milliseconds, and (iii) abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates toward the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200–800 ms) steady depolarization (∼20 mV amplitude), which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states). We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states. PMID:25278841

  9. Nectin-1 spots regulate the branching of olfactory mitral cell dendrites.

    PubMed

    Fujiwara, Takeshi; Inoue, Takahito; Maruo, Tomohiko; Rikitake, Yoshiyuki; Ieki, Nao; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Takai, Yoshimi; Mizoguchi, Akira

    2015-09-01

    Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb. PMID:26169026

  10. MicroRNA-214 Promotes Dendritic Development by Targeting the Schizophrenia-associated Gene Quaking (Qki).

    PubMed

    Irie, Koichiro; Tsujimura, Keita; Nakashima, Hideyuki; Nakashima, Kinichi

    2016-06-24

    Proper dendritic elaboration of neurons is critical for the formation of functional circuits during brain development. Defects in dendrite morphogenesis are associated with neuropsychiatric disorders, and microRNAs are emerging as regulators of aspects of neuronal maturation such as axonal and dendritic growth, spine formation, and synaptogenesis. Here, we show that miR-214 plays a pivotal role in the regulation of dendritic development. Overexpression of miR-214 increased dendrite size and complexity, whereas blocking of endogenous miR-214-3p, a mature form of miR-214, inhibited dendritic morphogenesis. We also found that miR-214-3p targets quaking (Qki), which is implicated in psychiatric diseases such as schizophrenia, through conserved target sites located in the 3'-untranslated region of Qki mRNA, thereby down-regulating Qki protein levels. Overexpression and knockdown of Qki impaired and enhanced dendritic formation, respectively. Moreover, overexpression of Qki abolished the dendritic growth induced by miR-214 overexpression. Taken together, our findings reveal a crucial role for the miR-214-Qki pathway in the regulation of neuronal dendritic development. PMID:27129236

  11. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats.

    PubMed

    Jacome, Luis F; Barateli, Ketti; Buitrago, Dina; Lema, Franklin; Frankfurt, Maya; Luine, Victoria N

    2016-04-01

    17β-estradiol (E2) rapidly, within minutes, activates behaviors and cognition by binding to membrane estrogen receptors, activating cell signaling cascades and increasing dendritic spines. In female rodents, E2 enhances spatial memory within 2-4 hours, and spine density is increased in the CA1 area of the hippocampus within 30-60 minutes. Although chronic gonadal hormone treatments in male rats alter cognition and spines/spine synapses and acute hormone effects occur in hippocampal slices, effects of acute, in vivo hormone administration in males are unknown. Therefore, we assessed rapid effects of E2 (20 μg/kg) and testosterone (T) (750 μg/kg) on spatial memory using the object placement task and on hippocampal spine density using Golgi impregnation. Orchidectomized rats received hormones immediately after the training trial and were tested for retention 2 hours later. Vehicle-injected orchidectomized males spent equal time exploring objects in the old and new locations, but E2- or T-treated subjects spent more time exploring objects at the new location, suggesting enhanced memory. Both hormones also increased spine density in CA1, but not the dentate gyrus, by 20%-40% at 30 minutes and 2 hours after injections. This report is the first, to our knowledge, to show E2 and T enhancements of memory and spine density within such a short time frame in male rats. PMID:26844375

  12. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development

    PubMed Central

    Lee, Frankie Hang Fung; Su, Ping; Xie, Yu-Feng; Wang, Kyle Ethan; Wan, Qi; Liu, Fang

    2016-01-01

    GluA2-containing AMPA receptors (AMPARs) play a critical role in various aspects of neurodevelopment. However, the molecular mechanisms underlying these processes are largely unknown. We report here that the interaction between GluA2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is necessary for neuron and cortical development. Using an interfering peptide (GluA2-G-Gpep) that specifically disrupts this interaction, we found that primary neuron cultures with peptide treatment displayed growth cone development deficits, impairment of axon formation, less dendritic arborization and lower spine protrusion density. Consistently, in vivo data with mouse brains from pregnant dams injected with GluA2-G-Gpep daily during embryonic day 8 to 19 revealed a reduction of cortical tract axon integrity and neuronal density in post-natal day 1 offspring. Disruption of GluA2-GAPDH interaction also impairs the GluA2-Plexin A4 interaction and reduces p53 acetylation in mice, both of which are possible mechanisms leading to the observed neurodevelopmental abnormalities. Furthermore, electrophysiological experiments indicate altered long-term potentiation (LTP) in hippocampal slices of offspring mice. Our results provide novel evidence that AMPARs, specifically the GluA2 subunit via its interaction with GAPDH, play a critical role in cortical neurodevelopment. PMID:27461448

  13. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development.

    PubMed

    Lee, Frankie Hang Fung; Su, Ping; Xie, Yu-Feng; Wang, Kyle Ethan; Wan, Qi; Liu, Fang

    2016-01-01

    GluA2-containing AMPA receptors (AMPARs) play a critical role in various aspects of neurodevelopment. However, the molecular mechanisms underlying these processes are largely unknown. We report here that the interaction between GluA2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is necessary for neuron and cortical development. Using an interfering peptide (GluA2-G-Gpep) that specifically disrupts this interaction, we found that primary neuron cultures with peptide treatment displayed growth cone development deficits, impairment of axon formation, less dendritic arborization and lower spine protrusion density. Consistently, in vivo data with mouse brains from pregnant dams injected with GluA2-G-Gpep daily during embryonic day 8 to 19 revealed a reduction of cortical tract axon integrity and neuronal density in post-natal day 1 offspring. Disruption of GluA2-GAPDH interaction also impairs the GluA2-Plexin A4 interaction and reduces p53 acetylation in mice, both of which are possible mechanisms leading to the observed neurodevelopmental abnormalities. Furthermore, electrophysiological experiments indicate altered long-term potentiation (LTP) in hippocampal slices of offspring mice. Our results provide novel evidence that AMPARs, specifically the GluA2 subunit via its interaction with GAPDH, play a critical role in cortical neurodevelopment. PMID:27461448

  14. Paravertebral muscles in disease of the cervical spine.

    PubMed Central

    Wharton, S B; Chan, K K; Pickard, J D; Anderson, J R

    1996-01-01

    OBJECTIVES: Cervical spine disorders are common in the older population. The paravertebral muscles are essential to the support and stabilisation of the cervical spine but have been little studied. The aim was to determine whether pathological changes develop in these muscles in patients with severe cervical spine disease, which, if present, might contribute to the pathogenesis and symptomatology of their disorder. METHODS: Open biopsies of superficial and deep paravertebral muscles were obtained during the course of surgical procedures to alleviate cervical myelopathy. Most of these patients had cervical spondylosis or rheumatoid arthritis involving the cervical spine. The biopsies were compared with muscle obtained at necropsy from patients without a history of cervical spine or neuromuscular disorder. RESULTS: Muscle from both the study and control groups showed a similar range and severity of abnormalities. In several patients, grouped fibre atrophy suggested chronic partial denervation. Most biopsies showed type 1 fibre predominance and selective type 2 fibre atrophy. Ragged red fibres were a frequent finding and electron microscopy disclosed accumulations of mitochondria, a small proportion of which contained rounded, or longitudinally oriented, single osmiophilic inclusions. Fibres containing core-like areas were also frequent. These pathological features were seen with increasing severity and frequency with increasing age. CONCLUSIONS: The paravertebral cervical muscles develop pathological abnormalities with increasing age with both neurogenic and myopathic features, the pathogenesis of which is probably multifactorial. Such a muscle disorder would be expected to be accompanied by functional impairment which may contribute to the development and symptomatology of cervical spine disease with increasing age. Images PMID:8937338

  15. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice

    PubMed Central

    Heinrichs, Stephen C.; Leite-Morris, Kimberly A.; Guy, Marsha D.; Goldberg, Lisa R.; Young, Angela J.; Kaplan, Gary B.

    2015-01-01

    Previous research suggests that morphology and arborization of dendritic spines change as a result of fear conditioning in cortical and subcortical brain regions. This study uniquely aims to delineate these structural changes in the basolateral amygdala (BLA) after both fear conditioning and fear extinction. C57BL/6 mice acquired robust conditioned fear responses (70–80% cued freezing behavior) after six pairings with a tone cue associated with footshock in comparison to unshocked controls. During fear acquisition, freezing behavior was significantly affected by both shock exposure and trial number. For fear extinction, mice were exposed to the conditioned stimulus tone in the absence of shock administration and behavioral responses significantly varied by shock treatment. In the retention tests over 3 weeks, the percentage time spent freezing varied with the factor of extinction training. In all treatment groups, alterations in dendritic plasticity were analyzed using Golgi–Cox staining of dendrites in the BLA. Spine density differed between the fear conditioned group and both the fear extinction and control groups on third order dendrites. Spine density was significantly increased in the fear conditioned group compared to the fear extinction group and controls. Similarly in Sholl analyses, fear conditioning significantly increased BLA spine numbers and dendritic intersections while subsequent extinction training reversed these effects. In summary, fear extinction produced enduring behavioral plasticity that is associated with a reversal of alterations in BLA dendritic plasticity produced by fear conditioning. These neuroplasticity findings can inform our understanding of structural mechanisms underlying stress-related pathology can inform treatment research into these disorders. PMID:23570859

  16. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters.

    PubMed

    Bullmann, Torsten; Seeger, Gudrun; Stieler, Jens; Hanics, János; Reimann, Katja; Kretzschmann, Tanja Petra; Hilbrich, Isabel; Holzer, Max; Alpár, Alán; Arendt, Thomas

    2016-03-01

    The microtubule-associated protein tau, in its hyperphosphorylated form, is the major component of paired helical filaments and other aggregates in neurodegenerative disorders commonly referred to as "tauopathies". Recent evidence, however, indicates that mislocalization of hyperphosphorylated tau to subsynaptic sites leads to synaptic impairment and cognitive decline even long before formation of tau aggregates and neurodegeneration occur. A similar, but reversible hyperphosphorylation of tau occurs under physiologically controlled conditions during hibernation. Here, we study the hibernating Golden hamster (Syrian hamster, Mesocricetus auratus). A transient spine reduction was observed in the hippocampus, especially on apical dendrites of hippocampal CA3 pyramidal cells, but not on their basal dendrites. This distribution of structural synaptic regression was correlated to the distribution of phosphorylated tau, which was highly abundant in apical dendrites but hardly detectable in basal dendrites. Surprisingly, hippocampal memory assessed by a labyrinth maze was not affected by hibernation. The present study suggests a role for soluble hyperphosphorylated tau in the process of reversible synaptic regression, which does not lead to memory impairment during hibernation. We hypothesize that tau phosphorylation associated spine regression might mainly affect unstable/dynamic spines while sparing established/stable spines. PMID:26332578

  17. MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development

    PubMed Central

    Ultanir, Sila K.; Yadav, Smita; Hertz, Nicholas T.; Oses-Prieto, Juan A.; Claxton, Suzanne; Burlingame, Alma L.; Shokat, Kevan M.; Jan, Lily Y.; Jan, Yuh-Nung

    2014-01-01

    Summary Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS. PMID:25456499

  18. Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function

    PubMed Central

    Schoderboeck, Lucia; Gingl, Ewald; Luzi, Ettore; Riefler, Julia; Di Leva, Francesca; Karra, Daniela; Thomas, Sabine; Kiebler, Michael A.; Macchi, Paolo

    2010-01-01

    In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regulation resulted in a significant reduction in dendritic spines and an increase in elongated dendritic filopodia. Furthermore, we observed an increase in excitatory synapse markers along dendritic shafts. Electrophysiological analysis of synaptic function of neurons lacking Pum2 revealed an increased miniature excitatory postsynaptic current frequency. We then identified two specific mRNAs coding for a known translational regulator, eIF4E, and for a voltage-gated sodium channel, Scn1a, which interacts with Pum2 in immunoprecipitations from brain lysates. Finally, we show that Pum2 regulates translation of the eIF4E mRNA. Taken together, our data reveal a previously undescribed role for Pum2 in dendrite morphogenesis, synapse function, and translational control. PMID:20133610

  19. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  20. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses.

    PubMed

    Peck, Sun H; Casal, Margret L; Malhotra, Neil R; Ficicioglu, Can; Smith, Lachlan J

    2016-08-01

    The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS, such as hematopoietic stem cell transplantation and enzyme replacement therapy, have shown limited efficacy for improving spinal manifestations in patients and animal models. Therefore, there is a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine - the discs, vertebrae, odontoid process and dura - contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments. PMID:27296532

  1. Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons

    PubMed Central

    Nicholson, Daniel A.; Geinisman, Yuri

    2008-01-01

    The morphology of axospinous synapses and their parent spines varies widely. Additionally, many of these synapses are contacted by multiple synapse boutons (MSBs) and show substantial variability in receptor expression. The two major axospinous synaptic subtypes are perforated and nonperforated, but there are several subcategories within these two classes. The present study used serial section electron microscopy to determine whether perforated and nonperforated synaptic subtypes differed with regard to their distribution, size, receptor expression, and connectivity to MSBs in three apical dendritic regions of rat hippocampal area CA1: the proximal and distal thirds of stratum radiatum, and stratum lacunosum-moleculare. All synaptic subtypes were present throughout the apical dendritic regions, but there were several subclass-specific differences. First, segmented, completely partitioned synapses changed in number, proportion, and AMPA receptor expression with distance from the soma beyond that found within other perforated synaptic subtypes. Second, atypically large nonperforated synapses showed NMDA receptor immunoreactivity identical to perforated synapses, levels of AMPA receptor expression intermediate to nonperforated and perforated synapses, and perforated synapse-like changes in structure with distance from the soma. Finally, MSB connectivity was highest in proximal stratum radiatum, but only for those MSBs comprised of nonperforated synapses. The immunogold data suggest that most MSBs would not generate simultaneous depolarizations in multiple neurons or spines, however, because the vast majority of MSBs are comprised of two synapses with abnormally low levels of receptor expression, or involve one synapse with a high level of receptor expression and another with only a low level. PMID:19006199

  2. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  3. On the dendrites and dendritic transitions in undercooled germanium

    SciTech Connect

    Lau, C.F.; Kui, H.W. . Dept. of Physics)

    1993-07-01

    Undercooled molten Ge was allowed to solidify at initial bulk undercoolings, [Delta]T, from 10 to 200C under dehydrated boron oxide flux. It turned out that in addition to the (211) twin dendrite found by Billig and the (100) twin-free dendrite discovered by Devaud and Turnbill, there is a third novel twin dendrite, the (110) twin dendrite. The twin planes in a (110) dendrite always appear in multiple numbers and the orientation is (111). These different kinds of dendrites exist at different initial interfacial undercoolings and the transition temperatures for (110) to (211), (211) to (100) are [Delta]T = 61 and 93C, respectively.

  4. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  5. Fractures of the cervical spine

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Teixeira, William Jacobsen; Narasaki, Douglas Kenji; Oliveira, Reginaldo Perilo; de Barros Filho, Tarcísio Eloy Pessoa

    2013-01-01

    OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2) and the lower cervical spine (C3-C7), according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification), which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative. PMID:24270959

  6. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.

    PubMed

    Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J; Kromer, Lawrence F

    2015-02-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  7. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders

    PubMed Central

    Wurzman, Rachel; Forcelli, Patrick A.; Griffey, Christopher J.; Kromer, Lawrence F.

    2014-01-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  8. Dendritic geometry shapes neuronal cAMP signalling to the nucleus

    PubMed Central

    Li, Lu; Gervasi, Nicolas; Girault, Jean-Antoine

    2015-01-01

    Neurons have complex dendritic trees, receiving numerous inputs at various distances from the cell body. Yet the rules of molecular signal propagation from dendrites to nuclei are unknown. DARPP-32 is a phosphorylation-regulated signalling hub in striatal output neurons. We combine diffusion-reaction modelling and live imaging to investigate cAMP-activated DARPP-32 signalling to the nucleus. The model predicts maximal effects on the nucleus of cAMP production in secondary dendrites, due to segmental decrease of dendrite diameter. Variations in branching, perikaryon size or spines have less pronounced effects. Biosensor kinase activity measurement following cAMP or dopamine uncaging confirms these predictions. Histone 3 phosphorylation, regulated by this pathway, is best stimulated by cAMP released in secondary-like dendrites. Thus, unexpectedly, the efficacy of diffusion-based signalling from dendrites to nucleus is not inversely proportional to the distance. We suggest a general mechanism by which dendritic geometry counterbalances the effect of dendritic distance for signalling to the nucleus. PMID:25692798

  9. Malignant Rhabdoid Tumor of the Kidney and Spine in an Infant

    PubMed Central

    Park, Sejun; Seo, Jae-Hee; Park, Jun Bum

    2014-01-01

    Rhabdoid tumor of the kidney (RTK) is a rare malignancy in infancy. Central nervous system involvement in RTK is already known. However, solitary spinal metastasis in RTK has been hardly reported. The authors report a case of metastatic RTK to spine causing paraplegia in an 8-month-old girl. Since the patient was young, the diagnosis of spine metastasis was delayed until paraplegia was seen after radical nephrectomy. Thorough neurological examination should be performed for early diagnosis of spinal metastasis in young patients with RTK. If there are any abnormal signs in neurologic examination, magnetic resonance images of brain and spine are recommended. PMID:24570822

  10. Chronic benzodiazepine treatment decreases spine density in cortical pyramidal neurons.

    PubMed

    Curto, Yasmina; Garcia-Mompo, Clara; Bueno-Fernandez, Clara; Nacher, Juan

    2016-02-01

    The adult brain retains a substantial capacity for synaptic reorganization, which includes a wide range of modifications from molecular to structural plasticity. Previous reports have demonstrated that the structural remodeling of excitatory neurons seems to occur in parallel to changes in GABAergic neurotransmission. The function of neuronal inhibitory networks can be modified through GABAA receptors, which have a binding site for benzodiazepines (BZ). Although BZs are among the most prescribed drugs, is not known whether they modify the structure and connectivity of pyramidal neurons. In the present study we wish to elucidate the impact of a chronic treatment of 21 days with diazepam (2mg/kg, ip), a BZ that acts as an agonist of GABAA receptors, on the structural plasticity of pyramidal neurons in the prefrontal cortex of adult mice. We have examined the density of dendritic spines and the density of axonal en passant boutons in the cingulate cortex. Although no significant changes were observed in their anxiety levels, animals treated with diazepam showed a decrease in the density of spines in the apical dendrites of pyramidal neurons. Most GFP-expressing en passant boutons in the upper layers of the cingulate cortex had an extracortical origin and no changes in their density were detected after diazepam treatment. These results indicate that the chronic potentiation of GABAergic synapses can induce the structural remodeling of postsynaptic elements in pyramidal neurons. PMID:26733301

  11. Estrogen receptor KO mice study on rapid modulation of spines and long-term depression in the hippocampus.

    PubMed

    Murakami, Gen; Hojo, Yasushi; Ogiue-Ikeda, Mari; Mukai, Hideo; Chambon, Pierre; Nakajima, Kohei; Ooishi, Yuuki; Kimoto, Tetsuya; Kawato, Suguru

    2015-09-24

    Rapid modulation of hippocampal synaptic plasticity through synaptic estrogen receptors is an essential topic. We analyzed estradiol-induced modulation of CA1 dendritic spines using adult male ERαKO and ERβKO mice. A 2h treatment of estradiol particularly increased the density of middle-head spines (diameter 0.3-0.4 µm) in wild type mouse hippocampal slices. The enhancement of spinogenesis was completely suppressed by MAP kinase inhibitor. Estradiol-induced increase in middle-head spines was observed in ERβKO mice (which express ERα), but not in ERαKO, indicating that ERα is necessary for the spinogenesis. Direct observation of the dynamic estradiol-induced enhancing effect on rapid spinogenesis was performed using time-lapse imaging of spines in hippocampal live slices from yellow fluorescent protein expressed mice. Both appearance and disappearance of spines occurred, and the number of newly appeared spines was significantly greater than that of disappeared spines, resulting in the net increase of the spine density within 2h. As another type of synaptic modulation, we observed that estradiol rapidly enhanced N-methyl-D-aspartate (NMDA)-induced long-term depression (LTD) in CA1 of the wild type mouse hippocampus. In contrast, estradiol did not enhance NMDA-LTD in ERαKO mice, indicating the involvement of ERα in the estrogen signaling. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25498865

  12. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  13. Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant UBQLN2.

    PubMed

    Gorrie, George H; Fecto, Faisal; Radzicki, Daniel; Weiss, Craig; Shi, Yong; Dong, Hongxin; Zhai, Hong; Fu, Ronggen; Liu, Erdong; Li, Sisi; Arrat, Hasan; Bigio, Eileen H; Disterhoft, John F; Martina, Marco; Mugnaini, Enrico; Siddique, Teepu; Deng, Han-Xiang

    2014-10-01

    Mutations in the gene encoding ubiquilin2 (UBQLN2) cause amyotrophic lateral sclerosis (ALS), frontotemporal type of dementia, or both. However, the molecular mechanisms are unknown. Here, we show that ALS/dementia-linked UBQLN2(P497H) transgenic mice develop neuronal pathology with ubiquilin2/ubiquitin/p62-positive inclusions in the brain, especially in the hippocampus, recapitulating several key pathological features of dementia observed in human patients with UBQLN2 mutations. A major feature of the ubiquilin2-related pathology in these mice, and reminiscent of human disease, is a dendritic spinopathy with protein aggregation in the dendritic spines and an associated decrease in dendritic spine density and synaptic dysfunction. Finally, we show that the protein inclusions in the dendritic spines are composed of several components of the proteasome machinery, including Ub(G76V)-GFP, a representative ubiquitinated protein substrate that is accumulated in the transgenic mice. Our data, therefore, directly link impaired protein degradation to inclusion formation that is associated with synaptic dysfunction and cognitive deficits. These data imply a convergent molecular pathway involving synaptic protein recycling that may also be involved in other neurodegenerative disorders, with implications for development of widely applicable rational therapeutics. PMID:25246588

  14. [Pediatric orthopedic cervical spine problems].

    PubMed

    Helenius, Ilkka

    2016-01-01

    Treatment-requiring diseases of the cervical spine in children are rare. The most common cases requiring medical assessment and treatment are acute torticollis and various accidents. A torticollis having lasted for more than a week should be recognized, because it can be treated by skull traction. Cervical spine fractures in children under school age are very rare, the most common being a fracture of the base of the dens of the second cervical vertebra. Cervical spine instability is almost always associated with an underlying disease. PMID:27400588

  15. Learning improvement after PI3K activation correlates with de novo formation of functional small spines

    PubMed Central

    Enriquez-Barreto, Lilian; Cuesto, Germán; Dominguez-Iturza, Nuria; Gavilán, Elena; Ruano, Diego; Sandi, Carmen; Fernández-Ruiz, Antonio; Martín-Vázquez, Gonzalo; Herreras, Oscar; Morales, Miguel

    2014-01-01

    PI3K activation promotes the formation of synaptic contacts and dendritic spines, morphological features of glutamatergic synapses that are commonly known to be related to learning processes. In this report, we show that in vivo administration of a peptide that activates the PI3K signaling pathway increases spine density in the rat hippocampus and enhances the animals’ cognitive abilities, while in vivo electrophysiological recordings show that PI3K activation results in synaptic enhancement of Schaffer and stratum lacunosum moleculare inputs. Morphological characterization of the spines reveals that subjecting the animals to contextual fear-conditioning training per se promotes the formation of large spines, while PI3K activation reverts this effect and favors a general change toward small head areas. Studies using hippocampal neuronal cultures show that the PI3K spinogenic process is NMDA-dependent and activity-independent. In culture, PI3K activation was followed by mRNA upregulation of glutamate receptor subunits and of the immediate-early gene Arc. Time-lapse studies confirmed the ability of PI3K to induce the formation of small spines. Finally, we demonstrate that the spinogenic effect of PI3K can be induced in the presence of neurodegeneration, such as in the Tg2576 Alzheimer’s mouse model. These findings highlight that the PI3K pathway is an important regulator of neuronal connectivity and stress the relationship between spine size and learning processes. PMID:24427113

  16. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  17. Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area.

    PubMed

    Sarti, Federica; Borgland, Stephanie L; Kharazia, Viktor N; Bonci, Antonello

    2007-08-01

    Growing evidence indicates that the expression of synaptic plasticity in the central nervous system results in dendritic reorganization and spine remodeling. Although long-term potentiation of glutamatergic synapses after cocaine exposure in the ventral tegmental area (VTA) has been proposed as a cellular mechanism underlying addictive behaviors, the relationship between long-term potentiation and dendritic remodeling induced by cocaine on the dopaminergic neurons of the VTA has not been demonstrated. Here we report that rat VTA cells classified as type I and II showed distinct morphological responses to cocaine, as a single cocaine exposure significantly increased dendritic spine density in type I but not in type II cells. Further, only type I cells had a significant increase in the AMPA receptor:NMDA receptor ratio after a single cocaine exposure. Taken together, our data provide evidence that increased spine density and synaptic plasticity are coexpressed within the same VTA neuronal population and that only type I neurons are structurally and synaptically modified by cocaine. PMID:17686047

  18. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134

    PubMed Central

    Bicker, Silvia; Khudayberdiev, Sharof; Weiß, Kerstin; Zocher, Kathleen; Baumeister, Stefan; Schratt, Gerhard

    2013-01-01

    Specific microRNAs (miRNAs), including miR-134, localize to neuronal dendrites, where they control synaptic protein synthesis and plasticity. However, the mechanism of miRNA transport is unknown. We found that the neuronal precursor-miRNA-134 (pre-miR-134) accumulates in dendrites of hippocampal neurons and at synapses in vivo. Dendritic localization of pre-miR-134 is mediated by the DEAH-box helicase DHX36, which directly associates with the pre-miR-134 terminal loop. DHX36 function is required for miR-134-dependent inhibition of target gene expression and the control of dendritic spine size. Dendritically localized pre-miR-134 could provide a local source of miR-134 that can be mobilized in an activity-dependent manner during plasticity. PMID:23651854

  19. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  20. Stability of dendritic arrays

    NASA Technical Reports Server (NTRS)

    Warren, James A.; Langer, J. S.

    1990-01-01

    An approximate method for studying steady-state properties and linear stability of the dendritic arrays that are formed in directional solidification of alloys is proposed. This analysis is valid at high growth rates where the primary spacing between dendrites is larger than the velocity-dependent solutal diffusion length. A neutral stability boundary is computed and it is found that, in the situations where the results should be valid, the experimental data of Somboonsuk, et al. (1984) lie in the stable region, well away from the boundary.

  1. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  2. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... uses radio waves, a magnetic field and a computer to produce detailed pictures of the spine and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  3. The cervical spine: radiologist's perspective.

    PubMed

    Mink, Jerrold H; Gordon, Rachael E; Deutsch, Andrew L

    2003-08-01

    This article provides an essential curriculum in cervical spine radiology. It discusses the uses of plain radiographs, MR imaging, computed tomography (CT), and CT myelography, in addition to the methodologies of discography, epidural injections under visualization, and facet and nerve root injections. It explains how radiographic images of the cervical spine can differentiate tumors, inflammation, recent or prior trauma, and the range of discal, arthritic, neural, and vascular cervical pathologies and, just as importantly, when they cannot. PMID:12948340

  4. Protocadherins branch out: Multiple roles in dendrite development

    PubMed Central

    Keeler, Austin B; Molumby, Michael J; Weiner, Joshua A

    2015-01-01

    The proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, β-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes. An additional group includes the atypical cadherin genes encoding the giant Fat and Dachsous proteins and the 7-transmembrane cadherins. In this review we highlight the many roles that Pcdhs and atypical cadherins have been demonstrated to play in dendritogenesis, dendrite arborization, and dendritic spine regulation. Together, the published studies we discuss implicate these members of the cadherin superfamily as key regulators of dendrite development and function, and as potential therapeutic targets for future interventions in neurodevelopmental disorders. PMID:25869446

  5. The postsurgical spine.

    PubMed

    Santos Armentia, E; Prada González, R; Silva Priegue, N

    2016-04-01

    Failed back surgery syndrome is the persistence or reappearance of pain after surgery on the spine. This term encompasses both mechanical and nonmechanical causes. Imaging techniques are essential in postoperative follow-up and in the evaluation of potential complications responsible for failed back surgery syndrome. This review aims to familiarize radiologists with normal postoperative changes and to help them identify the pathological imaging findings that reflect failed back surgery syndrome. To interpret the imaging findings, it is necessary to know the type of surgery performed in each case and the time elapsed since the intervention. In techniques used to fuse the vertebrae, it is essential to evaluate the degree of bone fusion, the material used (both its position and its integrity), the bone over which it lies, the interface between the implant and bone, and the vertebral segments that are adjacent to metal implants. In decompressive techniques it is important to know what changes can be expected after the intervention and to be able to distinguish them from peridural fibrosis and the recurrence of a hernia. It is also crucial to know the imaging findings for postoperative infections. Other complications are also reviewed, including arachnoiditis, postoperative fluid collections, and changes in the soft tissues adjacent to the surgical site. PMID:26767541

  6. Postoperative Spine Infections

    PubMed Central

    Evangelisti, Gisberto; Andreani, Lorenzo; Girardi, Federico; Darren, Lebl; Sama, Andrew; Lisanti, Michele

    2015-01-01

    Postoperative spinal wound infection is a potentially devastating complication after operative spinal procedures. Despite the utilization of perioperative prophylactic antibiotics in recent years and improvements in surgical technique and postoperative care, wound infection continues to compromise patients’ outcome after spinal surgery. In the modern era of pending health care reform with increasing financial constraints, the financial burden of post-operative spinal infections also deserves consideration. The aim of our work is to give to the reader an updated review of the latest achievements in prevention, risk factors, diagnosis, microbiology and treatment of postoperative spinal wound infections. A review of the scientific literature was carried out using electronic medical databases Pubmed, Google Scholar, Web of Science and Scopus for the years 1973-2012 to obtain access to all publications involving the incidence, risk factors, prevention, diagnosis, treatment of postoperative spinal wound infections. We initially identified 119 studies; of these 60 were selected. Despite all the measures intended to reduce the incidence of surgical site infections in spine surgery, these remain a common and potentially dangerous complication. PMID:26605028

  7. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  8. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    PubMed

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells. PMID:26689905

  9. Identification and classification of spine vertebrae by automated methods

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    2001-07-01

    We are currently working toward developing computer-assisted methods for the indexing of a collection of 17,000 digitized x-ray images by biomedical content. These images were collected as part of a nationwide health survey and form a research resource for osteoarthitis and bone morphometry. This task requires the development of algorithms to robustly analyze the x-ray contents for key landmarks, to segment the vertebral bodies, to accurately measure geometric features of the individual vertebrae and inter-vertebral areas, and to classify the spine anatomy into normal or abnormal classes for conditions of interest, including anterior osteophytes and disc space narrowing. Subtasks of this work have been created and divided among collaborators. In this paper, we provide a technical description of the overall task, report on progress made by collaborators, and provide the most recent results of our own research into obtaining first-order location of the spine region of interest by automated methods. We are currently concentrating on images of the cervical spine, but will expand the work to include the lumbar spine as well. Development of successful image processing techniques for computer-assisted indexing of medical image collections is expected to have a significant impact within the medical research and patient care systems.

  10. The cervical spine in patients with psoriatic arthritis: a clinical, radiological and immunogenetic study.

    PubMed Central

    Salvarani, C; Macchioni, P; Cremonesi, T; Mantovani, W; Battistel, B; Rossi, F; Capozzoli, N; Baricchi, R; Portioli, I

    1992-01-01

    The radiological changes of the cervical spine were evaluated in 57 patients with psoriatic arthritis and were correlated with clinical, radiological, and immunogenetic features of the disease. Forty patients (70%) showed radiological evidence of the cervical spine being affected by the disease. Two patterns of cervical spine abnormalities were noted. Fifteen patients (26%) had erosive and/or subluxing cervical rheumatoid like lesions; 25 patients (44%) had a more frequently reported pattern similar to ankylosing spondylitis. Although subaxial subluxations were the most frequently observed cervical abnormalities (53%) in the inflammatory subgroup, none of the patients studied had cord compression. Ankylosing cervical spine disease was the only form of axial involvement in nine (36%) of 25 patients with the ankylosing form of psoriatic arthritis. All of these patients had peripheral disease and were B27 negative. Predictors of cervical spine disease patterns were considered using clinical, demographic, and radiological features and HLA antigens. The results of a multivariate analysis showed that the best predictors of inflammatory cervical spine disease are the presence of HLA-B39 and HLA-DR4 antigens, radiocarpal erosions, and the absence of the HLA-DR5 antigen. PMID:1540041

  11. Airway management for cervical spine surgery.

    PubMed

    Farag, Ehab

    2016-03-01

    Cervical spine surgery is one of the most commonly performed spine surgeries in the United States, and 90% of the cases are related to degenerative cervical spine disease (the rest to cervical spine trauma and/or instability). The airway management for cervical spine surgery represents a crucial step in the anesthetic management to avoid injury to the cervical cord. The crux for upper airway management for cervical spine surgery is maintaining the neck in a neutral position with minimal neck movement during endotracheal intubation. Therefore, the conventional direct laryngoscopy (DL) can be unsuitable for securing the upper airway in cervical spine surgery, especially in cases of cervical spine instability and myelopathy. This review discusses the most recent evidence-based facts of the main advantages and limitations of different techniques available for upper airway management for cervical spine surgery. PMID:27036600

  12. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks.

    PubMed

    Hatanaka, Yusuke; Hojo, Yasushi; Mukai, Hideo; Murakami, Gen; Komatsuzaki, Yoshimasa; Kim, Jonghyuk; Ikeda, Muneki; Hiragushi, Ayako; Kimoto, Tetsuya; Kawato, Suguru

    2015-09-24

    Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25511993

  13. Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks.

    PubMed

    Vannini, Eleonora; Restani, Laura; Pietrasanta, Marta; Panarese, Alessandro; Mazzoni, Alberto; Rossetto, Ornella; Middei, Silvia; Micera, Silvestro; Caleo, Matteo

    2016-07-01

    Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy. PMID:26163822

  14. Spine and scapular pain: an unusual presentation of colon adenocarcinoma

    PubMed Central

    Padhi, Parikshit; Mackey, Christine

    2013-01-01

    We are presenting an elderly Caucasian woman who was admitted to our hospital for severe lower back pain and scapular pain for 8 days. She had a history of spinal stenosis and we believed this was the aetiology of her pain. However, her pain was not subsiding and hence an MRI spine was performed. It revealed spinal stenosis and abnormal signal in the lower thoracic and lumbar vertebrae. Hence a bone biopsy was performed that came back as metastatic adenocarcinoma. She underwent a bone scan and revealed diffuse disease in thoracic, lumbar, sacral spine as well as third and 10th ribs. Her CT chest/abdomen/pelvis revealed no primary tumour. A mass was detected on her colonscopy, and pathology revealed adenocarcinoma. She underwent palliative radiation and one cycle of chemotherapy. She was discharged to home hospice care. It is very rare to have osseous metastases as the only manifestation of colon cancer. PMID:23861273

  15. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice

    PubMed Central

    Borrie, Sarah C.; Sartori, Simone B.; Lehmann, Julian; Sah, Anupam; Singewald, Nicolas; Bandtlow, Christine E.

    2014-01-01

    Molecular mechanisms which stabilize dendrites and dendritic spines are essential for regulation of neuronal plasticity in development and adulthood. The class of Nogo receptor proteins, which are critical for restricting neurite outgrowth inhibition signaling, have been shown to have roles in developmental, experience and activity induced plasticity. Here we investigated the role of the Nogo receptor homolog NgR2 in structural plasticity in a transgenic null mutant for NgR2. Using Golgi-Cox staining to analyze morphology, we show that loss of NgR2 alters spine morphology in adult CA1 pyramidal neurons of the hippocampus, significantly increasing mushroom-type spines, without altering dendritic tree complexity. Furthermore, this shift is specific to apical dendrites in distal CA1 stratum radiatum (SR). Behavioral alterations in NgR2−/− mice were investigated using a battery of standardized tests and showed that whilst there were no alterations in learning and memory in NgR2−/− mice compared to littermate controls, NgR2−/− displayed reduced fear expression in the contextual conditioned fear test, and exhibited reduced anxiety- and depression-related behaviors. This suggests that the loss of NgR2 results in a specific phenotype of reduced emotionality. We conclude that NgR2 has role in maintenance of mature spines and may also regulate fear and anxiety-like behaviors. PMID:24860456

  16. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  17. Precise regulation of the guidance receptor DMA-1 by KPC-1/Furin instructs dendritic branching decisions

    PubMed Central

    Dong, Xintong; Chiu, Hui; Park, Yeonhee Jenny; Zou, Wei; Zou, Yan; Özkan, Engin; Chang, Chieh; Shen, Kang

    2016-01-01

    Extracellular adhesion molecules and their neuronal receptors guide the growth and branching of axons and dendrites. Growth cones are attracted to intermediate targets, but they must switch their response upon arrival so that they can move away and complete the next stage of growth. Here, we show that KPC-1, a C. elegans Furin homolog, regulates the level of the branching receptor DMA-1 on dendrites by targeting it to late endosomes. In kpc-1 mutants, the level of DMA-1 is abnormally high on dendrites, resulting in trapping of dendrites at locations where a high level of the cognate ligand, the adhesion molecule SAX-7/L1, is present. The misregulation of DMA-1 also causes dendritic self-avoidance defects. Thus, precise regulation of guidance receptors creates flexibility of responses to guidance signals and is critical for neuronal morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.11008.001 PMID:26974341

  18. Cervical Spine Instrumentation in Children.

    PubMed

    Hedequist, Daniel J; Emans, John B

    2016-06-01

    Instrumentation of the cervical spine enhances stability and improves arthrodesis rates in children undergoing surgery for deformity or instability. Various morphologic and clinical studies have been conducted in children, confirming the feasibility of anterior or posterior instrumentation of the cervical spine with modern implants. Knowledge of the relevant spine anatomy and preoperative imaging studies can aid the clinician in understanding the pitfalls of instrumentation for each patient. Preoperative planning, intraoperative positioning, and adherence to strict surgical techniques are required given the small size of children. Instrumentation options include anterior plating, occipital plating, and a variety of posterior screw techniques. Complications related to screw malposition include injury to the vertebral artery, neurologic injury, and instrumentation failure. PMID:27097300

  19. Micromechanics of Sea Urchin Spines

    PubMed Central

    Tsafnat, Naomi; Fitz Gerald, John D.; Le, Hai N.; Stachurski, Zbigniew H.

    2012-01-01

    The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine’s unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine’s architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material. PMID:22984468

  20. Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling.

    PubMed

    Shimizu, H; Ishizuka, Y; Yamazaki, H; Shirao, T

    2015-10-01

    Allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) is synthesized in both the periphery and central nervous system and is known to be a potent positive allosteric modulator of the GABAA receptor. Because APα was suggested to improve the symptoms of depression and Alzheimer's disease (AD), which involve synaptic dysfunction and loss, we examined whether APα affects excitatory synapses. Drebrin, which is an actin-binding protein, forms a unique stable actin structure in dendritic spines, and drebrin levels correlate positively with cognitive levels in AD and mild cognitive impairment. We investigated whether APα increases excitatory synapse density along dendrites of mature hippocampal neurons using drebrin-imaging-based evaluation of mature synapses. We prepared primary cultures of hippocampal neurons and either transfected them with GFP or immunostained them against drebrin. Morphological analysis of GFP-transfected neurons revealed that a 24-h exposure to 0.3 or 1 μM APα significantly increased dendritic spine density without any morphological changes to spines. Drebrin cluster density was also increased by 0.3 and 1 μM APα. The protein kinase A (PKA) inhibitor H-89 inhibited the APα-induced increase in drebrin cluster density. These data demonstrate that APα increases mature excitatory synapses via activation of PKA. Therefore, the PKA-cAMP response element-binding protein (CREB) signaling pathway is likely to be involved in the APα-induced increase of mature excitatory synapses. Another possibility is that the PKA-dependent increase in AMPA receptors at dendritic spines mediates the APα function. In conclusion, our study indicates that APα may improve neuropsychiatric disorder outcomes via increasing the numbers of mature excitatory synapses. PMID:26241343

  1. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  2. [Injury of upper cervical spine].

    PubMed

    Ryba, Luděk; Cienciala, Jan; Chaloupka, Richard; Repko, Martin; Vyskočil, Robert

    2016-01-01

    Injuries of the upper cervical spine represent 1/3 of all cervical spine injuries and approximately 40 % result by the death. Every level of the cervical spine can be injured - fractures of condyles of the occipital bone (CO), atlantooccipital dislocation (AOD), fractures of the Atlas (C1), atlantoaxial dislocation (AAD) and fractures of the axis (C2). Most of cases in younger patients are caused by high-energy trauma, while by elderly people, because of the osteoporosis, is needed much less energy and even simple falls can cause the injury of the cervical spine. That´s why the etiology of injuries can be different. In younger patients are caused mainly by car accidents, motorcycle and bicycle accidents and pedestrian crashes by car and in elderly populations are the main reason falls. The mechanism of the injury is axial force, hyperflexion, hyperextension, latero-flexion, rotation and combination of all. The basic diagnostic examination is X ray in AP, lateral and transoral projection. But in the most of cases is CT examination necessary and in the suspicion of the ligamentous injury and neurological deterioration must be MRI examination added. Every injury of the upper cervical spine has its own classification. Clinical symptoms can vary from the neck pain, restricted range of motion, antalgic position of the head, injury of the cranial nerves and different neurologic symptoms from the irritation of nerves to quadriplegia. A large percentage of deaths is at the time of the injury. Therapy is divided to conservative treatment, which is indicated in bone injuries with minimal dislocation. In more severe cases, with the dislocation and ligamentous injury, when is high chance of the instability, is indicated the surgical treatment. We can use anterior or posterior approach, make the osteosynthesis, stabilisation and fusion of the spine. Complex fractures and combination of different types of injuries are often present in this part of the spine. Correct and early

  3. Biomechanics of the flexion of spine

    NASA Astrophysics Data System (ADS)

    Hobbs, H. K.; Aurora, T. S.

    1991-03-01

    Low back pain is a common problem and it involves different kinds of injury to the spine. In this article the forces and torques experienced by the spine are examined in order to understand, and possibly avoid, low back pain.

  4. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  5. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  6. Kissing spines: fact or fancy?

    PubMed

    Beks, J W

    1989-01-01

    In the Neurosurgical Clinic in Groningen 64 patients underwent surgery between 1975 and 1985 for a clinical and radiological syndrome described by Baastrup in 1933 and called in the Anglo-saxon literature: "kissing spines". Because the results of the surgical treatment were disappointing we submitted these results to further analysis. PMID:2589119

  7. Concept of Gunshot Wound Spine

    PubMed Central

    Mittal, Radhey Shyam

    2013-01-01

    Gunshot wound (GSW) to the spine which was earlier common in the military population is now being increasingly noted in civilians due to easy availability of firearms of low velocity either licensed or illegal combined with an increased rate of violence in the society. Contributing to 13% to 17% of all spinal injuries, the management of complex injury to the spine produced by a GSW remains controversial. Surgery for spinal cord injuries resulting from low velocity GSWs is reserved for patients with progressive neurologic deterioration, persistent cerebrospinal fluid fistulae, and sometimes for incomplete spinal cord injuries. Surgery may also be indicated to relieve active neural compression from a bullet, bone, intervertebral disk, or a hematoma within the spinal canal. Spinal instability rarely results from a civilian GSW. Cauda equina injuries from low velocity GSWs have a better overall outcome after surgery. In general, the decision to perform surgery should be made on consideration of multiple patient factors that can vary over a period of time. Although there have been plenty of individual case reports regarding GSW to the spine, a thorough review of unique mechanical and biological factors that affect the final outcome has been lacking. We review the key concepts of pathogenesis and management of GSW to the spine and propose an algorithm to guide decision making in such cases. PMID:24353856

  8. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    PubMed

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects. PMID:24874920

  9. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  10. Regulation of dendritic calcium release in striatal spiny projection neurons.

    PubMed

    Plotkin, Joshua L; Shen, Weixing; Rafalovich, Igor; Sebel, Luke E; Day, Michelle; Chan, C Savio; Surmeier, D James

    2013-11-01

    The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs. PMID:23966676

  11. Dendritic morphology of neurons in medial prefrontal cortex, hippocampus, and nucleus accumbens in adult SH rats.

    PubMed

    Sánchez, Fremioth; Gómez-Villalobos, María de Jesús; Juarez, Ismael; Quevedo, Lucía; Flores, Gonzalo

    2011-03-01

    We have studied, in spontaneously hypertensive (SH) rats at different ages (2, 4, and 8 months old), the dendritic morphological changes of the pyramidal neurons of the medial prefrontal cortex (mPFC) and hippocampus and medium spiny neurons of the nucleus accumbens (NAcc) induced by the chronic effect of high-blood pressure. As control animals, we used Wistar-Kioto (WK) rats. Blood pressure was measured every 2 months to confirm the increase in arterial blood pressure. Spontaneous locomotor activity was assessed, and then brains were removed to study the dendritic morphology by the Golgi-Cox stain method followed by Sholl analysis. SH animals at 4 and 8 months of age showed decreased spine density in pyramidal neurons from the mPFC and in medium spiny cells from the NAcc. At 8 months of age as well the pyramidal neurons from the hippocampus exhibited a reduction in the number of dendritic spines. An increase in locomotion in a novel environment at all ages in the SH rats was observed. Our results indicate that high-blood pressure alters the neuronal dendrite morphology of the mPFC, hippocampus, and NAcc. The increased locomotion behavior supports the idea that dopaminergic transmission is altered in the SH rats. This could enhance our understanding of the consequences of chronic high-blood pressure on brain structure, which may implicate cognitive impairment in hypertensive patients. PMID:20665725

  12. Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice.

    PubMed

    Zhang, Di; Wang, Xuezhen; Lu, Xin-Yun

    2016-07-01

    The hippocampus, a brain region critical for learning, memory and emotional processing, maintains its capacity to undergo structural plasticity throughout life. Hippocampal structural plasticity can be modulated by a number of intrinsic and extrinsic factors. This study investigated the effects of adiponectin, an adipocyte-derived hormone, on dendritic growth, arborization, and spinogenesis in mature granule neurons of the hippocampal dentate gyrus generated during embryonic (early-born) or early postnatal (late-born) stages. We found that adiponectin deficiency reduced dendritic length, branching and spine density of granule neurons. The reduction was more evident in early-born granule neurons than in late-born granule neurons. Intracerebroventricular infusion of adiponectin for 1 week increased of dendritic spines and arbor complexity in late-born granule neurons. Moreover, adiponectin deficiency decreased the production of adult-born new granule neurons through suppressing neural progenitor cell proliferation and differentiation, whereas intracerebroventricular adiponectin infusion increased the proliferation of neural progenitor cells in adult dentate gyrus. These results suggest that adiponectin plays an important role in dendritic spine remodeling and neurogenesis in the dentate gyrus. PMID:27187175

  13. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization.

    PubMed

    Karbowski, Jan

    2015-10-01

    The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3)(2), and capillaries around (1/3)(4). Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays) are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called "spine economy maximization" is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest that for the

  14. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization

    PubMed Central

    Karbowski, Jan

    2015-01-01

    The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3)2, and capillaries around (1/3)4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays) are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called “spine economy maximization” is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest that for the

  15. A brief history of endoscopic spine surgery.

    PubMed

    Telfeian, Albert E; Veeravagu, Anand; Oyelese, Adetokunbo A; Gokaslan, Ziya L

    2016-02-01

    Few neurosurgeons practicing today have had training in the field of endoscopic spine surgery during residency or fellowship. Nevertheless, over the past 40 years individual spine surgeons from around the world have worked to create a subfield of minimally invasive spine surgery that takes the point of visualization away from the surgeon's eye or the lens of a microscope and puts it directly at the point of spine pathology. What follows is an attempt to describe the story of how endoscopic spine surgery developed and to credit some of those who have been the biggest contributors to its development. PMID:26828883

  16. Dendritic remodeling of hippocampal neurons is associated with altered NMDA receptor expression in alcohol dependent rats

    PubMed Central

    Staples, Miranda C.; Kim, Airee; Mandyam, Chitra D.

    2015-01-01

    Prolonged alcohol exposure has been previously shown to impair the structure and function of the hippocampus, although the underlying structural and biochemical alterations contributing to these deleterious effects are unclear. Also unclear is whether these changes persist into prolonged periods of abstinence. Previous work from our lab utilizing a clinically relevant rodent model of alcohol consumption demonstrated that alcohol dependence (induced by chronic intermittent ethanol vapor exposure or CIE) decreases proliferation and survival of neural stem cells in the hippocampal subgranular zone and hippocampal neurogenesis in the dentate gyrus, implicating this region of the cortex as particularly sensitive to the toxic effects of prolonged ethanol exposure. For this study, we investigated seven weeks of CIE-induced morphological changes (dendritic complexity and dendritic spine density) of dentate gyrus (DG) granule cell neurons, CA3, and CA1 pyramidal neurons and the associated alterations in biochemical markers of synaptic plasticity and toxicity (NMDA receptors and PSD-95) in the hippocampus in ethanol-experienced Wistar rats 3h (CIE) and 21 days (protracted abstinence) after the last ethanol vapor exposure. CIE reduced dendritic arborization of DG neurons and this effect persisted into protracted abstinence. CIE enhanced dendritic arborization of pyramidal neurons and this effect did not persist into protracted abstinence. The architectural changes in dendrites did not correlate with alterations in dendritic spine density, however, they were associated with increases in the expression of pNR2B, total NR2B, and total NR2A immediately following CIE with expression levels returning to control levels in prolonged abstinence. Overall, these data provide the evidence that CIE produces profound changes in hippocampal structural plasticity and in molecular tools that maintain hippocampal structural plasticity, and these alterations may underlie cognitive dysfunction

  17. Thoracic spine sports-related injuries.

    PubMed

    Menzer, Heather; Gill, G Keith; Paterson, Andrew

    2015-01-01

    Although sports-related injuries to the thoracic spine are relatively uncommon, they are among the most feared due to the potential for catastrophic neurologic injury. The increased biomechanical support of the thoracic spine makes injuries in this region particularly rare compared with the cervical and lumbar spine. As a result, thoracic spine injuries can be missed easily, difficult to diagnose, and problematic to treat. Recognition of mechanism and awareness of injury patterns help physicians determine a diagnosis and create an index of suspicion for unstable thoracic spine injuries. Aggressive full-contact sports receive the most attention for spinal injury; however several sports with repetitive loading of the spine can cause severe injuries, including rowing, gymnastics, and golf. The goal of this article was to provide an overview of the unique anatomic and biomechanical features of the thoracic spine and to discuss some of the more common thoracic injuries that can affect athletes. PMID:25574880

  18. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  19. Destabilization of the Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and Synaptic Plasticity

    PubMed Central

    Steiner, Pascal; Higley, Michael J.; Xu, Weifeng; Czervionke, Brian L.; Malenka, Robert C.; Sabatini, Bernardo L.

    2009-01-01

    SUMMARY Long-term potentiation (LTP) is accompanied by dendritic spine growth and changes in the composition of the postsynaptic density (PSD). We find that activity-dependent growth of apical spines of CA1 pyramidal neurons is accompanied by destabilization of the PSD that results in transient loss and rapid replacement of PSD-95 and SHANK2. Signaling through PSD-95 is required for activity-dependent spine growth and trafficking of SHANK2. N-terminal PDZ and C-terminal guanylate kinase domains of PSD-95 are required for both processes, indicating that PSD-95 coordinates multiple signals to regulate morphological plasticity. Activity-dependent trafficking of PSD-95 is triggered by phosphorylation at serine 73, a conserved calcium/calmodulin-dependent protein kinase II (CaMKII) consensus phosphorylation site, which negatively regulates spine growth and potentiation of synaptic currents. We propose that PSD-95 and CaMKII act at multiple steps during plasticity induction to initially trigger and later terminate spine growth by trafficking growth-promoting PSD proteins out of the active spine. PMID:19081375

  20. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats.

    PubMed

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-01-01

    Bisphenol-A (BPA, 4, 4'-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment. PMID:27578147

  1. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats

    PubMed Central

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-01-01

    Bisphenol-A (BPA, 4, 4′-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment. PMID:27578147

  2. Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats.

    PubMed

    Hamilton, G F; Criss, K J; Klintsova, A Y

    2015-08-01

    Developmental alcohol exposure in humans can produce a wide range of deficits collectively referred to as fetal alcohol spectrum disorders (FASD). FASD-related impairments in executive functioning later in life suggest long-term damage to the prefrontal cortex (PFC). In rodent neonates, moderate to high levels of alcohol exposure decreased frontal lobe brain size and altered medial PFC pyramidal neuron dendritic morphology. Previous research in our lab demonstrated that neonatal alcohol exposure decreased basilar dendritic complexity but did not affect spine density in Layer II/III pyramidal neurons in 26- to 30-day-old rats. The current study adds to the literature by evaluating the effect of neonatal alcohol exposure on mPFC Layer II/III basilar dendritic morphology in adolescent male rats. Additionally, it examines the potential for voluntary exercise to mitigate alcohol-induced deficits on mPFC dendritic complexity. An animal model of binge drinking during the third trimester of pregnancy was used. Rats were intubated with alcohol (alcohol-exposed, AE; 5.25 g kg(-1) day(-1)) on postnatal days (PD) 4-9; two control groups were included (suckle control and sham-intubated). Rats were anesthetized and perfused with heparinized saline solution on PD 42, and brains were processed for Golgi-Cox staining. Developmental alcohol exposure decreased spine density and dendritic complexity of basilar dendrites of Layer II/III neurons in the medial PFC (mPFC) compared to dendrites of control animals. Voluntary exercise increased spine density and dendritic length in AE animals resulting in elimination of the differences between AE and SH rats. Thus, voluntary exercise during early adolescence selectively rescued alcohol-induced morphological deficits in the mPFC. PMID:25967699

  3. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  4. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  5. Variation in emergency department use of cervical spine radiography for alert, stable trauma patients

    PubMed Central

    Stiell, I G; Wells, G A; Vandemheen, K; Laupacis, A; Brison, R; Eisenhauer, M A; Greenberg, G H; MacPhail, I; McKnight, R D; Reardon, M; Verbeek, R; Worthington, J; Lesiuk, H

    1997-01-01

    OBJECTIVE: To, assess the emergency department use of cervical spine radiography for alert, stable adult trauma patients in terms of utilization, yield for injury and variation in practices among hospitals and physicians. DESIGN: Retrospective survey of health records. SETTING: Emergency departments of 6 teaching and 2 community hospitals in Ontario and British Columbia. PATIENTS: Consecutive alert, stable adult trauma patients seen with potential cervical spine injury between July 1, 1994, and June 30, 1995. MAIN OUTCOME MEASURES: Total number of eligible patients, referral for cervical spine radiography (overall, by hospital and by physician), presence of cervical spine injury, patient characteristics and hospitals associated with use of radiography. RESULTS: Of 6855 eligible patients, cervical spine radiography was ordered for 3979 (58.0%). Only 60 (0.9%) patients were found to have an acute cervical spine injury (fracture, dislocation or ligamentous instability); 98.5% of the radiographic films were negative for any significant abnormality. The demographic and clinical characteristics of the patients were similar across the 8 hospitals, and no cervical spine injuries were missed. Significant variation was found among the 8 hospitals in the rate of ordering radiography (p < 0.0001), from a low of 37.0% to a high of 72.5%. After possible differences in case severity and patient characteristics at each hospital were controlled for, logistic regression analysis revealed that 6 of the hospitals were significantly associated with the use of radiography. At 7 hospitals, there was significant variation in the rate of ordering radiography among the attending emergency physicians (p < 0.05), from a low of 15.6% to a high of 91.5%. CONCLUSIONS: Despite considerable variation among institutions and individual physicians in the ordering of cervical spine radiography for alert, stable trauma patients with similar characteristics, no cervical spine injuries were missed. The

  6. Computed tomography of the spine

    SciTech Connect

    Haughton, V.M.; Williams, A.L.

    1982-01-01

    The book describes the computed tomographic (CT) techniques for imaging the different elements comprising the spinal column and canal. The use of intravenous and intrathecal contrast enhancement and of xenon enhancement is briefly mentioned. Reconstruction techniques and special problems regarding CT of the spine are presented. CT of the spinal cord, meninges and subarachnoid space, epidural space, intervertebral discs, facet joints, and vertebrae present normal anatomy, and several common pathologic conditions. (KRM)

  7. Understanding Competition in Spine Care.

    PubMed

    Sharan, Alok D; Schroeder, Gregory D; West, Michael E; Vaccaro, Alexander R

    2016-04-01

    The changing landscape from volume to value represents a natural transformation in the health care industry. Increasingly provider groups are finding themselves responding to unfamiliar market forces. Whether explicit or implicit, competition is playing a larger role for the sustainability of providers. For spine care providers who are attempting to navigate the transition from volume to value, understanding the forces that shape competition in health care can help achieve success. PMID:26925860

  8. Spine Immobilizer for Accident Victims

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Lampson, K.

    1983-01-01

    Proposed conformal bladder filled with tiny spheres called "microballoons," enables spine of accident victim to be rapidly immobilized and restrained and permit victim to be safely removed from accident scene in extremely short time after help arrives. Microballoons expand to form rigid mass when pressure within bladder is less than ambient. Bladder strapped to victim is also strapped to rescue chair. Void between bladder and chair is filled with cloth wedges.

  9. Development of dendrite polarity in Drosophila neurons

    PubMed Central

    2012-01-01

    Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity. PMID:23111238

  10. Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses

    PubMed Central

    MacGillavry, Harold D.; Kerr, Justin M.; Kassner, Josh; Frost, Nicholas A.; Blanpied, Thomas A.

    2016-01-01

    The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of Shank proteins in neurons has been complicated because the different Shank isoforms share a very high degree of sequence and domain homology. Therefore, to control Shank content while minimizing potential compensatory effects, a miRNA-based knockdown strategy was developed to reduce the expression of all synaptically targeted Shank isoforms simultaneously in rat hippocampal neurons. Using this approach, a strong (>75%) reduction in total Shank protein levels was achieved at individual dendritic spines, prompting an approximately 40% decrease in mushroom spine density. Furthermore, Shank knockdown reduced spine actin levels and increased sensitivity to the actin depolymerizing agent Latrunculin A. A SHANK2 mutant lacking the proline-rich cortactin-binding motif (SHANK2-ΔPRO) was unable to rescue these defects. Furthermore, Shank knockdown reduced cortactin levels in spines and increased the mobility of spine cortactin as measured by single-molecule tracking photoactivated localization microscopy, suggesting that Shank proteins recruit and stabilize cortactin at the synapse. Furthermore, it was found that Shank knockdown significantly reduced spontaneous remodelling of synapse morphology that could not be rescued by the SHANK2-ΔPRO mutant. It was concluded that Shank proteins are key intermediates between the synapse and the spine interior that, via cortactin, permit the actin cytoskeleton to dynamically regulate synapse morphology and function. PMID:26547831

  11. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures.

    PubMed

    Awad, Patricia N; Sanon, Nathalie T; Chattopadhyaya, Bidisha; Carriço, Josianne Nunes; Ouardouz, Mohamed; Gagné, Jonathan; Duss, Sandra; Wolf, Daniele; Desgent, Sébastien; Cancedda, Laura; Carmant, Lionel; Di Cristo, Graziella

    2016-07-01

    Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations. PMID:26875662

  12. Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density

    PubMed Central

    Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.

    2015-01-01

    SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327

  13. Dendritic cells in asthma.

    PubMed

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  14. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory

    PubMed Central

    Reinhard, Judith R.; Kriz, Alexander; Galic, Milos; Angliker, Nico; Rajalu, Mathieu; Vogt, Kaspar E.; Ruegg, Markus A.

    2016-01-01

    Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory. PMID:27194588

  15. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory.

    PubMed

    Reinhard, Judith R; Kriz, Alexander; Galic, Milos; Angliker, Nico; Rajalu, Mathieu; Vogt, Kaspar E; Ruegg, Markus A

    2016-01-01

    Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory. PMID:27194588

  16. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics.

    PubMed

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Fumagalli, Fabio

    2015-10-01

    Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network. PMID:26004981

  17. Ischial hypoplasia, tibial hypoplasia and facial abnormalities: a new syndrome?

    PubMed

    Nishimura, G; Haga, Y; Aoki, K; Hasegawa, T

    1998-12-01

    A child with facial abnormalities, short stature and a variety of skeletal alterations is reported. The facial abnormalities comprised low-set ears, short nose with a long philtrum, micrognathia and cleft palate. The skeletal alterations included ischial hypoplasia, malformations of the cervical spine, hypoplasia of the lesser trochanters, tibial hypoplasia with bowing of the lower legs, tibio-fibular diastasis with malformed distal tibial epiphyses, clubfeet and brachymesophalangy. The constellation of clinical and radiological findings in the present patient do not fit any known malformation syndrome. PMID:9880644

  18. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  19. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  20. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Expepriment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Expepriment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of TDSE. A similar view is available with labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  1. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior or widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of the TDSE. A similar view is availble without labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  2. Pathophysiology and Biomechanics of the Aging Spine

    PubMed Central

    Papadakis, Michael; Sapkas, Georgios; Papadopoulos, Elias C; Katonis, Pavlos

    2011-01-01

    Aging of the spine is characterized by two parallel but independent processes: the reduction of bone mineral density and the development of degenerative changes. The combination of degeneration and bone mass reduction contribute, to a different degree, to the development of a variety of lesions. This results in a number of painful and often debilitating disorders. The present review constitutes a synopsis of the pathophysiological processes that take place in the aging spine as well as of the consequences these changes have on the biomechanics of the spine. The authors hope to present a thorough yet brief overview of the process of aging of the human spine. PMID:21966338

  3. Developmental but not adult cannabinoid treatments persistently alter axonal and dendritic morphology within brain regions important for zebra finch vocal learning

    PubMed Central

    Gilbert, Marcoita T.; Soderstrom, Ken

    2014-01-01

    Prior work shows developmental cannabinoid exposure alters zebra finch vocal development in a manner associated with altered CNS physiology, including changes in patterns of CB1 receptor immunoreactivity, endocannabinoid concentrations and dendritic spine densities. These results raise questions about the selectivity of developmental cannabinoid effects: are they a consequence of a generalized developmental disruption, or are effects produced through more selective and distinct interactions with biochemical pathways that control receptor, endogenous ligand and dendritic spine dynamics? To begin to address this question we have examined effects of developmental cannabinoid exposure on the pattern and density of expression of proteins critical to dendritic (MAP2) and axonal (Nf-200) structure to determine the extent to which dendritic vs. axonal neuronal morphology may be altered. Results demonstrate developmental, but not adult cannabinoid treatments produce generalized changes in expression of both dendritic and axonal cytoskeletal proteins within brain regions and cells known to express CB1 cannabinoid receptors. Results clearly demonstrate that cannabinoid exposure during a period of sensorimotor development, but not adulthood, produce profound effects upon both dendritic and axonal morphology that persist through at least early adulthood. These findings suggest an ability of exogenous cannabinoids to alter general processes responsible for normal brain development. Results also further implicate the importance of endocannabinoid signaling to peri-pubertal periods of adolescence, and underscore potential consequences of cannabinoid abuse during periods of late-postnatal CNS development. PMID:24594017

  4. Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats.

    PubMed

    Kougias, Daniel G; Nolan, Suzanne O; Koss, Wendy A; Kim, Taehyeon; Hankosky, Emily R; Gulley, Joshua M; Juraska, Janice M

    2016-04-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a supplement commonly used to maintain muscle in elderly and clinical populations, has been unexplored in the aging brain. In both healthy aging humans and rat models, there are cognitive deficits associated with age-related dendritic shrinkage within the prefrontal cortex. The present study explores the effects of relatively short- and long-term (7 and 31 weeks) oral HMB supplementation starting at 12 months of age in male and female rats on the dendritic tree of layer 5 pyramidal neurons in the medial prefrontal cortex. Since female rats continue to secrete ovarian hormones after reaching reproductive senescence, middle-aged female rats were ovariectomized to model humans. As expected, there were fewer spines and a retraction of dendritic material in the apical and basilar trees in old age controls of both sexes compared with their middle-aged counterparts. However, these losses did not occur in the HMB-treated rats in either dendrites or the total number of dendritic spines. Thus, HMB forestalled the effects of aging on the dendritic tree of this population of neurons. PMID:26973106

  5. Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus

    PubMed Central

    Tuscher, Jennifer J.; Luine, Victoria; Frankfurt, Maya

    2016-01-01

    Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2. SIGNIFICANCE STATEMENT Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of

  6. A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice.

    PubMed

    Castro-Gomes, Vitor; Bergstrom, Hadley C; McGuire, Jennifer L; Parker, Clarissa C; Coyner, Jennifer; Landeira-Fernandez, J; Ursano, Robert J; Palmer, Abraham A; Johnson, Luke R

    2016-01-01

    Subtle differences in neuronal microanatomy may be coded in individuals with genetic susceptibility for neuropsychiatric disorders. Genetic susceptibility is a significant risk factor in the development of anxiety disorders, including post-traumatic stress disorder (PTSD). Pavlovian fear conditioning has been proposed to model key aspects of PTSD. According to this theory, PTSD begins with the formation of a traumatic memory which connects relevant environmental stimuli to significant threats to life. The lateral amygdala (LA) is considered to be a key network hub for the establishment of Pavlovian fear conditioning. Substantial research has also linked the LA to PTSD. Here we used a genetic mouse model of fear susceptibility (F-S) and resistance (F-R) to investigate the dendritic and spine structure of principal neurons located in the LA. F-S and F-R lines were bi-directionally selected based on divergent levels of contextual and cued conditioned freezing in response to fear-evoking footshocks. We examined LA principal neuron dendritic and spine morphology in the offspring of experimentally naive F-S and F-R mice. We found differences in the spatial distribution of dendritic branch points across the length of the dendrite tree, with a significant increase in branch points at more distal locations in the F-S compared with F-R line. These results suggest a genetic predisposition toward differences in fear memory strength associated with a dendritic branch point organization of principal neurons in the LA. These micro-anatomical differences in neuron structure in a genetic mouse model of fear susceptibility and resistance provide important insights into the cellular mechanisms of pathophysiology underlying genetic predispositions to anxiety and PTSD. PMID:26642919

  7. Magnetic resonance imaging of the cervical, thoracic, and lumbar spine in children: spinal incidental findings in pediatric patients.

    PubMed

    Ramadorai, Uma E; Hire, Justin M; DeVine, John G

    2014-12-01

    Study Design Retrospective case series. Objective To determine the rate of spinal incidental findings on magnetic resonance imaging (MRI) of the cervical, thoracic, and lumbar spine in the pediatric population. Methods We reviewed MRI imaging of the neuraxial spine in patients less than 18 years of age and documented abnormal spinal findings. We then reviewed the charts of these patients to determine the reason for ordering the study. Those who presented with pain were considered symptomatic. Those who had no presenting complaint were considered asymptomatic. The data were analyzed to break down the rate of spinal incidental findings in the cervical, thoracic, and lumbar spine, respectively. Results Thirty-one of the 99 MRIs had positive findings, with the most common being disk protrusion (51.6%). Spinal incidental findings were most common in the lumbar spine (9.4%) versus the cervical spine (8%) or thoracic spine (4.7%). In this group, Schmorl nodes and disk protrusion were the two most common findings (37.5% each). Other spinal incidental findings included a vertebral hemangioma and a Tarlov cyst. In the thoracic spine, the only spinal incidental finding was a central disk protrusion without spinal cord or nerve root compression. Conclusion MRI is a useful modality in the pediatric patient with scoliosis or complaints of pain, but the provider should remain cognizant of the potential for spinal incidental findings. PMID:25396102

  8. [Wiplash injury and "railway spine"].

    PubMed

    Thomann, K D; Rauschmann, M

    2004-09-01

    Although post-traumatic stress disorder was only recently admitted into the international classification systems, psychological reactions to traumatic incidents have been frequently described for more than 100 years. The article deals with the mental reactions to a trauma in different historical situations. Included are the "railway spine" injuries of the 19th century, victims of accidents where third party liability could be claimed, accident insurance, the psychological consequences of National Socialism and whiplash injury. The analysis suggests that different reactions don't describe an identical disorder. It seems that reactions to injuries are mainly influenced by the historical and social background and the fact of beeing insured. PMID:15487336

  9. Osteotomies in the Cervical Spine

    PubMed Central

    Nemani, Venu M.; Derman, Peter B.

    2016-01-01

    Rigid cervical deformities are difficult problems to treat. The goals of surgical treatment include deformity correction, achieving a rigid fusion, and performing a thorough neural decompression. In stiff and ankylosed cervical spines, osteotomies are required to restore sagittal and coronal balance. In this chapter, we describe the clinical and radiographic workup for patients with cervical deformities, and delineate the various factors that must be considered when planning surgical treatment. We also describe in detail the various types of cervical osteotomies, along with their surgical technique, advantages, and potential complications. PMID:26949476

  10. Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells

    PubMed Central

    Kirizs, Tekla; Kerti-Szigeti, Katalin; Lorincz, Andrea; Nusser, Zoltan

    2014-01-01

    Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K+ channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K+ channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K+ channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments. PMID:24606584

  11. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis.

    PubMed

    Muller, Jay F; Mascagni, Franco; Zaric, Violeta; Mott, David D; McDonald, Alexander J

    2016-08-15

    Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were