Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.
Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A
2002-04-01
An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.
Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua
2014-01-01
Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.
Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.
Capmany, G; Bolton, V N
1999-09-01
There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish
NASA Astrophysics Data System (ADS)
Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy
2013-11-01
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h
Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos.
Yao, Tatsuma; Suzuki, Rie; Furuta, Natsuki; Suzuki, Yuka; Kabe, Kyoko; Tokoro, Mikiko; Sugawara, Atsushi; Yajima, Akira; Nagasawa, Tomohiro; Matoba, Satoko; Yamagata, Kazuo; Sugimura, Satoshi
2018-05-10
Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.
Eye and tentacle abnormalities in embryos of the atlantic oyster drill, Urosalpinx cinerea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, K.; Myers, T.D.
1975-12-01
Multiple development of eyes and cephalic tentacles was observed in developing embryos of the Atlantic oyster drill, Urosalpinx cinerea. These abnormalities were found in 2.7 percent of embryos previously exposed to 0.01 ppM mercuric chloride and in 0.4 percent of control animals. Animals were noted with one to three tentacles and one to six eyes. The most prevalent combination of abnormalities observed was three eyes and two tentacles per animal.
Ono, Yukiko; Kono, Tomohiro
2006-08-01
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.
Comparison of effects of albendazole sulfoxide on in vitro produced bovine embryos and rat embryos.
Piscopo, S E; Smoak, I W
1997-09-01
To evaluate and compare effects of albendazole sulfoxide (ABZSO) on rat embryos and bovine embryos produced in vitro. In vitro produced bovine embryos. Rat embryos recovered from naturally bred Sprague-Dawley rats. 4- and 8-cell bovine embryos were randomly allocated to ABZSO or vehicle control groups. After 48 hours, embryos were evaluated for cell number and blastomere morphology. Rat embryos of similar stages, flushed from the uterine tube on gestational day 2-5, were randomly allocated to treatment or control groups. After 24 hours, embryos were evaluated as described previously. 44% of control bovine embryos divided in culture (> or = 16-cell stage). Fifteen percent of the controls had morphologic abnormalities, including disparity in blastomere size and cytoplasmic vacuoles and stippling. Treated (> or = 1 microgram of ABZSO/ml) bovine embryos differed (P < 0.0001) from controls, with 4% development and 93% abnormal morphology. Forty-five percent of control rat embryos divided in culture. Treated (> or = 500 ng of ABZSO/ml) rat embryos differed (P < 0.0003) from controls with regard to ability to divide. There were no consistent morphologic abnormalities in rat embryos. In vitro produced bovine embryos were susceptible to ABZSO at a concentration > or = 1 microgram/ ml, resulting in decreased ability to divide and presence of gross morphologic abnormalities. Rat embryos produced in vivo and exposed in vitro to ABZSO at a concentration > or = 500 ng/ml had decreased ability to divide in culture. Despite severe effects of ABZSO (> or = 1 microgram/ml) on bovine embryo development in vitro, it is beyond the scope of this study to speculate whether a therapeutic dosage of albendazole (10 mg/kg of body weight) would result in necessary concentrations of ABZSO in vivo to disrupt embryogenesis.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.
Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy
2013-12-07
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
Radiation induced abnormalities in early in vitro mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, J.F.
1973-08-01
Female mice were superovulated and mated, and the two-cell embryos were collected and cultured in vitro. The embryos were exposed to x-irradiation (0 to 491 rads) during the two-cell stage before the appearance of the next cleavage plate, placed in new unirradiated culture medium and observed during subsequent development. Morphological abnormalities, which occurred as a result of irradiation, included fragmentation, disintegration, granlation, incomplete cleavage, cleavage cessation, nuclear degeneration and pycnosis and cytoplasmic vacuolization. There was no damage to the zona pellucida. The types of abnormalities indicate an agreement with the results of previous in vivo studies. A distinct correlation existedmore » between morphological abnormalities and embryo death. The greatest number of abnormalities resulted within five hours following irradiation, but increased through 20 hours post-exposure. At doses above 300 rads, the magnitude of damage was greater in the in vitro embryos than that shown in previous in vivo studies. (auth)« less
Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko
2013-01-01
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.
Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Yan; Liu, Chunying; Lu, Wenwen
The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less
Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko
2013-01-01
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216
Effects of high gravity on amphibian development.
Kashiwagi, Akihiko; Hanada, Hideki; Kawakami, Satomi; Kubo, Hideo; Shinkai, Tadashi; Fujii, Hirotada; Kashiwagi, Keiko
2003-10-01
In order to clarify the possible effects of high gravity environments on eggs and developing embryos, Rana rugosa and Xenopus laevis fertilized eggs and early embryos were raised in 2 G, 5 G, 7 G and 10 G up to the hatched tadpole stage. The results showed that: (1) High gravity significantly retarded the development of eggs and embryos beginning treatment before the blastula stage and induced various abnormalities, including two heads and microcephally suggesting that high gravity is apt to disrupt the animal-vegital axis. On the other hand, embryos beginning treatment after the gastrula stage showed a striking increase in the number of normal-appearing feeding tadpoles. (2) Autopsy revealed that brains, notochords and muscles were reduced in development and differentiation for embryos and tadpoles developed in high gravity. (3) It seems likely that the system for hydrogen peroxide detoxification develops abnormally in high gravity-treated embryos and tadpoles, which probably results in oxidative stress, leading to considerable cell damage.
Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart
2014-10-13
Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.
Chen, Tzu-Ling; Yang, Hung-Chi; Hung, Cheng-Yu; Ou, Meng-Hsin; Pan, Yi-Yun; Cheng, Mei-Ling; Stern, Arnold; Lo, Szecheng J; Chiu, Daniel Tsun-Yee
2017-01-12
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A 2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.
NASA Astrophysics Data System (ADS)
Gualandris-Parisot, L.; Husson, D.; Foulquier, F.; Kan, P.; Davet, J.; Aimar, C.; Dournon, C.; Duprat, A. M.
2001-01-01
Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.
The Roles of Glutathione Peroxidases during Embryo Development
Ufer, Christoph; Wang, Chi Chiu
2011-01-01
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4. PMID:21847368
The Roles of Glutathione Peroxidases during Embryo Development.
Ufer, Christoph; Wang, Chi Chiu
2011-01-01
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
The effects of the early uterine environment on the subsequent development of embryo and fetus.
Barnes, F L
2000-01-15
Synchrony between the embryo and the uterine endometrium is essential for the establishment of pregnancy and birth in people and livestock. When asynchronous conditions occur a variety of complication result that include failure of the embryo to implant, early embryonic mortality, retarded development and growth, and accelerated development and growth. These complications all appear to be induced within the first week of embryo development and not withstanding the immediate endpoint of large or small size at birth, may alter the course of development throughout the life of the animal. Progesterone appears to play a causative role in establishing the abnormal growth of the fetus by decelerating or accelerating embryonic development. This may act through increasing the transport of blood born growth factors into the uterine lumen or by stimulating the release of growth factors from the endometrium directly. It can not be ruled out that progesterone mediated abundance of, or absence of, appropriate nutrition may bring about the same lifelong outcome. In vitro culture situations that include serum and/or co-culture can also bring about these abnormalities of growth. It is hypothesized that exposure to growth factors "out of phase" may result in an irreversible induction of abnormal development. The described abnormalities that occur in sheep and cattle have not yet been described for children resulting from IVF.
Laporta, J; Driver, A; Khatib, H
2011-08-01
Early embryo loss is a major contributing factor to cow infertility and that 70 to 80% of this loss occurs between d 8 and 16 postfertilization. However, little is known about the molecular mechanisms and the nature of genes involved in normal and abnormal embryonic development. Moreover, information is limited on the contributions of the genomes of dams and of embryos to the development and survival of preimplantation embryos. We hypothesized that proper gene expression level in the developing embryo is essential for embryo survival and pregnancy success. As such, the characterization of expression profiles in early embryos could lead to a better understanding of the mechanisms involved in normal and abnormal embryo development. To test this hypothesis, 2 d-8 embryo populations (degenerate embryos and blastocysts) that differed in morphology and developmental status were investigated. Expression levels of POU1F1 pathway genes were estimated in 4 sets of biological replicate pools of degenerate embryos and blastocysts. The OPN and STAT5A genes were found to be upregulated in degenerate embryos compared with blastocysts, whereas STAT5B showed similar expression levels in both embryo groups. Analysis of splice variants of OPN and STAT5A revealed expression patterns different from the total expression values of these genes. As such, measuring expression of individual transcripts should be considered in gene expression studies. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Evidence that the notochord may be pivotal in the development of sacral and anorectal malformations.
Qi, Bao Quan; Beasley, Spencer W; Frizelle, Francis A
2003-09-01
The notochord is known to organize normal development of central axial structures, such as the spinal cord, vertebral column, and anorectum, but its role in abnormal development of these organs has not been well documented. The current study has used Ethylenethiourea to induce anorectal malformations in fetal rats, allowing investigation of abnormalities of the notochord and their relationship to the axial structural abnormalities that occur. Timed-mated pregnant rats were fed Ethylenethiourea by gavage on gestational day 10. Their embryos were harvested on gestational days 13 to 16 and sectioned in either the transverse or sagittal plane. Sections were stained with H and E and examined serially. Anorectal malformations were identified in 29 of 34 embryos and neural tube defects in 24, ranging from an accessory neural tube to lumbo-sacral rachischisis. There was no tail or only a rudimentary tail in the majority of embryos. Abnormalities of the notochord in the lumbo-sacral area included ventro-dorsal branching, ventral deviation, and ectopic notochordal tissue. Most abnormal notochord branches and ectopic notochordal tissue were abnormally close to or in contact with the wall of the cloaca or neural tube. Given the known role of the notochord in controlling normal development, this study would suggest that abnormal notochord development may be pivotal in producing neural tube defects and anorectal malformations, possibly by altering sonic hedgehog signalling.
Roberts, Thomas A.; Norris, Francesca C.; Carnaghan, Helen; Savery, Dawn; Wells, Jack A.; Siow, Bernard; Scambler, Peter J.; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F.
2014-01-01
Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community. PMID:25330230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles-Jewell, S.
1994-01-01
Fertilized eggs were exposed to 0.1, 10 and 100 mg/l of benzene, naphthalene and Aroclor 1254 individually and in combination in seawater at temperatures and salinities of 20 and 25. Toxicity was measured as frequencies of: (1) meiotic and mitotic abnormalities in 3-hour embryos; (2) total development to the 48-hour straight-hinge larval stage; (3) mortality and abnormality at the 48-hour larval stage; (4) mean size of larvae at 48 hours; and (5) cytogenetic and cytological abnormalities in 48-hour larvae. Dose-dependent responses were observed. Overall, naphthalene and aroclor at 100 mg/l had few embryos that survived to the stage where theymore » could be examined and scored for cytogenetic and cytological abnormality even by 3-hours post-fertilization. Abnormality of the few embryos available for examination was somewhat higher for aroclor but was significantly higher for naphthalene than for control embryos and those exposed to 0.1 mg/l. At the highest concentration of 100 mg/l, mortality was 100% by the larval stage for naphthalene and aroclor. Though total development and survival of embryos to the larval stage at the 10 mg/l dose were high, many of the larvae were dead or abnormal in the aroclor-exposed cultures. This mean incidence was significantly higher than for all other groups. Larvae developing in these cultures with 10 mg/l were also significantly smaller and cytological condition of the larvae was significantly worse. Higher temperature appeared to increase the frequency of deleterious effects, particularly for naphthalene and aroclor. Results with salinity were more variable. Overall, results showed that petroleum aromatic hydrocarbons and PCBs can have toxic effects on the development and survival of early life stages of oysters, as well as sublethal effects on growth and cytological condition, depending on dose and interactions with other compound and with environmental variables.« less
Association of abnormal morphology and altered gene expression in human preimplantation embryos.
Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques
2005-08-01
We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.
Early embryo development in Fucus distichus is auxin sensitive
NASA Technical Reports Server (NTRS)
Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.
2002-01-01
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
Liu, Yanhe; Chapple, Vincent; Feenan, Katie; Roberts, Peter; Matson, Phillip
2015-06-01
To investigate the clinical significance of intercellular contact point (ICCP) in four-cell stage human embryos and the effectiveness of morphology and abnormal cleavage patterns in identifying embryos with low implantation potential. Retrospective cohort study. Private IVF center. A total of 223 consecutive IVF and intracytoplasmic sperm injection treatment cycles, with all resulting embryos cultured in the Embryoscope, and a subset of 207 cycles analyzed for ICCP number where good-quality four-cell embryos were available on day 2 (n = 373 IVF and n = 392 intracytoplasmic sperm injection embryos). None. Morphologic score on day 3, embryo morphokinetic parameters, incidence of abnormal biological events, and known implantation results. Of 765 good-quality four-cell embryos, 89 (11.6%) failed to achieve six ICCPs; 166 of 765 (21.7%) initially had fewer than six ICCPs but were able to establish six ICCPs before subsequent division. Embryos with fewer than six ICCPs at the end of four-cell stage had a lower implantation rate (5.0% vs. 38.5%), with lower embryology performance in both conventional and morphokinetic assessments, compared with embryos achieving six ICCPs by the end of four-cell stage. Deselecting embryos with poor morphology, direct cleavage, reverse cleavage, and fewer than six ICCPs at the four-cell stage led to a significantly improved implantation rate (33.6% vs. 22.4%). Embryos with fewer than six ICCPs at the end of the four-cell stage show compromised subsequent development and reduced implantation potential. Deselection of embryos with poor morphology and abnormal cleavage revealed via time-lapse imaging could provide the basis of a qualitative algorithm for embryo selection. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Francesco; Bishop, Jack; Lowe, Xiu
2008-10-14
Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less
Mechanisms for the development of esophageal atresia.
Orford, J; Manglick, P; Cass, D T; Tam, P P
2001-07-01
There is no universally accepted theory to explain esophageal embryology and the abnormal development that produces esophageal atresia. The impact of Adriamycin administration on the pathogenesis of esophageal atresia was studied in the rat model of VATER association, from embryonic day (ED) 10 to ED 13. Tissues in the ED10 Adriamycin-exposed embryos displayed less cell proliferation as shown by the reduced population of MIB-5-labelled cells. Cell apoptosis that is characteristic of the normal ED 12 lateral epithelial folds of the foregut (the prospective site of tracheoesophageal septation) was absent in the foregut of the Adriamycin-exposed embryo. Histologic examination of the ED 11-exposed embryo showed the presence of abnormal notochord that was stretched, split, or tethered to the foregut. This contrasts with the normal embryo in which the notochord was localized in close vicinity of the ventral part of the neural tube and separated from the foregut by ample amount of mesenchyme. The abnormal localization of the notochord was accompanied by the lack of down-regulation of the sonic hedgehog (Shh) activity in the prospective site of future tracheoesophageal separation in the exposed ED 12 embryo. The authors proposed that the ectopic location of the notochord leads to the disruption in Shh signalling that may underpin the development of esophageal atresia. Copyright 2001 by W.B. Saunders Company.
Early Embryo Development in Fucus distichus Is Auxin Sensitive1
Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.
2002-01-01
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [3H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development. PMID:12226509
Avian embryonic development in hyperdynamic environments
NASA Technical Reports Server (NTRS)
Abbott, U. K.; Smith, A. H.
1983-01-01
Embryos which developed for 24 hours in the oviduct of hens maintained at 2 G and which were subsequently incubated at Earth gravity had a 14% reduction in hatchability. Increased mortality during the first 4 days, and an increase in embryonic abnormalities were of the types usually found during the first mortality peak (2-3 days). Embryos in eggs that were produced at Earth gravity and continued their development on the centrifuge at fields of 2 G or less did not appear to be greatly affected by the treatment. At 4 G, 91% of the embryos died, mostly on the first and second days of incubation. Abnormalities prominent in the centrifuged eggs include: (a) a failure of the primitive streak to develop; (b) interference with the development of the axial skeleton; (c) multiple hemorrhages, mostly petechial which is consistent with capillary fragility; and (d) retardation of embryo growth, possibly caused by an interference with gaseous diffusion, the result of an acceleration-induced increase in gas density in the centrifuging incubator.
Incidence of abnormal offspring from cloning and other assisted reproductive technologies.
Hill, Jonathan R
2014-02-01
In animals produced by assisted reproductive technologies, two abnormal phenotypes have been characterized. Large offspring syndrome (LOS) occurs in offspring derived from in vitro cultured embryos, and the abnormal clone phenotype includes placental and fetal changes. LOS is readily apparent in ruminants, where a large calf or lamb derived from in vitro embryo production or cloning may weigh up to twice the expected body weight. The incidence of LOS varies widely between species. When similar embryo culture conditions are applied to nonruminant species, LOS either is not as dramatic or may even be unapparent. Coculture with serum and somatic cells was identified in the 1990s as a risk factor for abnormal development of ruminant pregnancies. Animals cloned from somatic cells may display a combination of fetal and placental abnormalities that are manifested at different stages of pregnancy and postnatally. In highly interventional technologies, such as nuclear transfer (cloning), the incidence of abnormal offspring continues to be a limiting factor to broader application of the technique. This review details the breadth of phenotypes found in nonviable pregnancies, together with the phenotypes of animals that survive the transition to extrauterine life. The focus is on animals produced using in vitro embryo culture and nuclear transfer in comparison to naturally occurring phenotypes.
HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingying; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080; Graduate University of Chinese Academy of Sciences, Beijing 100049
2010-07-02
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilizedmore » embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.« less
Chen, Dan; Ren, Yujun; Deng, Yingtian; Zhao, Jie
2010-01-01
Auxin is an important plant growth regulator, and plays a key role in apical–basal axis formation and embryo differentiation, but the mechanism remains unclear. The level of indole-3-acetic acid (IAA) during zygote and embryo development of Nicotiana tabacum L. is investigated here using the techniques of GC-SIM-MS analysis, immunolocalization, and the GUS activity assay of DR5::GUS transgenic plants. The distribution of ABP1 and PM H+-ATPase was also detected by immunolocalization, and this is the first time that integral information has been obtained about their distribution in the zygote and in embryo development. The results showed an increase in IAA content in ovules and the polar distribution of IAA, ABP1, and PM H+-ATPase in the zygote and embryo, specifically in the top and basal parts of the embryo proper (EP) during proembryo development. For information about the regulation mechanism of auxin, an auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid) and exogenous IAA were, respectively, added to the medium for the culture of ovules at the zygote and early proembryo stages. Treatment with a suitable IAA concentration promoted zygote division and embryo differentiation, while TIBA treatment obviously suppressed these processes and caused the formation of abnormal embryos. The distribution patterns of IAA, ABP1, and PM H+-ATPase were also disturbed in the abnormal embryos. These results indicate that the polar distribution and transport of IAA begins at the zygote stage, and affects zygote division and embryo differentiation in tobacco. Moreover, ABP1 and PM H+-ATPase may play roles in zygote and embryo development and may also be involved in IAA signalling transduction. PMID:20348352
NASA Astrophysics Data System (ADS)
Lau, Jeffrey M. C.; Muslin, Anthony J.
The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.
Toxic effects of NH4+-N on embryonic development of Bufo gargarizans and Rana chensinensis.
Deng, Hongzhang; Chai, Lihong; Luo, Pingping; Zhou, Meimei; Nover, Daniel; Zhao, Xiaohong
2017-09-01
Although nitrogen fertilizer is commonly used worldwide, little information is currently available about NH 4 + -N toxicity on amphibians. This study determined the acute and chronic toxic effects of NH 4 + -N on two native Chinese amphibian species (Bufo gargarizans and Rana chensinensis), and compared the negative sensitivity of different embryos to NH 4 + -N. Static renewal aqueous exposures were performed using B. gargarizans and R. chensinensis embryos at Gosner stage 2 over 96 h. In terms of 96 h-LC 50 , B. gargarizans and R. chensinensis embryos had significantly different responses to NH 4 + -N, and the latter was more sensitive to NH 4 + -N than the former. In the chronic toxicity test, exposure to 10 mg L -1 NH 4 + -N or higher significantly decreased the hatching rate of embryos in both species. Significant increases in the abnormality rate of embryos at 50 mg L -1 NH 4 + -N or higher were observed and morphological abnormalities were characterized by axial flexures, yolk sac edema, and hyperplasia in both species. Additionally, the total length of embryos decreased in a dose-dependent manner after exposure to NH 4 + -N. The results indicate that NH 4 + -N exposure can increase abnormality and inhibit the hatching and development of embryos in B. gargarizans and R. chensinensis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Christensen, Karen E; Hou, Wenyang; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga V; Arning, Erland; Bottiglieri, Teodoro; Caudill, Marie A; Jerome-Majewska, Loydie A; Rozen, Rima
2016-11-01
Moderately high folic acid intake in pregnant women has led to concerns about deleterious effects on the mother and fetus. Common polymorphisms in folate genes, such as methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may modulate the effects of elevated folic acid intake. We investigated the effects of moderate folic acid supplementation on reproductive outcomes and assessed the potential interaction of the supplemented diet with MTHFD1-synthetase (Mthfd1S) deficiency in mice, which is a model for the R653Q variant. Female Mthfd1S +/+ and Mthfd1S +/- mice were fed a folic acid-supplemented diet (FASD) (5-fold higher than recommended) or control diets before mating and during pregnancy. Embryos and placentas were assessed for developmental defects at embryonic day 10.5 (E10.5). Maternal folate and choline metabolites and gene expression in folate-related pathways were examined. The combination of FASD and maternal MTHFD1-synthetase deficiency led to a greater incidence of defects in E10.5 embryos (diet × maternal genotype, P = 0.0016; diet × embryonic genotype, P = 0.054). The methylenetetrahydrofolate reductase (MTHFR) protein and methylation potential [ratio of S-adenosylmethionine (major methyl donor):S-adenosylhomocysteine) were reduced in maternal liver. Although 5-methyltetrahydrofolate (methylTHF) was higher in maternal circulation, the methylation potential was lower in embryos. The presence of developmental delays and defects in Mthfd1S +/- embryos was associated with placental defects (P = 0.003). The labyrinth layer failed to form properly in the majority of abnormal placentas, which compromised the integration of the maternal and fetal circulation and presumably the transfer of methylTHF and other nutrients. Moderately higher folate intake and MTHFD1-synthetase deficiency in pregnant mice result in a lower methylation potential in maternal liver and embryos and a greater incidence of defects in embryos. Although maternal circulating methylTHF was higher, it may not have reached the embryos because of abnormal placental development; abnormal placentas were observed predominantly in abnormally developed embryos. These findings have implications for women with high folate intakes, particularly if they are polymorphic for MTHFD1 R653Q. © 2016 American Society for Nutrition.
Tikhenko, Natalia; Rutten, Twan; Senula, Angelika; Rubtsova, Myroslava; Keller, E R Joachim; Börner, Andreas
2017-09-01
The changes in the reproductive barrier between hexaploid wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) can be induced using in situ embryo rescue of abnormal embryos, yielding stable fertile amphidiploid plants. In intergeneric crosses between hexaploid wheat (Triticum aestivum L.) and rye (Secale cereale L.), postzygotic barriers may occur at different stages of hybrid development. One such mechanism is embryo lethality, which is genetically determined by the interaction and expression of two incompatible genes in wheat (Eml-A1) and rye (Eml-R1). Using in vitro culture methods as stressors, we overcame this hybrid lethality. Normal and abnormal embryos were observed to build embryogenic calli and produce regenerated plantlets in a similar manner. The high regenerative capacity of the abnormal embryos led us to conclude that the reproductive barrier in these intergeneric hybrids may have an epigenetic origin that can be easily overcome by culturing immature embryos via callus induction. After colchicine treatment during callus culture, amphidiploid plants were obtained. However, most of these plants did not produce seeds, due mainly to sterility of the pollen but also of the embryo sacs. These findings demonstrate that hybrid sterility affects both male and female gametophytes in plants obtained from abnormal embryos. The key roles of double fertilization and stress factors in the implementation of the apical meristem formation program in embryos from incompatible intergeneric crosses between hexaploid wheat and rye during in vitro culture are discussed. We also propose a hypothetical model for a wheat-rye lethality system involving differential expression of incompatible wheat Eml-A1 and rye Eml-R1b alleles in an identical genetic background.
Effects of fluoride on development and growth of Rana chensinensis embryos and larvae.
Chai, Lihong; Dong, Suiming; Zhao, Hongfeng; Deng, Hongzhang; Wang, Hongyuan
2016-04-01
The present study examined the adverse effects of fluoride exposure on embryos and larvae of Rana chensinensis. Survival, morphological abnormalities, growth and development, time to metamorphosis and size at metamorphic climax of R. chensinensis were examined. Our results showed that embryos malformation occurred in all fluoride treatments. Morphological abnormalities of embryos are characterized by axial flexures, the extrusion of fin axis, edema, and ruffled dorsal and ventral fin. Additionally, 4.1mg F(-)/L and above could significantly inhibit embryos growth and development. On day 15, total length and weight of tadpole were significantly lower in 19.6 and 42.4 mg F(-)/L treatments compared to control. However, significant reductions in total length and weight were observed only at 42.4 mg F(-)/L on day 30. Moreover, significant metamorphic delay and decrease in the size at metamorphic climax were found in larvae exposed to 42.4 mg F(-)/L. Taken together, embryos of R. chensinensis are more vulnerable to fluoride exposure than their tadpoles. Our results suggested that the presence of high concentrations fluoride might increase mortality risk and a reduction in juvenile recruitment in the field by increasing embryos malformation, delaying metamorphosis and decreasing size at metamorphosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.
2001-01-01
Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.
Chan, W Y; Ng, T B; Lam, Joyce S Y; Wong, Jack H; Chu, K T; Ngai, P H K; Lam, S K; Wang, H X
2010-01-01
Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 microg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 microg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structures, indicating that cell death may be one of the underlying causes of teratogenicity of the mushroom RIP. This constitutes the first report on the teratogenicity of a mushroom RIP.
Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.
Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph
2015-01-01
Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.
The effect of adriamycin exposure on the notochord of mouse embryos.
Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula
2012-04-01
The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Inoue, Kimiko; Ogura, Atsuo
2013-01-01
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866
Effect of carbaryl on survival and development in Bombina orientalis (Boulenger) embryos.
Kang, Han Seung; Park, Chan Jin; Gye, Myung Chan
2010-05-01
Bombina orientalis is one of the most common amphibians in the world and comprise a large proportion of their total number in Korea. B. orientalis, spawns in the farming regions at Spring when the massive application of agricultural chemicals occurs. Carbaryl, carbamate chemical is a slightly to highly toxic insecticide inhibiting acetylcholinesterase. The embryotoxicity and teratogenic effects of carbaryl on B. orientalis embryos were investigated at 5, 10, 50 and 100 muM. The survival rates of embryos at 312 h post fertilization were decreased with concentration dependent manner. Exposure to carbaryl produced 4 types of severe external abnormalities such as bent trunk, thick-set body, bent tail and ventral blister. At 5 muM carbaryl, a dose of no observed effect on embryonic survival, developmental abnormalities were significantly increased. The developmental abnormalities showed in order of frequency with bent trunk, thick-set body, bent tail and ventral blister. This result suggests that carbaryl is detrimental for embryonic survival and teratogenic by causing the axial skeletal defects in B. orientalis embryos.
Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction.
Simon, Luke; Emery, Benjamin R; Carrell, Douglas T
2017-10-01
Sperm nuclear and chromatin abnormalities are common among infertile men and are known to influence natural reproduction. These abnormalities are also considered detrimental to normal fertilization, embryo development, and successful implantation and pregnancies following assisted reproductive treatment (ART). Abnormalities in the sperm nucleus can be broadly classified into sperm chromosomal abnormalities (aneuploidies) and sperm DNA abnormalities such as abnormal packing, DNA integrity, or DNA fragmentation. For the past 30 years, numerous tests have been developed to quantify these abnormalities in sperm. In this chapter, we review the causes of sperm DNA and chromosomal abnormalities, describe the commonly used tests to evaluate these abnormalities, and finally review the impact of these abnormalities on male fertility and ART outcomes. We also performed a comprehensive meta-analysis and systematic review from the existing literature to summarize the effect of sperm DNA fragmentation on ART outcomes such as fertilization rate, embryo quality, and clinical pregnancies. A review of the literature presented in this chapter suggests that sperm nuclear and chromatin abnormalities are associated with male infertility, and they reduce the probability of a successful pregnancy following ART. Copyright © 2017. Published by Elsevier Ltd.
Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.
Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki
2013-11-01
Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.
Chromosomal Aneuploidies and Early Embryonic Developmental Arrest
Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph
2015-01-01
Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858
Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish
Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui
2013-01-01
Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556
A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.
Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen
2010-12-01
The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.
Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan
2008-03-01
The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.
The early-stage diagnosis of albinic embryos by applying optical coherence tomography
NASA Astrophysics Data System (ADS)
Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao
2013-09-01
Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.
Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio
2012-01-01
Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young normo-ovulatory women does not significantly increase the embryo aneuploidies rate in in vitro fertilization-derived human embryos as compared with an unstimulated cycle. Whether these results can be extrapolated to infertile patients is still unknown. PMID:22865900
Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L
2003-10-15
The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.
Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav
2018-05-18
Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.
Cai, Guiquan; Zhu, Junfeng; Shen, Chao; Cui, Yimin; Du, Jiulin; Chen, Xiaodong
2012-12-01
Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.
Excess caffeine exposure impairs eye development during chick embryogenesis
Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong
2014-01-01
Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305
The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities.
Kimm-Brinson, K L; Ramsdell, J S
2001-01-01
Brevetoxins are lipophilic polyether toxins produced by the red tide dinoflagellate Gymnodinium breve, and their neurotoxic effects on adult animals have been documented. In this study, we characterized adverse developmental effects of brevetoxin-1 (PbTx-1) using an exposure paradigm that parallels the maternal oocyte transfer of toxin. Medaka fish (Oryzias latipes) embryos were exposed to PbTx-1 via microinjection of toxin reconstituted in a triolein oil droplet. Embryos microinjected with doses of 0.1-8.0 ng/egg (ppm) of brevetoxin-1 exhibited pronounced muscular activity (hyperkinesis) after embryonic day 4. Upon hatching, morphologic abnormalities were commonly found in embryos at the following lowest adverse effect levels: 1.0-3.0 ppm, lateral curvature of the spinal column; 3.1-3.4 ppm, herniation of brain meninges through defects in the skull; and 3.4-4.0 ppm, malpositioned eye. Hatching abnormalities were also commonly observed at brevetoxin doses of 2.0 ppm and higher with head-first, as opposed to the normal tail-first, hatching, and doses > 4.1 ng/egg produced embryos that developed but failed to hatch. Given the similarity of developmental processes found between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur among different phylogenetic classes. The observation of developmental abnormalities after PbTx-1 exposure identifies a new spectrum of adverse effects that may be expected to occur following exposure to G. breve red tide events. PMID:11335186
Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)
NASA Astrophysics Data System (ADS)
Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping
2014-05-01
Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.
NASA Astrophysics Data System (ADS)
Gu, Shi; Peterson, Lindsy M.; Ma, Pei; Karunamuni, Ganga; Watanabe, Michiko; Jenkins, Michael W.; Rollins, Andrew M.
2016-03-01
Fetal alcohol syndrome commonly results in neurological and craniofacial defects, additionally, as high as 54% of live-born children with this syndrome also possess cardiac abnormalities. We have previously shown that CNCC-ablated embryos exhibit similar structural and functional phenotypes as ethanol-exposed embryos. Here, we present progress on two fronts toward understanding the association between CNCC dysfunction and FAS-related CHDs. We have developed a technique for measuring the thickness of the cardiac cushions throughout the heart. These values were then mapped onto a surface mesh of the myocardial wall for 3-D visualization. The cushions were observed to be significantly reduced in the outflow tract of CNCC-ablated embryos. We also observed a correlation between abnormal pulsed Doppler waveforms and increased separation of the atrioventricular inferior and superior cushions. This correlation between function and structure will enable rapid phenotyping of perturbed embryos. Finally, we present our preliminary results using methyl donors to rescue ethanol-exposed embryonic CHDs. Betaine was administered along with the ethanol injection to embryos at 21 hours of development. The embryos were then analyzed at day 8 for survival and heart morphology. The administration of betaine resulted in a significant increase in survival and normalization of atrioventricular valve leaflet volume and interventricular septum thickness.
H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.
Schatzberg, Daphne; Lawton, Matthew; Hadyniak, Sarah E; Ross, Erik J; Carney, Tamara; Beane, Wendy S; Levin, Michael; Bradham, Cynthia A
2015-10-15
The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles. Copyright © 2015 Elsevier Inc. All rights reserved.
Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.
2012-01-01
Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.
Teratological Effects of a Panel of Sixty Water-Soluble Toxicants on Zebrafish Development
Ali, Shaukat; Aalders, Jeffrey
2014-01-01
Abstract The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay. PMID:24650241
Knockdown of prothrombin in zebrafish.
Day, Kenneth; Krishnegowda, Naveen; Jagadeeswaran, Pudur
2004-01-01
Thrombin is a serine protease generated from its zymogen, prothrombin, and plays a central role in the coagulation cascade. It is also important for mammalian development. The zebrafish has now been established as an excellent genetic model for studies on mammalian hemostasis and development. In this report, we used prothrombin-specific antisense morpholinos to knock down the levels of prothrombin to characterize the effects of prothrombin deficiency in the zebrafish embryo. Prothrombin morpholino-injected zebrafish embryos yielded an early phenotype exhibiting severe abnormalities that later showed occasional bleeding. In a second late phenotype, the embryos had no observable morphological abnormalities in early stages, but showed occasional bleeding at later stages. These phenotypes resembled characteristics shown by prothrombin knockout mice. Laser-induced vascular injury on some of the normal appearing phenotypic larvae showed a prolonged time to occlusion, and recombinant zebrafish prothrombin injected into these larvae restored a normal time to occlusion thus showing the specificity of the morpholino effect. The system developed here should be useful for investigation of the role of thrombin in vertebrate development.
Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong
2017-06-01
XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.
Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena
2018-04-21
Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.
Fisher, M C; Zeisel, S H; Mar, M H; Sadler, T W
2001-08-01
Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face. Copyright 2001 Wiley-Liss, Inc.
Brady, Paula C; Farland, Leslie V; Missmer, Stacey A; Racowsky, Catherine; Fox, Janis H
2018-03-01
The purpose of this study is to investigate whether abnormal hCG trends occur at a higher incidence among women conceiving singleton pregnancies following transfer of multiple (two or more) embryos (MET), as compared to those having a single embryo transfer (SET). Retrospective cohort study was performed of women who conceived singleton pregnancies following fresh or frozen autologous IVF/ICSI cycles with day 3 or day 5 embryo transfers between 2007 and 2014 at a single academic medical center. Cycles resulting in one gestational sac on ultrasound followed by singleton live birth beyond 24 weeks of gestation were included. Logistic regression models adjusted a priori for patient age at oocyte retrieval and day of embryo transfer were used to estimate the Odds Ratio of having an abnormal hCG rise (defined as a rise or < 66% in 2 days) following SET as compared to MET. Among patients receiving two or more embryos, 6.1% (n = 84) had abnormal hCG rises between the first and second measurements, compared to 2.7% (n = 17) of patients undergoing SET (OR 2.16, 95% CI 1.26-3.71). Among patients with initially abnormal hCG rises who had a third level checked (89%), three-quarters had normal hCG rises between the second and third measurements. Patients who deliver singletons following MET were more likely to have suboptimal initial hCG rises, potentially due to transient implantation of other non-viable embryo(s). While useful for counseling, these findings should not change standard management of abnormal hCG rises following IVF. The third hCG measurements may clarify pregnancy prognosis.
Lu, Yonggang; Lin, Minjie; Aitken, Robert John
2017-10-01
In this study, we have investigated the impact of dibutyl phthalate (DBP) on early embryogenesis in a sessile marine invertebrate, Galeolaria caespitosa. DBP was found to induce sperm dysfunction as well as impaired and defective embryogenesis characterised by a particular pattern of abnormality. Thus, after the first cleavage, one blastomere in these abnormal embryos was able to carry out further mitoses, while the other arrested. Analysis of microtubules, chromosomes and actin filaments demonstrated that the mitotic spindles in the abnormal embryos were irregularly bent, shortened and unable to anchor to the cortex, resulting in the defective segregation of chromosomes. Within the non-dividing blastomeres, karyokinesis was found to continue at a slow pace as indicated by the presence of multiple sets of abnormal mitotic spindles. However, cytokinesis had been disrupted in these arrested cells due to a failure to assemble the contractile actin ring, as a result of which one pole of the embryos remained as one large, undivided cell. DBP was found to suppress the activity of superoxide dismutase in spermatozoa and, in association with this change, DBP-treated cells experienced oxidative stress as indicated by the presence of lipid aldehydes, such as 4-hydroxynonenal (4-HNE) in the sperm acrosome and neck. Adduction of lipid aldehydes at the level of the acrosome would be expected to impede the acrosome reaction and account for the significant decrease in fertilisation rates. 4-HNE generated as a consequence of lipid peroxidation in the sperm neck resulted in alkylation of the sperm centrioles. Such paternally damaged centrioles were inherited by the embryos and disrupted cytoskeletal protein organisation during early cleavage, generating the observed abnormalities in embryonic development. This research emphasises the vulnerability of spermatozoa to oxidative damage and highlights novel potential mechanisms for reproductive toxicity involving the alkylation of subcellular structures in spermatozoa by lipid aldehydes. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Weightlessness on Vestibular Development of Quail
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, Laura L.
1999-01-01
The data confirm previous findings that quail embryos can, under proper circumstances, develop until hatching in microgravity. There were no gross abnormalities in the few ears of the late embryos (we received 3 ears at E14.5 and 4 ears at E16.5). Due to inadequate numbers of samples returned and their fully insufficient fixation, no conclusions could be reached that warrant any publications.
Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi
2001-01-01
When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-07-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-01-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037
[Culture conditions for gametes and embryos: Which culture medium? Which impact on newborn?
Koscinski, I; Merten, M; Kazdar, N; Guéant, J-L
2018-05-01
Many studies have examined the impact of cell/embryo culture media on the development of human embryo during IVF process, but few studies have followed up and compared the effects of these culture media on the developmental outcome of children conceived by IVF. As recurrent experimental evidence from animal studies suggests potential long-term effects of embryo culture media on the health outcome of IVF-conceived children, more studies are needed to clarify the role of the culture media and mechanisms underlying such effects. In human, however, the effects of culture media are difficult to pinpoint due to complications stem from both the influence of maternal nutrition during the gestational period and the parental genetic. Based on a simple review of the literature integrating animal experimentations and human clinic studies, we suggest that the composition of culture medium should be considered beyond the character of unique or sequential medium, corresponding to "let embryo choose" or "back to nature" respectively. Instead, we suggest that the main components of embryo culture media should be considered from the point of view of metabolic consequences and potential epigenetic effects. Given that energetic metabolites can regulate epigenetic machinery, we hypothesize that metabolic abnormalities linked to morphological abnormalities could reveal epigenetic defects in embryos. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Intrauterine air impairs embryonic postimplantation development in mice.
Liu, Ruonan; Li, Yimeng; Miao, Yanping; Wei, Yanhui; Guan, Mo; Zhou, Rongyan; Li, Xiangyun
2017-12-01
Although most embryologists load air bubbles into the catheter along with embryos during embryo transfer, the effects of these air bubbles on embryo transfer success rate are not clear. Air bubbles were nonsurgically injected into unilateral uterine horns of mice to demonstrate the negative effects of intrauterine air bubbles on embryonic development. Our data showed that when air bubbles are nonsurgically injected into unilateral uterine horns of pregnant 4days mice the litter size is significantly decreased. Four days after the introduction of air, abnormal decidua and dead conceptuses were detected in the uterine horns receiving the air bubbles. In addition, intrauterine air also significantly impaired murine embryo transfer success rates, and induced an increase in endometrial capillary permeability and decidualization in mice on day 4 of pseudopregnancy. These results strongly indicated that the air bubbles loaded into embryo transfer catheters to bracket the embryo-containing medium may have negative effect on embryonic implantation and development. Intrauterine air impaired murine embryonic postimplantation development, and this provided some clues for improving embryo transfer techniques in human. Copyright © 2017 Elsevier B.V. All rights reserved.
Embryo with XYY syndrome presenting with clubfoot: a case report.
Athanatos, Dimitrios; Tsakalidis, Christos; Tampakoudis, George P; Papastergiou, Maria N; Tzevelekis, Fillipos; Pados, George; Assimakopoulos, Efstratios A
2009-09-01
Talipes equinovarus (clubfoot) is a skeletal anomaly of the embryo's legs, with a frequency of 1-3:1000 living born babies. It may occur as an independent anomaly, or as part of a syndrome with concomitant chromosomal abnormalities.XYY syndrome is a quite rare sex chromosomal abnormality with 47, XYY karyotype. Prenatal diagnosis is usually accidental because the syndrome is not associated with increased prevalence of sonographically detectable defects. The possibility of co-existence of skeletal anomalies in embryos with 47, XYY karyotype is scant, with only a few cases reported in the literature.An amniocentesis was performed in an embryo at the 21(st) week of gestation because clubfoot was detected in the 2(nd) trimester scan, and the embryo was found to have abnormal karyotype of 47, XYY. Current opinions and management dilemmas are discussed.
Killing of preimplantation mouse embryos by main ingredients of cleansers AS and LAS.
Nomura, T; Hata, S; Shibata, K; Kusafuka, T
1987-01-01
When main ingredients of cleansers, alcohol sulfate (AS) and linear alkylbenzene sulfonate (LAS), were applied to the dorsal skin of pregnant JCL:ICR mice during preimplantation period (days 0-2), significant numbers of embryos collected from the oviducts and uteri on day 3 showed severe deformity or remained at the morula stage. Most of abnormal embryos were fragmented or remained at the 1-8 cell stages, and they were either dead or dying. Even when these abnormal embryos were cultivated in the detergent-free medium, they were not recovered, while most growth-retarded embryos (morula) could grow and hatch with one or two days lag by the further in vitro cultivation. Similar results were observed with commercially obtained kitchen detergent and hair shampoo, although such embryocidal effects were not detected with natural soap and distilled water. Fertilized eggs may be specifically sensitive to synthetic detergents. Very low doses of X-rays also induced significant yields of abnormal embryos. Major difference between X-rays and detergents was that X-ray-induced abnormality appeared at the morula or blastocyst stage, while detergent-induced one did at the earlier stages.
Yasuda, Takako; Oda, Shoji; Yasuda, Hiroshi; Hibi, Yusuke; Anzai, Kazunori; Mitani, Hiroshi
2011-01-01
Purpose: Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). Materials and methods: Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histo-logically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. Results: The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. Conclusion: Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment. PMID:21770703
Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M
2018-02-14
Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies. Copyright © 2018 the authors 0270-6474/18/381850-16$15.00/0.
Zhang, Fengjiao; Dong, Wen; Huang, Lulu; Song, Aiping; Wang, Haibin; Fang, Weimin; Chen, Fadi; Teng, Nianjun
2015-01-01
MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3'-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, J.R.
1995-12-31
Etheostoma caeruleum and E. spectabile are sympatric teleostean species of the Family Percidae. The ova diameters and incubation times are different: E. caeruleum (1.9mm and 12-d), E. spectabile (1.2mm and 8-d). For both species, cleavage stage (4--8 cell), mid-blastula, mid-neurula, and early-eye stage embryos were exposed to + {minus}1 a 24-h static-renewal test of 0, 10, 20, 40, 60, 80, 100 {micro}gHg {sup ++}L{sup {minus}1} to assess the effects of stage-specific initial mercury exposure on the embryo-larval responses. In addition, cleavage stage embryos were exposed to a 1-d, 2-d, and 4-d static-renewal toxicity test to determine the influence that exposuremore » duration to mercury has on embryolarval responses. Five replicates of 10 embryos each were incubated at 18 C for each concentration and exposure variation. Embryos were allowed to develop until all had hatched or died. Four embryonic responses were assessed for each species and exposure protocol: 96-h LC50, AB50, SH50 and VH50. The typical nonstressor specific terata were noted for each species with an increase in percent of embryos expressing abnormal developmental patterns with increase mercury concentrations and severity of exposure. These included dwarfism, cephalic complications, ophthalmic abnormalities, cardiovascular abnormalities, various edema, and haemorrhagia. Hatching success and viability of hatch were likewise reduced with increasing severity of exposure and mercury concentration. Previously undetected terata that were observed in the first hatch included scoliosis, lordosis, kyphosis, synarthrodic jaws, and grossly enlarged yolk sacs.« less
Vega, Mario; Breborowicz, Andrzej; Moshier, Erin L; McGovern, Peter G; Keltz, Martin D
2014-08-01
To test the hypothesis that the blastulation rate is higher in euploid embryos than in aneuploid embryos as assessed by cleavage-stage biopsy with array-comprehensive genomic hybridization (aCGH). Retrospective cohort study. University-affiliated institution. Forty-one patients with 48 in vitro fertilization (IVF) cycles and 385 embryos that underwent cleavage-stage preimplantation genetic screening (PGS) with aCGH at the Continuum Reproductive Center between January 2010 and September 2013. None. Probability of blastocyst and/or fully expanded or hatching blastocyst (FEHB) progression depending on number of chromosomal abnormalities. Euploid embryos are twice as likely to progress to blastocyst and three times as likely to progress to FEHB than aneuploid embryos: 76% versus 37% and 56% versus 18%, respectively. For every additional chromosomal abnormality, the likelihood of progressing to the blastocyst stage decreases by 22% and the likelihood of progressing to FEHB decreases by 33%. Euploid embryos are far more likely than aneuploid embryos to progress to the blastocyst and FEHB stages. There is a linear decrease in probability of blastulation with the increasing number of chromosomal abnormalities. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F
2012-09-01
The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb-/- intestines developed atresias of the colon in either the presence or absence of Shh protein. Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb-/- genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. Copyright © 2012 Elsevier Inc. All rights reserved.
Reader, Amy L.; Botham, Robert A.; Franco, Marta; Zaremba, Krzysztof M.; Nichol, Peter F.
2012-01-01
Purpose The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacological animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh) which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and utilized the Fibroblast Growth Factor Receptor 2IIIb homozygous mutant (Fgfr2IIIb−/−) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Methods Wild-type and Fgfr2IIIb−/− mouse embryos were harvested at E10.5, E11.5, E12.5 and E13.5. Whole mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for H&E staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb−/− embryos at E10.5, then cultured for 48 hours in matrigel with FGF10 in the presence or absence of exogenous SHH protein. Explants were harvested, fixed in formalin and photographed. Results Fgfr2IIIb−/− mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb−/− intestines developed atresias of the colon in either the presence, or absence, of Shh protein. Conclusions Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb−/− genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. PMID:22572615
A morphologic study of unfertilized oocytes and abnormal embryos in human in vitro fertilization.
Bałakier, H; Casper, R F
1991-04-01
The morphology of human, unfertilized oocytes and abnormal embryos cultured in vitro for 48-72 hr was examined in an attempt to learn more about oocyte maturation and reproductive failure in in vitro fertilization (IVF). About 21% of the unfertilized oocytes were totally degenerated. The majority (56%) of the remaining oocytes was arrested at the metaphase II stage. They contained coherent chromosomal plates and had extruded the first polar body with nuclear material. About 13% of oocytes underwent spontaneous activation. In most of these cases the second polar body was retained and many subnuclei or one big nucleus was formed. Five percent of metaphase II oocytes penetrated by sperm were not activated, likely as a result of oocyte immaturity. The developmental ability of abnormal embryos was poor. Several one-cell-stage zygotes were arrested at the pronuclear stage or at mitosis of the first mitotic division. Polyspermic embryos, especially those which contained four or more pronuclei, did not divide or formed uneven, multinucleated blastomeres. However, some triploid and tetraploid embryos often appeared normal morphologically despite their lethal chromosomal abnormalities.
Toxicity of silver nanoparticles in zebrafish models
NASA Astrophysics Data System (ADS)
Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2008-06-01
This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.
Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development
McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.
2015-01-01
Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility. PMID:26491874
Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan
2017-01-01
The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC 50 and EC 50 for malformation of nickel after 168h of treatment were 33.8μM and 5.4μM, respectively. At a lethal concentration (100μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1-10μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26-31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by disrupting calcium-dependent myogenesis in developing B. orientalis embryos. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schatten, H.; Chakrabarti, A.; Taylor, M.; Sommer, L.; Levine, H.; Anderson, K.; Runco, M.; Kemp, R.
1999-01-01
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions. Copyright 1999 Academic Press.
Reversible neuronal and muscular toxicity of caffeine in developing vertebrates.
Rodriguez, Rufino S; Haugen, Rebecca; Rueber, Alexandra; Huang, Cheng-Chen
2014-06-01
This study utilizes zebrafish embryos to understand the cellular and molecular mechanisms of caffeine toxicity in developing vertebrate embryos. By using a high concentration of caffeine, we observed almost all the phenotypes that have been described in humans and/or in other animal models, including neural tube closure defect, jittery, touch insensitivity, and growth retardation as well as a drastic coiled body phenotype. Zebrafish embryos exposed to 5mM caffeine exhibited high frequent movement, 10 moves/min comparing with around 3 moves/min in control embryos, within half an hour post exposure (HPE). They later showed twitching, uncoordinated movement, and eventually severe body curvature by 6HPE. Exposure at later stages resulted in the same phenotypes but more posteriorly. Surprisingly, when caffeine was removed before 6HPE, the embryos were capable of recovering but still exhibited mild curvature and shorter bodies. Longer exposure caused irreversible body curvature and lethality. These results suggest that caffeine likely targets the neuro-muscular physiology in developing embryos. Immunohistochemistry revealed that the motorneurons in treated embryos developed shorter axons, abnormal branching, and excessive synaptic vesicles. Developing skeletal muscles also appeared smaller and lacked the well-defined boundaries seen in control embryos. Finally, caffeine increases the expression of genes involved in synaptic vesicle migration. In summary, our results provide molecular understanding of caffeine toxicity on developing vertebrate embryos. Published by Elsevier Inc.
Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida
2007-05-01
We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.
Selenium teratogenesis in natural populations of aquatic birds in central California
Hoffman, D.J.; Ohlendorf, H.M.; Aldrich, T.W.
1988-01-01
The frequency and types of malformations are described that were encountered during the spring of 1983 in a natural population of aquatic birds exposed to agricultural drainwater ponds and food items containing high concentrations of selenium in central California. A total of 347 nests of aquatic birds containing 1,681 eggs was selected for study at Kesterson Reservoir located in the Kesterson National Wildlife Refuge (NWR), Merced County, California. Embryos collected during incubation or from eggs that failed to hatch were examined to determine the age at death and presence of malformations. Embryonic death was generally high; approximately 17?60% of the nests of different species contained at least one dead embryo. The incidence of malformed embryos was also high; approximately 22?65% of the nests where at least two embryos were examined contained abnormal embryos. American coots (Fulica americana) and black-necked stilts (Himantopus mexicanus) experienced the highest incidence of malformed embryos. For all species, the average percentage of eggs containing dead or live abnormal embryos was 16.1 whereas the average percentage containing live abnormal embryos was 10.7. Multiple gross malformations of the eyes, brain, and feet were often present. Brain defects included hydrocephaly and exencephaly. Eye defects included both unilateral and bilateral anophthalmia and microphthalmia. Eye and foot defects with ectrodactyly and swollen joints were the most common in coots. Beak defects also occurred frequently and most often included incomplete development of the lower beak of ducks (Anas spp.) and stilts. Wing and leg defects were most prevalent in stilts and ducks, with ectromelia and amelia most prevalent in stilts. Other malformations occurring at lower frequencies included enlarged hearts with thin ventricular walls, liver hypopiasia, and gastroschisis. Based upon simultaneous examination of a control population of aquatic birds of the same species and published studies, the incidences of embryonic mortality and deformities were 9?30 times greater than expected. The role of the form of selenium responsible for teratogenesis in laboratory studies is discussed.
Lavolpe, Mariano; Greco, Laura López; Kesselman, Daniela; Rodríguez, Enrique
2004-04-01
Ovigerous females of the estuarine crab Chasmagnathus granulatus were exposed to copper (0.01 and 1 mg/L), zinc (0.05, 1, and 10 mg/L), or lead (0.01 and 1 mg/L) during early, late, or whole embryonic development. None of the assayed heavy metals produced a significant mortality of females, neither a decrease in the number of hatched larvae nor a decrease in the egg incubation time, but several morphological abnormalities were detected in hatched larvae. The abnormalities were classified in three categories: eye, body pigmentary, and body morphological abnormalities. Those larvae with eye and body pigmentary abnormalities, particularly those involving retinal pigments and chromatophores, showed the highest incidence by exposure to the assayed metals. In addition, embryos were more susceptible to copper and zinc during the late period of development, whereas the effect of lead was greater during the early period of embryogenesis. Some teratogenic effects observed in C. granulatus embryos exposed to heavy metals, particularly the hypertrophy and hypopigmentation of eyes observed in the laboratory at a lead concentration as low as that reported for the natural environment, could be considered as sensitive biomarkers for this kind of pollutant.
Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav
2017-07-01
Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.
5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities.
Shi, Yu; Li, Jiejing; Chen, Chunjiang; Gong, Manzi; Chen, Yuan; Liu, Youxue; Chen, Jie; Li, Tingyu; Song, Weihong
2014-09-16
Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.
Lamare, Miles D; Liddy, Michelle; Uthicke, Sven
2016-11-30
Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO 2 and ambient pCO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89-7.92), larvae developing in elevated pCO 2 vent conditions (pH (T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. © 2016 The Author(s).
Liddy, Michelle; Uthicke, Sven
2016-01-01
Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO2 and ambient pCO2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH(T) = 7.89–7.92), larvae developing in elevated pCO2 vent conditions (pH(T) = 7.50–7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. PMID:27903867
Embryo with XYY syndrome presenting with clubfoot: a case report
Tsakalidis, Christos; Tampakoudis, George P; Papastergiou, Maria N; Tzevelekis, Fillipos; Pados, George; Assimakopoulos, Efstratios A
2009-01-01
Talipes equinovarus (clubfoot) is a skeletal anomaly of the embryo’s legs, with a frequency of 1-3:1000 living born babies. It may occur as an independent anomaly, or as part of a syndrome with concomitant chromosomal abnormalities. XYY syndrome is a quite rare sex chromosomal abnormality with 47, XYY karyotype. Prenatal diagnosis is usually accidental because the syndrome is not associated with increased prevalence of sonographically detectable defects. The possibility of co-existence of skeletal anomalies in embryos with 47, XYY karyotype is scant, with only a few cases reported in the literature. An amniocentesis was performed in an embryo at the 21st week of gestation because clubfoot was detected in the 2nd trimester scan, and the embryo was found to have abnormal karyotype of 47, XYY. Current opinions and management dilemmas are discussed. PMID:19918427
Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.
Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan
Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula
2011-01-01
Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.
Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula
2011-01-01
Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities. PMID:22132119
Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish - Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause a number of developmental abnormalities in developing fish embryos, which has been primarily demonstrated through water-accommodated fractions. PAH-bound sediment is a more ecologically relevant route of exposure to many developing fi...
Kerjean, A; Poirot, C; Epelboin, S; Jouannet, P
1999-06-01
Genital tract abnormalities and adverse pregnancy outcome are well known in women exposed in utero to diethylstilboestrol (DES). Data about adverse reproductive performance in women exposed to DES have been published, including controversial reports of menstrual dysfunction, poor responses after ovarian stimulation, oocyte maturation and fertilization abnormalities. We compared oocyte quality, in-vitro fertilization results and embryo quality for women exposed in utero to DES with a control group. Between 1989 and 1996, 56 DES-exposed women who had 125 in-vitro fertilization (IVF) attempts were retrospectively compared to a control group of 45 women with tubal disease, who underwent 73 IVF attempts. Couples suffering from male infertility were excluded. The parameters compared were oocyte quality (maturation abnormalities, immature oocyte, mature oocyte), fertilization and cleavage rate (per treated and metaphase II oocytes), and embryo quality (number and grade). We found no significant difference in oocyte maturational status, fertilization rates, cleavage rates, embryo quality and development between DES-exposed subjects and control subjects. These results suggest that in-utero exposure to DES has no significant influence on oocyte quality and fertilization ability as judged during IVF attempts.
Martin, Jennifer; Chong, Trisha; Ferree, Patrick M.
2013-01-01
Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing. PMID:24236124
Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie
2014-01-01
Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040
NASA Astrophysics Data System (ADS)
Janssen, Ralf
2013-01-01
Abnormally developing embryos (ADEs) of the common pill millipede Glomeris marginata have been investigated by means of nuclear staining and mRNA in situ hybridization. It showed that all ADEs represent cases of Duplicitas posterior, which means that the posterior body pole is duplicated. The severity of the duplication ranges from duplicated posterior trunk segments in one specimen to an almost completely duplicated specimen that only shares the very anterior head region. Remarkably, none of the encountered ADEs represents a case of Duplicitas anterior (duplicated anterior pole) or a case of Duplicitas cruciata (cruciate duplication with two anterior and two posterior poles). This observation is discussed in the light of earlier reports on G. marginata ADEs that claim to have found these abnormalities. The lack of any other axial abnormality aside from D. posterior implies that early axis determination in G. marginata, and possibly myriapods in general, underlies the developmental mechanisms that prevent the formation of any other type of axial duplication. It is proposed that the formation of D. posterior-type embryos could be caused by the formation of two instead of only one posterior cumulus early during development.
Low nitric oxide: a key factor underlying copper-deficiency teratogenicity.
Yang, Soo Jin; Keen, Carl L; Lanoue, Louise; Rucker, Robert B; Uriu-Adams, Janet Y
2007-12-15
Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.
Low nitric oxide: a key factor underlying copper deficiency teratogenicity
Yang, Soo Jin; Keen, Carl L.; Lanoue, Louise; Rucker, Robert B.; Uriu-Adams, Janet Y.
2008-01-01
Copper (Cu) deficiency-induced teratogenicity is characterized by major cardiac, brain and vascular anomalies, however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity, and increases superoxide anions which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu deficient (Cu−) dams were cultured for 48 h in Cu+ or Cu− medium, respectively. We report that NO levels were low in conditioned media from Cu−/Cu− embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions, and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3′,5′-monophosphate (cGMP) concentrations in the Cu−/Cu− group. The altered NO levels in Cu deficient embryos are functionally significant, as the administration of the NO donor, DETA/NONOate, increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling which contributes to abnormal embryo and yolk sac development. PMID:18037129
Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure.
Félix, Luís M; Serafim, Cindy; Martins, Maria J; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M
2017-04-15
Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24h-LC 50 was calculated from percent survival using probit analysis. Based on the 24h-LC 50 (94.4mgL -1 ), embryos (2hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24h to ketamine concentrations of 50, 70 or 90mgL -1 . Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056±0.020pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90mgL -1 . Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Burić, Petra; Jakšić, Željko; Štajner, Lara; Dutour Sikirić, Maja; Jurašin, Darija; Cascio, Claudia; Calzolai, Luigi; Lyons, Daniel Mark
2015-10-01
With the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of urchin embryos was tested by exposing embryos to nanoparticle concentrations in the 1-100 μg L(-1) range, with times of exposure varying from 30 min to 24 h (1 h-48 h for S. granularis) post-fertilisation which corresponded with fertilized egg, 4 cell, blastula and gastrula development phases. The most sensitive species to AgNP was A. lixula with significant modulation of embryonal development at the lowest AgNP concentrations of 1-10 μg L(-1) with high numbers of malformed embryos or arrested development. The greatest impact on development was noted for those embryos first exposed to nanoparticles at 6 and 24 h post fertilisation. For P. lividus, similar effects were noted at higher concentrations of 50 μg L(-1) and 100 μg L(-1) for all times of first exposure. The S. granularis embryos indicated a moderate AgNP impact, and significant developmental abnormalities were recorded in the concentration range of 10-50 μg L(-1). As later post-fertilisation exposure times to AgNP caused greater developmental changes in spite of a shorter total exposure time led us to postulate on additional mechanisms of AgNP toxicity. The results herein indicate that toxic effects of AgNP are species-specific. The moment at which embryos first encounter AgNP is also shown to be an important factor in the development of abnormalities, and future applications of the sea urchin embryo development test for nanoparticle toxicity testing should carefully address the specific phase of development of embryos when nanoparticles are first introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raghunathan, Raksha; Zhang, Jitao; Wu, Chen; Rippy, Justin; Singh, Manmohan; Larin, Kirill V.; Scarcelli, Giuliano
2017-08-01
Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external agents, others are compromised in terms of spatial and temporal resolutions. We propose the use of Brillouin microscopy in combination with optical coherence tomography (OCT) to measure stiffness as well as structural changes in a developing embryo. While Brillouin microscopy assesses the changes in stiffness among different organs of the embryo, OCT provides the necessary structural guidance.
Clugston, Robin D; Zhang, Wei; Greer, John J
2010-01-01
Congenital diaphragmatic hernia (CDH) is a frequently occurring cause of neonatal respiratory distress and is associated with high mortality and long-term morbidity. Evidence from animal models suggests that CDH has its origins in the malformation of the pleuroperitoneal fold (PPF), a key structure in embryonic diaphragm formation. The aims of this study were to characterize the embryogenesis of the PPF in rats and humans, and to determine the potential mechanism that leads to abnormal PPF development in the nitrofen model of CDH. Analysis of rat embryos, and archived human embryo sections, allowed the timeframe of PPF formation to be determined for both species, thus delineating a critical period of diaphragm development in relation to CDH. Experiments on nitrofen-exposed NIH 3T3 cells in vitro led us to hypothesize that nitrofen might cause diaphragmatic hernia in vivo by two possible mechanisms: through decreased cell proliferation or by inducing apoptosis. Data from nitrofen-exposed rat embryos indicates that the primary mechanism of nitrofen teratogenesis in the PPF is through decreased cell proliferation. This study provides novel insight into the embryogenesis of the PPF in rats and humans, and it indicates that impaired cell proliferation might contribute to abnormal diaphragm development in the nitrofen model of CDH. Copyright 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, B.T.
Embryos of the cricket Acheta domesticus (L.) have been shown by bioassay to develop gross morphological abnormalities after exposure to a number of complex organic mixtures as well as to display a critical period of teratogen sensitivity and an ability to metabolize xenobiotics during development. Because the assay is simple, inexpensive, short-term (less than two weeks), and objective, it could be useful as an in vivo screen in an hierarchical approach to teratogen detection. Further investigation of cricket embryo responses to known teratogens is needed to establish the predictive value of this assay. 25 references, 1 figure, 2 tables.
Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
Izumi-Kurotani, Akemi; Kiyomoto, Masato
2003-01-01
Fertilization and subsequent embryogenesis of newts occurred normally under microgravity in two Astronewt flight experiments. By accumulation of the results from the amphibian flight experiments including 'Astronewt', it is considered that gravity has rather small effects on the early development of amphibian eggs. However, some temporary abnormalities, which recover in the course of the further developmental process, have been observed. Some regulations may occur in whole embryos. For a thorough knowledge about the role of gravity in morphogenesis, we need to investigate the gravitational effects on a single cell in a whole embryo. We propose a new experimental system with sea urchin embryos and micromeres for further studies at a cellular level of the effects of gravity on morphogenesis.
[Characteristics of morphogenesis of the Japanese quail embryos during microgravity
NASA Technical Reports Server (NTRS)
Dadasheva, O. A.; Gur'eva, T. S.; Sychev, V. N.; Jehns, G.; Jahns, G. (Principal Investigator)
1998-01-01
Experiments performed in the period of 1995-1996 cooperatively with US investigators within the MIR/SHUTTLE and MIR/NASA space science projects continued exploration of avian embryogenesis in microgravity. Evaluation of Japanese quail embryos incubated in spaceflight microgravity showed that for the most part they were normally developed and compliant with duration of incubation. One of the major morphometric characteristics of embryo are its mass and size. Comparative analysis of body mass values in the space and laboratory and synchronous control groups pointed to a slight retardation. Body length of space embryos mimicked their mass curve. Data on the dynamics of mass and length of Japanese quail embryos support the well-known theory according to which growth and formation are distinguished by equifinality. No differences were revealed by the investigations of individual parts of embryonic bodies in the space and control groups. However, this finding was true only with regard to the embryos that had no developmental abnormalities. A part of embryos had defective eyes (microphtalmia), limbs (twisted fingers), and beaks.
Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi
2011-02-01
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin
2010-06-14
Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.
In utero imaging of mouse embryonic development with optical coherence tomography
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.
2011-03-01
Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.
NASA Astrophysics Data System (ADS)
Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.
The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and were likely induced by specific conditions of that flight. All sorts of disturbances we observed in eye development were similar with dom inated types found in birds and mammals on ground and could be induced by factors we intend to discuss in our report.
Burruel, Victoria; Klooster, Katie L.; Chitwood, James; Ross, Pablo J.; Meyers, Stuart A.
2013-01-01
ABSTRACT Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO2 in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development. PMID:23904511
Tussellino, Margherita; Ronca, Raffaele; Carotenuto, Rosa; Pallotta, Maria M; Furia, Maria; Capriglione, Teresa
2016-10-01
Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse
Susiarjo, Martha; Sasson, Isaac; Mesaros, Clementina; Bartolomei, Marisa S.
2013-01-01
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. PMID:23593014
Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J
1998-10-01
Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.
Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.
1998-01-01
Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.
Almond, Kelly M; Trombetta, Louis D
2017-09-01
The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.
Assessment of aneuploidy in human oocytes and preimplantation embryos by chromosome painting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougier, N.; Viegas-Pequignot, E.; Plachot, M.
1994-09-01
The poor quality of chromosome preparations often observed after fixation of oocytes and embryos did not usually allow accurate identification of chromosomes involved in non-disjunctions. We, therefore, used chromosome painting to determine the incidence of abnormalities for chromosomes 1 and 7. A total of 50 oocytes inseminated for IVF and showing no signs of fertilization as well as 37 diploid embryos donated for research were fixed according to the Dyban`s technique. Fluorescence in situ hybridization was carried out using whole chromosome painting DNA probes specific for human chromosome 1 and 7. The incidence of aneuploidy was 28%, 10% and 60%more » for metaphase II, polar body and sperm chromosomes, respectively. The high incidence of aneuploidy observed in sperm prematurely condensed sperm chromosomes is due to the fact that usually far less than 23 sperm chromatids are observed, maybe as a consequence of incomplete chromosome condensation. Thirty seven embryos were analyzed with the same probes. 48% of early embryos were either monosomic 1 or 7 or mosaics comprising blastomeres with 1, 2 or 3 signals. Thus, 8 among the 11 abnormal embryos had hypodiploid cells (25 to 37 chromosomes) indicating either an artefactual loss of chromosomes or a complex anomaly of nuclear division (maltinucleated blastomeres, abnormal migration of chromosomes at anaphase). We therefore calculated a {open_quotes}corrected{close_quotes} incidence of aneuploidy for chromosomes 1 or 7 in early embryos: 18%. 86% of the blastocysts showed mosaicism 2n/3 or 4n as a consequence of the formation of the syncitiotrophoblast. To conclude, chromosome painting is an efficient method to accurately identify chromosomes involved in aneuploidy. This technique should allow us to evaluate the incidence of non-disjunction for all chromosome pairs. Our results confirm the high incidence of chromosome abnormalities occurring as a consequence of meiotic or mitotic non-disjunctions in human oocytes and embryos.« less
Embryonic development during chronic acceleration
NASA Technical Reports Server (NTRS)
Smith, A. H.; Abbott, U. K.
1982-01-01
Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.
Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos.
Moore, James M; Rabaia, Natalia A; Smith, Leslie E; Fagerlie, Sara; Gurley, Kay; Loukinov, Dmitry; Disteche, Christine M; Collins, Steven J; Kemp, Christopher J; Lobanenkov, Victor V; Filippova, Galina N
2012-01-01
CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5-E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16-32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development.
Goubet, Florence; Misrahi, Audrey; Park, Soon Ki; Zhang, Zhinong; Twell, David; Dupree, Paul
2003-01-01
The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide β-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development. PMID:12586879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastmond, D.A.; Rupa, D.S.; Chen, H.W.
Chromosomal abnormalities are believed to contribute significantly to human reproductive failure, carcinogenesis and other pathophysiological conditions. For example, approximately 15% of recognized pregnancies terminate in spontaneous abortion, and of these approximately 30% have been shown to be chromosomally abnormal. The contribution of chromosomal abnormalities to early embryonic and fetal death appears to decrease with gestational age, suggesting that as many as 67% of the aborted embryos in early embryonic deaths are chromosomally abnormal. Furthermore, clinically significant chromosomal abnormalities can also be found to be present in approximately 0.58 to 0.67% of live births. These figures indicate that within a givenmore » year, hundreds of thousands of chromosomally abnormal babies will be born throughout the world and additional millions of chromosomally abnormal embryos will have been spontaneously aborted. For the past several years, our research has focused on utilizing new molecular cytogenetic techniques to develop assays for detecting aneuploidy-inducing agents in mammalian cells. One approach that we have sucessfully employed involves the use of fluorescence in situ hybridization with chromosome-specific DNA probes to determine the number of copies of a representative chromosome present within the nucleus following chemical exposure. DNA sequences (probes) which hybridize to blocks of repetitive centromeric DNA on specific chromosomes have been developed for most of the human chromosomes. In situ hybridization with these probes results in the staining of a compact chromosomal region which can be easily detected in interphase nuclei. The presence of 3 (or more) hybridization domains in an interphase nucleus indicates the presence of three centromeric regions and has been presumed to indicate that three copies of the entire chromosome were present in the nucleus.« less
Dos Santos, Rayane C; Ribeiro, Leonardo M; Mercadante-Simões, Maria Olívia; Costa, Márcia R; Nietsche, Silvia; Pereira, Marlon C T
2014-12-01
Stenospermy was identified in naturally occurring sugar-apple (Annona squamosa) mutants with great potential for use in genetic improvement programs. However, to date, there have been no detailed studies of the development of aspermic fruit in this species. The aim of the present study was to characterize the anatomy of developing fruit in the 'Brazilian Seedless' mutant. Flower buds in pre-anthesis and developing fruits were subjected to common plant anatomy techniques. The abnormal ovules are unitegmic and orthotropic and have a long funiculus. There is evidence of fertilization, including the presence of embryos in early development and the proliferation of starch grains in the embryo sac. However, the embryos and embryo sac degenerate, although this does not affect pericarp development. Ovule abortion does not occur. The perisperm, which is formed from the peripheral layers of the nucellus, fills the cavity left by the embryo sac. The mature fruit contains numerous small sterile seeds with abundant perisperm and unlignified integument that is restricted to the micropylar region. The majority of perisperm cells are living and appear to be metabolically active in the periphery. Therefore, stenospermy leads to the formation of sterile seeds in A. squamosa, and the perisperm possibly play an important role in fruit development.
Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.
2010-01-01
Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in developmentally impaired pregnancies. PMID:20422011
Picton, Helen M.; Elder, Kay; Houghton, Franchesca D.; Hawkhead, Judith A.; Rutherford, Anthony J.; Hogg, Jan E.; Leese, Henry J.; Harris, Sarah E.
2010-01-01
This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 ± 0.6 years) were cultured for 2–5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid chromatography. Embryos were either fixed for interphase fluorescent in situ hybridization analysis of chromosomes 13, 18, 19, 21, X or Y, or were assayed for mitochondrial activity. Amino acid turnover was different (P < 0.05) between stage-matched fresh and cryopreserved embryos due to blastomere loss following warming. The proportion of embryos with aneuploid cells increased as cell division progressed from pronucleate- (23%) to late cleavage stages (50–70%). Asparagine, glycine and valine turnover was significantly different between uniformly genetically normal and uniformly abnormal embryos on Days 2–3 of culture. By Days 3–4, the profiles of serine, leucine and lysine differed between uniformly euploid versus aneuploid embryos. Gender significantly (P < 0.05) affected the metabolism of tryptophan, leucine and asparagine by cleavage-stage embryos. Pronucleate zygotes had a significantly higher proportion of active:inactive mitochondria compared with cleavage-stage embryos. Furthermore, mitochondrial activity was correlated (P < 0.05) with altered aspartate and glutamine turnover. These results demonstrate the association between the metabolism, cytogenetic composition and health of human embryos in vitro. PMID:20571076
COX, SAM; SMITH, LEE; BOGANI, DEBORA; CHEESEMAN, MICHAEL; SIGGERS, PAM; GREENFIELD, ANDY
2007-01-01
In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development. PMID:16700072
Chromosome analysis in embryos from young patients with previous parity.
Kilani, Z; Magli, Mc; Qaddomi, E; Ferraretti, Ap; Shaban, M; Crippa, A; Haj Hassan, L; Shenfield, F; Gianaroli, L
2014-09-01
This study included 173 young couples of proven fertility who had previously undergone preimplantation genetic screening for chromosomes X and Y for family balancing. Several months later, when the outcome of the pregnancies was already known, the blastomeres from the corresponding embryos transferred were reanalysed by fluorescence in-situ hybridization (FISH) for chromosomes 13, 16, 18, 21, 22 with the aim of investigating correlation with embryo viability and the level of FISH sensitivity (embryos confirmed to be euploid). According to the results, informative in 152 couples, the proportion of euploid embryos was significantly lower in 53 nonpregnant women when compared with 99 women with term pregnancy (49% versus 75% respectively, P < 0.001). In addition, in 21 nonpregnant patients, all embryos transferred were found to be chromosomally abnormal. The level of FISH sensitivity was calculated in the group of term pregnancies where the number of euploid embryos was expected to exceed or match with the number of babies born. The resulting false-negative rate was 4.0% per patient and 1.9% per embryo. These findings confirmed the limited prediction power of embryo morphology on implantation but also the relevance of chromosomal abnormalities in causing embryo demise. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Cardiac phenotyping in ex vivo murine embryos using microMRI.
Cleary, Jon O; Price, Anthony N; Thomas, David L; Scambler, Peter J; Kyriakopoulou, Vanessa; McCue, Karen; Schneider, Jürgen E; Ordidge, Roger J; Lythgoe, Mark F
2009-10-01
Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified in the screen, consistent with the human phenotype. (c) 2009 John Wiley & Sons, Ltd.
The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).
Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L
2017-10-01
Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments containing PAH/alkylated PAH mixtures on walleye development and survival. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.
Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia
2009-09-25
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.
Insights from imaging the implanting embryo and the uterine environment in three dimensions
Arora, Ripla; Fries, Adam; Oelerich, Karina; Marchuk, Kyle; Sabeur, Khalida; Giudice, Linda C.
2016-01-01
Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. PMID:27836961
Wittayarat, Manita; Sato, Yoko; Do, Lanh Thi Kim; Morita, Yasuhiro; Chatdarong, Kaywalee; Techakumphu, Mongkol; Taniguchi, Masayasu
2013-01-01
Abstract Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA–treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro–fertilized embryos and significantly higher (p<0.05) than those of non-TSA–treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9. PMID:23790014
Use of blue crab (Callinectes sapidus) embryos for toxicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.; O`Malley, K.
1995-12-31
After fertilization, blue crab embryos develop in egg sacs attached to the female pleopods, often referred to as the sponge. Lipovitellin and lipid droplets in the egg sacs provide energy and nutrition for the developing embryos. Embryos were removed from the sponge and transferred to 24 well culture plates containing sea water with or without toxicants, Each well contained 10 embryos. After 7 to 10 days, embryos hatched to swimming zoea. The effects of toxicants at various concentrations on hatching were determined and the EC{sub 50} calculated. For example, the EC{sub 50} for tributyltin, fenvalerate and mercuric chloride were 50,more » 30 and 90 ng/liter, respectively. The hatching success of control embryos ranged from 95 to 98%. Formation of the heart, eyespot formation, appendage formation and utilization rate of lipovitellin were also effected by exposure to toxicants. At a low concentration of mercuric ion (30ng/liter) the heart formed, but there was no heart beat. Eyespot formation was abnormal in the presence of high concentrations of cadmium (2 {micro}g/liter) and zinc (5 {micro}g/liter), Crab embryos offer many advantages for toxicity testing of pure compounds or mixtures in water, including toxicity testing of sediment pore water. The crab embryos may also serve as models to understand the effect of specific toxicants on the heart and eye spots of crustaceans.« less
Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.
Raghunath, Azhwar; Perumal, Ekambaram
2018-01-01
The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.
McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.
2016-01-01
We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753
Enkhmandakh, Badam; Makeyev, Alexandr V.; Bayarsaihan, Dashzeveg
2006-01-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module. PMID:16864769
Enkhmandakh, Badam; Makeyev, Alexandr V; Bayarsaihan, Dashzeveg
2006-08-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module.
Friedland-Little, Joshua M; Hoffmann, Andrew D; Ocbina, Polloneal Jymmiel R; Peterson, Mike A; Bosman, Joshua D; Chen, Yan; Cheng, Steven Y; Anderson, Kathryn V; Moskowitz, Ivan P
2011-10-01
The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.
Nguyen, L T H; Janssen, C R
2002-02-01
Embryo-larval toxicity tests with the African catfish (Clarias gariepinus) were performed to assess the comparative sensitivity of different endpoints. Measured test responses included embryo and larval survival, hatching, morphological development, and larval growth. Chromium, cadmium, copper, sodium pentachlorphenol (NaPCP), and malathion were used as model toxicants. Hatching was not affected by any of the chemicals tested, and embryo survival was only affected by chromium at > or = 36 mg/L. The growth of larvae was significantly reduced at > or = 11 mg/L Cr, > or = 0.63 mg/L Cu, > or = 0.03 mg/L NaPCP, and > or = 1.25 mg/L malathion. Morphological development of C. gariepinus was affected by all of the toxicants tested. Different types of morphological aberrations were observed, i.e., reduction of pigmentation in fish exposed to cadmium and copper, yolk sac edema in fish exposed to NaPCP and malathion, and deformation of the notochord in fish exposed to chromium and malathion. The sensitivity of the endpoints measured can be summarized as follows: growth > abnormality > larval survival > embryo survival > hatching.
Terashita, Yukari; Wakayama, Sayaka; Yamagata, Kazuo; Li, Chong; Sato, Eimei; Wakayama, Teruhiko
2012-06-01
Although animal cloning is becoming more practicable, there are many abnormalities in cloned embryos, and the success rate of producing live animals by cloning has been low. Here, we focused on the procedure for preventing pseudo-second polar body extrusion from somatic cell nuclear transfer (SCNT)-derived oocytes. Typically, reconstructed oocytes are treated with cytochalasin B (CB), but here latrunculin A (LatA) was used instead of CB to prevent pseudo-second polar body extrusion by inhibiting actin polymerization. CB caps F-actin, LatA binds G-actin, and both drugs prevent their polymerization. When the localization of F-actin was examined using phalloidin staining, it was abnormally scattered in the cytoplasm of CB-treated 1-cell embryos, but this was not detected in LatA-treated or in vitro fertilization-derived control embryos. The spindle was larger in CB-treated oocytes than in LatA-treated or untreated control oocytes. LatA treatment also doubled the rate of full-term development after embryo transfer. These results suggest that cloning efficiency in mice can be improved by optimizing each step of the SCNT procedure. Moreover, by using LatA, we could simplify the procedure with a higher birth rate of cloned mice compared with our original method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatot, C. L.
1979-01-01
Growth (protein and DNA contents) of headfold stage rat embryos cultured for 48 hrs on human serum was enhanced by glucose supplementation. Embryo growth varied with the source of the serum. Sera from 3 of the 19 control subjects produced abnormal embryos. Sera from 5 subjects undergoing cancer chemotherapy and 6 subjects receiving anticonvulsants were either lethal or teratogenic to cultured rat embryos.
High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles
Lin, Sijie; Zhao, Yan; Xia, Tian; Meng, Huan; Zhaoxia, Ji; Liu, Rong; George, Saji; Xiong, Sijing; Wang, Xiang; Zhang, Haiyuan; Pokhrel, Suman; Mädler, Lutz; Damoiseaux, Robert; Lin, Shuo; Nel, Andre E.
2014-01-01
Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO and Co3O4) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependant hatching interference in the embryos, with the exception of Co3O4 which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn2+. This hypothesis is based on the presence of metal–sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA sensitive. In conclusion, we demonstrate that high content imaging of embryo development, morphological abnormalities and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo. PMID:21851096
Killifish Hatching and Orientation experiment MA-161
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Boyd, J. F.; Bozarth, G. A.; Conner, J. A.; Eichler, V. B.; Fuller, P. M.; Hoffman, R. B.; Keefe, J. R.; Kuchnow, K. P.; Oppenheimer, J. M.
1976-01-01
The killifish Fundulus heteroclitus was used as a model system for study of embryonic development and vestibular adaptation in orbital flight. Juvenile fish in a zero gravity environment exhibited looping swimming activity similar to that observed during the Skylab 3 mission. Hatchings from a 336 hour egg stage were also observed to loop. At splashdown, both juveniles and hatchings exhibited a typical diving response suggesting relatively normal vestibular function. Juveniles exhibited swimming patterns suggestive of abnormal swim bladders. The embryos exhibited no abnormalities resulting from development in a zero gravity environment.
Transient expression and activity of human DNA polymerase iota in loach embryos.
Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E
2012-02-01
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Wu, Chao; Zhang, Yuhui; Chai, Lihong; Wang, Hongyuan
2017-01-01
Thyroid hormone (TH) is critical for vertebrate postembryonic development as well as embryonic development. Chinese toad (Bufo gargarizans) embryos were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500μg Cd L -1 ) for 7days. Malformations were monitored daily, and growth and development of embryos were measured at day 4 and 7, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPx) and heat shock proteins (HSPs) mRNA expression were examined to evaluate the ability of scavenging ROS. Our results demonstrated a bimodal inhibitory effect of Cd on the embryo growth and development of Bufo gargarizans. Reduced mean stage, total length and weight were observed at 5, 50, 200 and 500, but not at 100μg Cd L -1 . Embryos malformation occurred in all cadmium treatments. Morphological abnormalities of embryos are characterized by axial flexures, abdominal edema, stunted growth and fin flexure. Real-time PCR results show that exposure to cadmium down-regulated TRα and Dio3 mRNA expression and up-regulated Dio2 mRNA level. SOD and GPx mRNA expression was significantly up-regulated after cadmium exposure. We concluded that cadmium could change mRNA expression of TRα, Dio2 and Dio3 leading the inhibition of growth and development of B. gargarizans embryo, which suggests that cadmium might have the endocrine-disrupting effect in embryos. Moreover, the reduced ability of scavenging ROS induced by cadmium might be responsible for the teratogenic effects of cadmium. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Conrad, G. W.; Stephens, A. P.; Conrad, A. H.; Spooner, B. S. (Principal Investigator)
1993-01-01
Fertilized eggs of Ilyanassa obsoleta Stimpson were collected immediately after their deposition in egg capsules. Unopened egg capsules then were affixed to glass slides, and incubated either statically (controls) or on a clinostat (experimentals). After incubation for 9-14 days, hatching occurred sooner and in a higher percentage of clinostated capsules than in controls. Embryos that hatched while undergoing clinostat incubation were abnormal in morphology, whereas other embryos present in non-hatched capsules in the same tubes appeared normal, as did embryos in the control tubes. Although the results are compatible with a conclusion that vector-averaged gravity in the experimental tubes caused the altered development, some other aspects of how the incubations were done may have contributed to the differences between the control and experimental results.
Halvaei, Iman; Ali Khalili, Mohammad; Razi, Mohammad Hossein; Nottola, Stefania A
2012-08-01
The goal was to evaluate the role of the number of retrieved immature oocytes on mature oocyte counts and morphology, and also the rates of fertilization and embryo development in ICSI cycles. 101 ICSI cycles were included in this prospective evaluation. Patients were divided into 2 groups of A (≤ 2 immature oocytes) and B (> 2 immature oocytes). In sub-analysis, the impacts of the number of GV and MI oocytes were assessed on the rates of fertilization and embryo development. Also, correlations between the numbers of immature and mature oocytes, as well as maternal age between two groups were analyzed. Assessments of oocyte morphology, fertilization, embryo quality and development were done accordingly. There was no correlation between the immature oocytes quantity with the number of mature ones. There were insignificant differences for embryo development between two groups, but fertilization rate was higher in group A (P = 0.03). In sub-analysis, insignificant differences were observed between two groups of ≤ and >2 GV and MI oocytes for rates of fertilization and embryo development. Also, the rates of clinical pregnancy and delivery were insignificant between groups. The rate of morphologically abnormal oocytes had no significant difference between two groups, except for wide perivitelline space (PVS) which was higher in group A (P = 0.03). There was no significant difference for maternal age between two groups. In cases with few retrieved immature oocytes, rates of fertilization and incidence of wide PVS may increase, although immature oocytes may not have any negative impacts on early embryo development, or the rates on number of mature oocytes.
The effect of human sperm chromatin maturity on ICSI outcomes.
Gill, Kamil; Rosiak, Aleksandra; Gaczarzewicz, Dariusz; Jakubik, Joanna; Kurzawa, Rafal; Kazienko, Anna; Rymaszewska, Anna; Laszczynska, Maria; Grochans, Elzbieta; Piasecka, Malgorzata
2018-03-29
Because sperm chromatin may play a key role in reproductive success, we verify the associations between sperm chromatin abnormalities, embryo development and the ability to achieve pregnancy. The evaluation of sperm chromatin maturity using aniline blue (AB), chromomycin A3 (CMA3) and toluidine blue (TB) staining were carried out in group of males from infertile couples that underwent ICSI. Low levels of sperm chromatin abnormalities (< 16%) were found in most subjects (> 50%). A higher percentage of TB-positive sperm cells were discovered in the men from couples who achieved ≤ 50% fertilized oocytes compared to men who achieved > 50%. No significant differences were discovered by the applied tests between the men from couples who achieved ≤ 50% and those who achieved > 50% high-quality embryos on the 3rd or 5th day after fertilization, nor between the men from couples who achieved pregnancy and those who failed. The sperm chromatin maturity did not correlate with the ICSI results. However, the ROC analysis revealed a significant predictive value of TB-positive spermatozoa only for fertilization. Therefore, the TB assay can be considered as a useful test for the prediction of fertilization. Our findings suggest that the level of sperm chromatin abnormalities of the examined men was not clinically significant. No found associations between sperm chromatin maturity and embryo development and the ability to achieve pregnancy. We could not exclude the effects of the repairing processes in the fertilized oocyte. The use of complementary tests that verify the status of the sperm chromatin seems justified.
Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna
2015-01-01
Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898
Foerst-Potts, L; Sadler, T W
1997-05-01
In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.
Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan
2017-12-15
Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.
Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.
Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363
Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins.
Falugi, C; Grattarola, M; Prestipino, G
1987-01-01
The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities. Images FIGURE 3 FIGURE 4 PMID:3607217
Niu, Zhi-Hong; Shi, Hui-Juan; Zhang, Hui-Qin; Zhang, Ai-Jun; Sun, Yi-Juan; Feng, Yun
2011-11-01
The aim of this study was to investigate whether the sperm chromatin structure assay (SCSA) results after swim-up are related to fertilization rates, embryo quality and pregnancy rates following in vitro fertilization (IVF). A total of 223 couples undergoing IVF in our hospital from October 2008 to September 2009 were included in this study. Data on the IVF process and sperm chromatin structure assay results were collected. Fertilization rate, embryo quality and IVF success rates of different DNA fragmentation index (DFI) subgroups and high DNA stainability (HDS) subgroups were compared. There were no significant differences in fertilization rate, clinical pregnancy or delivery rates between the DFI and HDS subgroups. However, the group with abnormal DFI had a lower good embryo rate. So, we concluded that the SCSA variables, either DFI or HDS after swim-up preparation, were not valuable in predicting fertilization failure or pregnancy rate, but an abnormal DFI meant a lower good embryo rate following IVF.
Sugimura, Satoshi; Akai, Tomonori; Somfai, Tamás; Hirayama, Muneyuki; Aikawa, Yoshio; Ohtake, Masaki; Hattori, Hideshi; Kobayashi, Shuji; Hashiyada, Yutaka; Konishi, Kazuyuki; Imai, Kei
2010-12-01
We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.
Wilson, Robert; McGuire, Christina; Mohun, Timothy
2016-01-01
The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470
Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency.
Han, Chengquan; Deng, Ruizhi; Mao, Tingchao; Luo, Yan; Wei, Biao; Meng, Peng; Zhao, Lu; Zhang, Qing; Quan, Fusheng; Liu, Jun; Zhang, Yong
2018-05-23
Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency. © 2018 Federation of European Biochemical Societies.
A Cytogenetic Study of Repeat-breeder Heifers and Their Embryos
King, W. A.; Linares, T.
1983-01-01
Twenty-three Swedish Red and White, Swedish Friesian and crossbred repeat-breeder heifers and 15 day 7 embryos produced by 11 of these heifers were subjected to cytogenetic analysis. Three heifers were found to have abnormal karyotypes; two were heterozygous for the 1/29 translocation, and one was an X-trisomy. Chromosomal anomalies which might account for embryonic death and subsequent repeat-breeding could not be detected in the embryos, however, seven out of the 15 could not be karyotyped due to the lack of cells in metaphase. The possibility of chromosomal anomalies in these embryos could not be ruled out. Three embryos produced by the heifers carrying the translocation were among those which lacked cells in mitosis. Two unfertilized ova were recovered from the X-trisomy heifer suggesting that fertilization failure rather than embryonic death was the cause of repeat-breeding. In the light of this study and similar studies in other species, it is suggested that investigations at earlier stages of development are needed. ImagesFigure 1.Figure 2. PMID:17422244
Guo, Suzhen; Qian, Lijuan; Shi, Huahong; Barry, Terence; Cao, Qinzhen; Liu, Junqi
2010-04-01
Tributyltin (TBT) has been widely used as a biocide in antifouling paints and is a known endocrine disrupting chemical. In this paper, we exposed embryos of Xenopus tropicalis to 50-400ngL(-1) tributyltin chloride. TBT significantly decreased the survival rate, reduced the body length and retarded the development of embryos after 24, 36 and 48h of exposure. These effects of TBT were concentration- and time-dependent. Embryos treated with TBT showed multiple malformations. The most obvious alterations were abnormal eyes, enlarged proctodaeum, narrow fins, and skin hypopigmentation. Enlarged proctodaeum and narrow fins were mainly observed after 36 and 48h of exposure. The loss of eye pigmentation or the absence of external eyes occurred after 24 and 36h of exposure, while extended lenses or edemas of eyes were more commonly observed after 48h of exposure. Additional malformations included: small anterior region of heads, pericardial edemas, enlarged trunks, and bent tails. These results suggested that TBT is very toxic to X. tropicalis embryos at environmentally relevant concentrations.
Development of chicken embryos in a pulsed magnetic field.
Berman, E; Chacon, L; House, D; Koch, B A; Koch, W E; Leal, J; Løvtrup, S; Mantiply, E; Martin, A H; Martucci, G I
1990-01-01
Six independent experiments of common design were performed in laboratories in Canada, Spain, Sweden, and the United States of America. Fertilized eggs of domestic chickens were incubated as controls or in a pulsed magnetic field (PMF); embryos were then examined for developmental anomalies. Identical equipment in each laboratory consisted of two incubators, each containing a Helmholtz coil and electronic devices to develop, control, and monitor the pulsed field and to monitor temperature, relative humidity, and vibrations. A unipolar, pulsed, magnetic field (500-microseconds pulse duration, 100 pulses per s, 1-microT peak density, and 2-microseconds rise and fall time) was applied to experimental eggs during 48 h of incubation. In each laboratory, ten eggs were simultaneously sham exposed in a control incubator (pulse generator not activated) while the PMF was applied to ten eggs in the other incubator. The procedure was repeated ten times in each laboratory, and incubators were alternately used as a control device or as an active source of the PMF. After a 48-h exposure, the eggs were evaluated for fertility. All embryos were then assayed in the blind for development, morphology, and stage of maturity. In five of six laboratories, more exposed embryos exhibited structural anomalies than did controls, although putatively significant differences were observed in only two laboratories (two-tailed Ps of .03 and less than .001), and the significance of the difference in a third laboratory was only marginal (two-tailed P = .08). When the data from all six laboratories are pooled, the difference in incidence of abnormalities in PMF-exposed embryos (approximately 25 percent) and that of controls (approximately 19 percent), although small, is highly significant, as is the interaction between incidence of abnormalities and laboratory site (both Ps less than .001). The factor or factors responsible for the marked variability of inter-laboratory differences are unknown.
Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1
Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling
2015-01-01
As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450
Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong
2016-06-15
Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.
Chronic toxicity of copper on embryo development in Chinese toad, Bufo gargarizans.
Xia, Kun; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan
2012-06-01
This study examined the effects of copper exposure on embryonic development of Chinese toad, Bufo gargarizans. Firstly, the LC(50) values from 24 to 96 h of exposure were 3.61×10(-6) M, by means of a 4 d toxicity test with B. gargarizans embryos. Secondly, Chinese toad embryos were exposed to 10(-9)-10(-6) M copper from mid gastrula stage to operculum completion stage. Measurements included mortality, tadpole weight, tadpole total length, growth retardation, duration of different embryo stages and malformation. Embryonic survival was not affected by copper. Relative to control tadpoles, significantly decreased weight and total length were found at 10(-9)-10(-6) M reduced percentage of the embryos in right operculum stage after 10 d exposure to copper and reduced percentage of embryos in operculum completion stage after 12 d exposure to copper were also observed. Moreover, the duration of embryonic development increased at neural, circulation and operculum development stage in copper-treated groups. For the scanning microscope and histological observation, the abnormalities were malformation of wavy dorsal fin, flexural tail, curvature body axis, yolk sac oedema and reduced pigmentation in the yolk sac. Histopathological changes in olfactory, retinal epithelium and skin were also observed. DNA strand breaks exposed to the copper were analyzed by DNA ladder. In conclusion, copper induced toxic effects on B. gargarizans embryos. The present study indicated chronic toxicity tests may provide more accurate way in formulating the "safe levels" of heavy metals to amphibian. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yoisungnern, Ton; Choi, Yun-Jung; Woong Han, Jae; Kang, Min-Hee; Das, Joydeep; Gurunathan, Sangiliyandi; Kwon, Deug-Nam; Cho, Ssang-Goo; Park, Chankyu; Kyung Chang, Won; Chang, Byung-Soo; Parnpai, Rangsun; Kim, Jin-Hoi
2015-01-01
Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs. PMID:26054035
Chao, Shu-Ju; Huang, Chin Pao; Chen, Pei-Chung; Huang, Chihpin
2017-07-01
This study investigated the influence of nano-SiO 2 particles (nSiO 2 ) on the teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209). Zebrafish embryos were exposed to BDE-209 in the absence and presence of nSiO 2 for 96 h post fertilization (hpf). Results showed that formation of nSiO 2 -BDE-209 associates promoted both extracellular and intracellular uptake of BDE-209 by zebrafish embryos, thereby increasing the bioconcentration of BDE-209 on the chorion surface and the embryos. Results also showed embryos delay hatching temporarily when co-exposure to BDE-209 and nSiO 2 at 60 hpf. Furthermore, there was heartbeat decline (28.3 beats/10s) and increase in irregular heartbeat (45.8%) in zebrafish larvae at 96 hpf, compared to the sole exposure to BDE-209 (32.7 beats/10s and 0%). Malformation in terms of spinal curvature (SC), pericardial edema (PE) and yolk sac edema (YSE) were observed on zebrafish larvae at 33.9, 23.4, and 18%, respectively. Overall, abnormal development of zebrafish was apparent when co-exposure to BDE-209 and nSiO 2 . All relevant evidence considered, nSiO 2 could facilitate the transport of BDE-209 towards zebrafish embryos and negatively impact the development of zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns.
Xiong, Xian-rong; Lan, Dao-liang; Li, Jian; Wang, Yong; Zhong, Jin-cheng
2015-02-01
Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.
Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide
2012-03-01
Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.
Aleksandrova, N V; Shubina, E S; Ekimov, A N; Kodyleva, T A; Mukosey, I S; Makarova, N P; Kulakova, E V; Levkov, L A; Barkov, I Yu; Trofimov, D Yu; Sukhikh, G T
2017-01-01
Aneuploidies as quantitative chromosome abnormalities are a main cause of failed development of morphologically normal embryos, implantation failures, and early reproductive losses. Preimplantation genetic screening (PGS) allows a preselection of embryos with a normal karyotype, thus increasing the implantation rate and reducing the frequency of early pregnancy loss after IVF. Modern PGS technologies are based on a genome-wide analysis of the embryo. The first pilot study in Russia was performed to assess the possibility of using semiconductor new-generation sequencing (NGS) as a PGS method. NGS data were collected for 38 biopsied embryos and compared with the data from array comparative genomic hybridization (array-CGH). The concordance between the NGS and array-CGH data was 94.8%. Two samples showed the karyotype 47,XXY by array-CGH and a normal karyotype by NGS. The discrepancies may be explained by loss of efficiency of array-CGH amplicon labeling.
[Relationship of abnormal sperm DNA methylation with early spontaneous abortion].
Pan, Lian-Jun; Ma, Jie-Hua; Zhang, Feng-Lei; Zhao, Dan; Pan, Feng; Zhang, Xing-Yuan
2016-10-01
To investigate the relationship between the abnormal sperm DNA methylation level and early spontaneous abortion. We randomly selected 98 males who met the inclusion criteria and whose wives suffered from unexplained abortion or embryo abortion, and included another 46 normal healthy men present for pre-pregnancy check-up as controls. We examined the semen quality and sperm morphology, obtained the sperm DNA fragmentation index (DFI) by modified sperm chromatin dispersion, and measured the sperm DNA methylation level using the methylated DNA quantification kit and the colorimetric method. Compared with the normal controls, the men in the unexplained abortion group showed a significantly lower rate of big-halo sperm ([45.50 ± 26.27] vs [36.49 ± 23.06]%, P = 0.038), a higher rate of abnormal-head sperm ([77.08± 12.21] vs [81.09± 10.89]%, P = 0.049), and a lower level of sperm DNA methylation ([0.47 ± 0.33] vs [0.36 ± 0.26] ng/μl, P = 0.035). The sperm DNA methylation level was positively correlated with the percentage of big-halo sperm (OR=0.546, P<0.01). Multivariate regression analysis manifested that sperm head abnormality was an independent risk factor of early spontaneous abortion or embryo abortion (OR=1.032, P = 0.049), while the high methylation level was protective factor against early spontaneous abortion or embryo abortion (OR=0.244, P = 0.03). The abnormal level of sperm DNA methylation may be one of the important reasons for early spontaneous abortion or embryo abortion.
Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis).
Ortega, Encarnación; Martínez-García, Pedro J; Dicenta, Federico; Egea, José
2010-06-01
A homozygous self-compatible almond, originated from self-fertilization of a self-compatible genotype and producing a reasonable yield following open pollination, exhibited a very high fruit drop rate when self-pollinated. To investigate whether fruit dropping in this individual is related to an abnormal development of the embryo sac following self-fertilization, histological sections of ovaries from self and cross-pollinated flowers were observed by light microscopy. Additionally, the presence of pollen tubes in the ovary and fruit set were determined for both types of pollination. Despite pollen tubes reached the ovary after both pollinations, differences in embryo sac and endosperm development after fertilization were found. Thus, while for cross-fertilized ovules a pro-embryo and an endosperm with abundant nuclei were generally observed, most self-fertilized ovules remained in a previous developmental stage in which the embryo sac was not elongated and endosperm nuclei were absent. Although 30 days after pollination fruit set was similar for both pollination types, at 60 days it was significantly reduced for self-pollination. These results provide evidence that the high fruit drop in this genotype is the consequence of a disrupted development of the endosperm, what could be an expression of its high level of inbreeding.
Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.
Iwata, Kyoko; Mio, Yasuyuki
2016-07-01
Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.
Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro
2015-01-01
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816
Hasler, John F
2014-01-01
After the first successful transfer of mammalian embryos in 1890, it was approximately 60 years before significant progress was reported in the basic technology of embryo transfer (ET) in cattle. Starting in the early 1970s, technology had progressed sufficiently to support the founding of commercial ET programs in several countries. Today, well-established and reliable techniques involving superovulation, embryo recovery and transfer, cryopreservation, and IVF are utilized worldwide in hundreds, if not thousands, of commercial businesses located in many countries. The mean number of embryos produced via superovulation has changed little in 40 years, but there have been improvements in synchrony and hormonal protocols. Cryopreservation of in vivo-derived embryos is a reliable procedure, but improvements are needed for biopsied and in vitro-derived embryos. High pregnancy rates are achieved when good quality embryos are transferred into suitable recipients and low pregnancy rates are often owing to problems in recipient management and not technology per se. In the future, unanticipated disease outbreaks and the ever-changing economics of cattle and milk prices will continue to influence the ET industry. The issue of abnormal pregnancies involving in vitro embryos has not been satisfactorily resolved and the involvement of abnormal epigenetics associate with this technology merits continued research. Last, genomic testing of bovine embryos is likely to be available in the foreseeable future. This may markedly decrease the number of embryos that are actually transferred and stimulate the evolution of more sophisticated ET businesses. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanism for electrosilent Ca2+ transport to cause calcification of spicules in sea urchin embryos.
Yasumasu, I; Mitsunaga, K; Fujino, Y
1985-07-01
Embryos of the sea urchin, Hemicentrotus pulcherrimus, kept in sea water containing the calcium antagonists, diltiazem and verapamil, or an anion transport inhibitor, 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), during a developmental period between the mesenchyme blastula and the pluteus corresponding stage, became abnormal plutei with poorly developed arms and quite small spicules. Treatment with ethacrynic acid and furosemide, inhibitors of chloride transport, during the same period of development yielded quasi-normal plutei with poor spicules and somewhat developed arms. In late gastrulae, the inhibitory effects of these calcium antagonists and DIDS on the uptake of 45Ca2+ in whole embryos were as strong as those on 45Ca deposition in spicules, whereas the effects of chloride transport inhibitors on calcium deposition in the spicules were markedly stronger than on its uptake in whole embryos. Electrosilent uptake of Ca2+ seems to be established mainly by coupled influx of chloride in the cells which mediate spicule calcification, and by concomitant influx of anions in the other cells. In swimming blastulae, 45Ca2+ uptake was inhibited by calcium antagonists and DIDS, but not by chloride transport inhibitors. Ca2+ uptake probably becomes coupled with chloride influx only in embryos in which spicule calcification occurs.
Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie; Zeng, Zhen; Wei, Juncheng
2013-04-05
Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responsesmore » and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.« less
Epigenetic disorders and male subfertility.
Boissonnas, Céline Chalas; Jouannet, Pierre; Jammes, Hélène
2013-03-01
To provide a link between epigenetics and male subfertility at the DNA, histone-protamine, and RNA levels and its consequences on fertilization and embryo development. Review of the relevant literature. University-based clinical and research laboratories. Fertile and infertile men. None. Critical review of the literature. Epigenetic markers can be modified in infertile patients. Epigenetic modifications include methylation loss or gain on the global level and on imprinted genes, high levels of histone retention in spermatozoa, and deficiencies in some transcripts involved in spermatogenesis. Interestingly, these abnormalities are all linked together, because DNA methylation maintenance depends on DNA histone-protamine configuration which itself is stabilized by spermatozoal RNAs. The paternal genome has long been considered to be silent and passive in embryo formation. The epigenetic processes associated with the paternal DNA genome highlights its importance in male fertility as well as for embryo development. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Vitamin D receptor signaling is required for heart development in zebrafish embryo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Hye-Joo, E-mail: hjkwon@pnu.edu.sa; Biology Department, Princess Nourah University, Riyadh 11671
Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects.more » Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. - Highlights: • VDR signaling is involved in embryonic heart development. • Knockdown of vdrb, but not vdra, causes decreased heart rate in zebrafish embryo. • Loss of vdr results in cardiac laterality defects. • Loss of vdra/b alters atrioventricular boundary formation. • Loss of vdra/b causes abnormal cardiac looping.« less
NASA Astrophysics Data System (ADS)
Yang, Zhihui; Zhang, Xiangjing; Cai, Zhonghua
2009-05-01
As the most widely used plasticizers in the world, phthalate esters (PAEs) are potential endocrine disruption compounds (EDCs). In the present study, the toxicity of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di (2-ethylhexyl) phthalate (DEHP) on embryogenesis and larvae development of the marine univalve Haliotis diversicolor supertexta was examined in laboratory. The results show that the malformation of embryos appeared during the experiment, such as embryos died or lysed, small transparent flocculent rings studded on the periphery of the embryo, and the larvae could failed to hatch. In embryo toxic test, embryos incubated at the highest concentration of DMP, DEP and DBP solutions showed significantly high abnormal rate compared with the control, while DEHP solutions displayed no significant difference. In larval toxic test, in all concentrations of DMP, DEP and DBP solutions, larval settlement rates were low significantly than that of the control. Similarly, DEHP solutions show nearly no effect on the larval settlement. The order of toxicity on embryos and larvae is DBP>DEP>DMP>DEHP. Being a simple and easy stimulation to indoor spawn, sensitive to environmental factors, and short culture time, the embryos of H. diversicolor supertexta can be used to indicate toxicity of the PAEs.
Influences of Reduced Expression of Maternal Bone Morphogenetic Protein 2 on Embryonic Development
Singh, Ajeet P.; Castranio, Trisha; Scott, Greg; Guo, Dayong; Harris, Marie A.; Ray, Manas; Harris, Stephan E.; Mishina, Yuji
2009-01-01
Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. During a course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3’ untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/−) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. Embryos exhibiting these abnormalities were increased when genotypes of the pregnant females were different; when expression levels of Bmp2 in maternal tissues were lower, a larger proportion of fn/− embryos exhibit these abnormalities. These results suggest that the expression levels of Bmp2 together in both in embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds. PMID:18769073
Research on tomato seed vigor based on X-ray digital image
NASA Astrophysics Data System (ADS)
Zhao, Xueguan; Gao, Yuanyuan; Wang, Xiu; Li, Cuiling; Wang, Songlin; Feng, Qinghun
2016-10-01
Seed size, interior abnormal and damage of the tomato seeds will affect the germination. The purpose of this paper was to study the relationship between the internal morphology, seed size and seed germination of tomato. The preprocessing algorithm of X-ray image of tomato seeds was studied, and the internal structure characteristics of tomato seeds were extracted by image processing algorithm. By developing the image processing software, the cavity area between embryo and endosperm and the whole seed zone were determined. According to the difference of area of embryo and endosperm and Internal structural condition, seeds were divided into six categories, Respectively for three kinds of tomato seed germination test, the relationship between seed vigor and seed size , internal free cavity was explored through germination experiment. Through seedling evaluation test found that X-ray image analysis provide a perfect view of the inside part of the seed and seed morphology research methods. The larger the area of the endosperm and the embryo, the greater the probability of healthy seedlings sprout from the same size seeds. Mechanical damage adversely effects on seed germination, deterioration of tissue prone to produce week seedlings and abnormal seedlings.
Mechanisms of Microwave Induced Damage in Biologic Materials
1992-10-01
that low level electromagnetic fields can cause developmental abnormalities in early stages of chick embryo development . In studies of the effects of...early embryonic development has led to a great deal of speculation about the safety of environmental exposure to such fields. Power lines, household...capable of covalent binding to embryonic or fetal macromolecules and nucleic acids, disrupting normal development . Individuals with low levels of
Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi
2004-05-01
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao
2014-05-01
Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.
Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos.
Nogueira, Renato C; Sampaio, Lucia de Fatima S
2017-10-15
Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors. © 2017. Published by The Company of Biologists Ltd.
Butler, Stephen A; Luttoo, Jameel; Freire, Maísa O T; Abban, Thomas K; Borrelli, Paola T A; Iles, Ray K
2013-09-01
Human chorionic gonadotropin (hCG) is produced by trophoblast cells throughout pregnancy, and gene expression studies have indicated that hCG-beta subunit (hCGβ) expression is active at the 2 blastomere stage. Here, we investigated the qualitative hCG output of developing embryos in culture and hCG isoforms expressed in the secretome as a novel sensitive method for detecting hCG. Culture media was collected from the culture plates of 118 embryos in culture (including controls and embryos at different stages of culture) from 16 patients undergoing routine fertility treatment. The hCGβ was detectable in media from 2 pronuclear (2PN) stage embryos through to the blastocyst stage. The hCGβ was absent in 1PN and arrested embryos as well as all media controls. Prior to hatching, hyperglycosylated hCG (hCGh) was observed selectively in 3PN embryos, but after hatching, along with hCG, became the dominant hCG molecule observed. We have reported at the 2PN stage the earliest evidence of hCGβ expression in embryos. There is a suggestion this may be indicative of quality in early embryos, and hCGh seen at the pronuclear stage may suggest triploid abnormality. The dominance of hCG, and hCGh expression, seen after blastocyst hatching may be indicative of potential implantation success. Thus, hCG isoforms have potential roles as biomarkers of embryo viability for embryo/blastocyst transfer.
Carro, Tiffany; Taneyhill, Lisa A; Ann Ottinger, Mary
2013-06-01
Chicken (Gallus domesticus) embryonic exposure in ovo to a 58-congener polychlorinated biphenyl (PCB) mixture resulted in teratogenic heart defects in chick embryos at critical heart developmental stages Hamburger-Hamilton (HH) stages 10, 16, and 20. The 58-congener mixture contained relative proportions of primary congeners measured in belted sandpiper (Megaceryle alcyon) and spotted sandpiper (Actitis macularia) eggs collected along the upper Hudson River, New York, USA, and chicken doses were well below observed environmental exposure levels. Embryos were injected with 0.08 µg PCBs/g egg weight and 0.50 µg PCBs/g egg weight (0.01 and 0.064 ng toxic equivalent/g, respectively) at embryonic day 0, prior to incubation. Mortality of exposed embryos was increased at all developmental stages, with a marked rise in cardiomyopathies at HH16 and HH20 (p < 0.05). Heart abnormalities occurred across all treatments, including abnormal elongation and expansion of the heart tube at HH10, improper looping and orientation, indentations in the emerging ventricular wall (HH16 and HH20), and irregularities in overall heart shape (HH10, HH16, and HH20). Histology was conducted on 2 cardiac proteins critical to embryonic heart development, ventricular myosin heavy chain and titin, to investigate potential mechanistic effects of PCBs on heart development, but no difference was observed in spatiotemporal expression. Similarly, cellular apoptosis in the developing heart was not affected by exposure to the PCB mixture. Conversely, cardiomyocyte proliferation rates dramatically declined (p < 0.01) at HH16 and HH20 as PCB exposure concentrations increased. Early embryonic cardiomyocyte proliferation contributes to proper formation of the morphology and overall thickness of the ventricular wall. Therefore, in ovo exposure to this 58-congener PCB mixture at critical stages adversely affects embryonic heart development. Copyright © 2013 SETAC.
PAK4 kinase is essential for embryonic viability and for proper neuronal development.
Qu, Jian; Li, Xiaofan; Novitch, Bennet G; Zheng, Ye; Kohn, Matthew; Xie, Jian-Ming; Kozinn, Spencer; Bronson, Roderick; Beg, Amer A; Minden, Audrey
2003-10-01
The serine/threonine kinase PAK4 is a target for the Rho GTPase Cdc42 and has been shown to regulate cell morphology and cytoskeletal organization in mammalian cells. To examine the physiological and developmental functions of PAK4, we have disrupted the PAK4 gene in mice. The absence of PAK4 led to lethality by embryonic day 11.5, a result most likely due to a defect in the fetal heart. Striking abnormalities were also evident in the nervous systems of PAK4-deficient embryos. These embryos had dramatic defects in neuronal development and axonal outgrowth. In particular, spinal cord motor neurons and interneurons failed to differentiate and migrate to their proper positions. This is probably related to the role for PAK4 in the regulation of cytoskeletal organization and cell and/or extracellular matrix adhesion. PAK4-null embryos also had defects in proper folding of the caudal portion of the neural tube, suggesting an important role for PAK4 in neural tube development.
Advances in understanding paternally transmitted Chromosomal Abnormalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F; Sloter, E; Wyrobek, A J
2001-03-01
Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less
Developing the Digital Kyoto Collection in Education and Research.
Hill, Mark Anthony
2018-04-16
The Kyoto embryo collection was begun in 1961 by Dr. Hideo Nishimura. The collection has been continuously developed and currently contains over 44,000 human normal and abnormal specimens. Beginning online in 1997, the internet provided an opportunity to make embryos from the collection widely available for research and educational purposes (http://tiny.cc/Embryo). These embryonic development resources have been continuously published and available from that time until today. Published in Japanese as an Atlas of Embryonic Development. Published online as the Kyoto Human Embryo Visualization Project (http://atlas.cac.med.kyoto-u.ac.jp) and also as the Human Embryo Atlas (http://tiny.cc/Human_Embryo_Atlas). Published now electronically as a digital eBook (http://tiny.cc/Kyoto_Collection_eBook). This new digital format allows incorporation of whole embryo and histology manipulable images, labels, and a linked glossary. New imaging modalities of magnetic resonance imaging (MRI) and episcopic fluorescence image capture (EFIC) can also be easily displayed as animations. For research, the collection specimens and histological sections have been extensively studied and published in several hundred papers, discussed here and elsewhere in this special edition. I will also describe how the Kyoto collection will now form a major partner of a new international embryology research group, the Digital Embryology Consortium (https://human-embryology.org). The digital Kyoto collection will be made available for remote researcher access, analysis, and comparison with other collections allowing new research and educational applications. This work was presented at the 40th Anniversary Commemoration Symposium of the Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Japan, November, 2015. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Ultrasound biomicroscopy in mouse cardiovascular development
NASA Astrophysics Data System (ADS)
Turnbull, Daniel H.
2004-05-01
The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.
Variations in the formation of the human caudal spinal cord.
Saraga-Babić, M; Sapunar, D; Wartiovaara, J
1995-01-01
Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.
Glucocorticoid teratogenesis in mouse whole embryo culture.
Pratt, R M; Perry, E L; Chapman, L M; Goulding, E H
1984-08-01
Glucocorticoids, such as triamcinolone acetonide (TAC-A) and triamcinolone hexacetonide (TAC-HA), are potent inducers of cleft palate in vivo in various mouse strains when administered on day 11 of gestation, whereas they are poor or ineffective inducers of cleft lip when given on day 7. The purpose of the present study was to determine whether glucocorticoids are capable of interfering with early embryonic development in culture. CD-1 mouse embryos were cultured for 48 hours starting either on day 8 (plug day 0) with the embryo inside the yolk sac, or on day 10 with the embryo exteriorized from its functional yolk sac. At the end of the culture period, embryos were examined grossly for malformations and biochemically for altered DNA and protein levels. With the day 8 cultures, TAC-A produced a dose-dependent inhibition of growth along with malformations consisting of cardiac irregularities, abnormal rotation, and irregular neural tube closure. With the day 10 cultures, these malformations were not observed, presumably due to the advanced stage of development when the embryos were exposed to TAC-A; however, TAC-A did produce growth inhibition along with cleft lip. When TAC-HA was administered in vivo to pregnant donor females on day 7, in combination with TAC-A added on day 10 to the culture medium, there was a dramatic increase in the frequency of cleft lip along with other alterations in craniofacial appearance. Our results demonstrate that glucocorticoids are capable of directly affecting embryonic growth and development during the early stages of organogenesis.
The influence of early embryo traits on human embryonic stem cell derivation efficiency.
O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra
2011-05-01
Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.
Amphibian Development in the Virtual Absence of Gravity
NASA Technical Reports Server (NTRS)
Souza, Kenneth A.; Black, Steven D.; Wassersug, Richard J.
1995-01-01
To test whether gravity is required for normal amphibian development, Xenopus laevis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate that a vertebrate can ovulate in the virtual absence of gravity and that the eggs can develop to a free-living stage.
Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Félix, Luís M., E-mail: lfelix@utad.pt
Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24 h-LC{sub 50} was calculated from percent survival using probit analysis. Based on the 24 h-LC{sub 50} (94.4 mg L{sup −1}), embryos (2 hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24 h to ketamine concentrations of 50, 70 or 90 mg L{supmore » −1}. Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144 hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056 ± 0.020 pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144 hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90 mg L{sup −1}. Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. - Highlights: • 24 h exposure to ketamine increases mortality. • Morphological changes were observed after exposure. • Exposure to ketamine leads to severe craniofacial anomalies. • Developmental gene expression changes in response to ketamine. • Developmental ketamine exposure produces lasting behavioral changes.« less
Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai
2014-09-01
RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Effects of choline on sodium arsenite-induced neural tube defects in chick embryos.
Song, Ge; Cui, Yi; Han, Zhong-Ji; Xia, Hong-Fei; Ma, Xu
2012-12-01
Arsenic passes through the placenta and accumulates in the neuroepithelium of embryo, whereby inducing congenital malformations such as neural tube defects (NTDs) in animals. Choline (CHO), a methyl-rich nutrient, functions as a methyl donor to participate in methyl group metabolism. Arsenic methylation has been regarded as a detoxification process and choline (CHO) is the major source of methyl-groups. However, whether CHO intake reverses the abnormal embryo development induced by sodium arsenite (SA) and the relationship between CHO intake and arsenite-induced NTDs are still unclear. In this study, we used chick embryos as animal model to investigate the effects of SA and CHO supplementation on the early development of nervous system. Our results showed that the administration of SA led to reduction in embryo viability, embryo body weight and extraembryonic vascular area, accompanied by a significantly increased incidence of the failed closure of the caudal end of the neural tube. CHO, at low dose (25 μg/μL), reversed the decrease in embryo viability and the increase in the failed closure of the caudal end of the neural tube, which were induced by SA. In addition, CHO (25 μg/μL) inhibited not only the SA-induced cell apoptosis by up-regulating Bcl-2 level, but also the global DNA methylation by increasing the expressions of DNMT1 and DNMT3a. However, less significant difference was found between the embryos co-treated with SA and CHO (50 μg/μL) and the ones treated with SA alone. Taken together, these findings suggest that low dose CHO could protect chick embryos from arsenite-induced NTDs by a possible mechanism related to the methyl metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos.
van Veenendaal, Nicole R; Ulmer, Bärbel; Boskovski, Marko T; Fang, Xiefan; Khokha, Mustafa K; Wendler, Christopher C; Blum, Martin; Rivkees, Scott A
2013-02-01
Antithyroid medications are the preferred therapy for the treatment of Graves' disease during pregnancy. Propylthiouracil (PTU) is favored over methimazole (MMI) due to potential teratogenic concerns with MMI. This study was to determine the teratogenic potential of MMI and PTU using a validated Xenopus tropicalis embryo model. Embryos were exposed to 1 mM PTU (EC(50)=0.88 mM), 1 mM MMI, or vehicle control (water) from stages 2 to 45. Treated embryos were examined for gross morphological defects, ciliary function, and gene expression by in situ hybridization. Exposure to PTU, but not MMI, led to cardiac and gut looping defects and shortening along the anterior-posterior axis. PTU exposure during gastrulation (stage 8-12.5) was identified as the critical period of exposure leading to left-right (LR) patterning defects. Abnormal cilia polarization, abnormal cilia-driven leftward flow at the gastrocoel roof plate (GRP), and aberrant expression of both Coco and Pitx2c were associated with abnormal LR symmetry observed following PTU exposure. PTU is teratogenic during late blastula, gastrulation, and neurulation; whereas MMI is not. PTU alters ciliary-driven flow and disrupts the normal genetic program involved in LR axis determination. These studies have important implications for women taking PTU during early pregnancy.
Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M
2017-07-01
Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan
2018-01-01
The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were 10.7% for rcp carriers, 26.3% for RT carriers, and 57.1% for the control group. The cumulative aneuploidy rates of chromosome translocation carriers were significantly lower than the control group. No ICE was observed in cleavage and blastocyst stage embryos obtained from these carriers. Additionally, the risk of chromosomal numerical abnormalities was observed in each of the 23 pairs of autosomes or sex chromosomes from day 3 and day 5 embryos. There was not enough evidence to prove that ICE was present in embryos derived from both rcp and RT translocation carriers, regardless of the maternal age. However, chromosomal numerical abnormalities were noticed in 23 pairs of autosomes and sex chromosomes in parental structurally normal chromosomes. Thus, 24-chromosomal analysis with an aCGH/SNP microarray PGD protocol is required to decrease the risks of failure to diagnose aneuploidy in structurally normal chromosomes.
Ménézo, Yves J R
2006-05-01
Paternal effect on embryonic development occurs as early as fertilization. Incorrect formation of the spermatozoon due to centrosome defects and abnormal concentrations of any components involved in the activation process lead to failure immediately or in the subsequent cell cycles. Sperm chromosomal abnormalities result in early embryo developmental arrests. Generally poor spermatozoa lead to poor blastocyst formation. Sperm DNA fragmentation may impair even late post-implantation development. The DNA repair capacity of the oocytes is of major importance. Early preimplantation development, i.e. until maternal to zygotic transition, is maternally driven. Maternal mRNAs and proteins are of major importance, as there is an unavoidable turnover of these reserves. Polyadenylation of these mRNAs is precisely controlled, in order to avoid too early or too late transcription and translation of the housekeeping genes. An important set of maternal regulations, such as DNA stability, transcriptional regulation and protection against oxidative stress, are impaired by age. The embryo biochemical endogenous pool is very important and may depend upon the environment, i.e. the culture medium. Paternal, maternal and environmental factors are unavoidable parameters; they become evident when age impairs oocyte quality.
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
NASA Astrophysics Data System (ADS)
Dai, Ximei; Huang, Qunce; Li, Guoping; Hu, Xiuming; Qin, Guangyong; Yu, Zengliang
2006-11-01
In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IR36-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IR36-4X plants. 2) The polyembryonic trait of IR36-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double set of embryo sacs in a single ovary, antipodal cells or endosperm cells. These results suggest that IR36-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.
Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos
2012-06-01
Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the development of a life cycle test with freshwater snails even for undertaking multigeneration studies focused on transgenerational effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Occurrence of diploid ova in Rana pipiens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, C.M.; Nace, G.W.
All 12 Rana pipiens females tested from three populations produced diploid ova. These were identified by the development of from 0.15 to 35 percent per clutch of normal diploid-like embryos among large numbers of haploid embryos following activation of R. pipiens eggs with irradiated R. clamitans sperm. Their diploid nuclear constitution was demonstrated by diploid cell size at Shumway Stage 19, and by the diploid number of chromosomes both as embryos and as mature frogs, and was confirmed by the occurrence of triploid embryos among normally fertilized progeny from the same female parents. Although the precise cytogenetic events leading tomore » the origin of these diploid ova were not directly determined, we were led to conclude that, although diploid ova may result from polynucleate oocytes, the diploidy reported here was an expression of abnormal meiosis that occurred under genetic control. Such anomalies, at the orders of frequency we observed in R. pipiens, have important consequences for all studies using Anuran model systems.« less
Sermon, Karen
2017-01-01
Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.
Regulative development of Xenopus laevis in microgravity
NASA Technical Reports Server (NTRS)
Black, S.; Larkin, K.; Jacqmotte, N.; Wassersug, R.; Pronych, S.; Souza, K.
1996-01-01
To test whether gravity is required for normal amphibian development, Xenopus leavis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate for the first time that a vertebrate can ovulate in the virtual absence of gravity, and that the eggs can develop to a free-living stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, E.B.; Chang, M.C.
The time relation between onset of estrus and meiotic division stages in the golden hamster was determined. The morphology of meiotic division stages of the ova are briefly described; neither was observably altered by 200 r x irradiation. Females irradiated at 3 hr before onset of estrus, at onset, and at 5 and 8 hr after onset of estrus had a high percentage of cleaved ova with micronuclei in one of the two blastomeres and a high percentage of de generations of embryos before implantation. However, when irradiated 9 hr before onset of estrus no cleaved ova had micronuclei, andmore » degeneration of embryos was not significantly different from controls. Ovarian ova in meiotic divisioms were not more radiosensitive than ova in diplotene of prophase I (3 hr before onset of estrus), but diplotene ova between 81 and 9 hr before onset of estrus were relatively radioresistant. Ten fetuses of 657 observed were abnormal. However, the weights of the fetuses from irradiated females did not differ significantIy from the non-irradiated control fetuses. It was concluded that the percentage of gross abnormalities and weights of fetuses were not significantly altered by 200 r x irradiation of ovarian ova. (P.C.H.)« less
Mechanism of nitrofen teratogenesis.
Manson, J M
1986-01-01
Nitrofen (2,4-dichloro-4'-nitrodiphenyl ether) is an herbicide with potent teratogenic activity in rats. When administered at doses as low as 0.15 mg/kg/day during organogenesis, abnormal development of the heart, kidneys, diaphragm, and lung occurs. The specific pattern of visceral malformations produced in the absence of overt maternal toxicity or embryolethality/cytotoxicity suggest that the compound perturbs processes unique or highly selective for embryonic differentiation. Despite findings of metabolic activation to mutagenic intermediates and carcinogenic activity in adult rodents, several lines of evidence indicate that teratogenicity is not based on mutagenic insult to the embryo. Rather, evidence is accumulating that nitrofen exerts a teratogenic effect via alterations in thyroid hormone status. The premature and pharmacologic exposure of the embryo to a nitrofen-derived thyromimetic challenge is believed to be the cause of abnormal morphogenesis of the heart, lungs, kidneys, and diaphragm. The parent compound itself could directly bind to embryonic nuclear receptors for T3, leading to altered differentiation of target organs. Alternatively, increased availability and placental transport of free thyroid hormones in the maternal compartment could be the source of thyromimetic challenge to the embryo. Overall, these studies indicate that, in the case of nitrofen, the mode of teratogenic activity is uniquely different from the mode of adult toxicity. PMID:3830099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty
2014-01-01
The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephalesmore » promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.« less
Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe
2016-06-01
The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l). Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, B.T.
A chemical impurity isolated from commercially purchased acridine causes cricket embryos to develop extra compound eyes, branched antennae, extra antennae, and extra heads. Purified acridine does not produce similar duplications of cricket heads or head structures nor do the substituted acridines proflavine, acriflavine, or acridine orange. A dose-response relation exists such that the number and severity of abnormalities increase with increasing concentration of the teratogen.
Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A
2014-07-17
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Cheng, Christina N.; Li, Yue; Marra, Amanda N.; Verdun, Valerie; Wingert, Rebecca A.
2014-01-01
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples. PMID:25078510
Hutler Wolkowicz, Ianina; Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Christina
2016-12-01
Bisphenol A diglycidyl ether (BADGE) is used in packaging materials, in epoxy adhesives, and as an additive for plastics, but it is also a potential industrial wastewater contaminant. The aim of the present study was to evaluate the adverse effects of BADGE on Rhinella arenarum by means of standardized bioassays at embryo-larval development. The results showed that BADGE was more toxic to embryos than to larvae at all exposure times. At acute exposure, lethality rates of embryos exposed to concentrations of 0.0005 mg/L BADGE and greater were significantly higher than rates in the vehicle control, whereas lethality rates of larvae were significantly higher in concentrations of 10 mg/L BADGE and greater. The toxicity then increased significantly, with 96-h median lethal concentrations (LC50s) of 0.13 mg/L and 6.9 mg/L BADGE for embryos and larvae, respectively. By the end of the chronic period, the 336-h LC50s were 0.04 mg/L and 2.2 mg/L BADGE for embryos and larvae, respectively. This differential sensitivity was also ascertained by the 24-h pulse exposure experiments, in which embryos showed a stage-dependent toxicity, with blastula being the most sensitive stage and S.23 the most resistant. The most important sublethal effects in embryos were cell dissociation and delayed development, whereas the main abnormalities observed in larvae related to neurotoxicity, as scare response to stimuli and narcotic effect. Environ Toxicol Chem 2016;35:3031-3038. © 2016 SETAC. © 2016 SETAC.
Zhou, H C; Jin, L; Li, J; Wang, X J
2016-06-03
Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.
Launch Conditions Might Affect the Formation of Blood Vessel in the Quail Chorioallantoic Membrane
NASA Technical Reports Server (NTRS)
Henry, M. K.; Unsworth, B. R.; Sychev, B. R.; Guryeva, T. S.; Dadasheva, O. A.; Piert, S. J.; Lagel, K. E.; Dubrovin, L. C.; Jahns, G. C.; Boda, K.;
1998-01-01
AS 2 part of the first joint USA-Russian MIR/Shuttle program, fertilized quail eggs were flown on the MIR 18 mission. Post-flight examination indicated impaired survival of both the embryos in space and also of control embryos exposed to vibrational and g-forces simulating the conditions experienced during the launch of Progress 227. We hypothesized that excess mechanical forces and/or other conditions during the launch might cause abnormal development of the blood supply in the chorioallantoic membrane (CAM) leading to the impaired survival of the embryos. The CAM, a highly vascularized extraembryonic organ, provides for the oxygen exchange across the egg shell and is thus pivotal for proper embryonic development. To test our hypothesis, we compared angiogenesis In CAMS of eggs which were either exposed to the vibration and g-force profile simulating the conditions at launch of Progress 227 (synchronous controls), or kept under routine conditions in a laboratory Incubator (laboratory controls). At various time points during Incubation, the eggs were fixed in paraformaldehyde for subsequent dissection. At the time of dissection, the CAM was carefully lifted from the egg shell and examined as whole mounts by bright-field and fluorescent microscopy. The development or the vasculature (angiogenesis) was assessed from the density of blood vessels per viewing field and evaluated by computer aided image analysis. We observed a significant decrease In blood-vessel density in the synchronous controls versus "normal" laboratory controls beginning from day 10 of Incubation. The decrease in vascular density was restricted to the smallest vessels only, suggesting that conditions during the launch and/or during the subsequent Incubation of the eggs may affect the normal progress of angiogenesis in the CAM. Abnormal angiogenesis In the CAM might contribute to the impaired survival of the embryos observed in synchronous controls as well as in space.
Xu, Juanjuan; Fang, Rui; Chen, Li; Chen, Daozhen; Xiao, Jian-Ping; Yang, Weimin; Wang, Honghua; Song, Xiaoqing; Ma, Ting; Bo, Shiping; Shi, Chong; Ren, Jun; Huang, Lei; Cai, Li-Yi; Yao, Bing; Xie, X Sunney; Lu, Sijia
2016-10-18
Preimplantation genetic screening (PGS) is widely used to select in vitro-fertilized embryos free of chromosomal abnormalities and to improve the clinical outcome of in vitro fertilization (IVF). A disadvantage of PGS is that it requires biopsy of the preimplantation human embryo, which can limit the clinical applicability of PGS due to the invasiveness and complexity of the process. Here, we present and validate a noninvasive chromosome screening (NICS) method based on sequencing the genomic DNA secreted into the culture medium from the human blastocyst. By using multiple annealing and looping-based amplification cycles (MALBAC) for whole-genome amplification (WGA), we performed next-generation sequencing (NGS) on the spent culture medium used to culture human blastocysts (n = 42) and obtained the ploidy information of all 24 chromosomes. We validated these results by comparing each with their corresponding whole donated embryo and obtained a high correlation for identification of chromosomal abnormalities (sensitivity, 0.882, and specificity, 0.840). With this validated NICS method, we performed chromosome screening on IVF embryos from seven couples with balanced translocation, azoospermia, or recurrent pregnancy loss. Six of them achieved successful clinical pregnancies, and five have already achieved healthy live births thus far. The NICS method avoids the need for embryo biopsy and therefore substantially increases the safety of its use. The method has the potential of much wider chromosome screening applicability in clinical IVF, due to its high accuracy and noninvasiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Anderson, S.L.
The effects of lifetime exposure to chronic irradiation on reproductive success were assessed for laboratory populations of the polychaete worm Neanthes arenaceodentata. Lifetime exposure was initiated upon the spawning of the P1 female and was terminated upon spawning of the F1 female. Groups of experimental worms received either no radiation (controls) or 0.19, 2.1, or 17 mGy/h. The total dose received by the worms was either background or approximately 0.55, 6.5, or 54 Gy, respectively. The broods from the F1 mated pairs were sacrificed before hatching occurred, and information was obtained on brood size, on the number of normal andmore » abnormal embryos, and on the number of embryos that were living, dying, and dead. The mean number of embryos in the broods from the F1 females exposed to lifetime radiation of 0.19 and 2.1 mGy/h was not significantly different from the mean number of embryos from control females; however, the mean number of embryos was different from those F1 females exposed to 17 mGy/h. There was a significant reduction in the number of live embryos in the broods from the F1 mated pairs that were exposed to the lowest dose rate given, 0.19 mGy/h, as well as those exposed to 2.1 and 17 mGy/h. Also, increased percentages of abnormal embryos were determined in the broods of all the radiation-exposed groups. 39 refs., 10 figs., 15 tabs.« less
Robles-Mendoza, C; García-Basilio, C; Cram-Heydrich, S; Hernández-Quiroz, M; Vanegas-Pérez, C
2009-02-01
Ambystoma mexicanum is an endemic salamander of Xochimilco, a wetland of the basin of Mexico valley. Nowadays, axolotl populations are decreasing due environmental stressors. Particularly, studies about organophosphorus pesticides (OPPs; i.e. chlorpyrifos and malathion) toxicity are of great importance due to their intensive use in agricultural activities in Xochimilco. Thus, the aim of this study was to evaluate under controlled conditions the toxicity of chlorpyrifos (CPF) and malathion (MLT) on embryos and larvae (stage 44 and 54) of A. mexicanum. Embryos and larvae were exposure 96h from 0.5 to 3mg CPFL(-1) and from 10 to 30mg MLTL(-1) in independent tests. Embryos at the end of this period were maintained 9d without pesticide in order to identify possible recuperation. Differences obtained in mortality, hatching success, development, morphological abnormalities, behaviour and activity, suggest that toxicity of CPF and MLT differs in embryos and larval stages. Embryos were less sensitive to OPPs acute exposure than axolotl larvae; additionally, toxicity of CPF in larval stages was greater than MLT. On the other hand, data obtained in axolotl embryos during the period of recuperation to CPF in particular as delay and inhibition of development, malformations and success of hatching, indicated that these responses turned out more sensitive than mortality. This study allowed to identify the toxicological potential of OPPs on early developmental stages of A. mexicanum and it is a valuable contribution for the future management of the axolotl wild population.
Saitsu, Hirotomo; Yamada, Shigehito; Uwabe, Chigako; Ishibashi, Makoto; Shiota, Kohei
2007-03-01
Development of the posterior neural tube (PNT) in human embryos is a complicated process that involves both primary and secondary neurulation. Recently, we histologically examined 20 human embryos around the stage of posterior neuropore closure and found that the axially condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord in the junctional region of the primary and secondary neural tubes. The AM appeared to be incorporated into the most ventral part of the primary neural tube, and no cavity was observed in the AM. In this study, we report three cases of human embryos with myeloschisis in which the open primary neural tube and the closed secondary neural tube overlap dorsoventrally. In all three cases, part of the closed neural tube was located ventrally to the open neural tube in the lumbosacral region. The open and closed neural tubes appeared to be part of the primary and the AM-derived secondary neural tubes, respectively. Thus, these findings suggest that, in those embryos with myeloschisis, the AM may not be incorporated into the ventral part of the primary neural tube but aberrantly differentiate into the secondary neural tube containing cavities, leading to dorsoventral overlapping of the primary and secondary neural tubes. The aberrant differentiation of the AM in embryos with lumbosacral myeloschisis suggests that the AM plays some roles in normal as well as abnormal development of the human posterior neural tube.
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun
2013-10-01
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang
2014-01-01
During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica. PMID:24404204
Tempest, Helen G; Griffin, Darren K
2005-09-01
Our understanding of the incidence and origin of chromosome abnormalities in human preimplantation embryos is very limited due to the necessary ethical constraints involved in studying such material and the limited data ultimately produced. Several studies have addressed this issue, however, using techniques such as interphase fluorescence in situ hybridisation, modified G-banding preparation and the use of single-cell comparative genomic hybridisation (CGH). This review discusses the use of these techniques in assessing chromosome abnormalities in this, the earliest of human developmental stages. In addition, the prospects for the clinical use of CGH are discussed.
Uptake and effects on detoxication enzymes of cypermethrin in embryos and tadpoles of amphibians.
Greulich, K; Pflugmacher, S
2004-11-01
A number of factors have been suggested for recently observed amphibian decreases, and one potential factor is pesticide exposure. We studied the uptake and effects of environmentally relevant concentrations of the pyrethroid insecticide cypermethrin on two different amphibian species, Bombina variegata and Rana arvalis. The uptake from water of 14C-labeled cypermethrin (0.4 microg/L) by eggs and tadpoles of B. variegata was investigated. After 24 hours of exposure, 153.9 ng cypermethrin/g fresh weight were found in embryos, thus indicating that the jelly mass of the eggs does not act as a sufficient physical barrier to protect embryos from exposure to this compound. Uptake of cypermethrin into tadpoles of both species and in all exposed individuals caused dose-dependent deformities; behavioral abnormalities such as twisting, writhing, and coordinated swimming; and mortality. In tadpoles of B. variegata and R. arvalis, the activity of microsomal and cytosolic glutathione S-transferase (mGST and sGST, respectively) were measured after treatment with cypermethrin. Activities of both GST systems increased significantly with increasing duration and concentration of cypermethrin exposure, with the reaction seeming stronger in B. variegata than in R. arvalis tadpoles. Alpha-cypermethrin--a racemic mixture of two cis isomers of cypermethrin--induced a stronger enzymatic response in the cytosolic fraction of R. arvalis tadpoles than cypermethrin at the same concentration. The observed physical and behavioral abnormities caused by environmentally relevant concentrations of cypermethrin indicate that despite detoxication of the chemical via GST-system contamination of ponds by cypermethrin could result in adverse effects on the development of amphibian embryos and tadpoles.
Groebner, Anna E; Zakhartchenko, Valeri; Bauersachs, Stefan; Rubio-Aliaga, Isabel; Daniel, Hannelore; Büttner, Mathias; Reichenbach, Horst D; Meyer, Heinrich H D; Wolf, Eckhard; Ulbrich, Susanne E
2011-10-01
Fetal overgrowth and placental abnormalities frequently occur in pregnancies following somatic cell nuclear transfer (SCNT). An optimal intrauterine supply of amino acids (AA) is of specific importance for the development of the bovine preimplantation embryo, and a defective regulation of AA supply might contribute to pregnancy failures. Thus, we analyzed 41 AA and derivatives by liquid chromatography-tandem mass spectrometry in uterine flushings of day 18 pregnant heifers carrying in vitro fertilized (IVF) or SCNT embryos, which were cultured under identical conditions until transfer to recipients. The concentrations of several AA were reduced in samples from SCNT pregnancies: L-leucine (1.8-fold), L-valine (1.6-fold), L-isoleucine (1.9-fold), L-phenylalanine (1.5-fold), L-glutamic acid (3.9-fold), L-aspartic acid (4.0-fold), L-proline (2.6-fold), L-alanine (2.0-fold), L-arginine (2.5-fold), and L-lysine (1.9-fold). The endometrial transcript abundance for the AA transporter solute carrier family 7 (amino acid transporter, L-type), member 8 (SLC7A8) was also 2.4-fold lower in SCNT pregnancies. O-phosphoethanolamine (PetN) was 11-fold (p=0.0001) reduced in the uterine fluid of animals carrying an SCNT conceptus, pointing toward changes of the phospholipid metabolism. We provide evidence for disturbed embryo-maternal interactions in the preimplantation period after transfer of SCNT embryos, which may contribute to developmental abnormalities. These are unlikely related to the major embryonic pregnancy recognition signal interferon-tau, because similar activities were detected in uterine flushings of the SCNT and IVF groups.
Exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) ...
Effects of exposure to coplanar polychlorinated biphenyls (PCBs) and other dioxin-like chemicals on developing vertebrates involve many organ systems, including the skeletal and cardiovascular systems. Apex predators, including those from the class Chondrichthyes (sharks, skates, and rays), accumulate high body burdens of PCBs through biomagnification of chemicals moving through food webs. There are no published reports of the effects of dioxin-like chemicals on the development of sharks, skates, or rays. A study was undertaken to assess developmental effects of 3, 3’, 4, 4’, 5 pentachlorobiphenyl (PCB 126) exposure in little skate, Leucoraja erinacea, a model for oviparous elasmobranchs. Skate embryos cultured outside of their egg cases were exposed to 0.02 - 20 ng/ml PCB 126 for 6 days and then grown in clean seawater for up to 29 days. Gas chromatography was used to measure PCB 126 in the exposures water and quantify its accumulation in the embryo. Digital still and video imaging was performed to assess growth, identify developmental abnormalities, and cardiovascular function. Embryos accumulated approximately 50% of PCB 126 exposure mass in the embryonic tissues and yolk sac. All embryos in the control and 0.02 ng/ml treatment survived; mortality rates were 14, 52, and 40% of embryos exposed to 0.2, 2.0, and 20.0 ng/ml, respectively. PCB 126 exposure induced yolk sac edema, deformities of the jaw, cranium, and fins, and cardiovascular system failure in
Sotomayor, Verónica; Lascano, Cecilia; de D'Angelo, Ana María Pechen; Venturino, Andrés
2012-09-01
Organophosphorus pesticides (OPs) are widely applied in the Alto Valle of Río Negro and Neuquén, Argentina, due to intensive fruit growing. Amphibians are particularly sensitive to environmental pollution, and OPs may transiently accumulate in ponds and channels of the region during their reproductive season. Organophosphorus pesticide exposure may alter amphibian embryonic development and the reproductive success of autochthonous species. In the present study, embryos of the common toad Rhinella arenarum were employed to assess developmental alterations and to study polyamine metabolism, which is essential to normal growth, as a possible target underlying the effects of the OP chlorpyrifos. As the duration of chlorpyrifos exposure increased and embryonic development progressed, the median lethal concentration (LC50) values decreased, and the percentage of malformed embryos increased. Developmental arrest was also observed and several morphological alterations were recorded, such as incomplete and abnormal closure of the neural tube, dorsal curvature of the caudal fin, reduction of body size and caudal fin length, atrophy, and edema. An early decrease in ornithine decarboxylase (ODC) activity and polyamine levels was also observed in embryos exposed to chlorpyrifos. The decrease in polyamine contents in tail bud embryos might be a consequence of the reduction in ODC activity. The alteration of polyamine metabolism occurred before embryonic growth was interrupted and embryonic malformations were observed and may be useful as a biomarker in environmental studies. Copyright © 2012 SETAC.
Chen, Yau-Hung; Tsai, Huai-Jen
2002-10-01
Myf-5 is a stage-dependent transcription factor associated with somitogenesis. To study its biological functions in zebrafish, we injected the Myf5-morpholinos ZMF-MO (antisense nucleotides 28 to 52) and ZMF-OTHER (antisense nucleotides 3 to 27) into zebrafish embryos to establish a myf-5 gene knockdown. No phenotypic abnormalities were observed following injection with 0.2 ng of ZMF-MO, but defects were displayed in 2 of 118 (1.7%) surviving embryos injected with 1 ng ZMF-MO. Morphological defects became more severe with increased dosages: 105 of 270 (38.9%) surviving embryos injected with 4.5 ng of ZMF-MO displayed such abnormalities as the absence of eyes or brains in addition to the following low-dosage defects in 24 hpf embryos: longitudinal yolk sacs, incomplete epiboly coverage, abnormal and suspended tail buds, diffused somite boundaries, and head shrinkage. Similar results were observed in the 4.5 ng ZMF-OTHER injection group. However, when fish were co-injected with 4.5 ng ZMF-MO and 4.5 ng myf-5 mRNA, abnormality rates decreased from 49.6% to 5.5%. Our results show that the brain krox20 gene was down-regulated at rhombomere 3; the pax2.1 gene was completely down-regulated; myoD was expressed normally; myogenin was substantially down-regulated in whole somites; and desmin was partly inhibited in newly forming somites. Our conclusion is that zebrafish Myf-5 may play important roles in brain formation and in the convergence and extension of shield epiblasts and tail buds during early embryogenesis, in addition to its well-understood role as a muscle regulatory factor in somites.
Salilew-Wondim, Dessie; Tesfaye, Dawit; Hoelker, Michael; Schellander, Karl
2014-09-01
After its formation, the mammalian zygote undergoes a series of morphological, physiological and biochemical alterations prior to undergoing cell differentiation. The zygote is then transformed into a complex multicellular organism in a defined time window which may differ between species. These orderly embryonic developmental events are tightly regulated by temporal and spatial activation and/or deactivation of genes and gene products. This phenomenon may in turn be dependent on the intrinsic characteristics of the embryo itself, the physiological and biochemical composition of the maternal environment or by in vitro culture condition. In fact, when embryos are subjected to suboptimal culture condition, some of the embryos may escape the environmental stress by activating certain transcripts and some others which are unable to activate anti-stress agents may die or exhibit abnormal development. This phenomenon may partly depend on transcripts and proteins stored during oogenesis. Indeed after embryonic genome activation, the embryo destiny is governed by its own transcripts and protein synthesized over time. Therefore, this review begins by highlighting the type and quality of transcripts accumulated or degraded during oogenesis and its impact on the embryo survival. Thereafter, emphasis is given to the transcriptome response of preimplantation embryos to suboptimal culture conditions. In addition, the long term effect of preimplantation culture environment on the transcriptome response embryos/fetus during peri and post implantation has been addressed. Finally, a brief summary of the epigenetic control of culture induced genetic variation of the embryos has been highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.
MICROSPOROGENESIS AND EMBRYOGENESIS IN QUERCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stairs, G. R.
1962-01-01
Representative species from two subgenera in the genus Quercus were examined for floral structure and phenology, microsporogenesis, and embryogenesis. The species selected for investigation were: Quercus alba in the Lepidobalanus subgenera, and Quercus coccinea and Quercus ilicifolia from the Erythrobalanus group. Photographs of flowering and photomicrographs of microsporogensis and embryogenesis are used for illustration. The male flowers of the three species are borne on catkins which develop in the scale leaf axils of the current vegetative bud or in separate male buds. Meiosis occurred in the spring at the beginning of bud enlargement; division figures were regular in all themore » material observed. A haploid chromosome number of 12 was confirmed for the three species. Pollen was shed on May 10, 1962, from trees of Quercus coccinea and Quercus ilicifolia; and on May 26, 1962 from Quercus alba. The female flowers are located in the axils of the new leaves. Seed development requires one growing season in Quercus alba, but two growing seasons are required to mature seed of Quercus coccinea and Quercus ilicifolia. The chronology of embryo development was similar for Quercus coccinea and Quercus ilicifolia; embryo development of Quercus alba was about two weeks behind that of the other two species. Definition of ovule dominance within a seed occurred at the time of early embryo development. Failure of this physiological expression of dominance results in multiseeded acorns. No abnormal embryogenesis per se was observed in relation to multiple embryo development. (auth)« less
Abnormal placental development and early embryonic lethality in EpCAM-null mice.
Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C
2009-12-31
EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.
Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef
2000-01-01
Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918
Preservation of mammalian germ plasm by freezing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, P.
Embryos of several mammalian species can be frozen to -196/sup 0/C (or below) by procedures that result in the thawed embryos being indistinguishable from their unfrozen counterparts. The survival often exceeds 90%, and in liquid nitrogen it should remain at that high level for centuries. Sublethal biochemical changes are also precluded at -196/sup 0/C. No developmental abnormalities have been detected in mouse offspring derived from frozen-thawed embryos, and, since all the manipulations are carried out on the preimplantation stages, none would be expected.
Blangy, A; Léopold, P; Vidal, F; Rassoulzadegan, M; Cuzin, F
1991-01-01
We have reported previously (1) two unexpected consequences of the microinjection into fertilized mouse eggs of a recombinant plasmid designated p12B1, carrying a 343 bp insert of non-repetitive mouse DNA. Injected at very low concentrations, this plasmid could be established as an extrachromosomal genetic element. When injected in greater concentration, an early arrest of embryonic development resulted. In the present work, we have studied this toxic effect in more detail by microinjecting short synthetic oligonucleotides with sequences from the mouse insert. Lethality was associated with the nucleotide sequence GTCACATG, identical with the CDEl element of yeast centromeres. Development of injected embryos was arrested between the one-cell and the early morula stages, with abnormal structures and DNA contents. Electrophoretic mobility shift and DNAse foot-printing assays demonstrated the binding of mouse nuclear protein(s) to the CDEl-like box. Base changes within the CDEl sequence prevented both the toxic effects in embryos and the formation of protein complex in vitro, suggesting that protein binding at such sites in chromosomal DNA plays an important role in early development. Images PMID:1766880
Li, Youe; Manaligod, Jose M.; Weeks, Daniel L.
2009-01-01
Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR. PMID:19951260
French, J.B.; Henry, P.F.P.; Rattner, B.A.; Ottinger, M.A.
1998-01-01
Diverse field and experimental studies suggest that abnormal sexual and reproductive development in wildlife could be caused by endocrine-like action of pollutants on embryos, and that functional deficits would be evident only later in life, during breeding. We tested these hypotheses in American kestrels (Falco sparverius). Aroclor 1242 is a commercial mixture of PCB congeners shown to be estrogenic in mice and the mixture approximates the environmental exposure of Common terns (Sterna hirundo) where abnormal development of gonads in male tern chicks was seen. Pairs of kestrels were exposed to high and low levels of Aroclor in food resulting in mean egg concentrations of 80.4 and 9.4 ppm respectively. The gonadal orphology of hatchlings was consistent with their genetic sex, and male testes showed only little histological intersexuality; fledglings had nomal gonadal morphology and histology. Female hatchlings tended to show increased androgen and decreased estrogen in their serum with increased dose of Aroclor. Similarly exposed siblings were raised to breeding age and displayed some differences in incubation behavior, but no difference in reproductive output from controls. Overall, kestrels exposed to Aroclor 1242 as embryos showed some moderate disruption of normal development, but siblings showed little functional deficit at breeding age.
Hoffman, D.J.; Gay, M.L.
1981-01-01
Studies with different avian species have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 70% of the egg surface result in considerable reduction in hatching with teratogenicity and stunted growth. Other stUdies have shown that the embryo toxicity is dependent on the aromatic hydrocarbon content, further suggesting that the toxicity is due to causes other than asphyxia. In the present study the effects of three polycyclic aromatic hydrocarbons identified in petroleum were examined on mallard (Anas platyrhynchos) embryo development. Addition of benzo[a]pyrene (BaP), chrysene, or 7,7 2-dimethylbenz[ a]anthracene (DMBA) to a synthetic petroleum hydrocarbon mixture of known composition and relatively low embryotoxicity resulted in embryo toxicity that was enhanced or equal to that of crude oil when 10 :I was applied externally to eggs at 72 h of development. The order of ability to enhance embryo toxicity was DMBA > BaP > chrysene. The temporal pattern of embryonic death was similar to that reported after exposure to crude oil, with additional mortality occurring after outgrowth of the chorioallantois. Retarded growth, as reflected by embryonic body weight, crown-rump length, and bill length, was accompanied by teratogenicity. Abnormal embryos exhibited extreme stunting; eye, brain, and bill defects; and incomplete ossification. Gas chromatographic-mass spectral analysis of externally treated eggs showed the passage of aromatic hydrocarbons including chrysene through the shell and shell membranes to the developing embryos. These findings suggest that the presence of polycyclic aromatic hydrocarbons in petroleum, including BaP, chrysene, and DMBA, significantly enhances the overall embryotoxicity in avian species.
USDA-ARS?s Scientific Manuscript database
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...
Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos
Metzler, Melissa A.; Sandell, Lisa L.
2016-01-01
Embryonic development is orchestrated by a small number of signaling pathways, one of which is the retinoic acid (RA) signaling pathway. Vitamin A is essential for vertebrate embryonic development because it is the molecular precursor of the essential signaling molecule RA. The level and distribution of RA signaling within a developing embryo must be tightly regulated; too much, or too little, or abnormal distribution, all disrupt embryonic development. Precise regulation of RA signaling during embryogenesis is achieved by proteins involved in vitamin A metabolism, retinoid transport, nuclear signaling, and RA catabolism. The reversible first step in conversion of the precursor vitamin A to the active retinoid RA is mediated by retinol dehydrogenase 10 (RDH10) and dehydrogenase/reductase (SDR family) member 3 (DHRS3), two related membrane-bound proteins that functionally activate each other to mediate the interconversion of retinol and retinal. Alcohol dehydrogenase (ADH) enzymes do not contribute to RA production under normal conditions during embryogenesis. Genes involved in vitamin A metabolism and RA catabolism are expressed in tissue-specific patterns and are subject to feedback regulation. Mutations in genes encoding these proteins disrupt morphogenesis of many systems in a developing embryo. Together these observations demonstrate the importance of vitamin A metabolism in regulating RA signaling during embryonic development in vertebrates. PMID:27983671
Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling
2016-03-01
Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.
Posobiec, Lorraine M; Cox, Estella M; Solomon, Howard M; Lewis, Elise M; Wang, Kai-fen; Stanislaus, Dinesh
2016-04-01
Embryo-fetal development (EFD) studies, typically in pregnant rats and rabbits, are conducted prior to enrolling females of reproductive age in clinical trials. Common rabbit strains used are the New Zealand White (NZW) and Dutch Belted (DB). As fetal abnormalities can occur in all groups, including controls, Historical Control Data (HCD) is compiled using data from control groups of EFD studies, and is used along with each study's concurrent control group to help determine whether fetal abnormalities are caused by the test article or are part of background incidences. A probability analysis was conducted on 2014 HCD collected at Charles River Inc., Horsham PA on Covance NZW, Covance DB, and Charles River (CR) NZW rabbits. The analysis was designed to determine the probability of 2 or 3 out of a group of 22 does aborting their litter or of having a fetal abnormality by chance. Results demonstrate that pregnancy parameters and fetal observations differ not only between strains, but between sources of rabbits of the same strain. As a result the probability of these observations occurring by chance in two or three litters was drastically different. Although no one single strain is perfect, this analysis highlights the need to appreciate the inherent differences in pregnancy and fetal abnormalities between strains, and points out that an apparent isolated increased incidence of an observation in one strain will not necessarily be test-article related in another strain. A robust HCD is critical for interpretation of EFD rabbit studies, regardless of the rabbit strain used. © 2016 Wiley Periodicals, Inc.
Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.
Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori
2011-01-01
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf
Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failedmore » to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.« less
The human sex ratio from conception to birth
Orzack, Steven Hecht; Stubblefield, J. William; Akmaev, Viatcheslav R.; Colls, Pere; Munné, Santiago; Scholl, Thomas; Steinsaltz, David; Zuckerman, James E.
2015-01-01
We describe the trajectory of the human sex ratio from conception to birth by analyzing data from (i) 3- to 6-d-old embryos, (ii) induced abortions, (iii) chorionic villus sampling, (iv) amniocentesis, and (v) fetal deaths and live births. Our dataset is the most comprehensive and largest ever assembled to estimate the sex ratio at conception and the sex ratio trajectory and is the first, to our knowledge, to include all of these types of data. Our estimate of the sex ratio at conception is 0.5 (proportion male), which contradicts the common claim that the sex ratio at conception is male-biased. The sex ratio among abnormal embryos is male-biased, and the sex ratio among normal embryos is female-biased. These biases are associated with the abnormal/normal state of the sex chromosomes and of chromosomes 15 and 17. The sex ratio may decrease in the first week or so after conception (due to excess male mortality); it then increases for at least 10–15 wk (due to excess female mortality), levels off after ∼20 wk, and declines slowly from 28 to 35 wk (due to excess male mortality). Total female mortality during pregnancy exceeds total male mortality. The unbiased sex ratio at conception, the increase in the sex ratio during the first trimester, and total mortality during pregnancy being greater for females are fundamental insights into early human development. PMID:25825766
Busquet, François; Nagel, Roland; von Landenberg, Friedrich; Mueller, Stefan O; Huebler, Nicole; Broschard, Thomas H
2008-07-01
The assessment of teratogenic effects of chemicals is generally performed using in vivo teratogenicity assays, for example, in rats or rabbits. We have developed an in vitro teratogenicity assay using the zebrafish Danio rerio embryo combined with an exogenous mammalian metabolic activation system (MAS), able to biotransform proteratogenic compounds. Cyclophosphamide (CPA) and ethanol were used as proteratogens to test the efficiency of this assay. Briefly, the zebrafish embryos were cocultured at 2 hpf (hours postfertilization) with the test material at varying concentrations, induced male rat liver microsomes and nicotinamide adenine dinucleotide phosphate (reduced) for 60 min at 32 degrees C under moderate agitation in Tris-buffer. The negative control (test material alone) and the MAS control (MAS alone) were incubated in parallel. For each test group, 20 eggs were used for statistical robustness. Afterward fish embryos were transferred individually into 24-well plates filled with fish medium for 48 h at 26 degrees C with a 12-h light cycle. Teratogenicity was scored after 24 and 48 hpf using morphological endpoints. No teratogenic effects were observed in fish embryos exposed to the proteratogens alone, that is, without metabolic activation. In contrast, CPA and ethanol induced abnormalities in fish embryos when coincubated with microsomes. The severity of malformations increased with increasing concentrations of the proteratogens. We conclude that the application of microsomes will improve and refine the D. rerio teratogenicity assay as a predictive and valuable alternative method to screen teratogenic substances.
Costa, Angela M Sousa; Pereira-Castro, Isabel; Ricardo, Elisabete; Spencer, Forrest; Fisher, Shannon; da Costa, Luís Teixeira
2013-01-01
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
Nagaike, Koki; Kawaguchi, Makiko; Takeda, Naoki; Fukushima, Tsuyoshi; Sawaguchi, Akira; Kohama, Kazuyo; Setoyama, Mitsuru; Kataoka, Hiroaki
2008-01-01
Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1+/+ blastocysts with Hai-1/Spint1−/− embryonic stem cells successfully generated high-chimeric Hai-1/Spint1−/− embryos (B6Hai-1−/−High) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1−/− mice was caused by placental dysfunction. However, newborn B6Hai-1−/−High mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development. PMID:18832587
Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua
2017-10-01
Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.
Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing
2013-03-15
Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality. Copyright © 2013 Elsevier Inc. All rights reserved.
Miki, H; Wakisaka, N; Inoue, K; Ogonuki, N; Mori, M; Kim, J-M; Ohta, A; Ogura, A
2009-06-01
Somatic cell cloning by nuclear transfer (NT) in mice is associated with hyperplastic placentas at term. To dissect the effects of embryonic and extraembryonic tissues on this clone-associated phenotype, we constructed diploid (2n) fused with (<-->) tetraploid (4n) chimeras from NT- and fertilization-derived (FD) embryos. Generally, the 4n cells contributed efficiently to all the extraembryonic tissues but not to the embryo itself. Embryos constructed by 2n NT<-->4n FD aggregation developed hyperplastic placentas (0.33+/-0.22 g) with a predominant contribution by NT-derived cells. Even when the population of FD-derived cells in placentas was increased using multiple FD embryos (up to four) for aggregation, most placentas remained hyperplastic (0.36+/-0.13 g). By contrast, placentas of the reciprocal combination, 2n FD<-->4n NT, were less hyperplastic (0.15+/-0.02 g). These nearly normal-looking placentas had a large proportion of NT-derived cells. Thus, embryonic rather than extraembryonic tissues had more impact on the onset of placental hyperplasia, and that the abnormal placentation in clones occurs in a noncell-autonomous manner. These findings suggest that for improvement of cloning efficiency we should understand the mechanisms regulating placentation, especially those of embryonic origin that might control the proliferation of trophoblastic lineage cells.
Further Development and Validation of the frog Embryo Teratogenesis Assay - Xenopus (FETAX)
1991-02-28
abnormalities.39 40 The teratogenic effects of serotonin in the laboratory rat include anophthalmia , hydrocephalus, exencephaly, omphalocoele and vacuolization...kinky tail. ZnSO4 in Xenopus, should be tested in parallel with hemangioma. anophthalmia and scoliosis). Skeletal a metabolic activation system to show...teratogenic effects of 0 serotonin in the laboratory rat include anophthalmia , hydrocephalus, exencephaly, omphalocele and vacuolization of myocardial cells.41
TIME-TEMPERATURE RELATIONS IN THE INCUBATION OF THE WHITEFISH, COREGONUS CLUPEAFORMIS (MITCHILL)
Price, John W.
1940-01-01
1. Whitefish eggs incubated in aerated lake water at controlled tempera tures of 0°, 0.5°, 2°, 4°, 6°, 8°, 10°, and 12°C., failed to hatch at either 0° or 12°C. 0.6 per cent hatched alive at 10°C., 72.67 per cent hatched alive at 0.5°C., and an intermediate proportion hatched at intermediate temperatures. 2. The percentage of abnormal embryos which developed to the hatching stage varied directly with temperature between 4° and 12°, all embryos being abnormal at 12°C.; but none were abnormal at either 0.5°, or 2°C. Normal development predominated from 0.5 to 6°C. The highest proportion of embryos to hatch alive was 72.67 per cent at 0.5°C., which is, hence, the optimum temperature. 3. Total incubation time ranged from 29.6 days at 10°C. to 141 days at 0.5°C. 4. The time (T) required to attain any given stage of development is expressed in equations See PDF for Equation where temperature, t, is a negative exponent of the constant, A, whose value differs above or below 6°C., a critical temperature. Values of A above 6° fluctuate about 1.13; those of A below 6° fluctuate about 1.19 as a mean. 5. Applying Arrhenius' equation µ values for the total incubation period are 27,500 below 6° and 27,100 above it. 6. The relative magnitude of A values of the exponential equation and µ values of Arrhenius' equation show corresponding changes from one developmental period to another. 7. When plotted, thermal increments show cyclic variations, with maxima during periods of cleavage and of organogenesis. These may indicate the interaction of two separate sets of embryonic processes, which give a maximal response to temperature differences during these two separate periods. 8. Above 6°, µ values during the hatching process are distinct from those of developmental stages and are regarded as being due to the action of hatching enzymes. PMID:19873168
Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, François; Davoult, Dominique; Martin, Sophie
2014-01-01
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 μatm) and at elevated levels (750 and 1400 μatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 μatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 μatm and 1400 μatm pCO2, respectively, than at 390 μatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
The zebrafish as a model system to study cardiovascular development.
Stainier, D Y; Fishman, M C
1994-01-01
The zebrafish, Brachydanio rerio, is rapidly becoming a system of choice for vertebrate developmental biologists. It presents unique embryological attributes and is amenable to saturation style mutagenesis, a powerful approach that, in invertebrates, has already led to the identification of a large number of key developmental genes. Since fertilization is external, the zebrafish embryo develops in the dish and is thus accessible for continued observation and manipulation at all stages of development. Furthermore, because the embryo is transparent, the developing heart and vessels can be resolved at the single-cell level. A large number of mutations that affect the development of cardiovascular form and function have recently been isolated from large-scale genetic screens for zygotic embryonic lethals. Our further understanding of the development of the cardiovascular system is important not only because of the high incidence, and familial inheritance, of congenital abnormalities, but also because it should lead to novel, differentiation-based strategies for the analysis and therapy of the diseased state. Copyright © 1994. Published by Elsevier Inc.
Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy
2017-04-01
Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate and implantation rate when compared with transfer in a stimulated cycle.
Embryotoxicity of orally administered chromium in mice: exposure during the period of organogenesis.
Junaid, M; Murthy, R C; Saxena, D K
1996-03-01
Administration of chromium (VI)(250, 500 and 750 ppm as potassium dichromate) via drinking water during organogenesis (days 6-14 of gestation) in mice revealed embryo- and fetotoxic effects. Reduced fetal weight, retarded fetal development, number of fetuses (live and dead) per mother and high incidences of dead fetuses and resorptions in treated mothers in the highest dosed group were evident. No significant gross structural abnormalities were observed in any of the fetuses of chromium (VI)-treated mothers. Significant incidences of reduced ossification were found in the highest dosed group. Chromium levels were increased in a dose-dependent manner in maternal blood, placenta and fetuses. The present study suggests a risk to the developing embryo if the mother is exposed to a sufficiently high concentration of chromium (VI) through drinking water during the period of organogenesis.
Okubo, Tadashi; Takada, Shinji
2015-07-01
The pharyngeal arches (PAs) generate cranial organs including the tongue. The taste placodes, formed in particular locations on the embryonic tongue surface, differentiate into taste buds harbored in distinct gustatory papillae. The developing tongue also has a complex supply of cranial nerves through each PA. However, the relationship between the PAs and taste bud development is not fully understood. Ripply3 homozygous mutant mice, which have impaired third/fourth PAs, display a hypoplastic circumvallate papilla and lack taste buds, although the taste placode is normally formed. Formation of the glossopharyngeal ganglia is defective and innervation toward the posterior tongue is completely missing in Ripply3 mutant embryos at E12.5. Moreover, the distribution of neuroblasts derived from the epibranchial placode is severely, but not completely, atenuated, and the neural crest cells are diminished in the third PA region of Ripply3 mutant embryos at E9.5-E10.5. In Tbx1 homozygous mutant embryos, which exhibit another type of deficiency in PA development, the hypoplastic circumvallate papilla is observed along with abnormal formation of the glossopharyngeal ganglia and severely impaired innervation. PA deficiencies affect multiple aspects of taste bud development, including formation of the cranial ganglia and innervation to the posterior tongue. © 2015 Wiley Periodicals, Inc.
Dulay, Rich Milton R; Kalaw, Sofronio P; Reyes, Renato G; Alfonso, Noel F; Eguchi, Fumio
2012-01-01
This paper highlights the teratogenic and toxic effects of Ganoderma lucidum (Lingzhi or Reishi mushroom) extract on zebrafish embryos. Hatchability, malformations, and lethality rate of zebrafish embryos were assessed to provide valuable information regarding the potential teratogenic activity of G. lucidum. Hatching was completed 48 h post treatment application (hpta) at 1% or lower concentrations of extract and embryo water. The hatching rate of embryos treated with 5% or higher concentrations was significantly lower (p> 0.05) than the control. Tail malformation was the most marked morphological abnormality in embryos at 72 hpta, which was obviously caused by 1% extract (55.56% tail malformation) and was observed in all embryos exposed to 5% of extract. Growth retardation was evident in embryos exposed to 5%, 10%, and 20%. However, lethal effect of extract of G. lucidum was dependent on dose and time of exposure. Mortality rates of embryos treated with 5% (44.44%) or higher concentrations of the extract was significantly higher (p > 0.05) than that of the control embryos at 72 hpta. These results suggest that G. lucidum extract has lethal and sub-lethal effects on zebrafish embryos.
Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin
2010-12-01
Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.
Barik, Mayadhar; Bajpai, Minu; Patnaik, Santosh; Mishra, Pravash; Behera, Priyamadhaba; Dwivedi, Sada Nanda
2016-01-01
Cryopreservation is basically related to meritorious thin samples or small clumps of cells that are cooled quickly without loss. Our main objective is to establish and formulate an innovative method and protocol development for cryopreservation as a gold standard for clinical uses in laboratory practice and treatment. The knowledge regarding usefulness of cryopreservation in clinical practice is essential to carry forward the clinical practice and research. We are trying to compare different methods of cryopreservation (in two dozen of cells) at the same time we compare the embryo and oocyte freezing interms of fertilization rate according to the International standard protocol. The combination of cryoprotectants and regimes of rapid cooling and rinsing during warming often allows successful cryopreservation of biological materials, particularly cell suspensions or thin tissue samples. Examples include semen, blood, tissue samples like tumors, histological cross-sections, human eggs and human embryos. Although presently many studies have reported that the children born from frozen embryos or "frosties," show consistently positive results with no increase in birth defects or development abnormalities is quite good enough and similar to our study (50-85%). We ensure that cryopreservation technology provided useful cell survivability, tissue and organ preservation in a proper way. Although it varies according to different laboratory conditions, it is certainly beneficial for patient's treatment and research. Further studies are needed for standardization and development of new protocol.
Effect of Tbx1 knock-down on cardiac performance in zebrafish.
Zhang, Li-feng; Gui, Yong-hao; Wang, Yue-xiang; Jiang, Qiu; Song, Hou-yan
2010-05-05
Tbx1 is the major candidate gene for DiGeorge syndrome (DGS). Similar to defects observed in DGS patients, the structures disrupted in Tbx1(-/-) animal models are derived from the neural crest cells during development. Although the morphological phenotypes of some Tbx1 knock-down animal models have been well described, analysis of the cardiac performance is limited. Therefore, myocardial performance was explored in Tbx1 morpholino injected zebrafish embryos. To elucidate these issues, Tbx1 specific morpholino was used to reduce the function of Tbx1 in zebrafish. The differentiation of the myocardial cells was observed using whole mount in situ hybridization. Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf). The cardiac performance was analyzed by measuring ventricular shortening fraction and atrial shortening fraction. Tbx1 morpholino injected embryos were characterized by defects in the pharyngeal arches, otic vesicle, aortic arches and thymus. In addition, Tbx1 knock down reduced the amount of pharyngeal neural crest cells in zebrafish. Abnormal cardiac morphology was visible in nearly 20% of the Tbx1 morpholino injected embryos. The hearts in these embryos did not loop or loop incompletely. Importantly, cardiac performance and heart rate were reduced in Tbx1 morpholino injected embryos. Tbx1 might play an essential role in the development of pharyngeal neural crest cells in zebrafish. Cardiac performance is impaired by Tbx1 knock down in zebrafish.
Liu, Tianbin; Dou, Hongwei; Xiang, Xi; Li, Yong; Pang, Xinzhi; Zhang, Yijie; Chen, Yu; Luan, Jing; Xu, Ying; Yang, Zhenzhen; Yang, Wenxian; Liu, Huan; Li, Feida; Wang, Hui; Yang, Huanming; Bolund, Lars; Vajta, Gabor
2015-01-01
Abstract Data analysis in somatic cell nuclear transfer (SCNT) research is usually limited to several hundreds or thousands of reconstructed embryos. Here, we report mass results obtained with an established and consistent porcine SCNT system (handmade cloning [HMC]). During the experimental period, 228,230 reconstructed embryos and 82,969 blastocysts were produced. After being transferred into 656 recipients, 1070 piglets were obtained. First, the effects of different types of donor cells, including fetal fibroblasts (FFs), adult fibroblasts (AFs), adult preadipocytes (APs), and adult blood mesenchymal (BM) cells, were investigated on the further in vitro and in vivo development. Compared to adult donor cells (AFs, APs, BM cells, respectively), FF cells resulted in a lower blastocyst/reconstructed embryo rate (30.38% vs. 37.94%, 34.65%, and 34.87%, respectively), but a higher overall efficiency on the number of piglets born alive per total blastocysts transferred (1.50% vs. 0.86%, 1.03%, and 0.91%, respectively) and a lower rate of developmental abnormalities (10.87% vs. 56.57%, 24.39%, and 51.85%, respectively). Second, recloning was performed with cloned adult fibroblasts (CAFs) and cloned fetal fibroblasts (CFFs). When CAFs were used as the nuclear donor, fewer developmental abnormalities and higher overall efficiency were observed compared to AFs (56.57% vs. 28.13% and 0.86% vs. 1.59%, respectively). However, CFFs had an opposite effect on these parameters when compared with CAFs (94.12% vs. 10.87% and 0.31% vs. 1.50%, respectively). Third, effects of genetic modification on the efficiency of SCNT were investigated with transgenic fetal fibroblasts (TFFs) and gene knockout fetal fibroblasts (KOFFs). Genetic modification of FFs increased developmental abnormalities (38.96% and 25.24% vs. 10.87% for KOFFs, TFFs, and FFs, respectively). KOFFs resulted in lower overall efficiency compared to TFFs and FFs (0.68% vs. 1.62% and 1.50%, respectively). In conclusion, this is the first report of large-scale analysis of porcine cell nuclear transfer that provides important data for potential industrialization of HMC technology. PMID:26655078
[Wilson's principles--a base of modern teratology].
Burdan, Franciszek; Bełzek, Artur; Szumiło, Justyna; Dudka, Jarosław; Korobowicz, Agnieszka; Tokarska, Edyta; Klepacz, Lidia; Bełzek, Marta; Klepacz, Robert
2006-03-01
Wilson's principles were formulated after thalidomide tragedy. They become a fundamental for teratological studies with drugs and other factors that may disturb fetal development. It is postulated that susceptibility to teratogen depends on the genotype and developmental stage of the conceptus. Teratogenic agents act in specific manner on developing cells and tissues. The exposition depends on the agent's nature and availability. Manifestations of deviant development depends on the dosage and exposure frequency. In case of abnormal development the final manifestations include death of embryo or fetus, malformation, growth retardation and functional disorder.
Takahashi, Mifumi; Komada, Munekazu; Miyazawa, Ken; Goto, Shigemi; Ikeda, Yayoi
2018-03-01
Bisphenol A (BPA) is a widely used compound in the food packaging industry. Prenatal exposure to BPA induces histological abnormalities in the neocortex and hypothalamus in association with abnormal behaviors. Yet, the molecular and cellular neurodevelopmental toxicological mechanisms of BPA are incompletely characterized on neuroinflammatory-related endopoints. To evaluate the neurodevelopmental effects of BPA exposure in mouse embryos, we examined microglial numbers as well as the expression of microglial-related factors in the E15.5 embryonic brain. BPA-exposed embryos exhibited significant increases in Iba1-immunoreactive microglial numbers in the dorsal telencephalon and the hypothalamus compared to control embryos. Further, the expression levels of microglial markers (Iba1, CD16, iNOS, and CD206), inflammatory factors (TNFα and IL4), signal transducing molecules (Cx3Cr1 and Cx3Cl1), and neurotrophic factor (IGF1) were altered in BPA-exposed embryos. These findings suggest that BPA exposure increases microglial numbers in the brain and alters the neuroinflammatory status at a transcriptional level. Together, these changes may represent a novel target for neurodevelopmental toxicity assessment after BPA exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Genes, embryos, and future people.
Glannon, Walter
1998-07-01
Testing embryonic cells for genetic abnormalities gives us the capacity to predict whether and to what extent people will exist with disease and disability. Moreover, the freezing of embryos for long periods of time enables us to alter the length of a normal human lifespan. After highlighting the shortcomings of somatic-cell gene therapy and germ-line genetic alteration, I argue that the testing and selective termination of genetically defective embryos is the only medically and morally defensible way to prevent the existence of people with severe disability, pain and suffering that make their lives not worth living for them on the whole. In addition, I consider the possible harmful effects on children born from frozen embryos after the deaths of their biological parents, or when their parents are at an advanced age. I also explore whether embryos have moral status and whether the prospects for disease-preventing genetic alteration can justify long-term cryopreservation of embryos.
Laboratory techniques for human embryos.
Geber, Selmo; Sales, Liana; Sampaio, Marcos A C
2002-01-01
This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.
Refrigeration of rainbow trout gametes and embryos.
Babiak, Igor; Dabrowski, Konrad
2003-12-01
Prolonged access to early embryos composed of undifferentiated, totipotent blastomeres is desirable in situations when multiple collections of gametes are not possible. The objective of the present study is to examine whether the refrigeration of rainbow trout Oncorhynchus mykiss gametes and early embryos would be a suitable, reliable, and efficient tool for prolonging the availability of early developmental stages up to the advanced blastula stage. The study was conducted continuously during fall, winter, and spring spawning seasons. In all, more than 500 experimental variants were performed involving individual samples from 26 females and 33 males derived from three strains. These strains represented three possible circumstances. In optimal one, gametes from good quality donors were obtained soon after ovulation. In the two non-optimal sources, either donors were of poor genetic quality or gametes were collected from a distant location and transported as unfertilized gametes. A highly significant effect of variability of individual sample quality on efficiency of gamete and embryo refrigeration was revealed. The source of gametes significantly affected viability of refrigerated oocytes and embryos, but not spermatozoa. On average, oocytes from optimal source retained full fertilization viability for seven days of chilled storage, significantly longer than from non-optimal sources. Spermatozoa, regardless of storage method, retained full fertilization ability for the first week of storage. Refrigeration of embryos at 1.4+/-0.4 degrees C significantly slowed the development. Two- week-old embryos were still in blastula stage. Average survival rate of embryos refrigerated for 10 days and then transferred to regular incubation temperatures of 9-14 degrees C was 92% in optimal and 51 and 71% in non-optimal source variants. No effect of gamete and embryo refrigeration on the occurrence of developmental abnormalities was observed. Cumulative refrigeration of oocytes and embryos resulted in an average embryo survival rate of 71% in optimal source variants after 17 days of refrigeration (7 days oocytes+10 days embryos). The study shows that both gamete and embryo refrigeration can be successfully used as an efficient tool for prolonging availability of rainbow trout embryos in early developmental stages. Copyright 2003 Wiley-Liss, Inc.
2013-01-01
Background Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury. The role of KLF4, and the possible overlapping functions of KLF2 and KLF4, in the developing vasculature are not well-studied. Results Endothelial breaks are observed in a major vessel, the primary head vein (PHV), in KLF2-/-KLF4-/- embryos at E9.5. KLF2-/-KLF4-/- embryos die by E10.5, which is earlier than either single knockout. Gross hemorrhaging of multiple vessels may be the cause of death. E9.5 KLF2-/-KLF4+/- embryos do not exhibit gross hemorrhaging, but cross-sections display disruptions of the endothelial cell layer of the PHV, and these embryos generally also die by E10.5. Electron micrographs confirm that there are gaps in the PHV endothelial layer in E9.5 KLF2-/-KLF4-/- embryos, and show that the endothelial cells are abnormally bulbous compared to KLF2-/- and wild-type (WT). The amount of endothelial Nitric Oxide Synthase (eNOS) mRNA, which encodes an endothelial regulator, is reduced by 10-fold in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. VEGFR2, an eNOS inducer, and occludin, a tight junction protein, gene expression are also reduced in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. Conclusions This study begins to define the roles of KLF2 and KLF4 in the embryonic development of blood vessels. It indicates that the two genes interact to maintain an intact endothelial layer. KLF2 and KLF4 positively regulate the eNOS, VEGFR2 and occludin genes. Down-regulation of these genes in KLF2-/-KLF4-/- embryos may result in the observed loss of vascular integrity. PMID:24261709
Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue
2014-01-01
Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426
Effects of lead on the male mouse as investigated by in vitro fertilization and blastocyst culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, L.; Sjoeblom, P.; Wide, M.
1987-02-01
Long-term exposure of male mice to inorganic lead (lead chloride, 1 g/liter) in the drinking water reduces their fertility. The cause of this reduction, expressed as a decrease in the number of mated females showing inplantations, was investigated, using an in vivo fertilization method. It was found that spermatozoa from lead-exposed males had a significantly lower ability to fertilize mouse eggs than those from unexposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males, were examined. No morphologically abnormal embryos were found. However, whenmore » cultured in vitro over the implantation period, blastocysts of the group mated with lead-exposed males showed an increased frequency of delayed hatching from the zona pellucida or an inability to hatch. Among blastocysts from this group a decreased frequency of inner cell mass development was also found.« less
Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice
Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.
2009-01-01
The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531
Blood flow patterns underlie developmental heart defects
Midgett, Madeline; Thornburg, Kent
2017-01-01
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. PMID:28062416
A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI
Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa
2018-01-01
Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnoshtein, F.; Buchwald, M.
1994-09-01
Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist inmore » interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.« less
Costa, Ângela M. Sousa; Pereira-Castro, Isabel; Ricardo, Elisabete; Spencer, Forrest; Fisher, Shannon; da Costa, Luís Teixeira
2013-01-01
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes’ roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development. PMID:23840876
NASA Astrophysics Data System (ADS)
Ubbels, Geertje A.; Berendsen, Willem; Kerkvliet, Sonja; Narraway, Jenny
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we inted to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.
Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J
1992-01-01
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.
Orsi, Guillermo A; Joyce, Eric F; Couble, Pierre; McKim, Kim S; Loppin, Benjamin
2010-10-15
The Drosophila I-R type of hybrid dysgenesis is a sterility syndrome (SF sterility) associated with the mobilization of the I retrotransposon in female germ cells. SF sterility results from a maternal-effect embryonic lethality whose origin has remained unclear since its discovery about 40 years ago. Here, we show that meiotic divisions in SF oocytes are catastrophic and systematically fail to produce a functional female pronucleus at fertilization. As a consequence, most embryos from SF females rapidly arrest their development with aneuploid or damaged nuclei, whereas others develop as non-viable, androgenetic haploid embryos. Finally, we show that, in contrast to mutants affecting the biogenesis of piRNAs, SF egg chambers do not accumulate persistent DNA double-strand breaks, suggesting that I-element activity might perturb the functional organization of meiotic chromosomes without triggering an early DNA damage response.
Anastasaki, Corina; Estep, Anne L; Marais, Richard; Rauen, Katherine A; Patton, E Elizabeth
2009-07-15
The Ras/MAPK pathway is critical for human development and plays a central role in the formation and progression of most cancers. Children born with germ-line mutations in BRAF, MEK1 or MEK2 develop cardio-facio-cutaneous (CFC) syndrome, an autosomal dominant syndrome characterized by a distinctive facial appearance, heart defects, skin and hair abnormalities and mental retardation. CFC syndrome mutations in BRAF promote both kinase-activating and kinase-impaired variants. CFC syndrome has a progressive phenotype, and the availability of clinically active inhibitors of the MAPK pathway prompts the important question as to whether such inhibitors might be therapeutically effective in the treatment of CFC syndrome. To study the developmental effects of CFC mutant alleles in vivo, we have expressed a panel of 28 BRAF and MEK alleles in zebrafish embryos to assess the function of human disease alleles and available chemical inhibitors of this pathway. We find that both kinase-activating and kinase-impaired CFC mutant alleles promote the equivalent developmental outcome when expressed during early development and that treatment of CFC-zebrafish embryos with inhibitors of the FGF-MAPK pathway can restore normal early development. Importantly, we find a developmental window in which treatment with a MEK inhibitor can restore the normal early development of the embryo, without the additional, unwanted developmental effects of the drug.
Zhang, Qianqian; Ye, Xiangfeng; Wang, Lingzhi; Peng, Bangjie; Zhang, Yingxue; Bao, Jie; Li, Wanfang; Wei, Jinfeng; Wang, Aiping; Jin, Hongtao; Chen, Shizhong
2016-02-01
The aim of this study was to evaluate the embryo-fetal development toxicity of honokiol microemulsion. The drug was intravenously injected to pregnant SD rats at dose levels of 0, 200, 600 and 2000 μg/kg/day from day 6-15 of gestation. All the pregnant animals were observed for body weights and any abnormal changes and subjected to caesarean-section on gestation day (GD) 20; all fetuses obtained from caesarean-section were assessed by external inspection, visceral and skeletal examinations. No treatment-related external alterations as well as visceral and skeletal malformations were observed in honokiol microemulsion groups. There was no significant difference in the body weight gain of the pregnant rats, average number of corpora lutea, and the gravid uterus weight in the honokiol microemulsion groups compared with the vehicle control group. However, at a dose level of 2000 μg/kg/day, there was embryo-fetal developmental toxicity observed, including a decrease in the body length and tail length of fetuses. In conclusion, the no-observed-adverse-effect level (NOAEL) of honokiol microemulsion is 600 μg/kg/day, 75 times above the therapeutic dosage and it has embryo-fetal toxicity at a dose level of 2000 μg/kg/day, which is approximately 250 times above the therapeutic dosage. Copyright © 2015 Elsevier Inc. All rights reserved.
The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*
You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao
2015-01-01
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539
The rat whole embryo culture assay using the Dysmorphology Score system.
Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen
2013-01-01
The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.
Postotic and preotic cranial neural crest cells differently contribute to thyroid development.
Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko
2016-01-01
Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Carlin, Dan; Sepich, Diane; Grover, Vandana K; Cooper, Michael K; Solnica-Krezel, Lilianna; Inbal, Adi
2012-07-01
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Carlin, Dan; Sepich, Diane; Grover, Vandana K.; Cooper, Michael K.; Solnica-Krezel, Lilianna; Inbal, Adi
2012-01-01
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway. PMID:22736245
Bleyl, Steven B.; Saijoh, Yukio; Bax, Noortje A.M.; Gittenberger-de Groot, Adriana C.; Wisse, Lambertus J.; Chapman, Susan C.; Hunter, Jennifer; Shiratori, Hidetaka; Hamada, Hiroshi; Yamada, Shigehito; Shiota, Kohei; Klewer, Scott E.; Leppert, Mark F.; Schoenwolf, Gary C.
2010-01-01
Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (∼7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (∼30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR. PMID:20071345
Barik, Mayadhar; Bajpai, Minu; Patnaik, Santosh; Mishra, Pravash; Behera, Priyamadhaba; Dwivedi, Sada Nanda
2016-01-01
Background: Cryopreservation is basically related to meritorious thin samples or small clumps of cells that are cooled quickly without loss. Our main objective is to establish and formulate an innovative method and protocol development for cryopreservation as a gold standard for clinical uses in laboratory practice and treatment. The knowledge regarding usefulness of cryopreservation in clinical practice is essential to carry forward the clinical practice and research. Materials and Methods: We are trying to compare different methods of cryopreservation (in two dozen of cells) at the same time we compare the embryo and oocyte freezing interms of fertilization rate according to the International standard protocol. Results: The combination of cryoprotectants and regimes of rapid cooling and rinsing during warming often allows successful cryopreservation of biological materials, particularly cell suspensions or thin tissue samples. Examples include semen, blood, tissue samples like tumors, histological cross-sections, human eggs and human embryos. Although presently many studies have reported that the children born from frozen embryos or “frosties,” show consistently positive results with no increase in birth defects or development abnormalities is quite good enough and similar to our study (50–85%). Conclusions: We ensure that cryopreservation technology provided useful cell survivability, tissue and organ preservation in a proper way. Although it varies according to different laboratory conditions, it is certainly beneficial for patient's treatment and research. Further studies are needed for standardization and development of new protocol. PMID:27512686
Blackburn, Daniel G; Weaber, Kera K; Stewart, James R; Thompson, Michael B
2003-05-01
Although pregnant viviparous squamates are sometimes claimed to be able to resorb inviable eggs and embryos from the uterus, definitive evidence for such resorption is not available. After placing pregnant female Pseudemoia pagenstecheri into conditions under which embryonic development is terminated, we periodically harvested the gravid oviducts and examined them histologically. Females contained abnormal and degenerating eggs and embryos that had died in various stages of development. Dead embryos had undergone extensive cytolysis, dissolution, and aseptic necrosis and vitelline masses showed signs of deterioration and passage down the oviduct. The uterine mucosa lay in direct contact with the vitelline material, with no intact shell membrane intervening between them. Yolk was sometimes displaced into the exocoelom and allantoic cavity due to rupture of the extraembryonic membranes. Histological examination revealed no evidence of the uptake of yolk by the uterine epithelium or its accumulation in the subepithelial connective tissue. In many specimens, the uterine epithelium showed minuscule, apical granules. The position, appearance, and staining properties of the granules suggests them to be secretory, a manifestation of placentotrophy. Our observations indicate that P. pagenstecheri females retain dead eggs and embryos for several weeks or longer, yet do not resorb them during that period. This lizard is the second placentotrophic skink species in which resorption has been suspected, but in which abortive eggs appear to be retained or extruded instead of being resorbed by the oviducts. Researchers should not assume that squamates can digest and resorb oviductal eggs without definitive morphological evidence. Copyright 2003 Wiley-Liss, Inc.
Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo
2016-01-01
Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.
The chicken talpid3 gene encodesa novel protein essentialfor Hedgehog signaling
Davey, Megan G.; Paton, I. Robert; Yin, Yili; Schmidt, Maike; Bangs, Fiona K.; Morrice, David R.; Smith, Terence Gordon; Buxton, Paul; Stamataki, Despina; Tanaka, Mikiko; Münsterberg, Andrea E.; Briscoe, James; Tickle, Cheryll; Burt, Dave W.
2006-01-01
Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins. PMID:16702409
Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K
1995-08-01
The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.
Morbidity-mortality and performance evaluation of Brahman calves from in vitro embryo production
2011-01-01
Background The use of bovine in vitro embryo production (IVP) increases the reproductive potential of genetically superior cows, enabling a larger scale of embryo production when compared with other biotechnologies. However, deleterious effects such as abnormal fetal growth, longer gestation period, increased birth weight, abortion, preterm birth and higher rates of neonatal mortality have been attributed to IVP. The aim of this study was to compare the influence of in vitro embryo production and artificial insemination (AI) on gestation length, complications with birth, birth weight, method of feeding colostrum, passive transfer of immunity, morbidity-mortality, and performance in Brahman calves. Results Whilst gestation length and birth weight were significantly increased in IVP-derived calves, no difference in weaning weight was observed between groups. The passive transfer of immunity (PT), was assessed in IVP (n = 80) and AI (n = 20) groups 24 hours after birth by determination of gamma-glutamyl transferase (GGT) and gammaglobulin activity as well as by quantification of the concentration of total protein in serum. No differences in passive transfer or incidences of dystocia and diseases at weaning were observed between groups. Birth weight, method of feeding colostrum and dystocia were not correlated with PT in either group. Conclusions In this study, in vitro embryo production did not affect the health status, development, or passive transfer of immunity in Brahman calves. PMID:22136315
Nakayama, Takuya; Nakajima, Keisuke; Cox, Amanda; Fisher, Marilyn; Howell, Mary; Fish, Margaret B; Yaoita, Yoshio; Grainger, Robert M
2017-06-15
We describe a novel recessive and nonlethal pigmentation mutant in Xenopus tropicalis. The mutant phenotype can be initially observed in tadpoles after stage 39/40, when mutant embryos display markedly reduced pigmentation in the retina and the trunk. By tadpole stage 50 almost all pigmented melanophores have disappeared. Most interestingly, those embryos fail entirely to make pigmented iridophores. The combined reduction/absence of both pigmented iridophores and melanophores renders these embryos virtually transparent, permitting one to easily observe both the developing internal organs and nervous system; accordingly, we named this mutant no privacy (nop). We identified the causative genetic lesion as occurring in the Xenopus homolog of the human Hermansky-Pudlak Syndrome 6 (HPS6) gene, combining several approaches that utilized conventional gene mapping and classical and modern genetic tools available in Xenopus (gynogenesis, BAC transgenesis and TALEN-mediated mutagenesis). The nop allele contains a 10-base deletion that results in truncation of the Hps6 protein. In humans, HPS6 is one of the genes responsible for the congenital disease HPS, pathological symptoms of which include oculocutaneous albinism caused by defects in lysosome-related organelles required for pigment formation. Markers for melanin-producing neural crest cells show that the cells that would give rise to melanocytes are present in nop, though unpigmented. Abnormalities develop at tadpole stages in the pigmented retina when overall pigmentation becomes reduced and large multi-melanosomes are first formed. Ear development is also affected in nop embryos when both zygotic and maternal hsp6 is mutated: otoliths are often reduced or abnormal in morphology, as seen in some mouse HPS mutations, but to our knowledge not described in the BLOC-2 subset of HPS mutations nor described in non-mammalian systems previously. The transparency of the nop line suggests that these animals will aid studies of early organogenesis during tadpole stages. In addition, because of advantages of the Xenopus system for assessing gene expression, cell biological mechanisms, and the ontogeny of melanosome and otolith formation, this should be a highly useful model for studying the molecular mechanisms underlying the acquisition of the HPS phenotype and the underlying biology of lysosome-related organelle function. Copyright © 2016 Elsevier Inc. All rights reserved.
Virtual reality imaging techniques in the study of embryonic and early placental health.
Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P
2018-04-01
Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.
Heart-specific expression of laminopathic mutations in transgenic zebrafish.
Verma, Ajay D; Parnaik, Veena K
2017-07-01
Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.
Yovich, John L; Conceicao, Jason L; Marjanovich, Nicole; Ye, Yun; Hinchliffe, Peter M; Dhaliwal, Satvinder S; Keane, Kevin N
2018-05-22
IVF cycles utilizing the ICSI technique for fertilization have been rising over the 25 years since its introduction, with indications now extending beyond male factor infertility. We have performed ICSI for 87% of cases compared with the ANZARD average of 67%. This retrospective study reports on the outcomes of 1547 autologous ART treatments undertaken over a recent 3-year period. Based on various indications, cases were managed within 3 groupings - IVF Only, ICSI Only or IVF-ICSI Split insemination where oocytes were randomly allocated. Overall 567 pregnancies arose from mostly single embryo transfer procedures up to December 2016, with 402 live births, comprising 415 infants and a low fetal abnormality rate (1.9%) was recorded. When the data was adjusted for confounders such as maternal age, measures of ovarian reserve and sperm quality, it appeared that IVF-generated and ICSI-generated embryos had a similar chance of both pregnancy and live birth. In the IVF-ICSI Split model, significantly more ICSI-generated embryos were utilised (2.5 vs 1.8; p < 0.003) with productivity rates of 67.8% for pregnancy and 43.4% for livebirths per OPU for this group. We conclude that ART clinics should apply the insemination method which will maximize embryo numbers and the first treatment for unexplained infertility should be undertaken within the IVF-ICSI Split model. Whilst ICSI-generated pregnancies are reported to have a higher rate of fetal abnormalities, our data is consistent with the view that the finding is not due to the ICSI technique per se. Copyright © 2018 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier B.V. All rights reserved.
McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H
2018-04-24
Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.
Roush, Kyle S; Krzykwa, Julie C; Malmquist, Jacob A; Stephens, Dane A; Sellin Jeffries, Marlo K
2018-05-30
The fathead minnow fish embryo toxicity (FET) test has been identified as a potential alternative to toxicity test methods that utilize older fish. However, several challenges have been identified with the fathead minnow FET test, including: 1) difficulties in obtaining appropriately-staged embryos for FET test initiation, 2) a paucity of data comparing fathead minnow FET test performance to the fathead minnow larval growth and survival (LGS) test and 3) a lack of sublethal endpoints that could be used to estimate chronic toxicity and/or predict adverse effects. These challenges were addressed through three study objectives. The first objective was to optimize embryo production by assessing the effect of breeding group composition (number of males and females) on egg production. Results showed that groups containing one male and four females produced the largest clutches, enhancing the likelihood of procuring sufficient numbers of embryos for FET test initiation. The second study objective was to compare the performance of the FET test to that of the fathead minnow LGS test using three reference toxicants. The FET and LGS tests were similar in their ability to predict the acute toxicity of sodium chloride and ethanol, but the FET test was found to be more sensitive than the LGS test for sodium dodecyl sulfate. The last objective of the study was to evaluate the utility and practicality of several sublethal metrics (i.e., growth, developmental abnormalities and growth- and stress-related gene expression) as FET test endpoints. Developmental abnormalities, including pericardial edema and hatch success, were found to offer the most promise as additional FET test endpoints, given their responsiveness, potential for predicting adverse effects, ease of assessment and low cost of measurement. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Junbo; Yue, Yunyun; Zhao, Qingshun
2016-02-01
Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.
A Technique for Facile and Precise Transfer of Mouse Embryos
Sarvari, Ali; Naderi, Mohammad Mehdi; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi
2013-01-01
Background Successful Embryo Transfer (ET) technique is a fateful step of all efforts to achieve live births from in vitro produced embryos in assisted reproductive techniques or in knockout, transgenic or cloned animal projects. Small reproductive tract of mice and limitation of current techniques may not well satisfy the requirements for mass production of genetically modified mice. Genetic abnormalities of embryos, receptivity and uterine contractions, expulsion of embryos, blood, mucus or bacterial contamination on the transfer pipette tip, technical problems and even animal strain may affect embryo transfer outcome. Methods In this study, two techniques of embryo transfer in mice were compared. In conventional technique the oviduct wall was punctured with a 30-gauge needle and the loaded Pasteur pipette with embryos and medium was inserted into the hole. In new technique, embryos that were loaded in modified micropipette with minimal medium were transferred directly to the oviduct by manual piston micro-pump easily. Embryo viability was evaluated considering the percentage of live healthy newborns. Results Results of the two techniques were compared by t-test within the NPAR1WAY procedure of SAS software (ver. 9.2). The average live birth rates in the novel methods was significantly higher (42.4%) than the conventional method (21.7%, p<0.05). Conclusion In conclusion, using new embryo transfer technique improved birth rate by preventing embryos expulsion from the oviduct, saving time and easy transfer of embryos with minimum volume of medium. PMID:23626878
Ford, Stephanie M; McPheeters, Matthew T; Wang, Yves T; Ma, Pei; Gu, Shi; Strainic, James; Snyder, Christopher; Rollins, Andrew M; Watanabe, Michiko; Jenkins, Michael W
2017-01-01
Background The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. Methods Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180bpm, well above intrinsic rate 60–110bpm) at stage 13 of development (3–4 wks human) for 5 min. Pacing fatigued the heart and led to at least 1 hr of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping – 4–5 wks human) or stage 35 (4 chambered heart – 8 wks human). Results All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-hrs post pacing (p-value < 0.01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (p<0.05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. Conclusion The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs. PMID:28211263
Karabulut, A K; Ulger, H; Pratten, M K
2000-08-01
Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues may be directly related to the increased risk of congenital malformations.
Chou, Ai Mei; Sem, Kai Ping; Lam, Wei Jun; Ahmed, Sohail; Lim, Chin Yan
2017-01-01
The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation. PMID:28067313
Lobel, Lisa M Kerr; Davis, Elizabeth A
2002-01-01
Antibodies against polychlorinated biphenyls (PCBs) were used to determine if immunohistochemical methods could detect PCBs in embryos and larvae of a territorial coral reef fish (Abudefduf sordidus; Pomacentridae) collected from Johnston Atoll, Central Pacific Ocean. Sites with differing levels of contamination were sampled, one with relatively high sediment PCB concentrations of up to 389.0 ng/g and another with low PCB concentrations of only 0.5 ng/g. Immunostaining suggested that PCB concentrations were higher in fish larvae from the PCB contaminated site and that PCB concentrations within abnormal embryos were higher than normal embryos from the same nest. This technique will be useful for detecting exposed populations in the field and assessing correlations with adverse effects, particularly in potential indicator organisms such as Abudefduf sordidus.
Chia, Ian; Grote, David; Marcotte, Michael; Batourina, Ekaterina; Mendelsohn, Cathy; Bouchard, Maxime
2011-05-01
Urinary tract development depends on a complex series of events in which the ureter moves from its initial branch point on the nephric duct (ND) to its final insertion site in the cloaca (the primitive bladder and urethra). Defects in this maturation process can result in malpositioned ureters and hydronephrosis, a common cause of renal disease in children. Here, we report that insertion of the ND into the cloaca is an unrecognized but crucial step that is required for proper positioning of the ureter and that depends on Ret signaling. Analysis of Ret mutant mice at birth reveals hydronephrosis and defective ureter maturation, abnormalities that our results suggest are caused, at least in part, by delayed insertion of the ND. We find a similar set of malformations in mutants lacking either Gata3 or Raldh2. We show that these factors act in parallel to regulate ND insertion via Ret. Morphological analysis of ND extension in wild-type embryos reveals elaborate cellular protrusions at ND tips that are not detected in Ret, Gata3 or Raldh2 mutant embryos, suggesting that these protrusions may normally be important for fusion with the cloaca. Together, our studies reveal a novel Ret-dependent event, ND insertion, that, when abnormal, can cause obstruction and hydronephrosis at birth; whether ND defects underlie similar types of urinary tract abnormalities in humans is an interesting possibility.
NASA Technical Reports Server (NTRS)
Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.
1993-01-01
Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.
Effects of heavy ion radiation on the brain vascular system and embryonic development
NASA Technical Reports Server (NTRS)
Yang, T. C.; Tobias, C. A.
1984-01-01
The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.
Faught, Erin; Best, Carol; Vijayan, Mathilakath M
2016-02-01
Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress.
Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia
2011-01-01
In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066
SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton
Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M.; Conlon, Frank L.
2012-01-01
Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2N308D and ROCK activation in the developing heart. PMID:22278918
SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.
Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L
2012-03-01
Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.
Fulka, Helena; Langerova, Alena
2014-04-01
The oocyte (maternal) nucleolus is essential for early embryonic development and embryos originating from enucleolated oocytes arrest at the 2-cell stage. The reason for this is unclear. Surprisingly, RNA polymerase I activity in nucleolus-less mouse embryos, as manifested by pre-rRNA synthesis, and pre-rRNA processing are not affected, indicating an unusual role of the nucleolus. We report here that the maternal nucleolus is indispensable for the regulation of major and minor satellite repeats soon after fertilisation. During the first embryonic cell cycle, absence of the nucleolus causes a significant reduction in major and minor satellite DNA by 12% and 18%, respectively. The expression of satellite transcripts is also affected, being reduced by more than half. Moreover, extensive chromosome bridging of the major and minor satellite sequences was observed during the first mitosis. Finally, we show that the absence of the maternal nucleolus alters S-phase dynamics and causes abnormal deposition of the H3.3 histone chaperone DAXX in pronuclei of nucleolus-less zygotes.
Ludwig, James P.; Kurita-Matsuba, Hiroko; Auman, Heidi J.; Ludwig, Matthew E.; Summer, Cheryl L.; Giesy, John P.; Tillitt, Donald E.; Jones, Paul D.
1996-01-01
Deformities have been reported in many species of colonial waterbirds from several localities on the Laurentian Great Lakes. The hypothesis that deformities were caused by either polychlorinated biphenyls (PCBs) or contaminants measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs) is tested in this review of available data on concentrations of contaminants in eggs and observed deformities in embryos and chicks of double-crested cormorants (Phalacrocorax auritus) and Caspian terns (Hydroprogne caspia) between 1986 and 1991. Hatched chicks, live and dead eggs retrieved from 37 colonies in the upper Great Lakes were assessed for gross anatomical deformities. Rates of embryo death from seven regions of the upper Great Lakes were measured annually between 1986–1991. Half the embryos found dead in eggs were deformed. Nineteen types of abnormalities or deformities were observed. Subcutaneous edema in cormorants and gastroschisis in terns were the most common abnormalities in live or dead eggs. One of ten crossed-billed cormorant embryos survived to hatch. No bill-deformed terns hatched, although tern embryos had a greater rate of crossed-bills than cormorants. The suite of deformities and abnormalities found was similar to that produced in chickens by exposure to planar polychlorinated biphenyl (pPCB) and dioxin congeners. Hatching and deformity rates were correlated with concentrations ofpPCBs and TCDD-EQs. Planar PCB congeners that contributed most of the TCDD-EQs were present at concentrations sufficient to cause the observed effects. TCDD-EQs measured by H4IIE rat hepatoma cell 7-ethoxyresorufin O-deethylase (EROD) bioassay were highly correlated with deformity rates observed in cormorant chicks, live and dead eggs, and egg death rates. Similar correlations of TCDD-EQs with deformity rates were found in hatched tern chicks, dead eggs, and egg death rates, but not in live eggs. TCDD-EQs were more highly correlated to deformity and embryo death rates than total PCBs. The weight of evidence and these data are sufficient to reject the null hypothesis that there is no causal relationship between the incidence of deformities in cormorants and terns and exposure to planar halogenated compounds measured as TCDD-EQs or total PCBs in the Great Lakes.
Sarifudin, M; Rahman, M A; Yusoff, F M; Arshad, Aziz; Tan, Soon Guan
2016-07-01
Influence of temperature on the embryonic and early development and growth performance of larva in tropical sea urchin, Diadema setosum was investigated in water temperature ranging between 16 and 34?C under controlled laboratory conditions. The critical lower and higher temperature for embryonic development was found at 16 and 34?C, respectively. Embryos reared in both of these two temperatures exhibited 100% abnormality within 48 hrs post-insemination. The time required to reach these embryonic and larval stages increased with temperature from 28 followed by 31, 25, 22 and 19?C in that order. The developmental times of 2-cell stage until 4-arm pluteus larva showed significant differences (P < 0.05) among the tested temperatures. The larvae in the state of prism and 2-arm pluteus, survived at temperature ranging from 19 to 31?C, while the 4-arm pluteus larvae survived at temperature between 22? to 31?C. However, larval development within a temperature range of 22? to 31?C was acceptable since no abnormalities occurred. The morphometric characteristics from prism to 4-arm pluteus larvae in all the temperatures differed significantly (P > 0.05). Among them, 28?C was found to be the best temperature with respect of the highest larval growth and development at all stages. The findings of the study will not only be helpful to understand the critical limits of temperature, but also to identify the most appropriate temperature for optimum growth and development of embryos and larvae, as well as to facilitate the development of captive breeding and mass seed production of D. setosum and other important sea urchins for commercial aquaculture.
Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie
2013-01-01
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130
Chang, Eun M; Han, Ji E; Seok, Hyun H; Lee, Dong R; Yoon, Tae K; Lee, Woo S
2013-07-01
Although extensive evidence indicates the hyperinsulinemia directly contributes to reproductive dysfunction in polycystic ovarian syndrome (PCOS), influence of insulin resistance (IR) on assisted reproductive technology outcomes is poorly understood. In this study we aimed to evaluate the effects of IR on in vitro maturation-in vitro fertilization-embryo transfer (IVM-IVF-ET) in patients with PCOS. Prospective observational study. Women with PCOS (n = 115) commencing IVM. IR (n = 51) and non-IR (n = 64) women with PCOS ready to commence an IVM cycle were recruited. IR was diagnosed using the glucose tolerance test (GTT) and homeostasis model assessment (HOMA) index. Patients with an abnormal GTT and/or HOMA index >2·4 were considered IR. Patients underwent 115 cycles of unstimulated hCG-primed IVM. Maturation, fertilization, cleavage rates, the number of good-quality embryo, and blastocyst formation rates were not significantly different between groups. However, implantation (11·6% vs 28·7%, P = 0·001, respectively), clinical pregnancy (23·5% vs 53·1%, P = 0·002, respectively), and ongoing pregnancy rates (21·6% vs 46·9%. P = 0·006, respectively) were significantly decreased in the IR group. The negative effect of IR on pregnancy outcomes remained after controlling for age, body mass index (BMI) and lipid profiles (OR 4·928, 95% CI 1·735-13·991, P = 0·003). Pregnancy rate after IVM is impaired in IR patients with PCOS. Oocyte development and embryo quality are not affected, suggesting that the effects of hyperinsulinemia on endometrial function and implantation process underlie the decreased pregnancy rate. © 2012 John Wiley & Sons Ltd.
Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume
2018-03-01
Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.
2010-01-01
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368
Environmental estrogens alter early development in Xenopus laevis.
Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P
2003-04-01
A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.
Xu, Jian; Li, Yan; Wang, Yizi; Xu, Yanwen; Zhou, Canquan
2016-10-01
Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P < 0.001), with an increasing abnormal oocyte ratio (20.4 ± 3.5 vs 11.7 ± 2.0%, P = 0.001) after superovulation. Significantly lower fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P < 0.05). Interestingly, in vitro fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P < 0.01). After transferring blastocysts derived from Bmal1+/+ and Bmal1-/- female mice to pseudopregnant mice, the implantation sites of the latter decreased 5 days later (8.0 ± 0.8 vs 5.3 ± 1.0, P = 0.005). The intracellular ROS levels in the ovary on proestrus day and in the oviduct on metestrus day increased significantly in Bmal1-/- mice compared with that of Bmal1+/+ mice. Deletion of the core biological clock gene Bmal1 significantly decreases oocyte fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.
Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph
2014-01-01
Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636
Shiraishi, Eri; Hosseini, Hamid; Kang, Dong K; Kitano, Takeshi; Akiyama, Hidenori
2013-01-01
Application of nanosecond pulsed electric fields (nsPEFs) has attracted rising attention in various scientific fields including medical, pharmacological, and biological sciences, although its effects and molecular mechanisms leading to the effects remain poorly understood. Here, we show that a single, high-intensity (10-30 kV/cm), 60-ns PEF exposure affects gene expression and impairs development of eyes and germ cells in medaka (Oryzias latipes). Exposure of early blastula stage embryos to nsPEF down-regulated the expression of several transcription factors which are essential for eye development, causing abnormal eye formation. Moreover, the majority of the exposed genetic female embryos showed a fewer number of germ cells similar to that of the control (unexposed) genetic male at 9 days post-fertilization (dpf). However, all-trans retinoic acid (atRA) treatment following the exposure rescued proliferation of germ cells and resumption of normal eye development, suggesting that the phenotypes induced by nsPEF are caused by a decrease of retinoic acid levels. These results confirm that nsPEFs induce novel effects during embryogenesis in medaka.
During 1989-91, we assessed developmental abnormalities in embryos and hatchlings from eggs of the common snapping turtle (Chelydra serpentina serpentina). Eggs were collected and artificially incubated from eight sites in Ontario, Canada and Akwesasne/...
Planar embryos have poor prognosis in terms of blastocyst formation and implantation.
Ebner, T; Maurer, M; Shebl, O; Moser, M; Mayer, R B; Duba, H C; Tews, G
2012-09-01
Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include embryos that are characterized by a particular planar constellation of four blastomeres with presumed incomplete cleavage. Since little is known on the developmental fate of such conceptuses, within a 10-month period all consecutive patients were screened for day-2 planar embryos. A total of 64/2070 embryos with suboptimal blastomere configuration were detected (3.1%). In conventional IVF, planar embryos were significantly less frequent (0.7%) as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular sperm extraction (5.4%; P<0.01). Interestingly, embryos with a cleavage anomaly showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (P<0.001) and blastocyst quality (P=NS) was higher in tetrahedral embryos. There was a significant increase in implantation rate if tetrahedral embryos could be transferred compared with when planar embryos had to be transferred (P<0.01). It may be postulated that, in planar embryos, the mitotic spindle might have been affected, e.g. sperm centrosome composition or function, which in turn might have led to the observed cleavage anomaly. Normally, day-2 embryos show a crosswise arrangement of four cells with three blastomeres lying side by side. Cleavage anomalies include more planar embryos that are characterized by a particular flat constellation of four blastomeres with presumed premature cleavage (like a tetrafoliate clover). Since little is known on the developmental fate of such embryos within a 10-month study period, all consecutive patients were screened for the presence of day-2 planar embryos (study group). A total of 64 (out of 2070) embryos with abnormal blastomere configuration were detected (3.1%). Interestingly, in conventional IVF (0.7%), the presence of planar embryos was significantly less frequent as compared with intracytoplasmic sperm injection (2.8%; P<0.05) and cases of testicular biopsy (5.4%; P<0.01). Embryos from the study group showed better morphology both on day 2 (P<0.005) and day 3 (P<0.001). In contrast, blastocyst formation (survival to day 5 of preimplantation development) was higher in the normally cleaved control group (P<0.001) and so was blastocyst quality; however, the latter parameter did not reach level of significance. This was also reflected in a significantly higher implantation rate in the control group (P<0.01). Based on present data, it may be postulated that, in planar embryos, the mitotic spindle (which involves the sperm centrosome) might have been affected, which in turn might have led to an incomplete cleavage. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Seneviratna, Deepani; Taylor, H H
2006-04-01
This study examined whether the existence of hyperosmotic internal fluids in embryos of euryhaline crabs (Hemigrapsus sexdentatus and H. crenulatus) in dilute seawater reflects osmotic isolation due to impermeability of the egg envelope, as proposed for other decapods, or active osmoregulation. When ovigerous crabs with eggs at gastrula stage were transferred from 100% seawater (osmolality 1000 mmol kg(-1)) to 50% seawater, embryogenesis and hatching of zoea were completed normally, but were delayed. Hatching failed if the transfer to 50% seawater occurred before gastrulation, and embryogenesis was abnormal in 25% seawater. In 100% seawater, embryos at all stages were internally hyperosmotic by 150-250 mmol kg(-1). On transfer to 50% seawater, osmolality initially decreased but remained 200-350 mmol kg(-1) hyperosmotic to the medium for several weeks until hatching. High efflux rates of tritium-labelled water (t((1/2)) 16-75 min) and (22)Na (t(1/2) 109-374 min) from H. crenulatus embryos were inconsistent with the osmotic isolation hypothesis. It is concluded that post-gastrula embryos were actively hyper-osmoregulating. The diffusional water permeability of the embryos decreased during development while the sodium efflux rate increased 10-fold. Very rapidly exchanging pools of water and sodium (t(1/2) a few seconds to minutes) probably corresponded to peri-embryonic fluid and implied that the egg envelope was a negligible barrier to diffusion of water and salts. Higher Na(+)/K(+)-ATPase activities in late embryos of H. crenulatus incubated in 50% seawater than in embryos incubated in full strength seawater were consistent with an acclimation response. An area of the embryonic surface located over the yolk in the region of the embryonic dorsal organ stained with AgNO(3). Staining appeared at gastrulation, persisted throughout development and was lost at hatching. Deposits of AgCl between the outer and inner membranes, identified by X-ray microanalysis, suggest that the dorsal organ was a site of chloride extrusion. A model for osmoregulation in post-gastrula embryos is proposed: osmotic uptake of water is balanced by excretion of water and salts via the dorsal organ and salt loss is balanced by active uptake over the general embryonic ectoderm.
Asharani, P V; Lianwu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2011-03-01
Nanoparticles have diverse applications in electronics, medical devices, therapeutic agents and cosmetics. While the commercialization of nanoparticles is rapidly expanding, their health and environmental impact is not well understood. Toxicity assays of silver, gold, and platinum nanoparticles, using zebrafish embryos to study their developmental effects were carried out. Gold (Au-NP, 15-35 nm), silver (Ag-NP, 5-35 nm) and platinum nanoparticles (Pt-NP, 3-10 nm) were synthesized using polyvinyl alcohol (PVA) as a capping agent. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. The addition of Ag-NP resulted in a concentration-dependant increase in mortality rate. Both Ag-NP and Pt-NP induced hatching delays, as well as a concentration dependant drop in heart rate, touch response and axis curvatures. Ag-NP also induced other significant phenotypic changes including pericardial effusion, abnormal cardiac morphology, circulatory defects and absence or malformation of the eyes. In contrast, Au-NP did not show any indication of toxicity. Uptake and accumulation of nanoparticles in embryos was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES), which revealed detectable levels in embryos within 72 hpf. Ag-NP and Au-NP were taken up by the embryos in relatively equal amounts whereas lower Pt concentrations were observed in embryos exposed to Pt-NP. This was probably due to the small size of the Pt nanoparticles compared to Ag-NP and Au-NP, thus resulting in fewer metal atoms being retained in the embryos. Among the nanoparticles studied, Ag-NPs were found to be the most toxic and Au-NPs the non-toxic. The toxic effects exhibited by the zebrafish embryos as a consequence of nanoparticle exposure, accompanied by the accumulation of metals inside the body calls for urgent further investigations in this field.
Evidence for Functional Differentiation among Drosophila Septins in Cytokinesis and Cellularization
Adam, Jennifer C.; Pringle, John R.; Peifer, Mark
2000-01-01
The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut+ transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both. PMID:10982405
Wang, Huachun; Liu, Yidong; Bruffett, Kristin; Lee, Justin; Hause, Gerd; Walker, John C.; Zhang, Shuqun
2008-01-01
The plant life cycle includes diploid sporophytic and haploid gametophytic generations. Female gametophytes (embryo sacs) in higher plants are embedded in specialized sporophytic structures (ovules). Here, we report that two closely related mitogen-activated protein kinases in Arabidopsis thaliana, MPK3 and MPK6, share a novel function in ovule development: in the MPK6 mutant background, MPK3 is haplo-insufficient, giving female sterility when heterozygous. By contrast, in the MPK3 mutant background, MPK6 does not show haplo-insufficiency. Using wounding treatment, we discovered gene dosage–dependent activation of MPK3 and MPK6. In addition, MPK6 activation is enhanced when MPK3 is null, which may help explain why mpk3−/− mpk6+/− plants are fertile. Genetic analysis revealed that the female sterility of mpk3+/− mpk6−/− plants is a sporophytic effect. In mpk3+/− mpk6−/− mutant plants, megasporogenesis and megagametogenesis are normal and the female gametophyte identity is correctly established. Further analysis demonstrates that the mpk3+/− mpk6−/− ovules have abnormal integument development with arrested cell divisions at later stages. The mutant integuments fail to accommodate the developing embryo sac, resulting in the embryo sacs being physically restricted and female reproductive failure. Our results highlight an essential function of MPK3 and MPK6 in promoting cell division in the integument specifically during ovule development. PMID:18364464
Imai, Hiroyuki; Kano, Kiyoshi; Fujii, Wataru; Takasawa, Ken; Wakitani, Shoichi; Hiyama, Masato; Nishino, Koichiro; Kusakabe, Ken Takeshi; Kiso, Yasuo
2015-01-01
Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.
Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling
2016-09-01
Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
Sørhus, Elin; Incardona, John P; Furmanek, Tomasz; Goetz, Giles W; Scholz, Nathaniel L; Meier, Sonnich; Edvardsen, Rolf B; Jentoft, Sissel
2017-01-01
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes. DOI: http://dx.doi.org/10.7554/eLife.20707.001 PMID:28117666
Hoffman, D.J.
1988-01-01
Fosamine ammonium (Krenite) is a highly water-soluble carbamoylphosphonate herbicide used to control woody brush. It has been reported to be teratogenic to avian embryos following spray application of the eggs. The embryotoxic and teratogenic potential of Krenite was examined in mallards (Anas platyrhynchos) and bobwhite (Colinus virginianus). At 96 h of development, eggs were briefly immersed in distilled water or in Krenite formulation in distilled water at concentrations of 1.5, 6.5, or 30% fosamine ammonium. At 6.5% active ingredient (a.i.), Krenite reduced hatching success in bobwhite and mallards to 85 and 33% of that in the distilled-water controls. At 30% a.i., Krenite caused 95 to 100% mortality in both species by the time of hatching. Early embryonic growth was impaired by 30% Krenite in both species. There was no evidence of teratogenesis of the axial skeleton, as reported previously in chickens and Japanese quail (Coturnix japonica). Most abnormal embryos had severe edema and some stunting. Mallard hatchlings from the 1.5 and 6.5% Krenite groups weighed significantly less than controls and had lower plasma alanine aminotransferase and aspartate aminotransferase activities, with elevated plasma glucose and cholesterol concentrations. Brain acetylcholinesterase activity was unaffected by Krenite in embryos and hatchlings.
NASA Astrophysics Data System (ADS)
Jenkins, Michael W.; Peterson, Lindsy; Gu, Shi; Gargesha, Madhusudhana; Wilson, David L.; Watanabe, Michiko; Rollins, Andrew M.
2010-11-01
Hemodynamics is thought to play a major role in heart development, yet tools to quantitatively assess hemodynamics in the embryo are sorely lacking. The especially challenging analysis of hemodynamics in the early embryo requires new technology. Small changes in blood flow could indicate when anomalies are initiated even before structural changes can be detected. Furthermore, small changes in the early embryo that affect blood flow could lead to profound abnormalities at later stages. We present a demonstration of 4-D Doppler optical coherence tomography (OCT) imaging of structure and flow, and present several new hemodynamic measurements on embryonic avian hearts at early stages prior to the formation of the four chambers. Using 4-D data, pulsed Doppler measurements could accurately be attained in the inflow and outflow of the heart tube. Also, by employing an en-face slice from the 4-D Doppler image set, measurements of stroke volume and cardiac output are obtained without the need to determine absolute velocity. Finally, an image plane orthogonal to the blood flow is used to determine shear stress by calculating the velocity gradient normal to the endocardium. Hemodynamic measurements will be crucial to identifying genetic and environmental factors that lead to congenital heart defects.
Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2015-01-01
Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920
Schierenberg, Einhard; Junkersdorf, Bernd
1992-12-01
The embryo of the nematode Caenorhabditis elegans is surrounded by an inconspicuous inner vitelline membrane and a prominent outer chitinous eggshell proper. We demonstrate that the complete removal of the chitinous eggshell does not interfere with successful development to yield a normal worm. The same result can be obtained when the vitelline membrane is penetrated with laser microbeam irradiation of only the eggshell proper, gently enough to permit its resealing after a while. However, when large holes are made into the eggshell the concomitantly penetrated vitelline membrane does not reseal. While early development is quite normal under these conditions, gastrulation is defective in that gut precursor cells do not migrate in properly, eventually leading to embryonic arrest. This suggests a crucial role for pattern formation of the "micro-environment" around the embryo preserved by the intact vitelline membrane. Removing both eggshell and vitelline membrane results in a string-like arrangement of founder cells and subsequent grossly abnormal cell patterns. Our experiments support the idea that the prominent eggshell proper just functions as a mechanical protection while the thin vitelline membrane directly or indirectly serves as a necessary control element affecting the positions of cells which to begin with are determined by the orientation of the cleavage spindle.
A direct approach to the study of the effect of gravity on axis formation in birds.
Eyal-Giladi, H; Goldberg, M; Refael, H; Avner, O
1994-01-01
A system has been developed to enable the normal development of aborted very early uterine avian embryos, outside the female's uterus. The shell-less aborted egg was put into a foster shell of a sister egg, previously laid by the same female. The empty space between the shell and aborted egg was filled with artificial uterine fluid. The reconstructed eggs were incubated at 42 degrees C for 30 hours in a vertical position. The atmosphere contained a high concentration of CO2 (8-10%). At the termination of the 30 h the eggs were transferred to incubation at 37 degrees C in normal atmospheric conditions. Normal development has been recorded for a certain percentage of eggs incubated up to 12 days. In other cases abnormalities, arrested development or development of extraembryonic membranes only, without a sign of an embryonic axis, have been observed. The three important conclusions from the above experiments were: 1. It is possible to develop a closed, self-contained system, disconnected from the female's body, that would support the development of early uterine embryos. 2. The incidence of embryo-less extraembryonic membranes in such a system, is correlated with the degree of detachment of the "yolk" from the outer envelopes. 3. Such a system can be further developed into an experiment suited for microgravity conditions which will be an alternative to an experiment with live birds. The experiment will be aimed at testing the importance of gravity in changing the radially symmetrical avian blastoderm into a bilaterally symmetrical blastoderm.
Eum, Juneyong; Kwak, Jina; Kim, Hee Joung; Ki, Seoyoung; Lee, Kooyeon; Raslan, Ahmed A.; Park, Ok Kyu; Chowdhury, Md Ashraf Uddin; Her, Song; Kee, Yun; Kwon, Seung-Hae; Hwang, Byung Joon
2016-01-01
Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis. PMID:27869673
Guiu, Jordi; Shimizu, Ritsuko; D’Altri, Teresa; Fraser, Stuart T.; Hatakeyama, Jun; Bresnick, Emery H.; Kageyama, Ryoichiro; Dzierzak, Elaine; Yamamoto, Masayuki; Espinosa, Lluis
2013-01-01
Previous studies have identified Notch as a key regulator of hematopoietic stem cell (HSC) development, but the underlying downstream mechanisms remain unknown. The Notch target Hes1 is widely expressed in the aortic endothelium and hematopoietic clusters, though Hes1-deficient mice show no overt hematopoietic abnormalities. We now demonstrate that Hes is required for the development of HSC in the mouse embryo, a function previously undetected as the result of functional compensation by de novo expression of Hes5 in the aorta/gonad/mesonephros (AGM) region of Hes1 mutants. Analysis of embryos deficient for Hes1 and Hes5 reveals an intact arterial program with overproduction of nonfunctional hematopoietic precursors and total absence of HSC activity. These alterations were associated with increased expression of the hematopoietic regulators Runx1, c-myb, and the previously identified Notch target Gata2. By analyzing the Gata2 locus, we have identified functional RBPJ-binding sites, which mutation results in loss of Gata2 reporter expression in transgenic embryos, and functional Hes-binding sites, which mutation leads to specific Gata2 up-regulation in the hematopoietic precursors. Together, our findings show that Notch activation in the AGM triggers Gata2 and Hes1 transcription, and next HES-1 protein represses Gata2, creating an incoherent feed-forward loop required to restrict Gata2 expression in the emerging HSCs. PMID:23267012
Some Ethical Concerns About Human Induced Pluripotent Stem Cells.
Zheng, Yue Liang
2016-10-01
Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.
The Complex Genetic Basis of Congenital Heart Defects
Akhirome, Ehiole; Walton, Nephi A.; Nogee, Julie M.; Jay, Patrick Y.
2017-01-01
Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention. PMID:28381817
Neumeyer, Courtney H; Gerlach, Jamie L; Ruggiero, Kristin M; Covi, Joseph A
2015-03-01
The brine shrimp, Artemia (Crustacea, Anostraca), is a zooplankton that is commonly used in both basic and applied research. Unfortunately, Artemia embryos are often cultured under conditions that alter early development, and reports based on these cultures oversimplify or fail to describe morphological phenotypes. This is due in part to the lack of a comprehensive developmental model that is applicable to observations of live specimens. The objective of this study was to build and test a descriptive model of post-diapause development in Artemia franciscana using observations made with a standard dissecting microscope. The working model presented is the first to comprehensively place all known "abnormal" embryonic and naupliar phenotypes within the context of a classic hatching profile. Contrary to previous reports, embryos and nauplii with aberrant phenotypes often recover and develop normally. Oval prenauplii may emerge as normal prenauplii (E2 stage). A delay of this transition leads to incomplete hatching or direct hatching of first instar larvae with a curved thoracoabdomen. When hatching is incomplete, retained cuticular remnants are shed during the next molt, and a "normal" second instar larva is produced. By differentiating between molting events and gross embryonic patterning in live embryos, this new model facilitates fine time-scale analyses of chemical and environmental impacts on early development. A small increase in salinity within what is commonly believed to be a permissive range (20‰-35‰) produced aberrant morphology by delaying emergence without slowing development. A similar effect was observed by decreasing culture density within a range commonly applied in toxicological studies. These findings clearly demonstrate that morphological data from end-point studies are highly dependent on the time points chosen. An alternate assessment method is proposed, and the potential impact of heavy metals, hexachlorobenzene, Mirex, and cis-nonachlor detected in commercial embryos is discussed. © 2014 Wiley Periodicals, Inc.
pitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish
Liu, Yi; Semina, Elena V.
2012-01-01
Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates. PMID:22303467
Siqueira, Luiz G; Tribulo, Paula; Chen, Zhiyuan; Denicol, Anna C; Ortega, M Sofia; Negrón-Pérez, Veronica M; Kannampuzha-Francis, Jasmine; Pohler, Ky G; Rivera, Rocio M; Hansen, Peter J
2017-04-01
Colony-stimulating factor 2 (CSF2) is an embryokine that improves competence of the embryo to establish pregnancy and which may participate in developmental programming. We tested whether culture of bovine embryos with CSF2 alters fetal development and alleviates abnormalities associated with in vitro production (IVP) of embryos. Pregnancies were established by artificial insemination (AI), transfer of an IVP embryo (IVP), or transfer of an IVP embryo treated with 10 ng/ml CSF2 from day 5 to 7 of development (CSF2). Pregnancies were produced using X-sorted semen. Female singleton conceptuses were collected on day 86 of gestation. There were few morphological differences between groups, although IVP and CSF2 fetuses were heavier than AI fetuses. Bicarbonate concentration in allantoic fluid was lower for IVP than for AI or CSF2. Expression of 92 genes in liver, placenta, and muscle was determined. The general pattern for liver and placenta was for IVP to alter expression and for CSF2 to sometimes reverse this effect. For muscle, CSF2 affected gene expression but did not generally reverse effects of IVP. Levels of methylation for each of the three tissues at 12 loci in the promoter of insulin-like growth factor 2 (IGF2) and five in the promoter of growth factor receptor bound protein 10 were unaffected by treatment except for CSF2 effects on two CpG for IGF2 in placenta and muscle. In conclusion, CSF2 can act as a developmental programming agent but alone is not able to abolish the adverse effects of IVP on fetal characteristics. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, L.A.; Abbott, B.D.; Birnbaum, L.S.
1990-01-01
A specific teratogenic response is elicited in the mouse as a result of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). The characteristic spectrum of structural malformations induced in mice following exposure to TCDD and structurally-related congeners is highly reproducible and includes both hydronephrosis and cleft palate. In addition, prenatal exposure to TCDD has been shown to induce thymic hypoplasia. The three abnormalities occur at doses well below those producing maternal or embryo/fetal toxicity, and are among the most sensitive indicators of dioxin toxicity. In all other laboratory species tested, TCDD causes maternal and embryo/fetal toxicity, but does not induce a significant increasemore » in the incidence of structural abnormalities even at toxic dose levels. Developmental toxicity occurs in a similar dose range across species, however, mice are particularly susceptible to development of TCDD-induced terata. Recent experiments using an organ culture were an attempt to address the issue of species and organ differences in sensitivity to TCDD. Human palatal shelves were examined in this in vitro system, and were found to approximate the rat in terms of sensitivity for induction of cleft palate.« less
Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar
2012-10-01
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.
Meis2 is essential for cranial and cardiac neural crest development.
Machon, Ondrej; Masek, Jan; Machonova, Olga; Krauss, Stefan; Kozmik, Zbynek
2015-11-06
TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.
Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah
2015-10-01
At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including some stage-specific aspects that are not as yet understood. Copyright © 2015 Elsevier B.V. All rights reserved.
Fu, Chuan-Yang; Su, Ying-Fang; Lee, Ming-Hsuan; Chang, Geen-Dong; Tsai, Huai-Jen
2012-01-01
Myogenic regulatory factor Myf5 plays important roles in muscle development. In zebrafish myf5, a microRNA (miR), termed miR-3906 or miR-In300, was reported to silence dickkopf-3-related gene (dkk3r or dkk3a), resulting in repression of myf5 promoter activity. However, the membrane receptor that interacts with ligand Dkk3a to control myf5 expression through signal transduction remains unknown. To address this question, we applied immunoprecipitation and LC-MS/MS to screen putative membrane receptors of Dkk3a, and Integrin α6b (Itgα6b) was finally identified. To further confirm this, we used cell surface binding assays, which showed that Dkk3a and Itgα6b were co-expressed at the cell membrane of HEK-293T cells. Cross-linking immunoprecipitation data also showed high affinity of Itgα6b for Dkk3a. We further proved that the β-propeller repeat domains of Itgα6b are key segments bound by Dkk3a. Moreover, when dkk3a and itgα6b mRNAs were co-injected into embryos, luciferase activity was up-regulated 4-fold greater than that of control embryos. In contrast, the luciferase activities of dkk3a knockdown embryos co-injected with itgα6b mRNA and itgα6b knockdown embryos co-injected with dkk3a mRNA were decreased in a manner similar to that in control embryos, respectively. Knockdown of itgα6b resulted in abnormal somite shape, fewer somitic cells, weaker or absent myf5 expression, and reduced the protein level of phosphorylated p38a in somites. These defective phenotypes of trunk muscular development were similar to those of dkk3a knockdown embryos. We demonstrated that the secreted ligand Dkk3a binds to the membrane receptor Itgα6b, which increases the protein level of phosphorylated p38a and activates myf5 promoter activity of zebrafish embryos during myogenesis. PMID:23024366
A threshold of GATA4 and GATA6 expression is required for cardiovascular development
Xin, Mei; Davis, Christopher A.; Molkentin, Jeffery D.; Lien, Ching-Ling; Duncan, Stephen A.; Richardson, James A.; Olson, Eric N.
2006-01-01
The zinc-finger transcription factors GATA4 and GATA6 play critical roles in embryonic development. Mouse embryos lacking GATA4 die at embryonic day (E) 8.5 because of failure of ventral foregut closure and cardiac bifida, whereas GATA6 is essential for development of the visceral endoderm. Although mice that are heterozygous for either a GATA4 or GATA6 null allele are normal, we show that compound heterozygosity of GATA4 and GATA6 results in embryonic lethality by E13.5 accompanied by a spectrum of cardiovascular defects, including thin-walled myocardium, ventricular and aortopulmonary septal defects, and abnormal smooth muscle development. Myocardial hypoplasia in GATA4/GATA6 double heterozygous mutant embryos is associated with reduced proliferation of cardiomyocytes, diminished expression of the myogenic transcription factor MEF2C (myocyte enhancer factor 2C), and down-regulation of β-myosin heavy chain expression, a key determinant of cardiac contractility. These findings reveal a threshold of GATA4 and GATA6 activity that is required for gene expression in the developing cardiovascular system and underscore the potential of recessive mutations to perturb the delicate regulation of cardiovascular development. PMID:16847256
A chicken embryo model for the study of umbilical and supraumbilical body wall malformations.
Ridderbusch, Ina; Bergholz, Robert; Fattouh, Miriam; Eschenburg, Georg; Roth, Beate; Appl, Birgit; Maenner, Joerg; Reinshagen, Konrad; Kluth, Dietrich
2015-06-01
BACKGROUND/PURPOSE; The embryology of ventral body wall malformations is only partially understood, although their incidence is relatively common. As only few experimental data exist on the development of those defects, the aim of our study was to compare the teratogenic effect of trypan blue (TB) and suramin (SA) in their capability to induce umbilical and supraumbilical abdominal wall malformations in a chicken egg model. A total of 255 fertilized chicken eggs were incubated at 38 °C and 75% relative humidity. Embryos were treated in ovo on incubation day 2.5 (Hamburger/Hamilton (HH) stage 13). The eggshell was windowed, and solutions of TB or SA were injected into the coelomic cavity at the region of the umbilicus. The window was closed and the embryos reincubated until examination on day 8 (HH 34). A total of 60 embryos survived in each group. The largest number of embryos presented with defects in the umbilical and supraumbilical region (25% in the SA group and 40% in the TB group). A combination of both defects (thoracoabdominoschisis) was seen in 20% of the TB and 8.3% of the SA groups, respectively. Associated anomalies found in both groups were head and eye defects, abnormal pelvic configurations, leg deformities, and mild forms of cloacal exstrophies. TB and SA have both a high potential to induce umbilical and supraumbilical ventral body wall malformations in chicken embryos. This novel animal model might help to establish a more profound understanding of the developmental steps in ventral body wall formation and the embryology for its malformations. Georg Thieme Verlag KG Stuttgart · New York.
Narematsu, Mayu; Kamimura, Tatsuya; Yamagishi, Toshiyuki; Fukui, Mitsuru; Nakajima, Yuji
2015-01-01
Background Transposition of the great arteries is one of the most commonly diagnosed conotruncal heart defects at birth, but its etiology is largely unknown. The anterior heart field (AHF) that resides in the anterior pharyngeal arches contributes to conotruncal development, during which heart progenitors that originated from the left and right AHF migrate to form distinct conotruncal regions. The aim of this study is to identify abnormal AHF development that causes the morphology of transposition of the great arteries. Methods and Results We placed a retinoic acid–soaked bead on the left or the right or on both sides of the AHF of stage 12 to 14 chick embryos and examined the conotruncal heart defect at stage 34. Transposition of the great arteries was diagnosed at high incidence in embryos for which a retinoic acid–soaked bead had been placed in the left AHF at stage 12. Fluorescent dye tracing showed that AHF exposed to retinoic acid failed to contribute to conotruncus development. FGF8 and Isl1 expression were downregulated in retinoic acid–exposed AHF, and differentiation and expansion of cardiomyocytes were suppressed in cultured AHF in medium supplemented with retinoic acid. Conclusions The left AHF at the early looped heart stage, corresponding to Carnegie stages 10 to 11 (28 to 29 days after fertilization) in human embryos, is the region of the impediment that causes the morphology of transposition of the great arteries. PMID:25929268
Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.
Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne
2008-08-01
Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.
Control of seed development in Arabidopsis thaliana by atmospheric oxygen
NASA Technical Reports Server (NTRS)
Kuang, A.; Crispi, M.; Musgrave, M. E.
1998-01-01
Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.
Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David
2013-05-01
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
[Scientific ethics of human cloning].
Valenzuela, Carlos Y
2005-01-01
True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.
Trkb signaling in pericytes is required for cardiac microvessel stabilization.
Anastasia, Agustin; Deinhardt, Katrin; Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L; Kermani, Pouneh
2014-01-01
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb (-/-)) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb(-/-) embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.
Trkb Signaling in Pericytes Is Required for Cardiac Microvessel Stabilization
Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L.; Kermani, Pouneh
2014-01-01
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb −/−) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb−/− embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development. PMID:24498100
Forkhead transcription factor foxe1 regulates chondrogenesis in zebrafish.
Nakada, Chisako; Iida, Atsumi; Tabata, Yoko; Watanabe, Sumiko
2009-12-15
Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish. A loss of function of foxe1 by morpholino antisense oligo (MO) exhibited abnormal craniofacial development, shortening of Meckel's cartilage and the ceratohyals, and suppressed chondrycytic proliferation. However, at 27 hr post fertilization, the foxe1 MO-injected embryos showed normal dlx2, hoxa2, and hoxb2 expression, suggesting that the initial steps of pharyngeal skeletal development, including neural crest migration and specification of the pharyngeal arch occurred normally. In contrast, at 2 dpf, a severe reduction in the expression of sox9a, colIIaI, and runx2b, which play roles in chondrocytic proliferation and differentiation, was observed. Interestingly, fgfr2 was strongly upregulated in the branchial arches of the foxe1 MO-injected embryos. Unlike Foxe1-null mice, normal thyroid development in terms of morphology and thyroid-specific marker expression was observed in foxe1 MO-injected zebrafish embryos. Taken together, our results indicate that Foxe1 plays an important role in chondrogenesis during development of the pharyngeal skeleton in zebrafish, probably through regulation of fgfr2 expression. Furthermore, the roles reported for FOXE1 in mammalian thyroid development may have been acquired during evolution. (c) 2009 Wiley-Liss, Inc.
Wnt4 is essential to normal mammalian lung development.
Caprioli, Arianna; Villasenor, Alethia; Wylie, Lyndsay A; Braitsch, Caitlin; Marty-Santos, Leilani; Barry, David; Karner, Courtney M; Fu, Stephen; Meadows, Stryder M; Carroll, Thomas J; Cleaver, Ondine
2015-10-15
Wnt signaling is essential to many events during organogenesis, including the development of the mammalian lung. The Wnt family member Wnt4 has been shown to be required for the development of kidney, gonads, thymus, mammary and pituitary glands. Here, we show that Wnt4 is critical for proper morphogenesis and growth of the respiratory system. Using in situ hybridization in mouse embryos, we identify a previously uncharacterized site of Wnt4 expression in the anterior trunk mesoderm. This expression domain initiates as early as E8.25 in the mesoderm abutting the tracheoesophageal endoderm, between the fusing dorsal aortae and the heart. Analysis of Wnt4(-/-) embryos reveals severe lung hypoplasia and tracheal abnormalities; however, aortic fusion and esophageal development are unaffected. We find decreased cell proliferation in Wnt4(-/-) lung buds, particularly in tip domains. In addition, we observe reduction of the important lung growth factors Fgf9, Fgf10, Sox9 and Wnt2 in the lung bud during early stages of organogenesis, as well as decreased tracheal expression of the progenitor factor Sox9. Together, these data reveal a previously unknown role for the secreted protein Wnt4 in respiratory system development. Copyright © 2015. Published by Elsevier Inc.
Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge
2009-02-01
The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.
Embryotoxicity of nitrophenols to the early life stages of zebrafish (Danio rerio).
Ceylan, Zeynep; Şişman, Turgay; Yazıcı, Zehra; Altıkat, Aysun Özen
2016-08-01
The nitrophenols (NPs) are water-soluble compounds. These compounds pose a significant health threat since they are priority environmental pollutants. In this study, 2-Nitrophenol (2NP) and 2,4-dinitrophenol (DNP) were examined for embryo and early life stage toxicity in zebrafish (Danio rerio). Acute toxicity and teratogenicity of 2NP and DNP were tested for 4 days using zebrafish embryos. The typical lesions observed were no somite formation, incomplete eye and head development, tail curvature, weak pigmentation (≤48 hours postfertilization (hpf)), kyphosis, scoliosis, yolk sac deformity, and nonpigmentation (72 hpf). Also, embryo and larval mortality increased and hatching success decreased. The severity of abnormalities and mortalities were concentration- and compound-dependent. Of the compounds tested, 2,4-DNP was found to be highly toxic to the fish embryos following exposure. The median lethal concentrations and median effective concentrations for 2NP are 18.7 mg/L and 7.9 mg/L, respectively; the corresponding values for DNP are 9.65 mg/L and 3.05 mg/L for 48 h. The chorda deformity was the most sensitive endpoint measured. It is suggested that the embryotoxicity may be mediated by an oxidative phosphorylation uncoupling mechanism. This article is the first to describe the teratogenicity and embryotoxicity of two NPs to the early life stages of zebrafish. © The Author(s) 2014.
Maternal SENP7 programs meiosis architecture and embryo survival in mouse.
Huang, Chun-Jie; Wu, Di; Jiao, Xiao-Fei; Khan, Faheem Ahmed; Xiong, Cheng-Liang; Liu, Xiao-Ming; Yang, Jing; Yin, Tai-Lang; Huo, Li-Jun
2017-07-01
Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.
Ohlendorf, H.M.; Hoffman, D.J.; Saiki, M.K.; Aldrich, T.W.
1986-01-01
Severe reproductive impacts were found in aquatic birds nesting on irrigation drainwater ponds in the San Joaquin Valley of California. Of 347 nests studied to late incubation or to hatching, 40.6% had at least one dead embryo and 19.6% had at least one embryo or chick with an obvious external anomaly. The deformities were often multiple and included missing or abnormal eyes, beaks, wings, legs and feet. Brain, heart, liver and skeletal anomalies were also present. Mean selenium concentrations in plants, invertebrates, and fish from the ponds were 22?175 ppm (dry weight), about 12 to 130 times those found at a nearby control area. Bird eggs (2.2?110 ppm) and livers (19?130 ppm) also contained elevated levels of selenium. Aquatic birds may experience similar problems in other areas where selenium occurs at elevated levels.
Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities
Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593
Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.
Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
Feng, Chun-Chi; Chen, Guo-Dong; Zhao, Yan-Qiu; Xin, Sheng-Chang; Li, Song; Tang, Jin-Shan; Li, Xiao-Xia; Hu, Dan; Liu, Xing-Zhong; Gao, Hao
2014-07-01
Three new isocoumarin derivatives, mucorisocoumarins A-C (1-3, resp.), together with seven known compounds, 4-10, were isolated from the cold-adapted fungal strain Mucor sp. (No. XJ07027-5). The structures of the new compounds were identified by detailed IR, MS, and 1D- and 2D-NMR analyses. It was noteworthy that compounds 1, 2, 4, and 5 were successfully resolved by chiral HPLC, indicating that 1-7 should exist as enantiomers. In an embryonic developmental toxicity assay using a zebrafish model, compound 3 produced developmental abnormalities in the zebrafish embryos. This is the first report of isocoumarins with developmental toxicity to zebrafish embryos. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Mäki, Joni M.; Sormunen, Raija; Lippo, Sari; Kaarteenaho-Wiik, Riitta; Soininen, Raija; Myllyharju, Johanna
2005-01-01
Lysyl oxidases, a family comprising LOX and four LOX-like enzymes, catalyze crosslinking of elastin and collagens. Mouse Lox was recently shown to be crucial for development of the cardiovascular system because null mice died perinatally of aortic aneurysms and cardiovascular dysfunction. We show here that Lox is also essential for development of the respiratory system and the integrity of elastic and collagen fibers in the lungs and skin. The lungs of E18.5 Lox−/− embryos showed impaired development of the distal and proximal airways. Elastic fibers in E18.5 Lox−/− lungs were markedly less intensely stained and more disperse than in the wild type, especially in the mesenchyme surrounding the distal airways, bronchioles, bronchi, and trachea, and were fragmented in pulmonary arterial walls. The organization of individual collagen fibers into tight bundles was likewise abnormal. Similar elastic and collagen fiber abnormalities were seen in the skin. Lysyl oxidase activity in cultured Lox−/− skin fibroblasts and aortic smooth muscle cells was reduced by ∼80%, indicating that Lox is the main isoenzyme in these cells. LOX abnormalities may thus be critical for the pathogenesis of several common diseases, including pulmonary, skin, and cardiovascular disorders. PMID:16192629
Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.
Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L
2013-01-01
In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.
Coakley, M E; Rawlings, S J; Brown, N A
1986-12-01
Certain short-chain carboxylic acids (SCCA) appear to share a common teratogenic potential, although the structural requirements for activity remain obscure. By using a whole rat embryo culture model system, several biochemical processes have been examined, either as potential initial sites of teratogenic action or as early steps in the pathway to malformation. Valproate, methoxyacetate, and butyrate were the prototype SCCA examined. Measurement of [14C]glucose utilization and lactate production confirmed that energy production by the early organogenesis embryo is predominantly from glycolysis. While the positive control agent, iodoacetate, caused a significant inhibition of lactate production, none of the SCCA affected this process or glucose utilization at teratogenic concentrations. Valproate did not influence embryonic acetyl CoA levels, in marked contrast to the reported response of adult liver, the other major target of valproate toxicity. Pinocytosis by the visceral yolk sac (VYS) was measured by the uptake of [125I]polyvinylpyrrolidone. This process ultimately supplies the embryo with amino-acids and is essential for normal development. SCCA induce morphological abnormalities of the VYS in embryo culture. Pinocytosis was slightly reduced by valporate, but not the other SCCA. However, comparison with the action of an antiserum, for which inhibition of pinocytosis is the initial teratogenic insult, suggests that this is not the mechanism for valproate. Incorporation of [3H]thymidine into embryo or yolk sac was not affected after 3 hr of SCCA exposure, but there was a marked effect of the positive control, hydroxyurea. This suggests that DNA synthesis is not directly influenced by SCCA.(ABSTRACT TRUNCATED AT 250 WORDS)
Coakley, M E; Rawlings, S J; Brown, N A
1986-01-01
Certain short-chain carboxylic acids (SCCA) appear to share a common teratogenic potential, although the structural requirements for activity remain obscure. By using a whole rat embryo culture model system, several biochemical processes have been examined, either as potential initial sites of teratogenic action or as early steps in the pathway to malformation. Valproate, methoxyacetate, and butyrate were the prototype SCCA examined. Measurement of [14C]glucose utilization and lactate production confirmed that energy production by the early organogenesis embryo is predominantly from glycolysis. While the positive control agent, iodoacetate, caused a significant inhibition of lactate production, none of the SCCA affected this process or glucose utilization at teratogenic concentrations. Valproate did not influence embryonic acetyl CoA levels, in marked contrast to the reported response of adult liver, the other major target of valproate toxicity. Pinocytosis by the visceral yolk sac (VYS) was measured by the uptake of [125I]polyvinylpyrrolidone. This process ultimately supplies the embryo with amino-acids and is essential for normal development. SCCA induce morphological abnormalities of the VYS in embryo culture. Pinocytosis was slightly reduced by valporate, but not the other SCCA. However, comparison with the action of an antiserum, for which inhibition of pinocytosis is the initial teratogenic insult, suggests that this is not the mechanism for valproate. Incorporation of [3H]thymidine into embryo or yolk sac was not affected after 3 hr of SCCA exposure, but there was a marked effect of the positive control, hydroxyurea. This suggests that DNA synthesis is not directly influenced by SCCA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3830097
Lethal and teratogenic effects of phenol on Bufo arenarum embryos.
Paisio, Cintia Elizabeth; Agostini, Elizabeth; González, Paola Solange; Bertuzzi, Mabel Lucía
2009-08-15
Phenol and their derivatives are used in several industries and they have a high potential toxicity for animal and plant species. They were found in variable concentrations, as high as 1000 mg/L, in industrial wastewater and, they are often discharged into the environment. Amphibian embryos are useful indicators of environmental pollution. However, to our knowledge, there are not studies focussed on the toxic effects of phenol on Bufo arenarum, which is an anuran widely distributed in South America. Therefore, the effect of phenol on the survival and morphogenesis of these amphibian embryos was evaluated by means of AMPHITOX test. Embryos at 25 stage of development (acute test) and embryos at 2-4 blastomers stage (early life stage test), were exposed to phenol solutions in concentrations ranging from 25 to 250 mg/L, which were frequently found in the environment. Mortality and malformations were registered each 24h. LC(50), LC(99), NOEC, TC(50) and TI(50) values were 183.70, 250, 60, 113 mg/L and 1.62, respectively, at 96 h of treatment. Mortality and the percentage of malformations increased with increasing phenol concentrations. Teratogenic effects more frequently produced by phenol were: axial flexure, persistent yolk plug and different abnormalities which caused death of blastulae. Moreover, other malformations were registered, such as irregular form, acephalism, edema, axial shortening and underdevelopment of gills, among others. Larvae of B. arenarum, at early embryonic stages (blastulae), showed higher sensitivity to phenol than tadpoles at stage 25. Results confirm high susceptibility of amphibians to phenol and that environmental concentrations of this pollutant might be harmful to these populations.
Buznikov, Gennady A.; Nikitina, Lyudmila A.; Seidler, Frederic J.; Slotkin, Theodore A.; Bezuglov, Vladimir V.; Milošević, Ivan; Lazarević, Lidija; Rogač, Ljubica; Ruzdijić, Sabera; Rakić, Ljubiša M.
2008-01-01
Amyloid precursor protein (APP) is overexpressed in the developing brain and portions of its extracellular domain, especially amino acid residues 96–110, play an important role in neurite outgrowth and neural cell differentiation. In the current study, we evaluated the developmental abnormalities caused by administration of exogenous APP96–110 in sea urchin embryos and larvae, which, like the developing mammalian brain, utilize acetylcholine and other neurotransmitters as morphogens; effects were compared to those of β-amyloid 1–42 (Aβ42), the neurotoxic APP fragment contained within neurodegenerative plaques in Alzheimer’s Disease. Although both peptides elicited dysmorphogenesis, Aβ42 was far more potent; in addition, whereas Aβ42 produced abnormalities at developmental stages ranging from early cleavage divisions to the late pluteus, APP96–110 effects were restricted to the intermediate, mid-blastula stage. For both agents, anomalies were prevented or reduced by addition of lipid-permeable analogs of acetylcholine, serotonin or cannabinoids; physostigmine, a carbamate-derived cholinesterase inhibitor, was also effective. In contrast, agents that act on NMDA receptors (memantine) or α-adrenergic receptors (nicergoline), and that are therapeutic in Alzheimer’s Disease, were themselves embryotoxic, as was tacrine, a cholinesterase inhibitor from a different chemical class than physostigmine. Protection was also provided by agents acting downstream from receptor-mediated events: increasing cyclic AMP with caffeine or isobutylmethylxanthine, or administering the antioxidant, α-tocopherol, were all partially effective. Our findings reinforce a role for APP in development and point to specific interactions with neurotransmitter systems that act as morphogens in developing sea urchins as well as in the mammalian brain. PMID:18565728
Avendaño, Conrado; Franchi, Anahí; Duran, Hakan; Oehninger, Sergio
2010-07-01
To evaluate DNA fragmentation in morphologically normal sperm recovered from the same sample used for intracytoplasmic sperm injection (ICSI) and to correlate DNA damage with embryo quality and pregnancy outcome. Prospective study. Academic center. 36 infertile men participating in the ICSI program. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-fluorescein nick end labeling (TUNEL) assay and morphologic assessment by phase contrast. Simultaneous assessment of sperm morphology and DNA fragmentation by TUNEL assay was performed in the same cell, then the percentage of normal sperm with fragmented DNA (normal SFD) was correlated with embryo quality and pregnancy outcomes. A highly statistically significant negative correlation was found between the percentage of normal SFD and embryo quality. This association was confirmed for the transferred embryos and for the total embryo cohort. The receiver operating characteristics curve analysis demonstrated that the percentage of normal SFD and embryo quality were statistically significant predictors of pregnancy. When the percentage of normal SFD was
Kong, Pengcheng; Yin, Mingru; Chen, Dongbao; Li, Shangang; Li, Yao; Xing, Fengying; Jiang, Manxi; Fang, Zhenfu; Lyu, Qifeng; Chen, Xuejin
2017-01-01
Can the histone deacetylase inhibitor Scriptaid improve the efficiency of the development of round spermatid injection (ROSI)-fertilized embryos in a mouse model? Treatment of ROSI mouse zygotes with Scriptaid increased the expression levels of several development-related genes at the blastocyst stage, resulting in more efficient in vitro development of the blastocyst and an increased birth rate of ROSI-derived embryos. The full-term development of embryos derived through ROSI is significantly lower than that following ICSI in humans and other species. Oocytes, spermatozoa and round spermatids were collected from BDF1 (C57BL/6 × DBA/2) mice. For in vitro development experiments, mouse ROSI-derived zygotes were treated with Scriptaid at different concentrations (0, 125, 250, 500 and 1000 nM) and for different exposure times (0, 6, 10, 16 or 24 h). Next, blastocysts of the optimal Scriptaid-treated group and the non-treated ROSI group were separately transferred into surrogate ICR mice to compare in vivo development with the ICSI group (control). Each experiment was repeated at least three times. Metaphase II (MII) oocytes, spermatozoa and round spermatids were obtained from sexually mature BDF1 female or male mice. The developmental potential of embryos among the three groups (the ICSI, ROSI and optimal Scriptaid-treated ROSI groups) was assessed based on the rates of obtaining zygotes, two-cell stage embryos, four-cell stage embryos, blastocysts and full-term offspring. In addition, the expression levels of development-related genes (Oct4, Nanog, Klf4 and Sox2) were analysed using real-time PCR, and the methylation states of imprinted genes (H19 and Snrpn) in these three groups were detected using methylation-specific PCR (MS-PCR) sequencing following bisulfite treatment. The in vitro experiments revealed that treating ROSI-derived zygotes with 250 nM Scriptaid for 10 h significantly improved the blastocyst formation rate (59%) compared with the non-treated group (38%) and further increased the birth rates of ROSI-derived embryos from 21% to 40% in vivo. Moreover, in ROSI-derived embryos, the expression of the Oct4, Nanog and Sox2 genes at the blastocyst stage was decreased, but the optimal Scriptaid treatment restored expression to a level similar to their ICSI counterparts. In addition, Scriptaid treatment moderately repaired the abnormal DNA methylation pattern in the imprinting control regions (ICRs) of H19 and Snrpn. N/A LIMITATIONS, REASONS FOR CAUTION: Because of the ethics regarding the use of human gametes for ROSI studies, the mouse model was used as an approach to explore the effects of Scriptaid on the developmental potential of ROSI-derived embryos. However, to determine whether these findings can be applied to humans, further investigation will be required. Scriptaid treatment provides a new means of improving the efficiency and safety of clinical human ROSI. The study was financially supported through grants from the National Key Research Program of China (No. 2016YFC1304800); the National Natural Science Foundation of China (Nos: 81170756, 81571486); the Natural Science Foundation of Shanghai (Nos: 15140901700, 15ZR1424900) and the Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. There are no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The role of retinoic acid in the morphogenesis of the neural tube.
Wilson, L; Gale, E; Maden, M
2003-10-01
We have examined the role of the signalling molecule, retinoic acid, in the process of neurulation and the subsequent growth and differentiation of the central nervous system using quail embryos that have developed in the absence of retinoic acid. Such retinoic acid-free embryos undergo abnormal neural tube formation in terms of its shape and structure, but the embryos do not display spina bifida or exencephaly. The neural tubes have a wider floor plate, a thicker roof plate and a different dorsoventral shape. Phalloidin staining and electron microscopy revealed alterations in the actin filaments and the junctional complexes of the cell layer lining the lumen. Initially the neural tubes proliferated at the same rate as normal, but later the proliferation rate declined drastically and neuronal differentiation was highly deficient. There were very few motoneurons extending neurites into the periphery, and within the neural tube axon trajectories were chaotic. These results reveal several functions for retinoic acid in the morphogenesis and growth of the neural tube, many of which can be explained by defective notochord signalling, but they do not suggest that this molecule plays a role in neural tube closure.
Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna.
Oropesa, A L; Floro, A M; Palma, P
2016-09-01
In the present study, the endocrine activity of the antiepileptic pharmaceutical carbamazepine (CBZ) in the crustacean Daphnia magna was assessed. To assess the hormonal activity of the drug, we exposed maternal daphnids and embryos to environmental relevant concentrations of CBZ (ranging from 10 to 200 μg/L) and to mixtures of CBZ with fenoxycarb (FEN; 1 μg/L). Chronic exposure to CBZ significantly decreased the reproductive output and the number of molts of D. magna at 200 μg/L. This compound induced the production of male offspring (12 ± 1.7 %), in a non-concentration-dependent manner, acting as a weak juvenile hormone analog. Results showed that this substance, at tested concentrations, did not antagonize the juvenoid action of FEN. Further, CBZ has shown to be toxic to daphnid embryos through maternal exposure interfering with their normal gastrulation and organogenesis stages but not producing direct embryo toxicity. These findings suggest that CBZ could act as an endocrine disruptor in D. magna as it decreases the reproductive output, interferes with sex determination, and causes development abnormality in offspring. Therefore, CBZ could directly affect the population sustainability.
Teratogenicity in vitro of two deacetylated metabolites of N-hydroxy-2-acetylaminofluorene.
Faustman-Watts, E M; Greenaway, J C; Namkung, M J; Fantel, A G; Juchau, M R
1984-10-01
In previous studies [E. Faustman-Watts, J. C. Greenaway, M. J. Namkung, A. G. Fantel, and M. R. Juchau (1983) Teratology 27, 19-28] an embryo culture system was utilized to investigate the role of biotransformation in the embryotoxicity of 2-acetylaminofluorene. For this investigation, the capacity of two deacetylated metabolites of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) to produce malformations in cultured whole rat embryos is reported. The relative capacities of N-hydroxy-2-aminofluorene (N-OH-AF) and 2-nitrosofluorene (NF) to elicit embryotoxic effects, including embryolethality, malformations, growth retardation, and alterations in macromolecular content, were assessed and compared with effects produced by N-OH-AAF and bioactivated 2-acetylaminofluorene (AAF). Qualitatively similar patterns of malformations were produced by NF and N-OH-AF. At initial concentrations greater than 60 microM, both deacetylated compounds caused abnormalities in axial rotation (flexure), decreased viability, and decreases in embryonic DNA and protein content. Both chemicals were active in the absence of a bioactivating system. AAF produced a different spectrum of defects, and was active only in the presence of a complete monooxygenase system. The malformations produced by bioactivated AAF included abnormally open neural tubes; flexure abnormalities were rarely observed. The primary defect elicited by N-OH-AAF was prosencephalic hypoplasia. This chemical was active without an added bioactivating system. Temporal studies demonstrated that exposure of embryos to NF (128 microM) for as little as 2 hr was sufficient to elicit embryotoxic effects. None of the individual metabolites appeared to be solely responsible for the interruptions of neural tube closure produced by bioactivated AAF.
Capalbo, Antonio; Wright, Graham; Elliott, Thomas; Ubaldi, Filippo Maria; Rienzi, Laura; Nagy, Zsolt Peter
2013-08-01
Does comprehensive chromosome screening (CCS) of cells sampled from the blastocyst trophectoderm (TE) accurately predict the chromosome complement of the inner cell mass (ICM)? Comprehensive chromosome screening of a TE sample is unlikely to be confounded by mosaicism and has the potential for high diagnostic accuracy. The effectiveness of chromosome aneuploidy screening is limited by the technologies available and chromosome mosaicism in the embryo. Combined with improving methods for cryopreservation and blastocyst culture, TE biopsy and CCS is considered to be a promising approach to select diploid embryos for transfer. The study was performed between January 2011 and August 2011. In the first part, a new ICM isolation method was developed and tested on 20 good morphology blastocysts. In the main phase of the study, fluorescence in situ hybridization (FISH) was used to reanalyse the ICMs and TEs separated from 70 embryos obtained from 26 patients undergoing blastocyst stage array comparative genome hybridization (aCGH) PGS cycles. The isolated ICM and TE fractions were characterized by immunostaining for KRT18. Then, non-transferrable cryopreserved embryos were selected for the FISH reanalysis based on previous genetic diagnosis obtained by TE aCGH analysis. Blastocysts either diploid for chromosome copy number (20) or diagnosed as single- (40) or double aneuploid (10) were included after preparing the embryo into one ICM and three equal-sized TE sections. Accuracy of the aCGH was measured based on FISH reanalysis. Chromosomal segregations resulting in diploid/aneuploid mosaicism were classified as 'low-', 'medium-' and 'high-' grade and categorized with respect to their distribution (1TE, 2TE, 3TE, ICM or ALL embryo). Linear regression model was used to test the relationship between the distributions and the proportion of aneuploid cells across the four embryo sections. Fisher's exact test was used to test for random allocation of aneuploid cells between TE and ICM. All ICM biopsy procedures displayed ICM cells in the recovered fraction with a mean number of ICM cells of 26.2 and a mean TE cell contamination rate of 2%. By FISH reanalysis of previously aCGH-screened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic. Overall, mosaic chromosomal errors were observed only in 11 out of 70 blastocysts (15.7%) but only 2 cases were classified as mosaic diploid/aneuploid (2.9%). Sensitivity and specificity of aCGH on TE clinical biopsies were 98.0 and 100% per embryo and 95.2 and 99.8% per chromosome, respectively. Linear regression analysis performed on the 11 mosaic diploid/aneuploid chromosomal segregations showed a significant positive correlation between the distribution and the proportion of aneuploid cells across the four-blastocyst sections (P < 0.01). In addition, regression analysis revealed that both the grade and the distribution of mosaic abnormal cells were significantly correlated with the likelihood of being diagnosed by aCGH performed on clinical TE biopsies (P = 0.019 and P < 0.01, respectively). Fisher's exact test for the 66 aneuploidies recorded showed no preferential allocation of abnormal cells between ICM and TE (P = 0.33). The study is limited to non-transferable embryos, reanalyzed for only nine chromosomes and excludes segmental imbalance and uniparental disomy. The prevalence of aneuploidy in the study group is likely to be higher than in the general population of clinical PGD embryos. This study showed high accuracy of diagnosis achievable during blastocyst stage PGS cycles coupled with 24-chromosomes molecular karyotyping analysis. The new ICM isolation strategy developed may open new possibilities for basic research in embryology and for clinical grade derivation of human embryonic stem cells. No specific funding was sought or obtained for this study.
Sant, Karilyn E.; Jacobs, Haydee M.; Xu, Jiali; Borofski, Katrina A.; Moss, Larry G.; Moss, Jennifer B.; Timme-Laragy, Alicia R.
2016-01-01
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease. PMID:28393070
Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D
2010-01-01
The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.
The sperm epigenome and potential implications for the developing embryo.
Jenkins, Timothy G; Carrell, Douglas T
2012-06-01
Recent work in the field of male fertility has yielded significant increases in our understanding of the sperm epigenome and its potential role in embryonic development. These new findings have enabled a broad classification of a normal epigenetic state in the male gamete and have provided insight into the possible etiologies of some idiopathic male infertility cases. Histone retention and modification, protamine incorporation into the chromatin, DNA methylation, and spermatozoal RNA transcripts appear to play important roles in the epigenetic state of mature sperm. These epigenetic factors may reveal a historical record of spermatogenesis, portend future functions in embryogenesis, and help to elucidate mechanism of pluripotency. In contrast to the once held dogma regarding the importance of the paternal epigenome, the unique epigenetic landscape in sperm appears to serve more than the gamete itself and is likely influential in the developing embryo. In fact, growing evidence suggests that mature sperm provide appropriate epigenetic marks that drive specific genes toward activation and contribute to the pluripotent state of the embryonic cells. Although not definitive, the current literature provides evidence for the role of the sperm epigenome in the embryo. Future work must be focused on the characterization of epigenetic abnormalities commonly found in individuals with compromised fertility to further establish this role. Additionally, studies should target the effects of environment and aging on the sperm epigenetic program and subsequent fertility loss to determine the etiology of aberrant epigenetic profiles.
Ferre-Fernández, Jesús-José; Aroca-Aguilar, José-Daniel; Medina-Trillo, Cristina; Bonet-Fernández, Juan-Manuel; Méndez-Hernández, Carmen-Dora; Morales-Fernández, Laura; Corton, Marta; Cabañero-Valera, María-José; Gut, Marta; Tonda, Raul; Ayuso, Carmen; Coca-Prados, Miguel; García-Feijoo, Julián; Escribano, Julio
2017-01-01
Congenital glaucoma (CG) is a heterogeneous, inherited and severe optical neuropathy that originates from maldevelopment of the anterior segment of the eye. To identify new disease genes, we performed whole-exome sequencing of 26 unrelated CG patients. In one patient we identified two rare, recessive and hypermorphic coding variants in GPATCH3, a gene of unidentified function, and 5% of a second group of 170 unrelated CG patients carried rare variants in this gene. The recombinant GPATCH3 protein activated in vitro the proximal promoter of CXCR4, a gene involved in embryo neural crest cell migration. The GPATCH3 protein was detected in human tissues relevant to glaucoma (e.g., ciliary body). This gene was expressed in the dermis, skeletal muscles, periocular mesenchymal-like cells and corneal endothelium of early zebrafish embryos. Morpholino-mediated knockdown and transient overexpression of gpatch3 led to varying degrees of goniodysgenesis and ocular and craniofacial abnormalities, recapitulating some of the features of zebrafish embryos deficient in the glaucoma-related genes pitx2 and foxc1. In conclusion, our data suggest the existence of high genetic heterogeneity in CG and provide evidence for the role of GPATCH3 in this disease. We also show that GPATCH3 is a new gene involved in ocular and craniofacial development. PMID:28397860
Kim, Young-Seop; Kim, Myoung-Jin; Koo, Tae-Hee; Kim, Jun-Dae; Koun, Soonil; Ham, Hyung Jin; Lee, You Mie; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin
2012-06-22
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
In utero mouse embryonic imaging with OCT for ophthalmologic research
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2011-03-01
Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.
Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki
2011-06-01
Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Elalayli, Maggie; Hall, Jacklyn D; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T; Han, Zhe; Roon, Penny; LeMosy, Ellen K
2008-07-15
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.
Elalayli, Maggie; Hall, Jacklyn D.; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T.; Han, Zhe; Roon, Penny; LeMosy, Ellen K.
2008-01-01
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell. PMID:18514182
Osaki, Kae; Kashiwada, Shosaku; Tatarazako, Norihisa; Ono, Yoshiro
2006-06-01
To investigate the environmental safety of waste disposal landfill sites and of land reclaimed from such sites, we evaluated the toxicity of leachate from these sites by a combination of bioassays in the Japanese killifish medaka Oryzias latipes. We tested for lethal toxicity in adult and larval medaka and for hatching inhibition of embryos from eggs. As biochemical evidence of the effects of leachate exposure, CYP1A (EROD activity) and vitellogenin (Vtg) were induced. We also bioassayed water-treated leachate and downstream river water. Leachate solution was lethal to larval and adult medaka. Embryo hatchability was inhibited, and abnormal hatching, spinal deformity and anisophthalmia occurred in embryos exposed to leachate solution. CYP1A was induced by exposure to leachate solution diluted to 1.0%, and EROD activity was significantly higher than in control. Vtg and unknown proteins were induced in the sera of male medaka exposed to the diluted leachate solution. Conventional water treatments worked effectively to remove toxic compounds but did not work well to remove element ions, including heavy metals. Treated leachate produced neither lethal toxicity nor hatching abnormalities during the exposure period. Fish toxicity tests for leachate would be useful for monitoring the environmental safety of landfill sites.
Bernicot, I; Dechanet, C; Mace, A; Hedon, B; Hamamah, S; Pellestor, F; Anahory, T
2010-07-01
Pericentric inversions (PIs) are structural chromosomal abnormalities, potentially associated with infertility or multiple miscarriages. More rarely, at meiosis, odd numbers of genetic recombinations within the inversion loop produce recombinant gametes which may lead to aneusomy of recombination in the offspring. We report a FISH segregation analysis of an inv5(p15.3q11.2) carrier, both in sperm and blastomeres. In sperm, we directly evaluated the proportion of recombinant gametes and compared the results with chromosomal abnormalities found in blastomeres collected from embryos obtained following a preimplantation genetic diagnosis (PGD) procedure. A total of 7006 sperm nuclei were analyzed. The size of the inverted segment represented 27% of the total length of chromosome 5. The frequencies of balanced chromosomes (normal or inverted), recombinant chromosomes and unbalanced combinations were 97.1, 0.17 and 2.73%, respectively. Of six embryos, PGD FISH analysis revealed that one was a balanced embryo, whereas five were unbalanced and there were no recombinants. This study demonstrated the value of sperm-FISH analysis in providing reproductive genetic counseling for PI carriers. Our study also highlights the clinical relevance of performing PGD instead of prenatal diagnosis.
Probing the Electrophysiology of the Developing Heart
Watanabe, Michiko; Rollins, Andrew M.; Polo-Parada, Luis; Ma, Pei; Gu, Shi; Jenkins, Michael W.
2016-01-01
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes. PMID:29367561
Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression
Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M.; Singh, Manvendra K.; Li, Li; Epstein, Jonathan A.
2013-01-01
Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. PMID:23506836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozolinš, Terence R.S., E-mail: ozolinst@queensu.ca; Weston, Andrea D.; Perretta, Anthony
Pregnant rats treated with dimethadione (DMO), the N-demethylated metabolite of the anticonvulsant trimethadione, produce offspring having a 74% incidence of congenital heart defects (CHD); however, the incidence of CHD has high inter-litter variability (40–100%) that presents a challenge when studying the initiating events prior to the presentation of an abnormal phenotype. We hypothesized that the variability in CHD incidence was the result of differences in maternal systemic concentrations or embryonic tissue concentrations of DMO. To test this hypothesis, dams were administered 300 mg/kg DMO every 12 h from the evening of gestational day (GD) 8 until the morning of GDmore » 11 (six total doses). Maternal serum levels of DMO were assessed on GD 11, 12, 13, 14, 15, 18 and 21. Embryonic tissue concentrations of DMO were assessed on GD 11, 12, 13 and 14. In a separate cohort of GD 12 embryos, DMO concentrations and parameters of growth and development were assessed to determine if tissue levels of DMO were correlated with these endpoints. Embryos were exposed directly to different concentrations of DMO with whole embryo culture (WEC) and their growth and development assessed. Key findings were that neither maternal systemic concentrations nor tissue concentrations of DMO identified embryos that were sensitive or resistant to DMO in vivo. Direct exposure of embryos to DMO via WEC also failed to show correlations between embryonic concentrations of DMO with developmental outcomes in vitro. We conclude that neither maternal serum nor embryonic tissue concentrations of DMO predict embryonic outcome. - Highlights: • Dimethadione (DMO) induces septation defects (VSD) in rat offspring. • Despite high rate of VSD defects inter-litter variability is 40–100%. • Maternal and embryonic concentrations of DMO were assessed. • Neither serum nor tissue levels of DMO were correlated with embryotoxicity.« less
Estabrooks, Tammy; Browne, Robin; Dong, Zhongmin
2007-02-01
Somatic embryogenesis (SE) offers vast potential for the clonal propagation of high-value roses. However, some recalcitrant cultivars unresponsive to commonly employed SE-inducing agents and low induction rates currently hinder the commercialization of SE technology in rose. Rose SE technology requires improvement before it can be implemented as a production system on a commercial scale. In the present work, we assessed 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a synthetic auxin not previously tested in rose, for its effectiveness to induce SE in the rose cultivar "Livin' Easy" (Rosa sp.). We ran a parallel comparison to the commonly used 2,4-dichlorophenoxyacetic acid (2,4-D). We tested each auxin with two different basal media: Murashige and Skoog (MS) basal medium and woody plant medium (WPM). MS medium resulted in somatic embryo production, whereas WPM did not. 2,4,5-T induced SE over a greater concentration range than 2,4-D's and resulted in significantly greater embryo yields. 2,4,5-T at a concentration of 10 or 25 microM was better for embrygenic tissue initiation than 2,4,5-T at 5 microM. Further embryo development occurred when the tissue was transferred to plant growth regulator (PGR) free medium or media with 40% the original auxin concentration. However, the PGR-free medium resulted in a high percentage of abnormal embryos (32.31%) compared to the media containing auxins. Upon transfer to germination medium, somatic embryos successfully converted into plantlets at rates ranging from 33.3 to 95.2%, depending on treatment. Survival rates 3 months ex vitro averaged 14.0 and 55.6% for 2,4-D- and 2,4,5-T-derived plantlets, respectively. Recurrent SE was observed in 60.2% of the plantlets growing on germination medium. This study is the first report of SE in the commercially valuable rose cultivar 'Livin' Easy' (Rosa sp.) and a suitable methodology was developed for SE of this rose cultivar.
Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J
2010-01-01
To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.
Carballeira, C; Ramos-Gómez, J; Martín-Díaz, L; DelValls, T A
2012-06-01
Standard toxicity screening tests are useful tools in the management of impacted coastal ecosystems. To our knowledge, this is the first time that the sea urchin embryo development test has been used to evaluate the potential impact of effluents from land-based aquaculture farms in coastal areas. The toxicity of effluents from 8 land-based turbot farms was determined by calculating the percentage of abnormal larvae, according to two criteria: (a) standard, considering as normal pyramid-shaped larvae with differentiated components, and (b) skeletal, a new criterion that considers detailed skeletal characteristics. The skeletal criterion appeared to be more sensitive and enabled calculation of effective concentrations EC(5), EC(10), EC(20) and EC(50), unlike the classical criterion. Inclusion of the skeleton criterion in the sea urchin embryo development test may be useful for categorizing the relatively low toxicity of discharges from land-based marine fish farms. Further studies are encouraged to establish any causative relationships between pollutants and specific larval deformities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Susceptibility of early life stages of Xenopus laevis to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Perez-Coll, C.S.; Cardellini, P.
1997-02-01
The susceptibility of Xenopus laevis to cadmium during different stages of development was evaluated by exposing embryos to cadmium concentrations ranging from 0.1 to 10 mg Cd{sup 2+}/L for 24, 48, and 72 h and assessing lethality and malformations. Susceptibility increased from the two blastomeres stage (stage 2) to stage 40, in which the 24-h LC100 was 1.13 mg Cd{sup 2+}/L, and resistance increased from this stage onward. Malformations occurred at all developmental stages evaluated, the most common being reduced size, incurvated axis, underdeveloped or abnormally developed fin, microcephaly, and microphtalmy. Scanning electron microscopy revealed changes in the ectodermal surfacemore » ranging from slightly vaulted cells to a severe reduction in the number of ciliated cells as the concentration of cadmium increased. The intraspecific variation evaluated in embryos (from four sets of parents) at seven developmental stages, expressed as the coefficient of variation of the LC100, ranged from 10 to 112% and reflects the capacity of Xenopus laevis to adapt to changing environmental conditions at different embryonic stages.« less
Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula
2011-01-01
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908
2014-01-01
Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1 fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate. PMID:24433583
Eivers, Edward; McCarthy, Karena; Glynn, Catherine; Nolan, Catherine M; Byrnes, Lucy
2004-12-01
The insulin-like growth factor (IGF) signalling pathway has been highly conserved in animal evolution and, in mammals and Xenopus, plays a key role in embryonic growth and development, with the IGF-1 receptor (IGF-1R) being a crucial regulator of the signalling cascade. Here we report the first functional role for the IGF pathway in zebrafish. Expression of mRNA coding for a dominant negative IGF-1R resulted in embryos that were small in size compared to controls and had disrupted head and CNS development. At its most extreme, this phenotype was characterized by a complete loss of head and eye structures, an absence of notochord and the presence of abnormal somites. In contrast, up-regulation of IGF signalling following injection of IGF-1 mRNA, resulted in a greatly expanded development of anterior structures at the expense of trunk and tail. IGF-1R knockdown caused a significant decrease in the expression of Otx2, Rx3, FGF8, Pax6.2 and Ntl, while excess IGF signalling expanded Otx2 expression in presumptive forebrain tissue and widened the Ntl expression domain in the developing notochord. The observation that IGF-1R knockdown reduced expression of two key organizer genes (chordin and goosecoid) suggests that IGF signalling plays a role in regulating zebrafish organizer activity. This is supported by the expression of IGF-1, IGF-2 and IGF-1R in shield-stage zebrafish embryos and the demonstration that IGF signalling influences expression of BMP2b, a gene that plays an important role in zebrafish pattern formation. Our data is consistent with a common pathway for integration of IGF, FGF8 and anti-BMPs in early vertebrate development.
Altering hemodynamics leads to congenital heart defects (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ford, Stephanie M.; McPheeters, Matthew T.; Wang, Yves T.; Gu, Shi; Doughman, Yong Qiu; Strainic, James P.; Rollins, Andrew M.; Watanabe, Michiko; Jenkins, Michael W.
2016-03-01
The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.
Pacing-induced congenital heart defects assessed by OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ford, Stephanie M.; McPheeters, Matt T.; Wang, Yves T.; Gu, Shi; Doughman, Yong Qiu; Strainic, James P.; Rollins, Andrew M.; Watanabe, Michiko; Jenkins, Michael W.
2016-03-01
The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.
Szabo, Roman; Peters, Diane E; Kosa, Peter; Camerer, Eric; Bugge, Thomas H
2014-07-01
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival.
Szabo, Roman; Peters, Diane E.; Kosa, Peter; Camerer, Eric; Bugge, Thomas H.
2014-01-01
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival. PMID:25078604
Sepulveda, M.S.; Del, Piero F.; Wiebe, J.J.; Rauschenberger, H.R.; Gross, T.S.
2006-01-01
Increased American alligator (Alligator mississippiensis) embryo and neonatal mortality has been reported from several northcentral Florida lakes contaminated with old-use organochlorine pesticides (OCPs). However, a clear relationship among these contaminants and egg viability has not been established, suggesting the involvement of additional factors in these mortalities. Thus, the main objective of this study was to determine the ultimate cause of mortality of American alligator late-stage embryos and hatchlings through the conduction of detailed pathological examinations, and to evaluate better the role of OCPs in these mortalities. Between 2000 and 2001, 236 dead alligators were necropsied at or near hatching (after ???65 days of artificial incubation and up to 1 mo of age posthatch). Dead animals were collected from 18 clutches ranging in viability from 0% to 95%. Total OCP concentrations in yolk ranged from ???100 to 52,000 ??g/kg, wet weight. The most common gross findings were generalized edema (34%) and organ hyperemia (29%), followed by severe emaciation (14%) and gross deformities (3%). Histopathologic examination revealed lesions in 35% of the animals, with over half of the cases being pneumonia, pulmonary edema, and atelectasis. Within and across clutches, dead embryos and hatchlings compared with their live cohorts were significantly smaller and lighter. Although alterations in growth and development were not related to yolk OCPs, there was an increase in prevalence of histologic lesions in clutches with high OCPs. Overall, these results indicate that general growth retardation and respiratory abnormalities were a major contributing factor in observed mortalities and that contaminants may increase the susceptibility of animals to developing certain pathologic conditions. ?? Wildlife Disease Association 2006.
Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis.
Liu, Ting Xi; Howlett, Niall G; Deng, Min; Langenau, David M; Hsu, Karl; Rhodes, Jennifer; Kanki, John P; D'Andrea, Alan D; Look, A Thomas
2003-12-01
Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.
Hyun, Teresa S.; Li, Lina; Oravecz-Wilson, Katherine I.; Bradley, Sarah V.; Provot, Melissa M.; Munaco, Anthony J.; Mizukami, Ikuko F.; Sun, Hanshi; Ross, Theodora S.
2004-01-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo. PMID:15121852
Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S
2004-05-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.
Léger, Sophie; Brand, Michael
2002-11-01
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning. Copyright 2002 Elsevier Science Ireland Ltd.
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan
2014-06-10
Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.
Head formation: OTX2 regulates Dkk1 and Lhx1 activity in the anterior mesendoderm.
Ip, Chi Kin; Fossat, Nicolas; Jones, Vanessa; Lamonerie, Thomas; Tam, Patrick P L
2014-10-01
The Otx2 gene encodes a paired-type homeobox transcription factor that is essential for the induction and the patterning of the anterior structures in the mouse embryo. Otx2 knockout embryos fail to form a head. Whereas previous studies have shown that Otx2 is required in the anterior visceral endoderm and the anterior neuroectoderm for head formation, its role in the anterior mesendoderm (AME) has not been assessed specifically. Here, we show that tissue-specific ablation of Otx2 in the AME phenocopies the truncation of the embryonic head of the Otx2 null mutant. Expression of Dkk1 and Lhx1, two genes that are also essential for head formation, is disrupted in the AME of the conditional Otx2-deficient embryos. Consistent with the fact that Dkk1 is a direct target of OTX2, we showed that OTX2 can interact with the H1 regulatory region of Dkk1 to activate its expression. Cross-species comparative analysis, RT-qPCR, ChIP-qPCR and luciferase assays have revealed two conserved regions in the Lhx1 locus to which OTX2 can bind to activate Lhx1 expression. Abnormal development of the embryonic head in Otx2;Lhx1 and Otx2;Dkk1 compound mutant embryos highlights the functional intersection of Otx2, Dkk1 and Lhx1 in the AME for head formation. © 2014. Published by The Company of Biologists Ltd.
Lam, Pui Ying; Webb, Sarah E; Leclerc, Catherine; Moreau, Marc; Miller, Andrew L
2009-05-01
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Treatment with sodium benzoate leads to malformation of zebrafish larvae.
Tsay, Huey-Jen; Wang, Yun-Hsin; Chen, Wei-Li; Huang, Mei-Yun; Chen, Yau-Hung
2007-01-01
Sodium benzoate (SB) is a commonly used food preservative and anti-microbial agent in many foods from soup to cereals. However, little is known about the SB-induced toxicity and teratogenicity during early embryonic development. Here, we used zebrafish as a model to test the toxicity and teratogenicity because of their transparent eggs; therefore, the organogenesis of zebrafish embryos is easy to observe. After low dosages of SB (1-1000 ppm) treatment, the zebrafish embryos exhibited a 100% survival rate. As the exposure dosages increased, the survival rates decreased. No embryos survived after treatment with 2000 ppm SB. The 50% lethal dose (LD(50)) of zebrafish is found to be in the range of 1400-1500 ppm. Gut abnormalities, malformation of pronephros, defective hatching gland and edema in pericardial sac were observed after treatment with SB. Compared to untreated littermates (vehicle-treated control), SB-treated embryos exhibited significantly reduced tactile sensitivity frequencies of touch-induced movement (vehicle-treated control: 27.60+/-1.98 v.s. 1000 ppm SB: 7.89+/-5.28; N=30). Subtle changes are easily observed by staining with specific monoclonal antibodies F59, Znp1 and alpha6F to detect morphology changes in muscle fibers, motor axons and pronephros, respectively. Our data showed that the treatment of SB led to misalignment of muscle fibers, motor neuron innervations, excess acetyl-choline receptor cluster and defective pronephric tubes. On the basis of these observations, we suggest that sodium benzoate is able to induce neurotoxicity and nephrotoxicity of zebrafish larvae.
Dackor, J.; Strunk, K. E.; Wehmeyer, M. M.; Threadgill, D. W.
2007-01-01
Homozygosity for the Egfrtm1Mag null allele in mice leads to genetic background dependent placental abnormalities and embryonic lethality. Molecular mechanisms or genetic modifiers that differentiate strains with surviving versus non-surviving Egfr nullizygous embryos have yet to be identified. Egfr transcripts in wildtype placenta was quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA expression was found to coincide with Egfrtm1Mag homozygous lethality. Immunohistochemical analysis of ERBB family receptors, ERBB2, ERBB3, and ERBB4, showed similar expression between Egfr wildtype and null placentas indicating that Egfr null trophoblast do not up-regulate these receptors to compensate for EGFR deficiency. Significantly fewer numbers of bromodeoxyuridine (BrdU) positive trophoblast were observed in Egfr nullizygous placentas and Cdc25a and Myc, genes associated with proliferation, were significantly down-regulated in null placentas. However, strains with both mild and severe placental phenotypes exhibit reduced proliferation suggesting that this defect alone does not account for strain-specific embryonic lethality. Consistent with this hypothesis, intercrosses generating mice null for cell cycle checkpoint genes (Trp53, Rb1, Cdkn1a, Cdkn1b or Cdkn2c) in combination with Egfr deficiency did not increase survival of Egfr nullizygous embryos. Since complete development of the spongiotrophoblast compartment is not required for survival of Egfr nullizygous embryos, reduction of this layer that is commonly observed in Egfr nullizygous placentas likely accounts for the decrease in proliferation. PMID:17822758
Effects of the mosquito larvicide GB-1111 on mallard and bobwhite embryos
Stickel, W.H.
2000-01-01
Golden Bear Oil or GB-1111 is a petroleum distillate that is used throughout the United States as a larvicide for mosquito pupae. The oil forms a barrier at the air-water interface, which suffocates air-breathing insects. There are few published studies on non-target effects of GB-1111 but the product label warns that ?GB-1111 is toxic to fish and other aquatic organisms.? Fertile eggs of mallards (Anas platyrhynchos) and bobwhite (Colinus virginianus) were incubated in the laboratory, and treated on days 4 or 11 of incubation with external applications equivalent to either 0, 1/3, 1, 3, or 10 times the maximum rate (5 gal/A) of field application of GB-1111. Hatching success was significantly reduced in mallards treated on day 4 or day 11 at 3 and 10 times the maximum field application, with a calculated approximate LD50 of 1.9 times the maximum field application. Most mortality occurred within a week of treatment. Hatching success of bobwhite was only reduced at the highest level of treatment. Other effects at this level in bobwhite included a significant increase in incidence of abnormal embryos/ hatchlings, lower body and liver weights of hatchlings and a two-fold increase in hepatic microsomal P450-associated monooxygenase activity (EROD) in hatchlings. Recommended rates of field application of GB-1111 are potentially toxic to mallard embryos, especially under conditions of larvicide drift or spray overlap, but unlikely to impair the survival or development of bobwhite embryos.
Babić, Sanja; Barišić, Josip; Višić, Hrvoje; Sauerborn Klobučar, Roberta; Topić Popović, Natalija; Strunjak-Perović, Ivančica; Čož-Rakovac, Rozelindra; Klobučar, Göran
2017-05-15
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G
2014-05-01
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.
Leu, N. Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D.; Zalenskaya, Irina A.; Schultz, Richard M.; Meyer, Ralph G.
2014-01-01
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. PMID:24810616
Impaired active DNA demethylation in zygotes generated by round spermatid injection.
Kurotaki, Yoko Kakino; Hatanaka, Yuki; Kamimura, Satoshi; Oikawa, Mami; Inoue, Hiroki; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo
2015-05-01
Is the poor development of embryos generated from round spermatid injection (ROSI) in humans and animals associated with abnormal active DNA demethylation? A significant proportion of ROSI-derived embryos failed to undergo active DNA demethylation. Active DNA demethylation is initiated by the conversion of 5-methylcytosine (5mC) to 5-hydroxycytosine (5hmC) by the Tet3 enzyme. Active demethylation proceeds in a more pronounced manner in the male pronucleus than in the female one. Mouse zygotes generated by ICSI or ROSI were analyzed for active DNA methylation by quantification of 5mC and 5hmC using specific antibodies. Some ROSI-derived embryos were subjected to time-lapse imaging for DNA methylation levels and were transferred into recipient pseudo-pregnant female mice. In ICSI-derived embryos, the male:female pronucleus (M/F) ratio of 5mC immunostaining intensity was decreased while that of 5hmC was increased. However, a significant proportion of ROSI-derived embryos showed unchanged M/F ratios for 5mC and 5hmC even at the late zygotic period, indicating that they failed to undergo asymmetric active DNA demethylation. Consistent with this, some ROSI-derived embryos did not show preferential localization of Tet3 to the male pronucleus. ROSI-derived embryos were classified into 'demethylated' or 'non-demethylated' groups by time-lapse imaging and transferred into recipient female mice separately. More normal-sized fetuses were retrieved from the 'demethylated' group than 'non-demethylated' group at Day 11.5 of pregnancy. A causal relationship between impaired active DNA demethylation and the poor developmental ability of ROSI-derived embryos remains to be determined. We identified two types of ROSI-derived embryos in terms of the degree of active DNA demethylation. Induction of normal DNA demethylation at the zygotic stage might help in the technical improvement of ROSI. The work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the RIKEN Epigenetics Program. The authors have no competing interests to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, L; Zhu, X D; Wang, X F; Li, J L; Gao, F; Zhou, G H
2016-11-01
Monochromatic green light-emitting diodes (LED) light stimuli influences the posthatch growth performance of chicks. This study was undertaken with the following objectives: i) to examine whether the green LED light stimuli induces an overheating effect by determining weight loss rate of fertile eggs during incubation period; ii) to look for the development of eyes and other primary organs at different ages of embryos and newly hatched chicks. Arbor Acres fertile broiler eggs (n = 480) were randomly assigned to 3 incubation groups and exposed to continuous white light, green light, or a dark environment (control) from the first day to 19 d of incubation. The light sourced from LED lamps with the intensity of 30 lx at eggshell level. The results showed that either green or white light stimuli during incubation did not significantly affect the weight loss rate of fertile eggs, hatching time, hatchability, chick embryo, or body weight (BW), the weight percentage of heart, liver, and eyes, as well as obvious systematic abnormalities in eye weight, side-to-side, back-to-front, or corneal diameter from 15 d of embryogenesis to 6 d of posthatch (p>0.05). Compared with the dark condition, green light stimuli during incubation tended to increase feed intake (p = 0.080), improved the BW gain of chicks during 0 to 6 day posthatch (p<0.05), and increased the percentage of pectoral muscle to the BW on 3- and 6-day-old chicks. In addition, embryos or chicks in green light had lower weight percentage of yolk retention on 19 d of embryogenesis and 1 d of posthatch in comparison to those in dark or white group (p<0.05). These results suggest that providing 30 lx green LED light stimuli during incubation has no detrimental effect on the development of eyes, heart and liver of embryos and hatchlings, but does have potential benefits in terms of enhancement of the chick growth during the early posthatch stages. In addition, the fertile broiler eggs stimulated with 30 lx green LED light during incubation does not cause an overheating effect.
Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe
2016-09-01
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Martino, Chiara; Chiarelli, Roberto; Bosco, Liana; Roccheri, Maria Carmela
2017-09-01
Gadolinium (Gd) concentration is constantly increasing in the aquatic environment, becoming an emergent environmental pollutant. We investigated the effects of Gd on Paracentrotus lividus sea urchin embryos, focusing on skeletogenesis and autophagy. We observed a delay of biomineral deposition at 24 hours post fertilization (hpf), and a strong impairment of skeleton growth at 48 hpf, frequently displayed by an asymmetrical pattern. Skeleton growth was found partially resumed in recovery experiments. The mesodermal cells designated to biomineralization were found correctly migrated at 24 hpf, but not at 48 hpf. Western blot analysis showed an increase of the LC3-II autophagic marker at 24 and 48 hpf. Confocal microscopy studies confirmed the increased number of autophagolysosomes and autophagosomes. Results show the hazard of Gd in the marine environment, indicating that Gd is able to affect different aspects of sea urchin development: morphogenesis, biomineralization, and stress response through autophagy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jammes, Hélène; Fauque, Patricia; Jouannet, Pierre
2010-02-01
Children conceived through assisted reproductive technologies (ART) now account for a noteworthy proportion (-2.4%) of births in France. Considerable attention is being paid to the outcome of ART pregnancies. The vast majority of these children are apparently normal. However, they are at an increased risk of minor birth defects, low birth weight, and rare imprinting disorders such as Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS) and Silver Russel syndrome (SRS). Animal models are important for investigating the possible role of each step of ART (ovarian stimulation, gamete manipulation, in vitro fertilization, embryo culture and embryo transfer) in epigenetic reprogramming This review discusses these issues in the context of epigenetic and developmental abnormalities observed in animals following ART More research is needed on ART-induced errors, focusing not only on genomic imprinting but also on non-imprinted loci, which may help explain some of the more subtle longer-term health effects emerging from studies with animal models.
Krishna, Hare; Singh, S K
2007-01-01
Biotechnology can complement conventional breeding and expedite the mango improvement programmes. Studies involving in vitro culture and selection, micropropagation, embryo rescue, genetic transformation, marker-assisted characterization and DNA fingerprinting, etc. are underway at different centers worldwide. In vitro culture and somatic embryogenesis of several different genotypes have been achieved. The nucellus excised from immature fruitlets is the appropriate explant for induction of embryogenic cultures. High frequency somatic embryogenesis has been achieved in some genotypes; however, some abnormalities can occur during somatic embryo germination. Embryo rescue from young and dropped fruitlets can improve the hybridization success in a limited flowering season. Protocols for protoplast culture and regeneration have also been developed. In vitro selections for antibiotic tolerance and fungal toxin resistance have been very promising for germplasm screening. Genetic transformation using Agrobacterium tumefaciens has been reported. Genes that are involved with fruit ripening have been cloned and there have been attempts to deliver these genes into plants. DNA fingerprinting and studies on genetic diversity of mango cultivars and Mangifera species are also being conducted at several research stations. The purpose of this review is to focus upon contemporary information on biotechnological advances made in mango. It also describes some ways of overcoming the problems encountered during in vitro propagation of mango.
Chen, Defu; Li, Yanlan; Fang, Tao; Shi, Xiaoli; Chen, Xiwen
2016-03-01
Tocopherols and tocotrienols are lipophilic antioxidants that are abundant in plant seeds. Although their roles have been extensively studied, our understanding of their functions in rice seeds is still limited. In this study, on the basis of available RNAi rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC), we developed transgenic plants that silenced homogentisate geranylgeranyl transferase (HGGT). All the RNAi plants showed significantly reduced germination percentages and a higher proportion of abnormal seedlings than the control plants, with HGGT transgenics showing the most severe phenotype. The accelerated aging phenotype corresponded well with the amount of H2O2 accumulated in the embryo, glucose level, and ion leakage, but not with the amount of O(2-) accumulated in the embryo and lipid hydroperoxides levels in these genotypes. Under abiotic stress conditions, HPT and TC transgenics showed lower germination percentage and seedling growth than HGGT transgenics, while HGGT transgenics showed almost the same status as the wild type. Therefore, we proposed that tocopherols in the germ may protect the embryo from reactive oxygen species under both accelerated aging and stress conditions, whereas tocotrienols in the pericarp may exclusively help in reducing the metabolic activity of the seed during accelerated aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Breen, J G; Claggett, T W; Kimmel, G L; Kimmel, C A
1999-01-01
Epidemiologic studies strongly suggest that in utero exposure to hyperthermia results in developmental defects in humans. Rats, mice, guinea pigs, and other species exposed to hyperthermia also exhibit a variety of developmental defects. Studies in our laboratory have focused on exposure to hyperthermia on Gestation Day (GD) 10 of rats in vivo or in vitro. Within 24 h after in vivo or in vitro exposure, delayed or abnormal CNS, optic cup, somite, and limb development can be observed. At birth, only rib and vertebral malformations are seen after hyperthermia on GD 10, and these have been shown to be due to alterations in somite segmentation. Unsegmented somites have been thought to result from a cell-cycle block in the presomitic mesoderm, from which somites emerge individually during normal development. In the present study, DNA fragmentation (terminal deoxynucleotidyl transferase (TdT) catalyzed fluorescein-12-dUTP DNA end-labelling), indicative of apoptotic cell death, and changes in cell proliferation were examined in vitro in 37 degrees C control and heat treated (42 degrees C for 15 min) GD 10 CD rat embryos. Embryos were returned to 37 degrees C culture following exposure and evaluated 5, 8, or 18 h later. A temperature-related increase in TdT labelled cells was observed in the CNS, optic vesicle, neural tube, and somites. Increased cell death in the presomitic mesoderm also was evident. Changes in cell proliferation were examined using the cell-specific abundance of proliferating cell nuclear antigen (PCNA) and the quantification of mitotic figures. In neuroectodermal cells in the region of the optic cup, a change in the abundance of PCNA was not apparent, but a marked decrease in mitotic figures was observed. A significant change in cell proliferation in somites was not detected by either method. These results suggest that acute hyperthermia disrupts embryonic development through a combination of inappropriate cell death and/or altered cell proliferation in discrete regions of the developing rat embryo. Furthermore, postnatal vertebral and rib defects following disrupted somite development may be due, in part, to abundant cell death occurring in the presomitic mesoderm.
Emanuelsson, H; Heby, O
1978-01-01
Development eggs of the polychete Ophryotrocha labronica were analyzed for polyamines during the first 6 days after fertilization. The spermine content dominated initially, but gradually decreased. It was surpassed by putrescine, which rapidly increased to a maximum on the 3rd day, i.e., at the inception of grastrulation. The spermidine content was low during the entire period. Treatment of eggs with the putrescine synthesis inhibitor alpha-methylornithine from the onset of development led to developmental arrest at gastrulation and to an abnormally low content of putrescine in the treated embryos. Methylglyoxal bis(guanylhydrazone), an inhibitor of spermine and spermidine synthesis, had no visible effect of development. Our observations strongly suggest that putrescine synthesis is indispensable in early embryonic development of Ophryotrocha. Images PMID:273215
Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R
1984-01-01
The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.
Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C
2002-11-01
Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.
Kummer, Lawrence W.; Lanthier, Paula; Kim, In-Jeong; Kuki, Atsuo; Thomas, Stephen J.
2018-01-01
Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. PMID:29634758
The transcriptional activator ZNF143 is essential for normal development in zebrafish
2012-01-01
Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977
The transcriptional activator ZNF143 is essential for normal development in zebrafish.
Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R
2012-01-23
ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.
Chowdhury, Biswajit; Xiang, Bo; Liu, Michelle; Hemming, Richard; Dolinsky, Vernon W; Triggs-Raine, Barbara
2017-01-01
Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient ( Hyal2 - /- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2 -/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2 -/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2 -/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2 -/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2 -/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. These data demonstrate that disruption of normal HA catabolism in Hyal2 -/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure. © 2016 The Authors.
Comparative analysis of water quality and toxicity assessment methods for urban highway runoff.
Chen, Rui-Hong; Li, Fei-Peng; Zhang, Hai-Ping; Jiang, Yue; Mao, Ling-Chen; Wu, Ling-Ling; Chen, Ling
2016-05-15
In this study, comparative analyses of highway runoff samples obtained from seventeen storm events have been conducted between the traditional water quality assessment method and biotoxicity tests, using zebrafish (Danio rerio) embryos and luminous bacteria (Vibrio qinghaiensis. Q67) to provide useful information for ecotoxicity assessment of urban highway runoff. The study results showed that the Nemerow pollution index based on US EPA recommended Criteria Maximum Concentrations (CMC) (as traditional water quality assessment method) had no significant correlation with luminous bacteria acute toxicity test results, while significant correlation has been observed with two indicators of 72 hpf (hours post fertilization) hour hatching rate and 96 hpf abnormality rate from the toxicity test with zebrafish embryos. It is therefore concluded that the level of mixture toxicity of highway runoff could not be adequately measured by the Nemerow assessment method. Moreover, the key pollutants identified from the water quality assessment and from the biotoxicity evaluation were not consistent. For biotoxic effect evaluation of highway runoff, three indexes were found to be sensitive, i.e. 24 hpf lethality and 96 hpf abnormality of zebrafish embryos, as well as the inhibition rate for luminous bacteria Q67. It is therefore recommended that these indexes could be incorporated into the traditional Nemerow method to provide a more reasonable evaluation of the highway runoff quality and ecotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Xavier-Neto, Jose; Carvalho, Murilo; Pascoalino, Bruno dos Santos; Cardoso, Alisson Campos; Costa, Ângela Maria Sousa; Pereira, Ana Helena Macedo; Santos, Luana Nunes; Saito, Ângela; Marques, Rafael Elias; Smetana, Juliana Helena Costa; Consonni, Silvio Roberto; Bandeira, Carla; Costa, Vivian Vasconcelos; Bajgelman, Marcio Chaim; de Oliveira, Paulo Sérgio Lopes; Cordeiro, Marli Tenorio; Gonzales Gil, Laura Helena Vega; Pauletti, Bianca Alves; Granato, Daniela Campos; Paes Leme, Adriana Franco; Freitas-Junior, Lucio; Holanda de Freitas, Carolina Borsoi Moraes; Teixeira, Mauro Martins; Bevilacqua, Estela; Franchini, Kleber
2017-01-01
The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5–9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes. PMID:28231241
Embryo density and medium volume effects on early murine embryo development.
Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C
1992-10-01
One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.
Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium.
Tucker, Matthew R; Okada, Takashi; Johnson, Susan D; Takaiwa, Fumio; Koltunow, Anna M G
2012-05-01
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.
Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju
2011-01-01
Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656
Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium
Tucker, Matthew R.; Okada, Takashi; Johnson, Susan D.; Takaiwa, Fumio; Koltunow, Anna M. G.
2012-01-01
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA. PMID:22378948
Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro
2013-05-01
The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popp, R.A.; Bradshaw, B.S.; Skow, L.C.
Human alpha thalassemia is a congential disease causing a deficiency in the synthesis of alpha chains of hemoglobin. Homozygous individuals (hydrops fetalis) usually die during late pregnancy. Alpha thalassemia in mice has been induced by X-irradiation of males. Clinical symptoms in heterozygous mice are similar to those in man, e.g. microcytosis, reticulocytosis, poikilocytosis and hypochromia. Genetic studies showed that all viable alpha thalassemic progeny of matings of alpha thalassemic females and males were heterozygotes. Examination of preimplantation blastocysts flushed from the uterus of alpha thalassemic females at 86 hours after mating with alpha thalassemic males showed that about three-fourths ofmore » the embryos were composed of more than 32 blastomeres and had reached the early blastocyst stage while the remaining one-fourth of the embryos were composed of 32 or less blastomeres and were still at the morula stage of development. About one-fourth of the implantation sites did not contain live fetuses at 11 to 15 days of development. Histological examination at 5 to 8 days of gestation showed that the homozygous alpha thalassemic embryos implanted and developed to the late blastocyst stage when they became necrotic. At 11 to 15 days of development, the primitive nucleated erythrocytes appeared to be normal. However, the anucleated erythrocytes, which differentiate in the fetal liver, of alpha thalassemic fetuses contained abnormal eosinophilic inclusions that may be aggregations of beta chain polypeptides. The electrophoretic pattern of hemoglobins from alpha thalassemic fetuses and adults are distinguishable from those of their normal littermates. The differences can be explained on the basis of deficient alpha chain synthesis and the different affinities of the various kinds of alpha and non-alpha chains during the assembly of polypeptides of the tetrameric hemoglobin molecule.« less
Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro
2013-01-01
The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241
NASA Astrophysics Data System (ADS)
Austin, Carlye Anne
This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver concentration in visceral yolk sac and low silver concentration in embryos, suggests that visceral yolk sac tissue mitigates AgNP transfer to embryos. No significant treatment-related effects on embryo morphology or tissue histology were detected. Chapter three constitutes an expanded study of silver distribution in pregnant mice and developing embryos, with the addition of 10 nm AgNP treatment groups and examination of fetuses at GD16. Very low concentrations of silver were measured in GD10 embryos and GD16 fetuses following 10 nm AgNP treatment or in GD16 fetuses following 50 nm AgNP treatment. Highest silver concentrations were measured in maternal liver, spleen, and visceral yolk sac. AgNP particle size (10 or 50 nm) did not consistently affect silver tissue distribution. At GD10, 50 nm AgNP treatment resulted in significantly higher silver concentrations than 10 nm AgNP treatment for liver, spleen, and visceral yolk sac only; at GD16, in visceral yolk sac only, 10 nm AgNP treatment resulted in a significantly higher silver concentration than 50 nm AgNP treatment. In liver, spleen, visceral yolk sac, and uterus, absolute silver concentrations following 10 nm AgNP treatment were significantly lower at GD16 compared to GD10; the patterns of silver tissue distribution were similar at both time points. Silver nitrate and 10 nm AgNP treatments resulted in similar tissue concentrations in GD10 tissues with the exception of visceral yolk sac, for which the silver concentration was significantly higher after silver nitrate treatment. Silver distribution patterns were generally similar between 10 nm AgNP and silver nitrate treatments. No histological abnormalities were noted in maternal tissues, extra-embryonic tissues, or embryos. A significantly increased incidence of developmentally young (for gestational age) GD10 embryos was seen following 10 nm AgNP treatment; no significant morphological effects were observed in embryos or maternal tissues. Further research will be needed to fully evaluate potential effects of prenatal AgNP exposure on embryos. (Abstract shortened by UMI.)
USING THE MEDAKA EMBRYO ASSAY TO INVESTIGATE DEVELOPMENTAL ETHANOL TOXICITY.
Ethanol (EtOH) is a well-known developmental toxicant that produces a range of abnormal phenotypes. While the toxic potential of developmental EtOH exposure is well characterized, the effect of the timing of exposure on the extent of toxicity remains unknown. Fish models such as ...
Modeling human craniofacial disorders in Xenopus
Dubey, Aditi; Saint-Jeannet, Jean-Pierre
2017-01-01
Purpose of Review Craniofacial disorders are among the most common human birth defects and present an enormous health care and social burden. The development of animal models has been instrumental to investigate fundamental questions in craniofacial biology and this knowledge is critical to understand the etiology and pathogenesis of these disorders. Recent findings The vast majority of craniofacial disorders arise from abnormal development of the neural crest, a multipotent and migratory cell population. Therefore, defining the pathogenesis of these conditions starts with a deep understanding of the mechanisms that preside over neural crest formation and its role in craniofacial development. Summary This review discusses several studies using Xenopus embryos to model human craniofacial conditions, and emphasizes the strength of this system to inform important biological processes as they relate to human craniofacial development and disease. PMID:28255527
Msx genes define a population of mural cell precursors required for head blood vessel maturation.
Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît
2011-07-01
Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.
Lack of genetic interaction between Tbx20 and Tbx3 in early mouse heart development.
Gavrilov, Svetlana; Harvey, Richard P; Papaioannou, Virginia E
2013-01-01
Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay.
Yang, Sha; Li, Lin; Zhang, Jialei; Geng, Yun; Guo, Feng; Wang, Jianguo; Meng, Jingjing; Sui, Na; Wan, Shubo; Li, Xinguo
2017-01-01
Calcium not only serves as a necessary nutrient for plant growth but also acts as a ubiquitous central hub in a large number of signaling pathways. Free Ca2+ deficiency in the soil may cause early embryo abortion, which eventually led to abnormal development of peanut pod during the harvest season. To understand the mechanisms of Ca2+ regulation in pod development, transcriptome analysis of peanut gynophores and pods was performed by comparing the treatments between free Ca2+ sufficiency and free Ca2+ deficiency using Illumina HiSeq™ 2000. 9,903,082,800 nt bases are generated totally. After assembly, the average length of 102,819 unigenes is 999 nt, N50 is 1,782 nt. RNA-seq based gene expression profilings showed a large number of genes at the transcriptional level changed significantly between the aerial pegs and underground swelling pods under free Ca2+ sufficienct or deficiency treatments, respectively. Genes encoding key members of Ca2+ signaling transduction pathway, enzymes for hormone metabolism, cell division and growth, transcriptional factor as well as embryo development were highlighted. This information provides useful information for our further study. The results of digital gene expression (DGE) indicated that exogenous calcium might contribute to the development of peanut pod through its signal transduction pathway, meanwhile, promote the normal transition of the gynophores to the reproductive development. PMID:29033956
Dragwidge, Jonathan Michael; Ford, Brett Andrew; Ashnest, Joanne Rachel; Das, Partha; Gendall, Anthony Richard
2018-05-16
In Arabidopsis thaliana, the endosomal localised Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism of how these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects to the perception, accumulation, and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin mediated plant development by maintaining PIN abundance at the plasma membrane, and provides new insight into the regulation of plant development by endosomal NHX antiporters.
Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.
Deml, Brett; Kariminejad, Ariana; Borujerdi, Razieh H R; Muheisen, Sanaa; Reis, Linda M; Semina, Elena V
2015-01-01
Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.
G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish
Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.
2017-01-01
Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151
G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.
Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A
2017-10-01
Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.
Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.
Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A
2013-05-15
Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Superina, Simone; Borovina, Antonia; Ciruna, Brian
2014-03-15
Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Diamante, Graciel; Menjivar-Cervantes, Norma; Leung, Man Sin; Volz, David C; Schlenk, Daniel
2017-05-01
Exposure to 17β-estradiol (E2) influences the regulation of multiple signaling pathways, and E2-mediated disruption of signaling events during early development can lead to malformations such as cardiac defects. In this study, we investigated the potential role of the G-protein estrogen receptor 1 (GPER) in E2-induced developmental toxicity. Zebrafish embryos were exposed to E2 from 2h post fertilization (hpf) to 76 hpf with subsequent transcriptional measurements of heart and neural crest derivatives expressed 2 (hand2), leucine rich repeat containing 10 (lrrc10), and gper at 12, 28 and 76 hpf. Alteration in the expression of lrrc10, hand2 and gper was observed at 12 hpf and 76 hpf, but not at 28 hpf. Expression of these genes was also altered after exposure to G1 (a GPER agonist) at 76 hpf. Expression of lrrc10, hand2 and gper all coincided with the formation of cardiac edema at 76 hpf as well as other developmental abnormalities. While co-exposure of G1 with G36 (a GPER antagonist) rescued G1-induced abnormalities and altered gene expression, co-exposure of E2 with G36, or ICI 182,780 (an estrogen receptor antagonist) did not rescue E2-induced cardiac deformities or gene expression. In addition, no effects on the concentrations of downstream ER and GPER signaling molecules (cAMP or calcium) were observed in embryo homogenates after E2 treatment. These data suggest that the impacts of E2 on embryonic development at this stage are complex and may involve multiple receptor and/or signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos.
Özeren, Ersin; Er, Uygur; Güvenç, Yahya; Demirci, Adnan; Arıkök, Ata Türker; Şenveli, Engin; Ergün, Rüçhan Behzat
2015-04-01
The study investigated the effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. We looked at four groups with a total of 36 embryos. There was a control group, a normal saline group, a normal-dose group and a high-dose group with ten, ten, eight and eight eggs with embryo respectively. Two embryos in the control group, studied with light microscopy at 48 h, were consistent with 28-29 hours' incubation in the Hamburger-Hamilton System. They had open neural tubes. The other embryos in this group were considered normal. One embryo in the normal saline group was on the occlusion stage at 48 h. One embryo showed an open neural tube. They were compatible with 28-29 hours' incubation in the Hamburger-Hamilton system. The remaining eight embryos showed normal development. In the normal dose group, one embryo showed underdevelopment of the embryonic disc and the embryo was dead. In four embryos, the neural tubes were open. One cranial malformation was found that was complicated with anencephaly in one embryo. In two embryos the neural tubes were closed, as they showed normal development, and they reached their expected stages according to the Hamburger-Hamilton classification. There was no malformation or growth retardation. Four experimental embryos were anencephalic in the high dose group, and three embryos had open neural tubes. One embryo exhibited both anencephaly and a neural tube closure defect. None of the embryos in this group showed normal development. Even the usual therapeutic doses of flurbiprofen increased the risk of neural tube defect. Flurbiprofen was found to significantly increase the risk of anencephaly. The provision of improved technical materials and studies with larger sample sizes will reveal the stage of morphological disruption during the development of embryos.
Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities.
Quintana, Anita M; Yu, Hung-Chun; Brebner, Alison; Pupavac, Mihaela; Geiger, Elizabeth A; Watson, Abigail; Castro, Victoria L; Cheung, Warren; Chen, Shu-Huang; Watkins, David; Pastinen, Tomi; Skovby, Flemming; Appel, Bruce; Rosenblatt, David S; Shaikh, Tamim H
2017-08-01
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization
Khavandgar, Zohreh; Poirier, Christophe; Clarke, Christopher J.; Li, Jingjing; Wang, Nicholas; McKee, Marc D.; Hannun, Yusuf A.
2011-01-01
A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested that nSMase2 activity in the brain regulates skeletal development through endocrine factors. However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, we examined the in vitro mineralization properties of fro/fro osteoblast cultures. fro/fro cultures mineralized less than the control osteoblast cultures. We next generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues. PMID:21788370
van der Weijden, Vera A; Chen, Shuai; Bauersachs, Stefan; Ulbrich, Susanne E; Schoen, Jennifer
2017-11-25
We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.
Capalbo, Antonio; Treff, Nathan; Cimadomo, Danilo; Tao, Xin; Ferrero, Susanna; Vaiarelli, Alberto; Colamaria, Silvia; Maggiulli, Roberta; Orlando, Giovanna; Scarica, Catello; Scott, Richard; Ubaldi, Filippo Maria; Rienzi, Laura
2017-12-01
To test whether abnormally fertilized oocyte (AFO)-derived blastocysts are diploid and can be rescued for clinical use. Longitudinal-cohort study from January 2015 to September 2016 involving IVF cycles with preimplantation genetic testing for aneuploidy (PGT-A). Ploidy assessment was incorporated whenever a blastocyst from a monopronuclear (1PN) or tripronuclear zygote (2PN + 1 smaller PN; 2.1 PN) was obtained. Private IVF clinics and genetics laboratories. A total of 556 women undergoing 719 PGT-A cycles. Conventional chromosome analysis was performed on trophectoderm biopsies by quantitative polymerase chain reaction. For AFO-derived blastocysts, ploidy assessment was performed on the same biopsy with the use of allele ratios for hetorozygous SNPs analyzed by means of next-generation sequencing (1:1 = diploid; 2:1 = triploid; loss of heterozygosity = haploid). Balanced-diploid 1PN- and 2.1PN-derived blastocysts were transferred in the absence of normally fertilized transferable embryos. Ploidy constitution and clinical value of AFO-derived blastocysts in IVF PGT-A cycles. Of the 5,026 metaphase II oocytes injected, 5.2% and 0.7% showed 1PN and 2.1PN, respectively. AFOs showed compromised embryo development (P<.01). Twenty-seven AFO-derived blastocysts were analyzed for ploidy constitution. The 1PN-derived blastocysts were mostly diploid (n = 9/13; 69.2%), a few were haploid (n = 3/13; 23.1%), and one was triploid (n = 1/13; 7.7%). The 2.1PN-derived blastocysts were also mostly diploid (n = 12/14; 85.7%), and the remainder were triploid. Twenty-six PGT-A cycles resulted in one or more AFO-derived blastocysts (n = 26/719; 3.6%). Overall, eight additional balanced-diploid transferable embryos were obtained from AFOs. In three cycles, the only balanced-diploid blastocyst produced was from an AFO (n = 3/719; 0.4%). Three AFO-derived live births were achieved: one from a 1PN zygote and two from 2.1PN zygotes. Enhanced PGT-A technologies incorporating reliable ploidy assessment provide an effective tool to rescue AFO-derived blastocysts for clinical use. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Tsuji, Yuta; Kato, Yoko; Tsunoda, Yukio
2012-08-01
Somatic cell nuclear-transferred (SCNT) oocytes have a high potential for development in vitro, but a large proportion of embryos that are transferred to recipients is aborted before parturition. The precise mechanism for the high abortion rate is unknown, but abnormal placenta formation is frequently observed in SCNT-cloned pregnancies. The present study examined the effects of treating the recipients with cyclosporin A (CsA), an immunoprotectant, on the proportion of fetuses resulting from SCNT-cloned pregnancies. Cloned embryos developed from enucleated oocytes and receiving cumulus cells from F1 (C57BL/6 × DBA, H-2b/d) females were transferred to outbred ICR (in which the H-2 complex was not fixed) recipient females. Each recipient received an intraperitoneal injection of CsA or vehicle. Compared with vehicle, administration of CsA to recipients on day 4.5 of pregnancy significantly increased the proportion of fetuses observed on day 10.5. The proportion of fetuses at day 18.5 of pregnancy in recipients receiving CsA treatment was slightly higher than that in controls. This study is the first to report that CsA administration increases the proportion of fetuses resulting from SCNT-cloned pregnancies.
Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs.
Takeda, Kumiko
2013-04-01
Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.
Dioxin effects on wood duck (Aix sponsa) embryos from sites near paper mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, D.K.; Melancon, M.J.; Fleming, W.J.
Biological and biochemical variables were studied in wood duck embryos from four dioxin-contaminated sites near paper mills in the Southeastern United States and three reference sites. Sites were selected based on a history of dioxin contamination in both sediments and fish. In addition, wood duck embryos collected downstream from an Arkansas Superfund site with demonstrated dioxin-induced reproductive impairment served as positive controls. Whole clutches of eggs were collected from the wild after fifteen days of incubation and mechanically incubated. Two embryos per clutch were sacrificed at pipping and liver monooxygenase activities (BROD, EROD and MROD) were quantified. Hatching success wasmore » determined for the remainder of the nest. Preliminary results indicate no difference in monooxygenase activities across sites even though the authors have previously demonstrated induction of monooxygenase activity in wood duck embryos in laboratory studies. In addition, there were no differences in weight at pipping, liver weight and liver weight to body weight ratios. No differences were seen in hatching success or weight at hatch nor were there any gross morphological abnormalities. This may indicate that exposure of wood ducks nesting near these pulp paper mills is below those which cause elevated monooxygenase activities and reproductive impairment.« less
Embryotoxic effects of crude oil in mallard ducks and chicks
Hoffman, David J.
1978-01-01
Recent studies in this laboratory have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 10% of the egg surface reduce hatching considerably in different avian species. Applications of paraffin compounds that coat equal areas of the egg surface do not reduce hatching suggesting that toxicity is due to causes other than asphyxia. In the present study, 1–10 μl of South Louisiana crude oil, an API reference oil, were applied to the surface of fertile mallard (Anas platyrhynchos) and chicken (Gallus gallus) eggs. Early embryolethality was greater in mallard embryos than in chick embryos, but later embryolethality that coincided with the time of rapid outgrowth of the chorioallantoic membrane was more prevalent in chick embryos. The overall incidence of embryolethality was similar in both species. Retardation of growth as reflected by embryonic body weight, crown-rump length, beak length, and general appearance was more pronounced in chick than mallard embryos. Teratogenic defects were more frequent in chick embryos, and incomplete or abnormal ossification of the skull was the most common. External application of equivalent amounts of a mixture of paraffin compounds present in crude oil had virtually no embryotoxic effects in either species, suggesting that other components including aromatic hydrocarbons and organometallics may cause the embryotoxicity.
Equine cloning: in vitro and in vivo development of aggregated embryos.
Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F
2012-07-01
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.
Ni, Christina; Zhang, Deming; Beyer, Lisa A; Halsey, Karin E; Fukui, Hideto; Raphael, Yehoash; Dolan, David F; Hornyak, Thomas J
2013-01-01
The human deafness-pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia-White (Mitf(Mi-wh) /+) mice were studied and hearing function of these mice characterized. Mitf(Mi-wh) /+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. Mitf(Mi-wh) /+ embryos have fewer melanoblasts during embryonic development than their wild-type littermates. Although cochlear melanocytes are present at birth, they disappear from the Mitf(Mi-wh) /+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness-pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes. © 2012 John Wiley & Sons A/S.
Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang
2015-01-01
DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.
Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation
Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.
2009-01-01
Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development. PMID:20009564
Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.
Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C
2009-10-01
Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development.
Dyrlund, Thomas F; Kirkegaard, Kirstine; Poulsen, Ebbe Toftgaard; Sanggaard, Kristian W; Hindkjær, Johnny J; Kjems, Jørgen; Enghild, Jan J; Ingerslev, Hans Jakob
2014-11-01
Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. Using advanced mass spectrometry and high confidence criteria for accepting proteins (P < 0.01), a total of 110 proteins other than HSA were identified. The average HSA content was found to be 94% (92-97%) of total protein. Other individual proteins accounted for up to 4.7% of the total protein. Analysis of purified HSA strongly suggests that these non-declared proteins are introduced to the media when the albumin is added. GO analysis showed that many of these proteins have roles in defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. For six of the commercial embryo culture media only one batch was analyzed. However, this does not affect the overall conclusions. The results showed that the HSA added to IVF media contained many other proteins and that the amount varies from batch to batch. These variations in protein profiles are problematic when attempting to identify proteins derived from the embryos. Therefore, when studying the embryo secretome and analyzing conditioned media with the aim of finding potential biomarkers that can distinguish normal and abnormal embryo development, it is important that the medium used in the experimental and control groups is from the same batch. Furthermore, the proteins present in unconditioned media could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring. The study was supported by the Danish Agency for Science, Technology and Innovation. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from Merck Sharp & Dohme Corp and Ferring. The authors declare no conflicts of interest. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Isom, S Clay; Li, Rong Feng; Whitworth, Kristin M; Prather, Randall S
2012-03-01
Evidence in many species has suggested that those embryos that cleave earliest after fertilization are more developmentally competent than those that cleave relatively later after fertilization. Herein we document this phenomenon in porcine in vitro-fertilized (IVF), somatic cell nuclear transfer (SCNT), and parthenogenetic (PA) embryos. In vitro-matured pig oocytes were used to generate IVF, SCNT, and PA embryos. At 24 hr post-activation (or insemination; hpa/hpi), embryos were visually assessed, and cleaved embryos were moved into a new culture well. This process was repeated at 30 and 48 hpa/hpi. All embryos were allowed to develop 7 days in culture. For IVF embryos, 39.9%, 24.6%, and 10.5% of fast-, intermediate-, or slow-cleaving embryos, respectively, developed into blastocysts by day 7. For SCNT embryos, 31.8% of fast-, 5.7% of intermediate-, and 2.9% of late-cleaving embryos achieved the blastocyst stage of development. For PA embryos, the percentages of those cleaved embryos that developed to blastocyst were 59.3%, 36.7%, and 7.5% for early-, intermediate-, and late-cleaving embryos, respectively. Using RNA collected from early-, intermediate-, and late-cleaving embryos, real-time PCR was performed to assess the transcript levels of 14 different genes of widely varied function. The qPCR results suggest that maternal mRNA degradation may not proceed in an appropriate pattern in slow-cleaving embryos. These findings (1) confirm that, as observed in other species, earlier-cleaving porcine embryos are more successful at developing in culture than are slower-cleaving embryos, and (2) implicate mechanisms of maternal transcript destruction as potential determinants of oocyte/embryo quality. Copyright © 2011 Wiley Periodicals, Inc.
Transfer of bovine demi-embryos with and without the zona pellucida.
Warfield, S J; Seidel, G E; Elsden, R P
1987-09-01
Bisected bovine embryos with or without the zona pellucida were transferred to recipients nonsurgically in five field trials. Embryos were collected from superovulated donors 6.5 to 7.5 d after estrus; only embryos of good and excellent quality were bisected. Demi-embryos were transferred either within a zona pellucida, without a zona pellucida, without a zona pellucida, or in the third and fourth trials, without a zona but embedded in 7% gelatin. Pregnancies were diagnosed at 44 to 68 d of gestation. In a preliminary trial, 9/29 zona pellucida-intact demi-embryos developed into fetuses compared with 1/10 zona pellucida-free demi-embryos (P greater than .1). The proportion of zona-free demi-embryos developing to fetuses was not significantly different from the zona-intact group in the second trial either, 24/49 and 5/19, respectively. In trial 3, the proportion of zona pellucida-free demi-embryos developing was 8/25; of zona-enclosed embryos, 29/88; and of zona-free demi-embryos embedded in gelatin, 8/22 (P greater than .1). Similarly, in the fourth trial the rate of development of zona-free demi-embryos to fetuses was 5/12, that of zona-enclosed embryos was 32/81, and that of zona-free demi-embryos embedded in gelatin was 3/12 (P greater than .1). In trial 5, survival of zona-enclosed demi-embryos to fetuses was 40/105, and of zona-free demi-embryos, 46/109 (P greater than .1). Except for trial 2, half of the demi-embryos were twinned, one to each uterine horn; twinning did not significantly affect the proportion developing to fetuses for any of the demi-embryo groups. It is concluded that placing post-compaction demi-embryos into the zona pellucida for transfer does not improve pregnancy rates significantly.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... Affairs (the licensee), National Health Physics Program (NHPP) reported that a medical event occurred at.... Nuclear Regulatory Commission (NRC) determines to be significant from the standpoint of public health or... that the patient consult with a genetic counselor for any potential health effects to the embryo/fetus...
c-Abl tyrosine kinase regulates cardiac growth and development.
Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P
2010-01-19
The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development.
c-Abl tyrosine kinase regulates cardiac growth and development
Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P.
2009-01-01
The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development. PMID:20080568
[Effect of phytohemagglutinin (PHA) from Yunnan white kidney bean on development of mouse embryos].
Zhang, Lifen; Wang, Changmei; Yang, Mingjie; Zhang, Tian; Wang, Minkang
2011-06-01
To study the effect of different concentration of phytohemagglutinin (PHA) on mouse embryo development. In experiment 1, crude and purified PHA extracted from Yunnan white kidney bean with different concentration were added into M16 culture medium, the final concentration of PHA were: 50, 100, 200, 500, 1 000, 2 000 and 5 000 mg x L(-1) respectively. 2-cell stage embryos were collected and cultured in PHA containing or control medium for 72-96 h and their development were recorded. In experiment 2, different stage of embryos from 1-cell to blastocyst were treated by different concentrations of PHA same as experiment 1 and 10 000 mg x L(-1) in culture medium for 24 h before washing and cultured in M16 + PVA without PHA to blastocyst or hatching blastocyst stage. Low concentrations PHA at 50-100 mg x L(-1) promoted embryo development and increased the number of blastocyst stage embryos. In contrast, high concentrations of PHA (> 1 000 mg x L(-1)) blocked the embryos development from 1-cell to blastocyst stage and showed apoptosis morphology or death. Depending on the concentrations, PHA from white kidney bean shown promotion or inhibition on mouse embryo development. 1-cell stage embryo shown more sensitive to PHA treatment than that of later stage embryos. Pretreatment 24 h in PHA containing medium can influence the further development of embryos. Low concentrations of PHA is benefit to embryo development, but high concentrations of PHA (> 1 000 mg x L(-1)) will block of the development of embryos.
Hamblet, Natasha S; Lijam, Nardos; Ruiz-Lozano, Pilar; Wang, Jianbo; Yang, Yasheng; Luo, Zhenge; Mei, Lin; Chien, Kenneth R; Sussman, Daniel J; Wynshaw-Boris, Anthony
2002-12-01
The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.
Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan
2017-08-14
Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.
French, Andrew J; Wood, Samuel H; Trounson, Alan O
2006-01-01
Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.
Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes.
Simon, Luke; Castillo, Judit; Oliva, Rafael; Lewis, Sheena E M
2011-12-01
The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1+P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1+P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Gregg, Chelsea L.; Butcher, Jonathan T.
2016-01-01
Background Gestationally survivable congenital malformations arise during mid-late stages of development that are inaccessible in vivo with traditional optical imaging for assessing long term abnormal patterning. MicroCT is an attractive technology to rapidly and inexpensively generate quantitative 3D datasets but requires exogenous contrast media. Here we establish dose dependent toxicity, persistence, and biodistribution of three different metallic nanoparticles in day 4 chick embryos. Results We determined that 110nm alkaline earth metal particles were non-toxic and persisted in the chick embryo for up to 24 hours post injection with contrast enhancement levels at high as 1600HU. 15nm gold nanoparticles persisted with x-ray attenuation higher than that of the surrounding yolk and albumen for up to 8 hours post injection, while 1.9nm particles resulted in lethality by 8 hours. We identified spatial and temporally heterogeneous contrast enhancement ranging from 250-1600HU. With the most optimal 110nm alkaline earth metal particles, we quantified an exponential increase in the tissue perfusion versus distance from the dorsal aorta into the flank over 8 hours with a peak perfusion rate of 0.7um2/s measured at a distance of 0.3mm. Conclusion These results demonstrate the safety, efficacy, and opportunity of nanoparticle based contrast media in live embryos for quantitative analysis of embryogenesis. PMID:27447729
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
De Castro, Sandra C P; Hirst, Caroline S; Savery, Dawn; Rolo, Ana; Lickert, Heiko; Andersen, Bogi; Copp, Andrew J; Greene, Nicholas D E
2018-03-15
Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Yan, Liying; Huang, Lei; Xu, Liya; Huang, Jin; Ma, Fei; Zhu, Xiaohui; Tang, Yaqiong; Liu, Mingshan; Lian, Ying; Liu, Ping; Li, Rong; Lu, Sijia; Tang, Fuchou; Qiao, Jie; Xie, X Sunney
2015-12-29
In vitro fertilization (IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening (PGS) help patients to select embryos free of monogenic diseases and aneuploidy (chromosome abnormality). Next-generation sequencing (NGS) methods, while experiencing a rapid cost reduction, have improved the precision of PGD/PGS. However, the precision of PGD has been limited by the false-positive and false-negative single-nucleotide variations (SNVs), which are not acceptable in IVF and can be circumvented by linkage analyses, such as short tandem repeats or karyomapping. It is noteworthy that existing methods of detecting SNV/copy number variation (CNV) and linkage analysis often require separate procedures for the same embryo. Here we report an NGS-based PGD/PGS procedure that can simultaneously detect a single-gene disorder and aneuploidy and is capable of linkage analysis in a cost-effective way. This method, called "mutated allele revealed by sequencing with aneuploidy and linkage analyses" (MARSALA), involves multiple annealing and looping-based amplification cycles (MALBAC) for single-cell whole-genome amplification. Aneuploidy is determined by CNVs, whereas SNVs associated with the monogenic diseases are detected by PCR amplification of the MALBAC product. The false-positive and -negative SNVs are avoided by an NGS-based linkage analysis. Two healthy babies, free of the monogenic diseases of their parents, were born after such embryo selection. The monogenic diseases originated from a single base mutation on the autosome and the X-chromosome of the disease-carrying father and mother, respectively.
Mognetti, B; Leppens, G; Sakkas, D
1996-04-01
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In-view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose.
SUGIMURA, Satoshi; AKAI, Tomonori; HASHIYADA, Yutaka; AIKAWA, Yoshio; OHTAKE, Masaki; MATSUDA, Hideo; KOBAYASHI, Shuji; KOBAYASHI, Eiji; KONISHI, Kazuyuki; IMAI, Kei
2012-01-01
Abstract To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 µl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density. PMID:23154384