Sample records for abnormal endothelial function

  1. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less

  2. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling.

    PubMed

    Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min

    2016-09-02

    Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.

  3. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  4. Molecular Regulation of Endothelial Cells by NF-1

    DTIC Science & Technology

    2013-01-01

    cancer progression. The mammalian target of rapamycin (mTOR) is a serine threonine kinase, that exists in two distinct signaling complexes: mTORC1 and...abnormalities such as diabetes , with known vascular complications. Thus mTOR may be a significant regulator of endothelial cell functions

  5. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  6. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure.

    PubMed

    Chowdhury, Biswajit; Xiang, Bo; Liu, Michelle; Hemming, Richard; Dolinsky, Vernon W; Triggs-Raine, Barbara

    2017-01-01

    Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient ( Hyal2 - /- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2 -/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2 -/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2 -/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2 -/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2 -/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. These data demonstrate that disruption of normal HA catabolism in Hyal2 -/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure. © 2016 The Authors.

  7. Effects of Flavonoid-Containing Beverages and EGCG on Endothelial Function

    PubMed Central

    Shenouda, Sherene M.; Vita, Joseph A.

    2009-01-01

    Abnormalities of the vascular endothelium contribute to all stages of atherosclerosis from lesion development to clinical cardiovascular disease events. Recognized risk factors, including diabetes mellitus, hypertension, dyslipidemia, cigarette smoking, and sedentary lifestyle are associated with endothelial dysfunction. A variety of pharmacological and behavioral interventions have been shown to reverse endothelial dysfunction in patients with cardiovascular disease. A large number of epidemiological studies suggest that dietary factors, including increased intake of flavonoid-containing foods and beverages, reduce cardiovascular risk, and recent studies have shown that such beverages have favorable effects on endothelial function. These studies have engendered interest in the development of dietary supplements or drugs that would allow for more convenient and higher dose administration of flavonoids and might prove useful for prevention or treatment of cardiovascular disease. In this paper, we will review the contribution of endothelial dysfunction to the pathogenesis and clinical expression of atherosclerosis and recent data linking flavonoid and EGCG consumption to improved endothelial function and reduced cardiovascular risk. PMID:17906190

  8. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    PubMed

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Does endothelial dysfunction correlate with endocrinal abnormalities in patients with polycystic ovary syndrome?

    PubMed Central

    Dube, Rajani

    2016-01-01

    To study and critically analyze the published evidence on correlation of hormonal abnormalities and endothelial dysfunction (ED) in polycystic ovary syndrome (PCOS) through a systematic review. The databases including MEDLINE, PubMed, Up-To-Date, and Science Direct were searched using Medical subject handling terms and free text term keywords such as endocrine abnormalities in PCOS, ED assessment in PCOS, ED in combination with insulin resistance (IR), hyperandrogenism (HA), increased free testosterone, free androgen index (FAI), gonadotrophin levels, luteinizing hormone (LH), prolactin, estrogen, adipocytokines to search trials, and observational studies published from January 1987 to September 2015. Authors of original studies were contacted for additional data when necessary. PCOS increases the risk of cardiovascular disease in women. ED, which is a reliable indicator of cardiovascular risk in general population, is seen in most (but not all) women with PCOS. IR, seen in 70% patients with PCOS, is associated with ED in these women, but patients can have normal endothelial function even in the presence of IR. Free testosterone and FAI are consistently associated with ED, but endothelial function can be normal despite HA. Estradiol (not estrone) appears to be protective against ED though estrone is the predominant estrogen produced in PCOS. Increased levels of adipocytokines (visfatin) are promising in predicting ED and cardiovascular risk. However, more studies are required focusing on direct correlation of levels of prolactin, LH, estrone, and visfatin with ED in PCOS. PMID:27843797

  10. Anti-TNFα therapy transiently improves high density lipoprotein cholesterol levels and microvascular endothelial function in patients with rheumatoid arthritis: a Pilot Study

    PubMed Central

    2012-01-01

    Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166

  11. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries.

    PubMed

    Aghajanian, Haig; Cho, Young Kuk; Rizer, Nicholas W; Wang, Qiaohong; Li, Li; Degenhardt, Karl; Jain, Rajan

    2017-09-01

    Originating as a single vessel emerging from the embryonic heart, the truncus arteriosus must septate and remodel into the aorta and pulmonary artery to support postnatal life. Defective remodeling or septation leads to abnormalities collectively known as conotruncal defects, which are associated with significant mortality and morbidity. Multiple populations of cells must interact to coordinate outflow tract remodeling, and the cardiac neural crest has emerged as particularly important during this process. Abnormalities in the cardiac neural crest have been implicated in the pathogenesis of multiple conotruncal defects, including persistent truncus arteriosus, double outlet right ventricle and tetralogy of Fallot. However, the role of the neural crest in the pathogenesis of another conotruncal abnormality, transposition of the great arteries, is less well understood. In this report, we demonstrate an unexpected role of Pdgfra in endothelial cells and their derivatives during outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in double outlet right ventricle and transposition of the great arteries. Our data suggest that loss of Pdgfra in endothelial-derived mesenchyme in the outflow tract endocardial cushions leads to a secondary defect in neural crest migration during development. © 2017. Published by The Company of Biologists Ltd.

  12. Regional Coronary Endothelial Function is Closely Related to Local Early Coronary Atherosclerosis in Patients with Mild Coronary Artery Disease: A Pilot Study

    PubMed Central

    Hays, Allison G.; Kelle, Sebastian; Hirsch, Glenn A.; Soleimanifard, Sahar; Yu, Jing; Agarwal, Harsh K.; Gerstenblith, Gary; Schär, Michael; Stuber, Matthias; Weiss, Robert G.

    2012-01-01

    Background Coronary endothelial function (endoFx) is abnormal in patients with established coronary artery disease (CAD) and was recently shown by MRI to relate to the severity of luminal stenosis. Recent advances in MRI now allow the non-invasive assessment of both anatomic and functional (endoFx) changes that previously required invasive studies. We tested the hypothesis that abnormal coronary endoFx is related to measures of early atherosclerosis such as increased coronary wall thickness (CWT). Methods and Results Seventeen arteries in fourteen healthy adults and seventeen arteries in fourteen patients with non-obstructive CAD were studied. To measure endoFx, coronary MRI was performed before and during isometric handgrip exercise, an endothelial-dependent stressor and changes in coronary cross-sectional area (CSA) and flow were measured. Black blood imaging was performed to quantify CWT and other indices of arterial remodeling. The mean stress-induced change in CSA was significantly higher in healthy adults (13.5%±12.8%, mean±SD, n=17) than in those with mildly diseased arteries (-2.2±6.8%, p<0.0001, n=17). Mean CWT was lower in healthy subjects (0.9±0.2mm) than in CAD patients (1.4±0.3mm, p<0.0001). In contrast to healthy subjects, stress-induced changes in CSA, a measure of coronary endoFx, correlated inversely with CWT in CAD patients (r= -0.73, p=0.0008). Conclusions There is an inverse relationship between coronary endothelial function and local CWT in CAD patients but not in healthy adults. These findings demonstrate that local endothelial-dependent functional changes are related to the extent of early anatomic atherosclerosis in mildly diseased arteries. This combined MRI approach enables the anatomic and functional investigation of early coronary disease. PMID:22492483

  13. THE ENDOTHELIUM IN SEPSIS

    PubMed Central

    Ince, Can; Mayeux, Philip R.; Nguyen, Trung; Gomez, Hernando; Kellum, John A.; Ospina-Tascón, Gustavo A.; Hernandez, Glenn; Murray, Patrick; De Backer, Daniel

    2017-01-01

    Sepsis affects practically all aspects of endothelial cell (EC) function and is thought to be the key factor in the progression from sepsis to organ failure. Endothelial functions affected by sepsis include vasoregulation, barrier function, inflammation, and hemostasis. These are among other mechanisms often mediated by glycocalyx shedding, such as abnormal nitric oxide metabolism, up-regulation of reactive oxygen species generation due to down-regulation of endothelial-associated antioxidant defenses, transcellular communication, proteases, exposure of adhesion molecules, and activation of tissue factor. This review covers current insight in EC-associated hemostatic responses to sepsis and the EC response to inflammation. The endothelial cell lining is highly heterogeneous between different organ systems and consequently also in its response to sepsis. In this context, we discuss the response of the endothelial cell lining to sepsis in the kidney, liver, and lung. Finally, we discuss evidence as to whether the EC response to sepsis is adaptive or maladaptive. This study is a result of an Acute Dialysis Quality Initiative XIV Sepsis Workgroup meeting held in Bogota, Columbia, between October 12 and 15, 2014. PMID:26871664

  14. The impact of physical training on endothelial function in myocardial infarction survivors: pilot study.

    PubMed

    Peller, Michał; Balsam, Paweł; Główczyńska, Renata; Ossoliński, Krzysztof; Gilarowska, Anna; Kołtowski, Łukasz; Grabowski, Marcin; Filipiak, Krzysztof J; Opolski, Grzegorz

    Endothelial dysfunction (ED) may indirectly influence the outcome of patients with coronary artery disease. To assess the influence of cardiac rehabilitation (CR) on endothelial function in patients after ST-segment elevation myocardial infarction (STEMI). Twenty-nine patients scheduled for CR were included in the study. CR began at least four weeks after STEMI and consisted of 12 or 24 training sessions. Endothelial function assessment was performed before and after CR, using reactive hyperaemia peripheral arterial tonometry. Before the CR, ED was diagnosed in 16 of 29 (55.2%) patients. A total of 25 patients had two assessments of endothelial function: before and after CR. In univariate analysis the factors of negative response of endothelial function to CR were: higher baseline hyperaemia index (lnRHI) (odds ratio [OR] for positive response to CR 0.01; 95% confidence interval [CI] 0.00-0.33; p = 0.01) and higher peak serum troponin I level during index hospitalisation (OR 0.97; 95% CI 0.94-1.00; p = 0.04). The independent, negative predictor of response to CR was lnRHI (OR 0.01; 95% CI 0.01-0.16; p = 0.03). Patients training for 24 sessions (n = 16) had similar lnRHI changes to those of patients training for 12 sessions (n = 9); [0.16 (-0.06)-0.30 vs. 0.10 (0.05-0.15); p = 0.44, respectively]. ED is a frequent abnormality in STEMI survivors. Despite the lack of statistically significant improvement of endothelial function after CR in the analysed group of patients, some factors can influence the efficacy of this type of physical activity. The best effect of CR on endothelial function was observed in patients with baseline ED.

  15. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.

  16. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  17. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  18. Association of Abacavir and Impaired Endothelial Function in Treated and Suppressed HIV-Infected Patients

    PubMed Central

    Hsue, Priscilla Y.; Hunt, Peter W.; Wu, Yuaner; Schnell, Amanda; Ho, Jennifer E.; Hatano, Hiroyu; Xie, Yu; Martin, Jeffrey N.; Ganz, Peter; Deeks, Steven G.

    2009-01-01

    Background HIV-infected patients have accelerated atherosclerosis. Abacavir has been associated with increased risk of cardiovascular events, for reasons that remain to be elucidated. As endothelial dysfunction is central to the pathogenesis of atherosclerosis, we tested the hypothesis that current treatment with abacavir is associated with impaired endothelial function. Methods We studied a cohort of 61 antiretroviral-treated patients who had undetectable plasma HIV RNA levels. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD) of the brachial artery. We compared FMD in patients treated with or without abacavir, while adjusting for traditional risk factors and HIV-specific characteristics. Results The median age was 50 years (IQR 45–57). The median duration of HIV infection was 18 years, and the median CD4 cell count was 369 cells/mm3. Thirty subjects (49%) were receiving abacavir. Overall, the median FMD in the HIV-infected patients was low (3.5%; IQR 2.3–5.6%). The FMD was lower in the abacavir-treated patients than those not on abacavir (2.8% vs. 4.9%, p=0.01). After adjustment for traditional risk factors, HIV specific factors, and baseline brachial artery diameter, current abacavir use was independently associated with lower FMD (p=0.017). Duration of therapy and CD4 count were not associated with reduced FMD. Conclusions Endothelial function, a central mechanism in atherosclerosis and a marker of cardiovascular risk, is impaired among antiretroviral-treated patients with undetectable viral loads. Current use of abacavir was independently associated with impaired endothelial function. This finding suggests that abnormal endothelial function may underlie the clinically observed increased risk in myocardial infarction among abacavir-treated patients. PMID:19542863

  19. Effect of aspirin on acute changes in peripheral arterial stiffness and endothelial function following exertional heat stress in firefighters: The factorial group results of the Enhanced Firefighter Rehab Trial.

    PubMed

    Olafiranye, Oladipupo; Hostler, David; Winger, Daniel G; Wang, Li; Reis, Steven E

    2015-06-01

    Peripheral arterial stiffness and endothelial function, which are independent predictors of cardiac events, are abnormal in firefighters. We examined the effects of aspirin on peripheral arterial stiffness and endothelial function in firefighters. Fifty-two firefighters were randomized to receive daily 81 mg aspirin or placebo for 14 days before treadmill exercise in thermal protection clothing, and a single dose of 325 mg aspirin or placebo immediately following exertion. Peripheral arterial augmentation index adjusted for a heart rate of 75 (AI75) and reactive hyperemia index (RHI) were determined immediately before, and 30, 60, and 90 minutes after exertion. Low-dose aspirin was associated with lower AI75 (-15.25±9.25 vs -8.08±10.70, p=0.014) but not RHI. On repeated measures analysis, treatment with low-dose aspirin before, but not single-dose aspirin after exertion, was associated with lower AI75 following exertional heat stress (p=0.018). Low-dose aspirin improved peripheral arterial stiffness and wave reflection but not endothelial function in firefighters. © The Author(s) 2015.

  20. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  1. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  2. Endothelial ERK signaling controls lymphatic fate specification

    PubMed Central

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  3. [Essential thrombocythemia and cerebral ischemic accident: discussion of two cases].

    PubMed

    Alecu, C; Abraham, P; Ternisien, C; Enon, B; Saumet, J L

    1999-10-01

    Not only the total number of platelets but their normal or abnormal function are essential points to be analyzed in case of stroke associated with thrombocytemia. When possible the treatment of arterial episodes in thrombocytemia should not be surgical. Anti-platelet agents and the rigorous control of the different risk factors are warranted to limit the activation of abnormal platelets on early endothelial lesions and thereby limit the risk of recurrent accidents. We report two typical cases illustrating these different points.

  4. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  5. Association between anthropometry, cardiometabolic risk factors, & early life factors & adult measures of endothelial function: Results from the New Delhi Birth Cohort.

    PubMed

    Huffman, Mark D; Khalil, Anita; Osmond, Clive; Fall, Caroline H D; Tandon, Nikhil; Lakshmy, Ramakrishnan; Ramji, Siddharth; Gera, Tarun; Prabhakaran, Poornima; Dey Biswas, S K; Reddy, K Srinath; Bhargava, Santosh K; Sachdev, Harshpal S; Prabhakaran, Dorairaj

    2015-12-01

    Abnormal endothelial function represents a preclinical marker of atherosclerosis. This study was conducted to evaluate associations between anthropometry, cardiometabolic risk factors, and early life factors and adult measures of endothelial function in a young urban Indian cohort free of clinical cardiovascular disease. Absolute changes in brachial artery diameter following cuff inflation and sublingual nitroglycerin (400 µg) were recorded to evaluate endothelium-dependent and -independent measures of endothelial function in 600 participants (362 men; 238 women) from the New Delhi Birth Cohort (2006-2009). Data on anthropometry, cardiometabolic risk factors, medical history, socio-economic position, and lifestyle habits were collected. Height and weight were recorded at birth, two and 11 yr of age. Age- and sex-adjusted linear regression models were developed to evaluate these associations. The mean age of participants was 36±1 yr. Twenty two per cent men and 29 per cent women were obese (BMI th > 30 kg/m [2] ). Mean systolic blood pressure (SBP) was 131±14 and 119±13 mmHg, and diabetes prevalence was 12 and 8 per cent for men and women, respectively. Brachial artery diameter was higher for men compared with women both before (3.48±0.37 and 2.95±0.35 cm) and after hyperaemia (3.87±0.37 vs. 3.37±0.35 cm). A similar difference was seen before and after nitroglycerin. Markers of increased adiposity, smoking, SBP, and metabolic syndrome, but not early life anthropometry, were inversely associated with endothelial function after adjustment for age and sex. The analysis of the current prospective data from a young urban Indian cohort showed that cardiometabolic risk factors, but not early life anthropometry, were associated with worse endothelial function.

  6. Endothelial progenitor cells and rheumatic disease modifying therapy.

    PubMed

    Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino

    2018-05-26

    Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy?

    PubMed

    Borges, Juliana Pereira; Mendes, Fernanda de Souza Nogueira Sardinha; Lopes, Gabriella de Oliveira; Sousa, Andréa Silvestre de; Mediano, Mauro Felippe Felix; Tibiriçá, Eduardo

    2018-08-15

    Chronic Chagas cardiomyopathy (CCC) and cardiomyopathies due to other etiologies involve differences in pathophysiological pathways that are still unclear. Systemic microvascular abnormalities are associated with the pathogenesis of ischemic heart disease. However, systemic microvascular endothelial function in CCC remains to be elucidated. Thus, we compared the microvascular endothelial function of patients presenting with CCC to those with ischemic cardiomyopathy disease. Microvascular reactivity was assessed in 21 patients with cardiomyopathy secondary to Chagas disease, 21 patients with cardiomyopathy secondary to ischemic disease and 21 healthy controls. Microvascular blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with iontophoresis of acetylcholine (ACh). Peak increase in forearm blood flow with ACh iontophoresis in relation to baseline was greater in healthy controls than in patients with heart disease (controls: 162.7 ± 58.4% vs. ischemic heart disease: 74.1 ± 48.3% and Chagas: 85.1 ± 68.1%; p < 0.0001). Patients with Chagas and ischemic cardiomyopathy presented similar ACh-induced changes from baseline in skin blood flow (p = 0.55). Endothelial microvascular function was equally impaired among patients with CCC and ischemic cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication.

    PubMed

    Klonizakis, M; Manning, G; Lingam, K; Donnelly, R; Yeung, J M C

    2015-01-01

    To evaluate endothelial-dependent and - independent cutaneous vasodilator responses in the feet of patients with peripheral arterial disease (PAD) with or without Type 2 diabetes. Cutaneous microvascular responses in the dorsum of both lower limbs were measured in the supine position using Laser Doppler Fluximetry combined with iontophoretic administration of endothelial-dependent (acetylcholine, Ach) and -independent (sodium nitroprusside, SNP) vasodilators in diabetic (n = 19) and non diabetic (n = 17) patients with PAD (presenting as unilateral calf intermittent claudication (IC). In patients with diabetes and IC, endothelial-dependent vasodilation was significantly impaired in the symptomatic limb [74 (57,105) vs 68 (24,81) PU, Z =-2.79, p = 0.005] compared to the asymptomatic limb. Patients without diabetes showed no impairment of vasodilation. Resting ankle-brachial pressure index did not identify the presence of abnormalities in microvascular function. The combination of diabetes and PAD is associated with a reduction in endothelial-dependent cutaneous vasodilation in the feet without an associated reduction in endothelial independent vasodilation.

  9. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  10. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  11. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    PubMed

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-06-01

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  12. Association between anthropometry, cardiometabolic risk factors, & early life factors & adult measures of endothelial function: Results from the New Delhi Birth Cohort

    PubMed Central

    Huffman, Mark D.; Khalil, Anita; Osmond, Clive; Fall, Caroline H. D.; Tandon, Nikhil; Lakshmy, Ramakrishnan; Ramji, Siddharth; Gera, Tarun; Prabhakaran, Poornima; Dey Biswas, S. K.; Reddy, K. Srinath; Bhargava, Santosh K.; Sachdev, Harshpal S.; Prabhakaran, Dorairaj

    2015-01-01

    Background & objectives: Abnormal endothelial function represents a preclinical marker of atherosclerosis. This study was conducted to evaluate associations between anthropometry, cardiometabolic risk factors, and early life factors and adult measures of endothelial function in a young urban Indian cohort free of clinical cardiovascular disease. Methods: Absolute changes in brachial artery diameter following cuff inflation and sublingual nitroglycerin (400 µg) were recorded to evaluate endothelium-dependent and -independent measures of endothelial function in 600 participants (362 men; 238 women) from the New Delhi Birth Cohort (2006-2009). Data on anthropometry, cardiometabolic risk factors, medical history, socio-economic position, and lifestyle habits were collected. Height and weight were recorded at birth, two and 11 yr of age. Age- and sex-adjusted linear regression models were developed to evaluate these associations. Results: The mean age of participants was 36±1 yr. Twenty two per cent men and 29 per cent women were obese (BMI > 30 kg/m2). Mean systolic blood pressure (SBP) was 131±14 and 119±13 mmHg, and diabetes prevalence was 12 and 8 per cent for men and women, respectively. Brachial artery diameter was higher for men compared with women both before (3.48±0.37 and 2.95±0.35 cm) and after hyperaemia (3.87±0.37 vs. 3.37±0.35 cm). A similar difference was seen before and after nitroglycerin. Markers of increased adiposity, smoking, SBP, and metabolic syndrome, but not early life anthropometry, were inversely associated with endothelial function after adjustment for age and sex. Interpretation & conclusions: The analysis of the current prospective data from a young urban Indian cohort showed that cardiometabolic risk factors, but not early life anthropometry, were associated with worse endothelial function. PMID:26831418

  13. Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome.

    PubMed

    Gaubert, Mélanie; Marlinge, Marion; Alessandrini, Marine; Laine, Marc; Bonello, Laurent; Fromonot, Julien; Cautela, Jennifer; Thuny, Franck; Barraud, Jeremie; Mottola, Giovanna; Rossi, Pascal; Fenouillet, Emmanuel; Ruf, Jean; Guieu, Régis; Paganelli, Franck

    2018-06-01

    The role of serum uric acid in coronary artery disease has been extensively investigated. It was suggested that serum uric acid level (SUA) is an independent predictor of endothelial dysfunction and related to coronary artery lesions. However, the relationship between SUA and severity of coronary atherosclerosis evaluated via endothelial dysfunction using peripheral arterial tone (PAT) and the reactive hyperhemia index (RHI) has not been investigated during a first episode of acute coronary syndrome (ACS). The aim of our study was to address this point. We prospectively enrolled 80 patients with a first episode of ACS in a single-center observational study. All patients underwent coronary angiography, evaluation of endothelial function via the RHI, and SUA measurement. The severity of the coronary artery lesion was assessed angiographically, and patients were classified in three groups based on the extent of disease and Gensini and SYNTAX scores. Endothelial function was considered abnormal if RHI < 1.67. We identified a linear correlation between SUA and RHI (R 2  = 0.66 P < 0.001). In multivariable analyses, SUA remained associated with RHI, even after adjustment for traditional cardiovascular risk factors and renal function. SUA was associated with severity of coronary artery disease. SUA is associated with severity of coronary atherosclerosis in patients with asymptomatic hyperuricemia. This inexpensive, readily measured biological parameter may be useful to monitor ACS patients.

  14. [Polycystic ovary syndrome: an example of obesity-related cardiovascular complication affecting young women].

    PubMed

    Orio, Francesco; Cascella, Teresa; Giallauria, Francesco; Palomba, Stefano; De Lorenzo, Anna; Lucci, Rosa; Ambrosino, Elena; Lombardi, Gaetano; Colao, Annamaria; Vigorito, Carlo

    2006-03-01

    Polycystic ovary syndrome (PCOS) is a good example of obesity-related cardiovascular complication affecting young women. PCOS is not only considered a reproductive problem but rather represents a complex endocrine, multifaceted syndrome with important health implications. Several evidences suggest an increased cardiovascular risk of cardiovascular disease associated with this syndrome, characterized by an impairment of heart structure and function, endothelial dysfunction and lipid abnormalities. All these features, probably linked to insulin-resistance, are often present in obese PCOS patients. Cardiovascular abnormalities represent important long-term sequelae of PCOS that need further investigations.

  15. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.

  16. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  17. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  18. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  19. False Positive Stress Testing: Does Endothelial Vascular Dysfunction Contribute to ST-Segment Depression in Women? A Pilot Study.

    PubMed

    Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel

    2018-06-19

    The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    PubMed Central

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  1. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction.

    PubMed

    Corder, Roger; Warburton, Richard C; Khan, Noorafza Q; Brown, Ruth E; Wood, Elizabeth G; Lees, Delphine M

    2004-11-01

    Reduced endothelium-dependent vasodilator responses with increased synthesis of ET-1 (endothelin-1) are characteristics of endothelial dysfunction in heart failure and are predictive of mortality. Identification of treatments that correct these abnormalities may have particular benefit for patients who become refractory to current regimens. Hawthorn preparations have a long history in the treatment of heart failure. Therefore we tested their inhibitory effects on ET-1 synthesis by cultured endothelial cells. These actions were compared with that of GSE (grape seed extract), as the vasoactive components of both these herbal remedies are mainly oligomeric flavan-3-ols called procyanidins. This showed extracts of hawthorn and grape seed were equipotent as inhibitors of ET-1 synthesis. GSE also produced a potent endothelium-dependent vasodilator response on preparations of isolated aorta. Suppression of ET-1 synthesis at the same time as induction of endothelium-dependent vasodilation is a similar response to that triggered by laminar shear stress. Based on these results and previous findings, we hypothesize that through their pharmacological properties procyanidins stimulate a pseudo laminar shear stress response in endothelial cells, which helps restore endothelial function and underlies the benefit from treatment with hawthorn extract in heart failure.

  3. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial.

    PubMed

    Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro

    2016-08-26

    Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).

  4. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  5. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease.

    PubMed

    Aminzadeh, Mohammad A; Reisman, Scott A; Vaziri, Nosratola D; Shelkovnikov, Stan; Farzaneh, Seyed H; Khazaeli, Mahyar; Meyer, Colin J

    2013-01-01

    Chronic kidney disease (CKD) is associated with endothelial dysfunction and accelerated cardiovascular disease, which are largely driven by systemic oxidative stress and inflammation. Oxidative stress and inflammation in CKD are associated with and, in part, due to impaired activity of the cytoprotective transcription factor Nrf2. RTA dh404 is a synthetic oleanane triterpenoid compound which potently activates Nrf2 and inhibits the pro-inflammatory transcription factor NF-κB. This study was designed to test the effects of RTA dh404 on endothelial function, inflammation, and the Nrf2-mediated antioxidative system in the aorta of rats with CKD induced by 5/6 nephrectomy. Sham-operated rats served as controls. Subgroups of CKD rats were treated orally with RTA dh404 (2 mg/kg/day) or vehicle for 12 weeks. The aortic rings from untreated CKD rats exhibited a significant reduction in the acetylcholine-induced relaxation response which was restored by RTA dh404 administration. Impaired endothelial function in the untreated CKD rats was accompanied by significant reduction of Nrf2 activity (nuclear translocation) and expression of its cytoprotective target genes, as well as accumulation of nitrotyrosine and upregulation of NAD(P)H oxidases, 12-lipoxygenase, MCP-1, and angiotensin II receptors in the aorta. These abnormalities were ameliorated by RTA dh404 administration, as demonstrated by the full or partial restoration of the expression of all the above analytes to sham control levels. Collectively, the data demonstrate that endothelial dysfunction in rats with CKD induced by 5/6 nephrectomy is associated with impaired Nrf2 activity in arterial tissue, which can be reversed with long term administration of RTA dh404.

  6. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation.

    PubMed

    Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline

    2016-01-01

    To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.

  7. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  8. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  9. Effect of metabolic abnormalities on endothelial dysfunction in normotensive offspring of subject with hypertension.

    PubMed

    Žižek, B; Žižek, D; Bedenčič, K; Jerin, A; Poredoš, P

    2013-08-01

    Essential hypertension (EH) is often accompanied by hyperinsulinemia/insulin resistance (IR) and deranged adiponectin secretion. IR may in turn be associated with endothelial dysfunction and increased levels of asymmetric dimethylarginine (ADMA). Therefore, we aimed to determine metabolic abnormalities in normotensive offspring of subjects with essential hypertension (familial trait-FT) and to examine their relations to endothelium-dependent vasodilation of the brachial artery (BA). We included 77 subjects, 38 were normotensive individuals with FT aged 28-39 (mean 33) years and 39 age-matched Controls without FT. Insulin, adiponectin and ADMA plasma levels were determined by radioimmunoassay. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperemia (flow-mediated dilation-FMD) were measured. Subjects with FT had higher insulin and lower adiponectin levels than controls (13.65±6.70 vs. 7.09±2.20 mE/L; P<0.001 and 13.60±5.98 vs. 17.27±7.17 mg/L respectively; P<0.05). Insulin and adiponectin levels were negatively interrelated (r=-0.33, P=0.003). ADMA levels were comparable in both groups. The study group had worse FMD than Controls (6.11±3.28 vs. 10.20±2.07%; P<0.001). IR was independently associated with FMD (partial R2=0.23, P<0.001). Increased insulin and decreased adiponectin levels along with endothelial dysfunction are present in normotensive subjects with FT. IR and hypoadiponectinemia are interrelated, but only hyperinsulinemia has an independent adverse influence on endothelial function. Results of our study did not confirm the role of ADMA in pathogenesis of evolving hypertension.

  10. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  11. RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS.

    PubMed

    Sherpa, Rinzhin T; Atkinson, Kimberly F; Ferreira, Viviana P; Nauli, Surya M

    2016-12-01

    Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

  12. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  13. The role of oxidative stress in the metabolic syndrome.

    PubMed

    Whaley-Connell, Adam; McCullough, Peter A; Sowers, James R

    2011-01-01

    Loss of reduction-oxidation (redox) homeostasis and generation of excess free oxygen radicals play an important role in the pathogenesis of diabetes, hypertension, and consequent cardiovascular disease. Reactive oxygen species are integral in routine in physiologic mechanisms. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways that promote impairments in insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. Redox control of metabolic function is a dynamic process with reversible pro- and anti-free radical processes. Labile iron is necessary for the catalysis of superoxide anion, hydrogen peroxide, and the generation of the damaging hydroxyl radical. Acute hypoxia and cellular damage in cardiovascular tissue liberate larger amounts of cytosolic and extracellular iron that is poorly liganded; thus, large increases in the generation of oxygen free radicals are possible, causing tissue damage. The understanding of iron and the imbalance of redox homeostasis within the vasculature is integral in hypertension and progression of metabolic dysregulation that contributes to insulin resistance, endothelial dysfunction, and cardiovascular and kidney disease.

  14. Cardiovascular disease in childhood: the role of obesity.

    PubMed

    Herouvi, Despina; Karanasios, Evangelos; Karayianni, Christina; Karavanaki, Kyriaki

    2013-06-01

    In recent years, childhood obesity is becoming an epidemic health problem. It is now evident from many studies that childhood obesity is correlated with adult excess weight status and the development of risk factors for cardiovascular diseases in adulthood, including hypertension, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome. The exposure to obesity and to the above risk factors during childhood subsequently lead to atherosclerotic development, such as altered vascular structure and function, although the mechanisms are still unclear. Several non-invasive, and thus easy-to-obtain measures of arterial structure and function, have been shown to be clinically useful in providing information about vasculature early in the course of atherosclerosis, including measurement of endothelial function, carotid intima media thickness, and arterial stiffness. The early detection of cardiovascular abnormalities is essential because the control of the atherogenic process is more effective during its early stages. The present review focuses on the cardiovascular consequences of obesity, on the mechanisms and the methods of measurement of endothelial dysfunction in obese children and adolescents, and on the ways of intervention for the improvement of vascular health.

  15. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity.

    PubMed

    Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S

    2009-01-01

    To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p < 0.001) as well as with immunosuppressive therapy (p < 0.01). Significant differences were found in VEGF (p < 0.001), ET-1 (p < 0.001), sE-selectin (p < 0.01), and sTM (p < 0.001) serum concentrations between SLE patients with a capillaroscopic score > 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.

  16. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    PubMed Central

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  18. Key Features of the Intragraft Microenvironment that Determine Long-Term Survival Following Transplantation

    PubMed Central

    Bruneau, Sarah; Woda, Craig Bryan; Daly, Kevin Patrick; Boneschansker, Leonard; Jain, Namrata Gargee; Kochupurakkal, Nora; Contreras, Alan Gabriel; Seto, Tatsuichiro; Briscoe, David Michael

    2012-01-01

    In this review, we discuss how changes in the intragraft microenvironment serve to promote or sustain the development of chronic allograft rejection. We propose two key elements within the microenvironment that contribute to the rejection process. The first is endothelial cell proliferation and angiogenesis that serve to create abnormal microvascular blood flow patterns as well as local tissue hypoxia, and precedes endothelial-to-mesenchymal transition. The second is the overexpression of local cytokines and growth factors that serve to sustain inflammation and, in turn, function to promote a leukocyte-induced angiogenesis reaction. Central to both events is overexpression of vascular endothelial growth factor (VEGF), which is both pro-inflammatory and pro-angiogenic, and thus drives progression of the chronic rejection microenvironment. In our discussion, we focus on how inflammation results in angiogenesis and how leukocyte-induced angiogenesis is pathological. We also discuss how VEGF is a master control factor that fosters the development of the chronic rejection microenvironment. Overall, this review provides insight into the intragraft microenvironment as an important paradigm for future direction in the field. PMID:22566935

  19. Trkb signaling in pericytes is required for cardiac microvessel stabilization.

    PubMed

    Anastasia, Agustin; Deinhardt, Katrin; Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L; Kermani, Pouneh

    2014-01-01

    Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb (-/-)) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb(-/-) embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.

  20. Trkb Signaling in Pericytes Is Required for Cardiac Microvessel Stabilization

    PubMed Central

    Wang, Shiyang; Martin, Laura; Nichol, Donna; Irmady, Krithi; Trinh, Jasmine; Parada, Luis; Rafii, Shahin; Hempstead, Barbara L.; Kermani, Pouneh

    2014-01-01

    Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb −/−) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb−/− embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development. PMID:24498100

  1. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  2. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    PubMed Central

    de Oliveira, Lucas Felipe; Almeida, Thalles Ramos; Ribeiro Machado, Marcus Paulo; Cuba, Marilia Beatriz; Alves, Angélica Cristina; da Silva, Marcos Vinícius; Rodrigues Júnior, Virmondes; Dias da Silva, Valdo José

    2015-01-01

    Systemic arterial hypertension (SAH), a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs), which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2) increases their therapeutic effects in spontaneously hypertensive rats (SHRs). Adult female SHRs were administered an intraperitoneal injection of vehicle solution (n = 10), MSCs cultured in conventional medium (DMEM plus 10% FBS, n = 11), or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n = 10). Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days) in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH. PMID:26300922

  3. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.

    2010-01-01

    INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED. PMID:20626609

  4. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus

    PubMed Central

    Sobrevia, Luis; Salsoso, Rocío; Fuenzalida, Bárbara; Barros, Eric; Toledo, Lilian; Silva, Luis; Pizarro, Carolina; Subiabre, Mario; Villalobos, Roberto; Araos, Joaquín; Toledo, Fernando; González, Marcelo; Gutiérrez, Jaime; Farías, Marcelo; Chiarello, Delia I.; Pardo, Fabián; Leiva, Andrea

    2016-01-01

    Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies. PMID:27065887

  5. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    PubMed

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    PubMed

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  7. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients. © 2013.

  8. Bipolar disorder and related mood states are not associated with endothelial function of small arteries in adults without heart disease.

    PubMed

    Tong, Brian; Abosi, Oluchi; Schmitz, Samantha; Myers, Janie; Pierce, Gary L; Fiedorowicz, Jess G

    Individuals with bipolar disorder are at increased risk for adverse cardiovascular disease (CVD) events. This study aimed to assess endothelial function and wave reflection, a risk factor for CVD, as measured by finger plethysmography in bipolar disorder to investigate whether CVD risk was higher in bipolar disorder and altered during acute mood episodes. We hypothesized that EndoPAT would detect a lower reactive hyperemia index (RHI) and higher augmentation index (AIX) in individuals with bipolar disorder compared with controls. Second, we predicted lower RHI and higher AIX during acute mood episodes. Reactive hyperemia index and augmentation index, measures of microvascular endothelial function and arterial pressure wave reflection respectively, were assessed using the EndoPAT 2000 device in a sample of 56 participants with a DSM-IV diagnosis of bipolar I disorder with 82 measures spanning different mood states (mania, depression, euthymia) and cross-sectionally in 26 healthy controls. RHI and AIX were not different between adults with and without bipolar disorder (mean age 40.3 vs. 41.2years; RHI: 2.04±0.67 vs. 2.05±0.51; AIX@75 (AIX adjusted for heart rate of 75): 1.4±19.7 vs. 0.8±22.4). When modeled in linear mixed models with a random intercept (to account for repeated observations of persons with bipolar disorder) and adjusting for age and sex, there were no significant differences between those with bipolar disorder and controls (p=0.89 for RHI; p=0.85 for AIX@75). Microvascular endothelial function and wave reflection estimated by finger plethysmography were unable to detect differences between adults with and without bipolar disorder or changes with mood states. Future research is necessary to identify more proximal and sensitive, yet relevant, biomarkers of abnormal mood-related influences on CVD risk or must target higher risk samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  10. The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs).

    PubMed

    Li, Zhenyu; Zhong, Qiaoqing; Yang, Tianlun; Xie, Xiumei; Chen, Meifang

    2013-10-04

    Accumulation of advanced glycation end products (AGEs) in the vasculature triggers a series of morphological and functional changes contributing to endothelial hyperpermeability. The reorganisation and redistribution of the cytoskeleton regulated by profilin-1 mediates endothelial cell contraction, which results in vascular hyperpermeability. This study aimed to investigate the pivotal role of profilin-1 in the process of endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells (HUVECs) were incubated with AGEs. The mRNA and protein expression of profilin-1 was determined using real-time PCR and western blotting analyses. The levels of intercellular adhesion molecule-1 (ICAM-1), nitric oxide (NO) and reactive oxygen species (ROS), as well as the activities of nuclear factor-κB (NF-κB) and protein kinase C (PKC), were detected using the appropriate kits. The levels of asymmetric dimethylarginine (ADMA) were determined using HPLC. The distribution of the cytoskeleton was visualised using immunofluorescent staining. Compared with the control, incubation of endothelial cells with AGEs (200 μg/ml) for 4 or 24 h significantly up-regulated the mRNA and protein expression of profilin-1, markedly increased the levels of ICAM-1 and ADMA and decreased the production of NO (P<0.05, P<0.01), which was significantly attenuated by pretreatment with DPI (an antioxidant), GF 109203X (PKC inhibitor) or BAY-117082 (NF-κB inhibitor). DPI (10 μmol/L) markedly decreased the elevated levels of ROS induced by AGEs (200 μg/ml, 24 h); however, GF 109203X (10 μmol/L) and BAY-117082 (5 μmol/L) exhibited no significant effect on the formation of ROS by AGEs. Immunofluorescent staining indicated that AGEs markedly increased the expression of profilin-1 in the cytoplasm and the formation of actin stress fibres, resulting in the rearrangement and redistribution of the cytoskeleton. This effect was significantly ameliorated by DPI, GF 109203X, BAY-117082 or siRNA treatment of profilin-1. Incubation with DPI and GF 109203X markedly inhibited the activation of PKC triggered by AGEs, and DPI and BAY-117082 significantly decreased the activity of NF-κB mediated by AGEs. Disruption of profilin-1 gene expression attenuated the extent of endothelial abnormalities by reducing ICAM-1 and ADMA levels and elevating NO levels (P<0.05, P<0.01), but this disruption had no effect on the activities of NF-κB and PKC (P>0.05). These findings suggested that profilin-1 might act as an ultimate and common cellular effector in the process of metabolic memory (endothelial abnormalities) mediated by AGEs via the ROS/PKC or ROS/NF-қB signalling pathways.

  11. In vivo laser scanning confocal microscopy of the cornea in patients with silicone oil tamponade after vitreoretinal surgery.

    PubMed

    Le, Qihua; Wang, Xin; Lv, Jiahua; Sun, Xinghuai; Xu, Jianjiang

    2012-08-01

    To evaluate the morphological changes in the cornea by in vivo laser scanning confocal microscopy (LSCM) in a large case series with silicone oil endotamponade after vitreoretinal surgery and to explore the value of LSCM in the early detection of silicone keratopathy (SK). Ninety-nine patients (99 eyes) with silicone oil endotamponade after vitreoretinal surgery were included in the current study. Slit-lamp examination and measurement of intraocular pressure (IOP) were performed first. Then the central corneas of the subjects' eyes were examined by in vivo LSCM. The analysis of images of each corneal layer was performed and the endothelial cellular density (ECD), endothelial cellular area (ECA), coefficient of variation of cell size (CoV), and percentage of hexagonal cells (PHC) were measured. Moreover, the total size of stromal deposits was measured, and the correlation between the size of deposits and the parameters of endothelial cells was analyzed. Clinically recognizable abnormalities involving the cornea were identified in only 12 eyes (12.1%) under slit-lamp biomicroscopy, whereas in vivo LSCM revealed morphological abnormalities in 40 eyes (40.4%). The manifestations of endothelial lesions varied from decreased cellular density, increased polymegathism and pleomorphism to hyperreflective silicone oil membrane or droplets adhering to the endothelium. Moreover, hyperreflective deposits with various shapes could be identified in both posterior and anterior stroma, along with the infiltration of Langerhans cells beneath the epithelium. The average ECD and PHC of eyes with corneal abnormalities were significantly lower than those of normal corneas, whereas the average ECA and CoV were significantly larger (all Ps < 0.001). The patients with corneal abnormalities were significantly older than those others (P = 0.003). The rate of pseudophakic and aphakic eyes having corneal abnormalities was significantly higher than that of phakic eyes (P = 0.045). Interestingly, the total size of stromal deposits had a significant negative correlation with ECD and PHC but a significant positive correlation with ECA and CoV (all Ps < 0.001). Further correlation analysis performed in groups divided according to the lens status showed similar results and even stronger correlations in aphakic and pseudophakic eyes, whereas no statistically significant correlations were found in phakic eyes. In vivo LSCM was a useful tool in the early detection of corneal abnormalities caused by silicone oil injection, including varying corneal endothelium lesions and stromal abnormalities. Pseudophakic or aphakic eyes, as well as those of older patients, should receive more attention because they are more inclined to develop silicone keratopathy.

  12. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    PubMed

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  13. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.

    PubMed Central

    Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A

    1993-01-01

    Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density lipoprotein resistance to ex vivo oxidation. PMID:8265642

  14. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  15. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  16. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    PubMed Central

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  18. Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Schimke, Jane E.; Gutterman, David D.

    2013-01-01

    Objective To determine the prevalence of the 3 components of the female athlete triad [disordered eating, menstrual dysfunction, low bone mineral density (BMD)] and their relationships with brachial artery flow-mediated dilation in professional dancers. Design Prospective study. Setting Academic institution in the Midwest. Participants Twenty-two professional ballet dancers volunteered for this study. Interventions The prevalence of the female athlete triad and its relationship to endothelial dysfunction. Main Outcome Measures Subjects completed questionnaires to assess disordered eating and menstrual status/history. They also completed a 3-day food record and wore an accelerometer for 3 days to determine energy availability. Serum baseline thyrotropin, prolactin, and hormonal concentrations were obtained. Bone mineral density and body composition were measured with a GE Lunar Prodigy dual-energy X-ray absorptiometry. Endothelial function was determined as flow-mediated vasodilation measured by high-frequency ultrasound in the brachial artery. An increase in brachial diameter <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Results Seventeen dancers (77%) had evidence of low/negative energy availability. Thirty-two percent had disordered eating (EDE-Q score). Thirty-six percent had menstrual dysfunction and 14% were currently using hormone contraception. Twenty-three percent had evidence of low bone density (Z-score < −1.0). Sixty-four percent had abnormal brachial artery flow-mediated dilation (<5%). Flow-mediated dilation values were significantly correlated with serum estrogen and whole-body and lumbar BMD. All the 3 components of the triad plus endothelial dysfunction were present in 14% of the subjects. Conclusions Endothelial dysfunction was correlated with reduced BMD, menstrual dysfunction, and low serum estrogen. These findings may have profound implications for cardiovascular and bone health in professional women dancers. PMID:21358502

  19. Endothelial dysfunction in patients with coronary atherosclerosis.

    PubMed

    Chapidze, L; Kapanadze, S; Dolidze, N; Bakhutashvili, Z; Latsabidze, N

    2007-01-01

    It is well known that endothelial dysfunction as a nontraditional risk factor is an important early event in the pathogenesis of coronary atherosclerosis, contributing to plaque initiation and progression. In order to assess endothelial function plasma nitric oxide (NO) concentrations were determined. A total of 157 patients (119 men and 38 women, mean age 57+/-5,4 years) with coronary atherosclerosis were enrolled in the research. The study was cross-sectional in design. Most of the patients (n=127) had undergone myocardial revascularization procedures. There was statistically significant difference in mean values of plasma nitric oxide levels between patients with coronary atherosclerosis and healthy subjects (11,1+/-2,52 mkmol/L and 22,3+/-3,27 mkmol/L, respectively. p<0,01). Among all 157 patients only 17% had normal NO concentrations. In 59% cases low and in 24% cases high nitric oxide levels were found. Extent of coronary artery disease was associated with severity of endothelial dysfunction. The patients with three-vessel disease had the lowest mean plasma NO concentration. There was statistically significant negative correlation between mean plasma NO level and extent of coronary artery disease. Measurement of plasma nitric oxide concentration will give useful information for cardiologists, modification of abnormal levels of this parameter may delay progression of aggressive atherosclerotic process and thus, may prevent recurrent coronary events in patients with coronary atherosclerosis.

  20. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice

    PubMed Central

    Nielsen, Corinne M.; Cuervo, Henar; Ding, Vivianne W.; Kong, Yupeng; Huang, Eric J.; Wang, Rong A.

    2014-01-01

    Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis. PMID:25209249

  1. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study

    PubMed Central

    2013-01-01

    Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to confirm if assessments of vascular function and morphology are predictive of long-term CV outcomes in RA. PMID:24289091

  2. Conditional Switching of Vascular Endothelial Growth Factor (VEGF) Expression in Tumors: Induction of Endothelial Cell Shedding and Regression of Hemangioblastoma-Like Vessels by VEGF Withdrawal

    NASA Astrophysics Data System (ADS)

    Benjamin, Laura E.; Keshet, Eli

    1997-08-01

    We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously ``on,'' tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

  3. Dissociation of endothelial function and arterial stiffness in nonobese women with polycystic ovary syndrome (PCOS).

    PubMed

    Cussons, Andrea J; Watts, Gerald F; Stuckey, Bronwyn G A

    2009-12-01

    Polycystic ovary syndrome (PCOS) is associated with cardiovascular risk but it is not clear if this is independent of obesity and insulin resistance. This study therefore investigates endothelial function and arterial stiffness in nonobese, noninsulin resistant women with PCOS. This is cross-sectional case-control study. A total of 19 young women with PCOS, with body mass index (BMI) <30 kg/m(2), and 19 healthy controls matched for age and BMI were included in the study. Endothelial function was assessed with flow mediated dilatation (FMD) of the brachial artery, while arterial stiffness was assessed with pulse wave velocity (PWV) and augmentation index (AI). There were no significant differences between PCOS and control subjects when assessing the following clinical and biochemical variables: blood pressure, homeostasis model assessment insulin-resistance index, lipids and oestradiol. Women with PCOS had higher free androgen index scores (5.14 ± 3.47 vs. 3.25 ± 1.42, P = 0.036). The PCOS subjects had significantly lower FMD of the brachial artery compared with the controls (6.5 ± 2.9%vs. 10.5 ± 4.0%, P < 0.01). There were no significant differences in markers of arterial stiffness (PWV 5.8 ± 1.1 vs. 6.0 ± 1.0, P = 0.58, AI 16.5 ± 10.2 vs. 20.3 ± 10.2, P = 0.25). Women with polycystic ovary syndrome who are young, nonobese, and have no biochemical evidence of insulin resistance, have abnormal vascular function, but normal arterial stiffness, when compared with age and weight matched control subjects. Whether this leads to a greater risk of cardiovascular disease requires further investigation. © 2009 Blackwell Publishing Ltd.

  4. Endothelial atypical cannabinoid receptor: do we have enough evidence?

    PubMed Central

    Bondarenko, Alexander I

    2014-01-01

    Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1, non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. PMID:25073723

  5. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    PubMed

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  6. Antagonism of CD11b with Neutrophil Inhibitory Factor (NIF) Inhibits Vascular Lesions in Diabetic Retinopathy

    PubMed Central

    Veenstra, Alexander A.; Tang, Jie; Kern, Timothy S.

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response. PMID:24205223

  7. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  8. Association of Plasmodium falciparum with Human Endothelial Cells in vitro

    PubMed Central

    Utter, Christopher; Serrano, Adelfa E.; Glod, John W.; Leibowitz, Michael J.

    2017-01-01

    Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria. PMID:28656007

  9. The effect of diet and exercise on markers of endothelial function in overweight and obese women with polycystic ovary syndrome.

    PubMed

    Thomson, R L; Brinkworth, G D; Noakes, M; Clifton, P M; Norman, R J; Buckley, J D

    2012-07-01

    Women with polycystic ovary syndrome (PCOS) present with vascular abnormalities, including elevated markers of endothelial dysfunction. There is limited evidence for the effect of lifestyle modification and weight loss on these markers. The aim of this study was to determine if 20 weeks of a high-protein energy-restricted diet with or without exercise in women with PCOS could improve endothelial function. This is a secondary analysis of a subset of 50 overweight/obese women with PCOS (age: 30.3 ± 6.3 years; BMI: 36.5 ± 5.7 kg/m(2)) from a previous study. Participants were randomly assigned by computer generation to one of three 20-week interventions: diet only (DO; n = 14, ≈ 6000 kJ/day), diet and aerobic exercise (DA; n = 16, ≈ 6000 kJ/day and five walking sessions/week) and diet and combined aerobic-resistance exercise (DC; n = 20, ≈ 6000 kJ/day, three walking and two strength sessions/week). At Weeks 0 and 20, weight, markers of endothelial function [vascular cell adhesion molecule-1 (sVCAM-1), inter-cellular adhesion molecule-1 (sICAM-1), plasminogen activator inhibitor-1 (PAI-1) and asymmetric dimethylarginine (ADMA)], insulin resistance and hormonal profile were assessed. All three treatments resulted in significant weight loss (DO 7.9 ± 1.2%, DA 11.0 ± 1.6%, DC 8.8 ± 1.1; P < 0.001 for time; P = 0.6 time × treatment). sVCAM-1, sICAM-1 and PAI-1 levels decreased with weight loss (P≤ 0.01), with no differences between treatments (P ≥ 0.4). ADMA levels did not change significantly (P = 0.06). Testosterone, sex hormone-binding globulin and the free androgen index (FAI) and insulin resistance also improved (P < 0.001) with no differences between treatments (P ≥ 0.2). Reductions in sVCAM-1 were correlated to reductions in testosterone (r = 0.32, P = 0.03) and FAI (r = 0.33, P = 0.02) as well as weight loss (r= 0.44, P = 0.002). Weight loss was also associated with reductions in sICAM-1 (r= 0.37, P = 0.008). Exercise training provided no additional benefit to following a high-protein, hypocaloric diet on markers of endothelial function in overweight/obese women with PCOS.

  10. Placental development and function in women with a history of placenta-related complications: a systematic review.

    PubMed

    Reijnders, Ignatia F; Mulders, Annemarie G M G J; Koster, Maria P H

    2018-03-01

    Women with a history of placenta-related pregnancy complications, such as preeclampsia, intrauterine growth restriction or preterm delivery, have an increased risk for recurrence of such complications. This recurrence is likely the result of underlying endothelial dysfunction that leads to abnormal placentation, especially in complications with an early onset. This study provides an overview of biomarkers of placental development and function in pregnancies from women with a history of placenta-related complications. A systematic literature search was conducted limited to human studies and including keywords related to a history of placenta-related complications and markers of placental development and function. Two independent reviewers assessed eligibility and quality of 1553 retrieved unique articles. Five articles reporting on placental development and function in women with an obstetric history of preeclampsia (n = 3), intrauterine growth restriction (n = 1) and preterm delivery (n = 2) were eligible for quality assessment. We identified associations between a history of preeclampsia and abnormal placental histological findings at term in the current pregnancy, but found contradictory results regarding presence of uterine artery notching. In women with a history of very preterm delivery (<32 weeks), one study showed associations with abnormal placental histology. Literature on the association between a history of placenta-related complications and placental development and function in subsequent pregnancies is scarce and studies are heterogeneous. However, literature shows that placenta-related pregnancy complications are associated with subsequent placental histology. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  11. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma.

    PubMed

    Caviedes-Bucheli, J; Gomez-Sosa, J F; Azuero-Holguin, M M; Ormeño-Gomez, M; Pinto-Pascual, V; Munoz, H R

    2017-04-01

    Angiogenesis is the formation of new blood vessels based on a pre-existing vasculature. It comprises two processes, sprouting of endothelial cells and the division of vessels due to abnormal growth of the microvasculature. It has been demonstrated that substance P (SP) can induce angiogenesis either by modulating endothelial cell growth (direct mechanism) or by attracting cells with angiogenic potential to the injury site (indirect mechanism). Therefore, the purpose of this article is to review the angiogenic mechanisms that regulate mineralized tissue formation in human dental pulp tissue and their relationship with SP expression as a defence response to stimuli such as the masticatory function and occlusal trauma. Articles included in this review were searched in PubMed, Scopus and ISI Web of Science databases, combining the following keywords: human dentine pulp, angiogenesis, angiogenic growth factors, neuropeptides, substance P, neurogenic inflammation, dentine matrix, dentinogenesis, occlusal trauma and dental occlusion. It is concluded that human dental pulp tissue responds to occlusal trauma and masticatory function with a neurogenic inflammatory phenomenon in which SP plays an important role in the direct and indirect mechanisms of angiogenesis by the action evoked via NK1 receptors at different cells, such as fibroblasts, endothelial and inflammatory cells, leading to new blood vessel formation which are needed to stimulate mineralized tissue formation as a defence mechanism. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls.

    PubMed

    Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S

    2017-09-01

    Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.

  13. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  14. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine–induced blood–brain barrier dysfunction

    PubMed Central

    Coelho-Santos, Vanessa; Leitão, Ricardo A; Cardoso, Filipa L; Palmela, Inês; Rito, Manuel; Barbosa, Marcos; Brito, Maria A; Fontes-Ribeiro, Carlos A; Silva, Ana P

    2015-01-01

    Methamphetamine (METH) is a psychostimulant that causes neurologic and psychiatric abnormalities. Recent studies have suggested that its neurotoxicity may also result from its ability to compromise the blood–brain barrier (BBB). Herein, we show that METH rapidly increased the vesicular transport across endothelial cells (ECs), followed by an increase of paracellular transport. Moreover, METH triggered the release of tumor necrosis factor-alpha (TNF-α), and the blockade of this cytokine or the inhibition of nuclear factor-kappa B (NF-κB) pathway prevented endothelial dysfunction. Since astrocytes have a crucial role in modulating BBB function, we further showed that conditioned medium obtained from astrocytes previously exposed to METH had a negative impact on barrier properties also via TNF-α/NF-κB pathway. Animal studies corroborated the in vitro results. Overall, we show that METH directly interferes with EC properties or indirectly via astrocytes through the release of TNF-α and subsequent activation of NF-κB pathway culminating in barrier dysfunction. PMID:25899299

  15. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.

    PubMed

    Pluta, R

    2003-01-01

    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  16. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.

    PubMed

    Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki

    2014-07-01

    Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  18. Role of computer-assisted analysis of the corneal endothelium in vitreoretinal surgery with intraocular silicone oil injection: a technical report.

    PubMed

    Fruschelli, M; Esposti, P; Caporossi, A

    1998-01-01

    The innermost lining of the cornea consists of a single layer of cells called the endothelium. Despite its name, the endothelium of the cornea differs considerably from the vascular endothelium, both functionally and morphologically. The corneal endothelium plays a fundamental role in maintaining the transparency of the corneal membrane, as the result of both its function as a barrier against penetration of the aqueous humor in the parenchyma and its ability to remove water from the stroma (usually referred to as the endothelial "pump" function). Any abnormality in the corneal endothelium causes, first, the impairment of its function as a barrier and pump due to the loss of stromal anti-turgor mechanisms, followed by edema and possible development into keratopathy. The specular microscope is an instrument which makes it possible to see the endothelial "mosaic" in the reflected image of the posterior corneal surface. A large variety of clinical specular microscopes is presently available, both contact and non-contact, which allow, for easy and rapid photography of the corneal endothelium "in vivo". In the present case, we used a non-contact computerized specular microscope to analyze the corneal endothelium in a group of patients affected by retinal detachment who needed to undergo vitreoretinal surgery with immission of silicone oil into the vitreal chamber.

  19. Multifunctional ion transport properties of human SLC4A11: comparison of the SLC4A11-B and SLC4A11-C variants.

    PubMed

    Kao, Liyo; Azimov, Rustam; Shao, Xuesi M; Frausto, Ricardo F; Abuladze, Natalia; Newman, Debra; Aldave, Anthony J; Kurtz, Ira

    2016-11-01

    Congenital hereditary endothelial dystrophy (CHED), Harboyan syndrome (CHED with progressive sensorineural deafness), and potentially a subset of individuals with late-onset Fuchs' endothelial corneal dystrophy are caused by mutations in the SLC4A11 gene that results in corneal endothelial cell abnormalities. Originally classified as a borate transporter, the function of SLC4A11 as a transport protein remains poorly understood. Elucidating the transport function(s) of SLC4A11 is needed to better understand how its loss results in the aforementioned posterior corneal dystrophic disease processes. Quantitative PCR experiments demonstrated that, of the three known human NH 2 -terminal variants, SLC4A11-C is the major transcript expressed in human corneal endothelium. We studied the expression pattern of the three variants in mammalian HEK-293 cells and demonstrated that the SLC4A11-B and SLC4A11-C variants are plasma membrane proteins, whereas SLC4A11-A is localized intracellularly. SLC4A11-B and SLC4A11-C were shown to be multifunctional ion transporters capable of transporting H + equivalents in both a Na + -independent and Na + -coupled mode. In both transport modes, SLC4A11-C H + flux was significantly greater than SLC4A11-B. In the presence of ammonia, SLC4A11-B and SLC4A11-C generated inward currents that were comparable in magnitude. Chimera SLC4A11-C-NH 2 -terminus-SLC4A11-B experiments demonstrated that the SLC4A11-C NH 2 -terminus functions as an autoactivating domain, enhancing Na + -independent and Na + -coupled H + flux without significantly affecting the electrogenic NH 3 -H (n) + cotransport mode. All three modes of transport were significantly impaired in the presence of the CHED causing p.R109H (SLC4A11-C numbering) mutation. These complex ion transport properties need to be addressed in the context of corneal endothelial disease processes caused by mutations in SLC4A11. Copyright © 2016 the American Physiological Society.

  20. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer.

    PubMed

    Delli Carpini, Jennifer; Carpini, Jennifer Delli; Karam, Amer K; Montgomery, Leslie

    2010-03-01

    Tumor neovascularization is a complex process that plays a crucial role in the development of many different types of cancer. Vascular endothelial growth factor (VEGF) is a potent mitogen that is involved with mitogenesis, angiogenesis, endothelial survival, and the induction of hematopoiesis. By increasing vascular permeability in endothelial cells, it helps tumors recruit wound-healing proteins fibrin and fibrinogen from the plasma, suggesting that tumor formation is a process of abnormal wound healing dependent on the ability to generate a blood supply. The human female reproductive tract is highly dependent on VEGF for normal functions such as endometrial proliferation and development of the corpus luteum. The unique influence of female sex steroid hormones on the expression and activity of VEGF deems angiogenesis an important facet of the development of breast and ovarian cancer. Additionally, the up-regulation of VEGF by the E6 oncoprotein of the human papillomavirus suggests that VEGF plays an important role in the development of cervical cancer. Clinical trials have investigated the humanized monoclonal antibody bevacizumab as potential treatment for all three forms of cancer; the data show that in breast cancer, the use of bevacizumab may lengthen the disease-free survival for women with advanced breast cancer, but does not appear to change their overall survival. It may have a role as salvage chemotherapy for ovarian and cervical cancer, though further research is needed to establish it as a definitive form of treatment.

  1. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  2. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis

    PubMed Central

    2013-01-01

    Background Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury. The role of KLF4, and the possible overlapping functions of KLF2 and KLF4, in the developing vasculature are not well-studied. Results Endothelial breaks are observed in a major vessel, the primary head vein (PHV), in KLF2-/-KLF4-/- embryos at E9.5. KLF2-/-KLF4-/- embryos die by E10.5, which is earlier than either single knockout. Gross hemorrhaging of multiple vessels may be the cause of death. E9.5 KLF2-/-KLF4+/- embryos do not exhibit gross hemorrhaging, but cross-sections display disruptions of the endothelial cell layer of the PHV, and these embryos generally also die by E10.5. Electron micrographs confirm that there are gaps in the PHV endothelial layer in E9.5 KLF2-/-KLF4-/- embryos, and show that the endothelial cells are abnormally bulbous compared to KLF2-/- and wild-type (WT). The amount of endothelial Nitric Oxide Synthase (eNOS) mRNA, which encodes an endothelial regulator, is reduced by 10-fold in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. VEGFR2, an eNOS inducer, and occludin, a tight junction protein, gene expression are also reduced in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. Conclusions This study begins to define the roles of KLF2 and KLF4 in the embryonic development of blood vessels. It indicates that the two genes interact to maintain an intact endothelial layer. KLF2 and KLF4 positively regulate the eNOS, VEGFR2 and occludin genes. Down-regulation of these genes in KLF2-/-KLF4-/- embryos may result in the observed loss of vascular integrity. PMID:24261709

  3. Expression of the Growth Factor Progranulin in Endothelial Cells Influences Growth and Development of Blood Vessels: A Novel Mouse Model

    PubMed Central

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2–promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5–14.5) and later (E15.5–17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo. PMID:23741441

  4. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    PubMed

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo.

  5. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis.

    PubMed

    Wesley, Umadevi V; Hatcher, James F; Ayvaci, Emine R; Klemp, Abby; Dempsey, Robert J

    2017-09-01

    Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.

  6. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM).

    PubMed

    Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny

    2017-09-15

    The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.

  7. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that evenmore » under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)« less

  8. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    PubMed

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  10. Targeted endothelial nanomedicine for common acute pathological conditions

    PubMed Central

    Shuvaev, Vladimir V.; Brenner, Jacob S.; Muzykantov, Vladimir R.

    2017-01-01

    Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain. PMID:26435455

  11. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  12. In vitro characteristics of endothelial cells prepared from human cerebral arteriovenous malformation lesions using a novel method.

    PubMed

    Hao, Q; Chen, X L; Ma, L; Ye, X; Wang, H; Wang, T T; Hu, Y; Zhao, Y L

    2018-03-01

    The cerebral arteriovenous malformation (cAVM) is a usual and continually unaware reason of heamorrhage and seizure. It contains of feeder arteries, drain veins and abnormal vessel nets. However, pathologic mechanisms of the development of cAVM are unknown. The purpose of this study was to explore a novel protocol to isolate, culture and passage endothelial cells (ECs) from human cAVM lesions. We developed a protocol for isolating and growing ECs from eight patients with cAVM. The tissues were microsurgically removed from cAVM lesion and were digested by 0.25% Trypsin-EDTA, and cultured in ECM medium. ECs were selected by FACS and confirmed their EC origin by immunocytochemistry of the basic expression patterns of CD31 and CD34. LDL-uptake and capillary tube formation were used to determine their functional features. The isolated cAVM-ECs exhibited contact inhibition of growth and appearance of rounded cobblestone. cAVM-ECs were CD31- and CD34-positive. In functional assays, cAVM-ECs were able to uptake LDL and form capillary tubes. cAVM-ECs from younger patients proliferated faster than that from elders, and cAVM-ECs were less stable than normal artery ECs. In addition, cAVM-ECs appeared to more easily transform into mesenchymal cells than normal artery ECs. Using the protocol, isolated cAVM-ECs are stably established, and retain their endothelial phenotypes. These cAVM-ECs may provide a biological tool to examine molecular phenotypes and mechanisms responsible for human cAVM. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    PubMed

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  14. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep

    PubMed Central

    Seedorf, Gregory J.; Brown, Alicia; Roe, Gates; O'Meara, Meghan C.; Gien, Jason; Tang, Jen-Ruey; Abman, Steven H.

    2011-01-01

    Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P < 0.005) in IUGR fetuses. Pulmonary vessel density was decreased 44% (P < 0.01) in IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% (P < 0.0001). Cell growth was reduced in IUGR PAECs by 29% at baseline (P < 0.01), and the response to insulin was attenuated (P < 0.005). Despite increased basal and insulin-stimulated Akt phosphorylation in IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR. PMID:21873446

  15. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction

    PubMed Central

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia

    2016-01-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. Significance This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. PMID:26956210

  16. Pathophysiologically based drug treatment of sickle cell disease.

    PubMed

    Steinberg, Martin H

    2006-04-01

    Sickle cell disease is a systemic disorder that is caused by a mutation (Glu6Val) in the gene that encodes beta globin. The sickle hemoglobin molecule (HbS) is a tetramer of two alpha-globin chains and two sickle beta-globin chains, and has the tendency to polymerize when deoxygenated. HbS facilitates abnormal interactions between the sickle erythrocyte and leukocytes and endothelial cells, which trigger a complex pathobiology. This multifaceted pathophysiology provides the opportunity to interrupt the disease at multiple sites, including polymerization of HbS, erythrocyte density and cell-cell interactions. For example, it is possible to induce higher concentrations of fetal hemoglobin, which disrupts the pathology-initiating step of HbS polymerization. Furthermore, it is possible to improve the hydration of sickle erythrocytes and it might be feasible to counteract the endothelial, inflammatory and oxidative abnormalities of sickle cell disease. A therapeutic approach that targets several sites of pathobiology might be most promising.

  17. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    PubMed

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  18. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  19. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  20. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  1. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  2. Vasculogenic and Angiogenic Pathways in Moyamoya Disease.

    PubMed

    Bedini, Gloria; Blecharz, Kinga G; Nava, Sara; Vajkoczy, Peter; Alessandri, Giulio; Ranieri, Michela; Acerbi, Francesco; Ferroli, Paolo; Riva, Daria; Esposito, Silvia; Pantaleoni, Chiara; Nardocci, Nardo; Zibordi, Federica; Ciceri, Elisa; Parati, Eugenio A; Bersano, Anna

    2016-01-01

    Moyamoya disease (MMD) is a slowly progressing steno-occlusive cerebrovascular disease. The typical moyamoya vessels, which originate from an initial stenosis of the internal carotid, highlight that increased and/or abnormal angiogenic, vasculogenic and arteriogenic processes are involved in the disease pathophysiology. Herein, we summarize the current knowledge on the most important signaling pathways involved in MMD vessel formation, particularly focusing on the expression of growth factors and function of endothelial progenitor cells (EPCs). Higher plasma concentrations of vascular endothelial growth factor, matrix metalloproteinase, hepatocyte growth factor, and interleukin-1β were reported in MMD. A specific higher level of basic fibroblast growth factor was also found in the cerebrospinal fluid of these patients. Finally, the number and the functionality of EPCs were found to be increased. In spite of the available data, the approaches and findings reported so far do not give an evident correlation between the expression levels of the aforementioned growth factors and MMD severity. Furthermore, the controversial results provided by studies on EPCs, do not permit to understand the true involvement of these cells in MMD pathophysiology. Further studies should thus be implemented to extend our knowledge on processes regulating both the arterial stenosis and the excessive formation of collateral vessels. Moreover, we suggest advances of integrated approaches and functional assays to correlate biological and clinical data, arguing for the development of new therapeutic applications for MMD.

  3. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    PubMed

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    NASA Technical Reports Server (NTRS)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; hide

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  5. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    PubMed

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    PubMed Central

    Bitar, Milad S.; Al-Mulla, Fahd

    2015-01-01

    Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to CREM/ICER as a potential therapeutic target in the treatment of pathological angiogenesis. PMID:25381014

  7. Skin grafting impairs postsynaptic cutaneous vasodilator and sweating responses.

    PubMed

    Davis, Scott L; Shibasaki, Manabu; Low, David A; Cui, Jian; Keller, David M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Kowalske, Karen J; Crandall, Craig G

    2007-01-01

    This study tested the hypothesis that postsynaptic cutaneous vascular responses to endothelial-dependent and -independent vasodilators, as well as sweat gland function, are impaired in split-thickness grafted skin 5 to 9 months after surgery. Intradermal microdialysis membranes were placed in grafted and adjacent control skin, thereby allowing local delivery of the endothelial-dependent vasodilator, acetylcholine (ACh; 1 x 10(-7) to 1 x 10(-1) M at 10-fold increments) and the endothelial-independent nitric oxide donor, sodium nitroprusside (SNP; 5 x 10(-8) to 5 x 10(-2) M at 10-fold increments). Skin blood flow and sweat rate were simultaneously assessed over the semipermeable portion of the membrane. Cutaneous vascular conductance (CVC) was calculated from the ratio of laser Doppler-derived skin blood flow to mean arterial blood pressure. deltaCVC responses from baseline to these drugs were modeled via nonlinear regression curve fitting to identify the dose of ACh and SNP causing 50% of the maximal vasodilator response (EC50). A rightward shift in the CVC dose response curve for ACh was observed in grafted (EC50 = -2.61 +/- 0.44 log M) compared to adjacent control skin (EC50 = -3.34 +/- 0.46 log M; P = .003), whereas the mean EC50 for SNP was similar between grafted (EC50 = -4.21 +/- 0.94 log M) and adjacent control skin (EC50 = -3.87 +/- 0.65 log M; P = 0.332). Only minimal sweating to exogenous ACh was observed in grafted skin whereas normal sweating was observed in control skin. Increased EC50 and decreased maximal CVC responses to the exogenous administration of ACh suggest impairment of endothelial-dependent cutaneous vasodilator responses in grafted skin 5 to 9 months after surgery. Greatly attenuated sweating responses to ACh suggests either abnormal or an absence of functional sweat glands in the grafted skin.

  8. Modeling of Red Blood Cells and Related Spleen Function

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pivkin, Igor; Dao, Ming

    2011-11-01

    A key function of the spleen is to clear red blood cells (RBCs) with abnormal mechanical properties from the circulation. These abnormal mechanical properties may be due to RBC aging or RBC diseases, e.g., malaria and sickle cell anemia. Specifically, 10% of RBCs passing through the spleen are forced to squeeze into the narrow slits between the endothelial cells, and stiffer cells which get stuck are killed and digested by macrophages. To investigate this important physiological process, we employ three different approaches to study RBCs passage through these small slits, including analytical theory, Dissipative Particle Dynamics (DPD) simulation and Multiscale Finite Element Method (MS-FEM). By applying the analytical theory, we estimate the critical limiting geometries RBCs can pass. By using the DPD method, we study the full fluid-structure interaction problem, and compute RBC deformation under different pressure gradients. By employing the MS-FEM approach, we model the lipid bilayer and the cytoskeleton as two distinct layers, and focus on the cytoskeleton deformation and the bilayer-skeleton interaction force at the molecular level. Finally the results of these three approaches are compared to each other and correlated to the experimental observations.

  9. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  10. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  11. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  12. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  13. The endothelial glycocalyx

    PubMed Central

    Yang, Yimu; Schmidt, Eric P.

    2013-01-01

    Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386

  14. Defenders and Challengers of Endothelial Barrier Function

    PubMed Central

    Rahimi, Nader

    2017-01-01

    Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721

  15. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function.

    PubMed

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves

    2017-11-01

    Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy ( P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy ( P < 0.001). Endothelial function, obtained by FMD, is deteriorated in PE versus normal pregnancy ( P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy ( P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.

  16. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome.

    PubMed

    Cabandugama, Peminda K; Gardner, Michael J; Sowers, James R

    2017-01-01

    In the United States, more than 50 million people have blood pressure at or above 120/80 mm Hg. All components of cardiorenal metabolic syndrome (CRS) are linked to metabolic abnormalities and obesity. A major driver for CRS is obesity. Current estimates show that many of those with hypertension and CRS show some degree of systemic and cardiovascular insulin resistance. Several pathophysiologic factors participate in the link between hypertension and CRS. This article updates recent literature with a focus on the function of insulin resistance, obesity, and renin angiotensin aldosterone system-mediated oxidative stress on endothelial dysfunction and the pathogenesis of hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A systematic review of vascular and endothelial function: effects of fruit, vegetable and potassium intake.

    PubMed

    Blanch, N; Clifton, P M; Keogh, J B

    2015-03-01

    To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Assessing endothelial function and providing calibrated UFMD data using a blood pressure cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan S.

    Methods and apparatus are provided for assessing endothelial function in a mammal. In certain embodiments the methods involve using a cuff to apply pressure to an artery in a subject to determine a plurality of baseline values for a parameter related to endothelial function as a function of applied pressure (P.sub.m); b) applying a stimulus to the subject; and applying external pressure P.sub.m to the artery to determine a plurality of stimulus-effected values for the parameter related to endothelial function as a function of applied pressure (P.sub.m); where the baseline values are determined from measurements made when said mammal ismore » not substantially effected by said stimulus and differences in said baseline values and said stimulus-effected values provide a measure of endothelial function in said mammal.« less

  19. Evaluation of the Effects of Different Energy Drinks and Coffee on Endothelial Function.

    PubMed

    Molnar, Janos; Somberg, John C

    2015-11-01

    Endothelial function plays an important role in circulatory physiology. There has been differing reports on the effect of energy drink on endothelial function. We set out to evaluate the effect of 3 energy drinks and coffee on endothelial function. Endothelial function was evaluated in healthy volunteers using a device that uses digital peripheral arterial tonometry measuring endothelial function as the reactive hyperemia index (RHI). Six volunteers (25 ± 7 years) received energy drink in a random order at least 2 days apart. Drinks studied were 250 ml "Red Bull" containing 80 mg caffeine, 57 ml "5-hour Energy" containing 230 mg caffeine, and a can of 355 ml "NOS" energy drink containing 120 mg caffeine. Sixteen volunteers (25 ± 5 years) received a cup of 473 ml coffee containing 240 mg caffeine. Studies were performed before drink (baseline) at 1.5 and 4 hours after drink. Two of the energy drinks (Red Bull and 5-hour Energy) significantly improved endothelial function at 4 hours after drink, whereas 1 energy drink (NOS) and coffee did not change endothelial function significantly. RHI increased by 82 ± 129% (p = 0.028) and 63 ± 37% (p = 0.027) after 5-hour Energy and Red Bull, respectively. The RHI changed after NOS by 2 ± 30% (p = 1.000) and by 7 ± 30% (p = 1.000) after coffee. In conclusion, some energy drinks appear to significantly improve endothelial function. Caffeine does not appear to be the component responsible for these differences. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. KLF2 and KLF4 control endothelial identity and vascular integrity

    PubMed Central

    Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E. Ricky; Kang, Dong-Won; Zhang, Rongli; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D.; Ghosh, Chandra C.; Higgins, Sarah J.; Parikh, Samir M.; Jain, Mukesh K.

    2017-01-01

    Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal. PMID:28239661

  1. TREATMENT OF METABOLIC ALTERATIONS IN POLYCYSTIC OVARY SYNDROME.

    PubMed

    Păvăleanu, Ioana; Gafiţanu, D; Popovici, Diana; Duceac, Letiţia Doina; Păvăleanu, Maricica

    2016-01-01

    Polycystic ovary syndrome is a common endocrinopathy characterized by oligo ovulation or anovulation, signs of androgen excess and multiple small ovarian cysts. It includes various metabolic abnormalities: insulin resistance, hyperinsulinemia, impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia. All these metabolic abnormalities have long-term implications. Treatment should be individualized and must not address a single sign or symptom. Studies are still needed to determine the benefits and the associated risks of the medication now available to practitioners.

  2. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  3. ANGIOTENSIN-CONVERTING ENZYME 2 ACTIVATION IMPROVES ENDOTHELIAL FUNCTION

    PubMed Central

    Fraga-Silva, Rodrigo A.; Costa-Fraga, Fabiana P.; Murça, Tatiane M.; Moraes, Patrícia L.; Lima, Augusto Martins; Lautner, Roberto Q.; Castro, Carlos H.; Soares, Célia Maria A.; Borges, Clayton L.; Nadu, Ana Paula; Oliveira, Marilene L.; Shenoy, Vinayak; Katovich, Michael J.; Santos, Robson A.S.; Raizada, Mohan K.; Ferreira, Anderson J.

    2013-01-01

    Diminished release and function of endothelium-derived nitric oxide (NO) coupled with increases in reactive oxygen species (ROS) production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)] and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic ACE2 would improve endothelial function by decreasing the ROS production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule ACE2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1mg/kg/day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7) and it was reduced in Mas knockout mice. These effects were associated with reduction in ROS production. In addition, Ang II-induced ROS production in human aortic endothelial cells was attenuated by pre-incubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that ACE2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease. PMID:23608648

  4. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  5. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  6. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment.

    PubMed

    Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N

    2016-04-01

    There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment. Results were analyzed using the SPSS 20 statistical software package. Student's t test and MANOVA were calculated and linear regression analysis with 95% confidence intervals and α<0.05 was performed. Arterial dilation at 24 hours was lower compared to baseline in both groups; values corresponding to the groups receiving angiotensin-converting enzyme inhibitors were 11.89 ± 4.87 vs. 7.30 ± 2.90% (p<0.01) and those corresponding to the group not receiving ACE inhibitors were 12.72 ± 4.62 vs. 3.56 ± 2.39 (p<0.001). The differences between groups were statistically significant (p<0.001). The increase in endothelial dysfunction after intensive periodontal treatment was significantly lower in hypertensive patients treated with angiotensin-converting enzyme inhibitors. Endothelial function improved 15 days after periodontal treatment, reaching baseline values. These results support the protective effect of angiotensin converting enzyme inhibitors on the endothelial function after intensive periodontal treatment. Sociedad Argentina de Investigación Odontológica.

  7. Pulmonary vasculature in COPD: The silent component.

    PubMed

    Blanco, Isabel; Piccari, Lucilla; Barberà, Joan Albert

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that results from an inflammatory process affecting the airways and lung parenchyma. Despite major abnormalities taking place in bronchial and alveolar structures, changes in pulmonary vessels also represent an important component of the disease. Alterations in vessel structure are highly prevalent and abnormalities in their function impair gas exchange and may result in pulmonary hypertension (PH), an important complication of the disease associated with reduced survival and worse clinical course. The prevalence of PH is high in COPD, particularly in advanced stages, although it remains of mild to moderate severity in the majority of cases. Endothelial dysfunction, with imbalance between vasodilator/vasoconstrictive mediators, is a key determinant of changes taking place in pulmonary vasculature in COPD. Cigarette smoke products may perturb endothelial cells and play a critical role in initiating vascular changes. The concurrence of inflammation, hypoxia and emphysema further contributes to vascular damage and to the development of PH. The use of drugs that target endothelium-dependent signalling pathways, currently employed in pulmonary arterial hypertension, is discouraged in COPD due to the lack of efficacy observed in randomized clinical trials and because there is compelling evidence indicating that these drugs may worsen pulmonary gas exchange. The subgroup of patients with severe PH should be ideally managed in centres with expertise in both PH and chronic lung diseases because alterations of pulmonary vasculature might resemble those observed in pulmonary arterial hypertension. Because this condition entails poor prognosis, it warrants specialist treatment. © 2016 Asian Pacific Society of Respirology.

  8. Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice

    PubMed Central

    Contreras-Duarte, Susana; Amigo, Ludwig; Sepúlveda, Esteban; Boric, Mauricio; Quiñones, Verónica; Busso, Dolores; Rigotti, Attilio

    2017-01-01

    For proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI), a high-density lipoprotein (HDL) receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an important role. Guggulsterone, a bioactive compound present in the natural product gugulipid, is an antagonist of this receptor. This natural product is widely used globally as a natural lipid-lowering agent, although its anti-atherogenic cardiovascular benefit in animal models or humans is unknown. The aim of this study was to determine the effects of gugulipid on cholesterol homeostasis and development of mild and severe atherosclerosis in male mice. For this purpose, we evaluated the impact of gugulipid treatment on liver histology, plasma lipoprotein cholesterol, endothelial function, and development of atherosclerosis and/or ischemic heart disease in wild-type mice; apolipoprotein E knockout mice, a model of atherosclerosis without ischemic complications; and SR-B1 knockout and atherogenic–diet-fed apolipoprotein E hypomorphic (SR-BI KO/ApoER61h/h) mice, a model of lethal ischemic heart disease due to severe atherosclerosis. Gugulipid administration was associated with histological abnormalities in liver, increased alanine aminotransferase levels, lower hepatic SR-BI content, hypercholesterolemia due to increased HDL cholesterol levels, endothelial dysfunction, enhanced atherosclerosis, and accelerated death in animals with severe ischemic heart disease. In conclusion, our data show important adverse effects of gugulipid intake on HDL metabolism and atherosclerosis in male mice, suggesting potential and unknown deleterious effects on cardiovascular health in humans. In addition, these findings reemphasize the need for rigorous preclinical and clinical studies to provide guidance on the consumption of natural products and regulation of their use in the general population. PMID:28910310

  9. Effects of sapropterin on endothelium-dependent vasodilation in patients with CADASIL: a randomized controlled trial.

    PubMed

    De Maria, Renata; Campolo, Jonica; Frontali, Marina; Taroni, Franco; Federico, Antonio; Inzitari, Domenico; Tavani, Alessandra; Romano, Silvia; Puca, Emanuele; Orzi, Francesco; Francia, Ada; Mariotti, Caterina; Tomasello, Chiara; Dotti, Maria Teresa; Stromillo, Maria Laura; Pantoni, Leonardo; Pescini, Francesca; Valenti, Raffaella; Pelucchi, Claudio; Parolini, Marina; Parodi, Oberdan

    2014-10-01

    Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare autosomal dominant disorder caused by NOTCH3 mutations, is characterized by vascular smooth muscle and endothelial cells abnormalities, altered vasoreactivity, and recurrent lacunar infarcts. Vasomotor function may represent a key factor for disease progression. Tetrahydrobiopterin, essential cofactor for nitric oxide synthesis in endothelial cells, ameliorates endothelial function. We assessed whether supplementation with sapropterin, a synthetic tetrahydrobiopterin analog, improves endothelium-dependent vasodilation in CADASIL patients. In a 24-month, multicenter randomized, double-blind, placebo-controlled trial, CADASIL patients aged 30 to 65 years were randomly assigned to receive placebo or sapropterin 200 to 400 mg BID. The primary end point was change in the reactive hyperemia index by peripheral arterial tonometry at 24 months. We also assessed the safety and tolerability of sapropterin. Analysis was done by intention-to-treat. The intention-to-treat population included 61 patients. We found no significant difference between sapropterin (n=32) and placebo (n=29) in the primary end point (mean difference in reactive hyperemia index by peripheral arterial tonometry changes 0.19 [95% confidence interval, -0.18, 0.56]). Reactive hyperemia index by peripheral arterial tonometry increased after 24 months in 37% of patients on sapropterin and in 28% on placebo; however, after adjustment for age, sex, and clinical characteristics, improvement was not associated with treatment arm. The proportion of patients with adverse events was similar on sapropterin and on placebo (50% versus 48.3%); serious adverse events occurred in 6.3% versus 13.8%, respectively. Sapropterin was safe and well-tolerated at the average dose of 5 mg/kg/day, but did not affect endothelium-dependent vasodilation in CADASIL patients. https://www.clinicaltrialsregister.eu. Unique identifier: 2007-004370-55. © 2014 American Heart Association, Inc.

  10. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  11. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function

    PubMed Central

    Betteridge, Kai B.; Arkill, Kenton P.; Neal, Christopher R.; Harper, Steven J.; Foster, Rebecca R.; Satchell, Simon C.; Bates, David O.

    2017-01-01

    Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability.Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel.The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth.Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time‐dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin. PMID:28524373

  12. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  13. Ethnic differences in macrovascular and microvascular function in systolic heart failure.

    PubMed

    Shantsila, Eduard; Wrigley, Benjamin; Shantsila, Alena; Tapp, Luke D; Blann, Andrew D; Gill, Paramjit S; Lip, Gregory Y H

    2011-11-01

    Endothelial dysfunction is implicated in the pathophysiological features of heart failure (HF), and ethnic differences in the presentation of cardiovascular disease are evident, with an excess seen among South Asians (SAs). However, data on ethnic differences in endothelial function in HF are limited. In a cross-sectional study, we recruited 128 subjects with systolic HF: 50 SAs, 50 whites, and 28 African Caribbeans (ACs). In addition, SAs with systolic HF were compared with 40 SAs with coronary artery disease without HF ("disease controls") and 40 SA healthy controls. Macrovascular endothelial function was assessed by measurement of flow-mediated dilation (FMD) in response to hyperemia, arterial stiffness was assessed by the pulse-wave velocity, and microvascular endothelial function was assessed by forearm laser Doppler flowmetry. CD144-expressing endothelial microparticles were measured by flow cytometry. When compared with disease controls and healthy controls, SAs with HF had an impaired microvascular response to acetylcholine (P=0.001) and reduced FMD (P<0.001). In comparing ethnic groups, SAs with HF had an impaired response to acetylcholine (123±95.5%) compared with whites (258±156%) and ACs (286±173%, P<0.001 for both). Whites had a higher FMD (8.49±4.63%) than SAs (4.76±4.78%, P<0.001) and ACs (4.55±3.56%, P=0.01). No difference in endothelial-independent response was observed between study groups or in pulse-wave velocity. Ethnicity remained associated with microvascular endothelial function even after adjustment for age, presence of hypertension and diabetes mellitus, blood pressure, and glucose levels (P=0.003). There were no differences in numbers of endothelial microparticles. The SAs with HF have impaired microvascular and macrovascular endothelial function but preserved arterial elastic properties. Significant ethnic differences in endothelial function are evident in subjects with HF, with ethnicity being associated with microvascular endothelial dysfunction in this disorder.

  14. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.

    PubMed

    Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula

    2016-01-01

    Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lipocalin-type prostaglandin D synthase-derived PGD2 attenuates malignant properties of tumor endothelial cells.

    PubMed

    Omori, Keisuke; Morikawa, Teppei; Kunita, Akiko; Nakamura, Tatsuro; Aritake, Kosuke; Urade, Yoshihiro; Fukayama, Masashi; Murata, Takahisa

    2018-01-01

    Endothelial cells (ECs) are a key component of the tumor microenvironment. They have abnormal characteristics compared to the ECs in normal tissues. Here, we found a marked increase in lipocalin-type prostaglandin D synthase (L-PGDS) mRNA (Ptgds) expression in ECs isolated from mouse melanoma. Immunostaining of mouse melanoma revealed expression of L-PGDS protein in the ECs. In situ hybridization also showed L-PGDS (PTGDS) mRNA expression in the ECs of human melanoma and oral squamous cell carcinoma. In vitro experiments showed that stimulation with tumor cell-derived IL-1 and TNF-α increased L-PGDS mRNA expression and its product prostaglandin D 2 (PGD 2 ) in human normal ECs. We also investigated the contribution of L-PGDS-PGD 2 to tumor growth and vascularization. Systemic or EC-specific deficiency of L-PGDS accelerated the growth of melanoma in mice, whereas treatment with an agonist of the PGD 2 receptor, DP1 (BW245C, 0.1 mg/kg, injected intraperitoneally twice daily), attenuated it. Morphological and in vivo studies showed that endothelial L-PGDS deficiency resulted in functional changes of tumor ECs such as accelerated vascular hyperpermeability, angiogenesis, and endothelial-to-mesenchymal transition (EndMT) in tumors, which in turn reduced tumor cell apoptosis. These observations suggest that tumor cell-derived inflammatory cytokines increase L-PGDS expression and subsequent PGD 2 production in the tumor ECs. This PGD 2 acts as a negative regulator of the tumorigenic changes in tumor ECs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced vascular impairment in pulmonary arteries from diabetic rats.

    PubMed

    Pinna, Christian; Morazzoni, Paolo; Sala, Angelo

    2017-02-15

    Vitis vinifera L. (grape seed extract) is a natural source of proanthocyanidins with antioxidant and free radical-scavenging activities. Grape seed extract supplementation may prevent vascular endothelium impairment associated with diabetes mellitus in rat pulmonary artery. We evaluated endothelial function of rat pulmonary artery ex-vivo at the intermediate stage (4 weeks) of streptozotocin (STZ)-induced diabetes mellitus. We also evaluated the protective effect of grape seed extract administered daily, beginning the day after diabetes induction, or 15 days after diabetes induction, until the day of sacrifice. In addition, we compared the effect of grape seed extract supplementation with that of vitamin C. Rats were made diabetic with streptozotocin (STZ, 65mg/kg i.v.). Thirty days later rats were sacrificed and pulmonary vessels reactivity and endothelial function compared to that of age-matched healthy animals. Concentration-response curves to ACh, NE, sodium nitroprusside (NO donor), but not to histamine and iloprost (prostacyclin analog), were significantly altered 4 weeks after STZ-injection. Antioxidant supplementation (3mg/kg/day) with either vitamin C or grape seed extract, starting the day after diabetes induction, significantly improved vasodilation to ACh and SNP. Norepinephrine-induced contractions were preserved by grape seed extract, but not vitamin C supplementation. Conversely, vitamin C but not grape seed extract showed beneficial effects contrasting the loss of body weight in diabetic animals. Abnormal vascular function was not reversed when antioxidant supplementations were postponed 15 days after the induction of diabetes. This study provides scientific support for the therapeutic potential of an antioxidant therapy in endothelial impairment associated with diabetes. A daily supplementation of grape seed proanthocyanidins and/or vitamin C given at the earlier stage of disease may have a complementary role in the pharmacological therapy of diabetes and pulmonary vascular dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Ultrastructural changes of the capillaries of the cat iris in experimental neuroparalytic keratitis.

    PubMed

    Saari, M; Huhtala, A; Johansson, G

    1975-01-01

    In order to study the morphological basis of the increased permeability of the capillaries of the iris in neuroparalytic keratitis the ophthalmic division of the trigeminal nerve in the cat was denervated using a stereotactic method. The homolateral iris was studied by electron microscopy three days after denervation. Abnormally large pinocytotic vacuoles were observed in the endothelial cells of the iris capillaries and the intercellular junctions of the endothelial cells showed widened inter-cellular space and macula occludens. These ultrastructural changes may explain the protein leakage into the anterior chamber in neuroparalytic keratitis.

  19. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    PubMed

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  20. Impaired response of mature adipocytes of diabetic mice to hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role inmore » injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.« less

  1. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  2. Stress--the battle for hearts and minds: links between depression, stress and ischemic heart disease.

    PubMed

    Korszun, Ania; Frenneaux, Michael P

    2006-09-01

    Depression and ischemic heart disease (IHD) are strongly related common disorders. Depression itself is an independent cardiac risk factor and is associated with a two- to threefold increase in IHD mortality. Attention has now shifted to identifying the common underlying mechanisms that could make individuals susceptible to both disorders. Abnormalities that have been implicated in this relationship include abnormal platelet activation, decreased baroreceptor sensitivity and endothelial dysfunction. Depression and IHD both have a high association with environmental stress, and depression is characterized by abnormalities of the stress-hormone axis. This review provides a brief overview of some recent developments in our understanding of the pathophysiological links between stress, depression and IHD.

  3. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives.

    PubMed

    Salzano, Andrea; Arcopinto, Michele; Marra, Alberto M; Bobbio, Emanuele; Esposito, Daniela; Accardo, Giacomo; Giallauria, Francesco; Bossone, Eduardo; Vigorito, Carlo; Lenzi, Andrea; Pasquali, Daniela; Isidori, Andrea M; Cittadini, Antonio

    2016-07-01

    Klinefelter syndrome (KS) is the most frequently occurring sex chromosomal aberration in males, with an incidence of about 1 in 500-700 newborns. Data acquired from large registry-based studies revealed an increase in mortality rates among KS patients when compared with mortality rates among the general population. Among all causes of death, metabolic, cardiovascular, and hemostatic complication seem to play a pivotal role. KS is associated, as are other chromosomal pathologies and genetic diseases, with cardiac congenital anomalies that contribute to the increase in mortality. The aim of the current study was to systematically review the relationships between KS and the cardiovascular system and hemostatic balance. In summary, patients with KS display an increased cardiovascular risk profile, characterized by increased prevalence of metabolic abnormalities including Diabetes mellitus (DM), dyslipidemia, and alterations in biomarkers of cardiovascular disease. KS does not, however, appear to be associated with arterial hypertension. Moreover, KS patients are characterized by subclinical abnormalities in left ventricular (LV) systolic and diastolic function and endothelial function, which, when associated with chronotropic incompetence may led to reduced cardiopulmonary performance. KS patients appear to be at a higher risk for cardiovascular disease, attributing to an increased risk of thromboembolic events with a high prevalence of recurrent venous ulcers, venous insufficiency, recurrent venous and arterial thromboembolism with higher risk of deep venous thrombosis or pulmonary embolism. It appears that cardiovascular involvement in KS is mainly due to chromosomal abnormalities rather than solely on low serum testosterone levels. On the basis of evidence acquisition and authors' own experience, a flowchart addressing the management of cardiovascular function and prognosis of KS patients has been developed for clinical use. © 2016 European Society of Endocrinology.

  4. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    PubMed

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-06-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  6. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin.

    PubMed

    Mason, R Preston; Dawoud, Hazem; Jacob, Robert F; Sherratt, Samuel C R; Malinski, Tadeusz

    2018-07-01

    The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO - ) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  7. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  8. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  9. Antioxidant and triglyceride-lowering effects of vitamin E associated with the prevention of abnormalities in the reactivity and morphology of aorta from streptozotocin-diabetic rats. Antioxidants in Diabetes-Induced Complications (ADIC) Study Group.

    PubMed

    Karasu, C; Ozansoy, G; Bozkurt, O; Erdoğan, D; Omeroğlu, S

    1997-08-01

    In this study, we evaluated the effects of vitamin E on the vascular reactivity and structure of thoracic aorta from streptozotocin (STZ)-diabetic rats. Plasma glucose, cholesterol, and triglyceride concentrations in rats were increased markedly by STZ-diabetes. The thiobarbituric acid (TBA) reactivity level as an index of lipid peroxidation was higher in both plasma and aorta of STZ-diabetic rats compared with controls. The rings of thoracic aorta with or without endothelium were mounted in organ chambers for measurement of isometric tension and were contracted by a single dose (10-5 mol/L) and then cumulative doses of noradrenaline ([NA] 10(-9) to 10(-5) mol/L). Pretreatment with methylene blue (MB) or removal of the endothelium resulted in a similar degree of enhancement in NA-induced contraction of control rings. STZ-diabetes increased the fast and slow components of NA-induced contraction in all experiments. The maximal contractile response of aorta to NA was also augmented by STZ-diabetes, whereas the sensitivity (pD2) remained unaltered. STZ-diabetes resulted in significant increases in the maximum contractile response and sensitivity of aorta to KCl. STZ-diabetic rats showed a significant reduction in the percentage of endothelial response (PER). A group of diabetic rats was treated from the time of diabetes induction with a 0.5% dietary supplement of vitamin E. Vitamin E supplementation of STZ-diabetic rats eliminated accumulation of lipid peroxides and returned plasma triglycerides toward normal levels. Diabetes-induced abnormal contractility and endothelial dysfunction were significantly but not completely prevented by vitamin E treatment. The endothelium-independent relaxation response to sodium nitroprusside (SNP) was not affected by diabetes or vitamin E treatment. Electron microscopic examination of thoracic aorta revealed that normal tissue organization was disrupted in STZ-diabetic rats, and that vitamin E treatment can protect the morphological integrity of aorta against STZ-diabetes. The results suggest the following: (1) The increased triglycerides/lipid peroxides may be an important reason for morphological or functional disruption of endothelium and enhanced activation of contractile mechanisms of vascular smooth muscle in STZ-diabetic rats. Both contribute to an increased responsiveness of diabetic aorta to vasoconstrictor agents. (2) Vitamin E treatment of STZ-diabetic rats can prevent the development of abnormal contractility and structure and endothelial dysfunction in aorta. (3) The triglyceride- and/or lipid peroxidation-lowering effect of vitamin E may be crucial for the protective effect of this vitamin on the vasculature.

  10. EETs reduces LPS-induced hyperpermeability by targeting GRP78 mediated Src activation and subsequent Rho/ROCK signaling pathway

    PubMed Central

    Dong, Ruolan; Hu, Danli; Yang, Yan; Chen, Zhihui; Fu, Menglu; Wang, Dao Wen; Xu, Xizhen; Tu, Ling

    2017-01-01

    Integrity of endothelial barrier is a determinant of the prognosis in the acute lung injury caused by sepsis. The epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, exhibit protective effects in various pathogenic states, however, whether EETs play a role in endothelial barrier enhancement and the involved mechanisms remain to be investigated. Here, we show that increased EETs level by endothelial specific cytochrome P450 epoxygenase 2J2 over-expression and soluble epoxide hydrolase (sEH) inhibitor TPPU reduced lipopolysaccharide-induced endothelial hyper-permeability in vivo, accompanied by improved survival of septic mice. In addition, sEH inhibitor AUDA and 11,12-EET also decreased endothelial hyper-permeability in the in-vitro study. Importantly, the relative mechanisms were associated with reduced GRP78-Src interaction and ROS production, and subsequently reduced RhoA/ROCK activation, and eventually decreased VE-cadherin and myosin light chain (MLC) phosphorylation. Thus CYP2J2-EETs is crucial for RhoA-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability, which may contribute to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability. PMID:28881620

  11. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  12. Structural and functional changes in the microcirculation of lepromatous leprosy patients - Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis

    PubMed Central

    Treu, Curt; de Souza, Maria das Graças Coelho; Lupi, Omar; Sicuro, Fernando Lencastre; Maranhão, Priscila Alves; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2017-01-01

    Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by the Mycobacterium leprae. PMID:28419120

  13. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  14. Diverse Functional Outcomes of Plasmodium falciparum Ligation of EPCR: Potential Implications for Malarial Pathogenesis

    PubMed Central

    Gillrie, Mark R.; Avril, Marion; Brazier, Andrew J.; Davis, Shevaun P.; Stins, Monique F.; Smith, Joseph D.; Ho, May

    2015-01-01

    Summary P. falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand PfEMP1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung, and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on the different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 CIDRα1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, while IT4var07 CIDRα1.4- inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion. PMID:26119044

  15. Endothelial antioxidant administration ameliorates the erectile response to PDE5 regardless of the extension of the atherosclerotic process.

    PubMed

    Vicari, Enzo; La Vignera, Sandro; Condorelli, Rosita; Calogero, Aldo Eugenio

    2010-03-01

    The lack of phosphodiesterase type 5 inhibitor effects in patients with erectile dysfunction (ED) of arterial origin may be caused by an endothelial dysfunction that causes a series of biochemical alterations leading to a reduced nitric oxide (NO) bioavailability and increased oxidative stress. The aim of this study was to evaluate the effects of the treatment with endothelial antioxidant compounds (EAC) on the erectile response to sildenafil in patients with arterial ED already treated with sildenafil (100 mg twice a week for 8 weeks). A patient was considered responsive when the 5-item International Index of Erectile Function questionnaire score increased by >5 points. Fifty-three patients with arterial ED, hypertension, and diabetes mellitus were randomly given, for 8 weeks, EAC (1 dose/day) and, after a wash out of 8 weeks, sildenafil (100 mg) plus EAC. The patients were divided into the following four groups: A (N = 12): patients with ED alone; B (N = 14): patients with ED plus atheromasic plaques and/or increased intima-media thickness of common carotid arteries; C (N = 14): patients with ED plus lower limb artery abnormalities; and D (N = 13): patients with ED plus carotid and lower limb artery abnormalities. The administration of EAC plus sildenafil resulted in a significantly higher number of responsive patients (N = 36, 68%) compared with sildenafil alone (N = 24, 45%) or EAC alone (N = 17, 32%). The percentage of patients who successfully responded to the combined treatment increased in the various groups. It was 83%, 64%, 71%, and 54%, respectively, for groups A, B, C, and D. Furthermore, patients treated with EAC and sildenafil reached a successful response in a shorter length of time (3 weeks) compared with patients responsive to sildenafil (5.2 weeks) or EAC (5.7 weeks) alone. EAC administration to patients with arterial ED improved the success rate to sildenafil. These data suggest that, in such patients, a combined treatment may be considered to increase bioavailable NO and to neutralize radical oxygen species, which in turn inactive NO.

  16. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Use of a polysulfone hemodialysis membrane may prevent recurrent posterior reversible encephalopathy syndrome in a patient undergoing hemodialysis.

    PubMed

    Mima, Akira; Matsubara, Takeshi; Endo, Shuichiro; Murakami, Taichi; Hashimoto, Yasuki

    2014-01-01

    A 71-year-old woman underwent hemodialysis (HD) treatment for chronic kidney disease. During HD, she developed headache, abnormalities in visual perception, and generalized convulsion. Brain magnetic resonance imaging (MRI) showed T2-hyperintensity lesions in the posterior lobe, and an electroencephalogram showed slow waves in all areas. Twenty days later, the T2-hyperintensity lesions had vanished. Furthermore, perfusion computed tomography (CT) and single-photon emission CT with N-isopropyl[(123)I]-p-iodoamphetamine (IMP-SPECT) showed no significant abnormalities. The patient was diagnosed with posterior reversible encephalopathy syndrome (PRES) because she displayed typical clinical symptoms and MRI findings. Although several antihypertensive and antiseizure medications were administered, the patient experienced recurrent PRES. Therefore, we used a polysulfone dialyzer to reduce the oxidative stress and inflammation while preserving vascular endothelial function. After use of a polysulfone dialyzer membrane, the patient had no PRES episodes during the clinical course. This is the first study to demonstrate that use of a polysulfone dialyzer membrane instead of a cellulose membrane may prevent recurrent PRES.

  19. Pharmacological Treatment of Hypertension: Effects in Endothelial Function.

    PubMed

    Cobos-Segarra, Leonardo; Lopez-Jaramillo, Patricio; Ponte-Negretti Ci, Carlos; Villar, Raul; Penaherrera, Ernesto

    2018-05-07

    The vascular endothelium plays a crucial role to maintain the functional integrity of the cardiovascular system through the secretion of vasoactive substances such as prostacyclin and NO. Endothelial dysfunction participate in the genesis of HTA, but also hypertension produces endothelial damage. The mayor class of antihypertensive drugs have beneficial effects in the recuperation of the endothelial function, actions that are contributing to explain the impact of the adequate control of HTA in the reduction of CV events. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    PubMed

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  1. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function.

    PubMed

    Jin, Honghong; Li, Dan; Wang, Xutong; Jia, Jia; Chen, Yang; Yao, Yapeng; Zhao, Chunlan; Lu, Xiaodan; Zhang, Shujie; Togo, Jacques; Ji, Yan; Zhang, Luqing; Feng, Xuechao; Zheng, Yaowu

    2018-05-01

    Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.

  2. Mitochondria and Endothelial Function

    PubMed Central

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  3. CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect

    PubMed Central

    Sakimoto, Susumu; Marchetti, Valentina; Aguilar, Edith; Lee, Kelsey; Usui, Yoshihiko; Bucher, Felicitas; Trombley, Jennifer K.; Fallon, Regis; Wagey, Ravenska; Peters, Carrie; Scheppke, Elizabeth L.; Westenskow, Peter D.

    2017-01-01

    Vascular abnormalities are a common component of eye diseases that often lead to vision loss. Vaso-obliteration is associated with inherited retinal degenerations, since photoreceptor atrophy lowers local metabolic demands and vascular support to those regions is no longer required. Given the degree of neurovascular crosstalk in the retina, it may be possible to use one cell type to rescue another cell type in the face of severe stress, such as hypoxia or genetically encoded cell-specific degenerations. Here, we show that intravitreally injected human endothelial colony-forming cells (ECFCs) that can be isolated and differentiated from cord blood in xeno-free media collect in the vitreous cavity and rescue vaso-obliteration and neurodegeneration in animal models of retinal disease. Furthermore, we determined that a subset of the ECFCs was more effective at anatomically and functionally preventing retinopathy; these cells expressed high levels of CD44, the hyaluronic acid receptor, and IGFBPs (insulin-like growth factor–binding proteins). Injection of cultured media from ECFCs or only recombinant human IGFBPs also rescued the ischemia phenotype. These results help us to understand the mechanism of ECFC-based therapies for ischemic insults and retinal neurodegenerative diseases. PMID:28138561

  4. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage.

    PubMed

    Rodrigo, Ramón; Libuy, Matías; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers.

  5. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling

    PubMed Central

    Hu, Zu-Quan; Xue, Hui; Long, Jin-Hua; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Wen, Zong-Yao; Yao, Wei-Juan; Zeng, Zhu

    2016-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors. PMID:27809226

  6. Nutritional approach to preeclampsia prevention.

    PubMed

    Achamrah, Najate; Ditisheim, Agnès

    2018-05-01

    Although not fully understood, the physiopathology of preeclampsia is thought to involve an abnormal placentation, diffuse endothelial cell dysfunction and increased systemic inflammation. As micronutrients play a key role in placental endothelial function, oxidative stress and expression of angiogenic factors, periconceptional micronutrient supplementation has been proposed to reduce the risk of preeclampsia. However, recent studies reported conflicting results. Calcium intake (>1 g/day) may reduce the risk of preeclampsia in women with low-calcium diet. Data from recently updated Cochrane reviews did not support routine supplementation of vitamins C, E or D for either the prevention or treatment of preeclampsia. Evidences are also poor to support zinc or folic acid supplementation for preeclampsia prevention. Dark chocolate, flavonoid-rich food, and long-chain polyunsaturated fatty acids might also be candidates for prevention of preeclampsia. Through antioxidant, anti-inflammatory or vasoactive proprieties, micronutrients are good candidates for preeclampsia prevention. Calcium supplementation is recommended to prevent preeclampsia in women with low-calcium intake. Despite positive clinical and in-vitro data, strong evidence to support periconceptional supplementation of other micronutrients for preeclampsia risk-reduction is still lacking. Further studies are also needed to evaluate the benefit of nutritional supplementation such as chocolate and long-chain polyunsaturated fatty acids.

  7. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    PubMed

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  8. Effect of ascorbic acid on endothelial dysfunction of epicardial coronary arteries in chronic smokers assessed by cold pressor testing.

    PubMed

    Schindler, T H; Magosaki, N; Jeserich, M; Olschewski, M; Nitzsche, E; Holubarsch, C; Solzbach, U; Just, H

    2000-01-01

    In chronic smokers there is evidence for increased formation of oxygen-derived free radicals within the vessel wall impairing endothelial function. It has been suggested that the inactivation of endothelium-derived nitric oxide by oxygen free radicals contributes to endothelial dysfunction. Hence, we tested the hypothesis that in chronic smokers the antioxidant ascorbic acid could improve abnormal endothelial function of epicardial coronary arteries. Thirty-one patients (mean age 57 +/- 9 years) referred for routine diagnostic catheterization for evaluation of chest pain and without angiographically significant coronary artery stenoses were randomly assigned to one of the study groups to assess vasomotor response of epicardial coronary arteries due to cold pressor testing (CPT) before and after intravenous infusion of 3 g of ascorbic acid or 100 ml x 0.9% saline infusion. In 6 controls (mean age 55 +/- 3 years) CPT led to a similar increase in luminal area before and after ascorbic acid administration (26.5 +/- 15.0 vs. 28.4 +/- 17.7%, p = NS). In 15 chronic smokers (mean age 55 +/- 9 years), CPT induced a decrease in the luminal area of -18.5 +/- 6.3%. This flow-dependent vasoconstriction was significantly reversed to 7.7 +/- 6.2% (p < or = 0.03) vasodilation after intravenous ascorbic acid administration. In 10 chronic smokers (mean age 57 +/- 11 years) saline infusion (placebo) did not have a significant effect on CPT-induced vasoconstriction (-12.7 +/- 5.1 vs. -13.1 +/- 5.1%, p = NS). The CPT-induced increase in luminal area in chronic smokers after ascorbic acid infusion was significant compared to controls and placebo (each p < or = 0.05). Our assessment of endothelium-independent responses to nitroglycerin revealed no significant differences between the single study groups (p = NS). In chronic smokers acute intravenous administration of ascorbic acid significantly improves CPT-induced coronary endothelium-dependent dysfunction. According to the current understanding, this effect is due to improved cellular redox imbalance and prevention of nitric oxide inactivation in the endothelium and subendothelial space.

  9. Markers of endothelial dysfunction and severity of hypoxaemia in the Eisenmenger syndrome.

    PubMed

    de P S Soares, Rosangela; Maeda, Nair Y; Bydlowski, Sérgio P; Lopes, Antonio Augusto

    2005-10-01

    Endothelial dysfunction has been reported in hypoxaemic patients with the Eisenmenger syndrome, but a direct correlation between levels of endothelial markers and the severity of hypoxaemia has not been explored. With this in mind, we compared the levels in the plasma of tissue-type plasminogen activator, thrombomodulin, and von Willebrand factor in 25 patients with the Eisenmenger syndrome. They had a median age of 31 years, and were divided into 2 groups according to their recent clinical history. Thus, 18 patients were stable, being in functional class II or III, seen as outpatients, and having peripheral saturations of oxygen of 89 plus or minus 5 percent. In contrast, 7 patients were unstable, showing episodes of symptoms placing them in functional class IV, requiring care in hospital, and manifesting saturations of oxygen of 77 plus or minus 5 percent. We were able to follow 12 patients, 8 who were stable and 4 unstable, for 24 months. At baseline, levels of von Willebrand factor were higher in the unstable patients when compared to those who were stable, at 142 plus or minus 29 and 110 plus or minus 25 units per decilitre, respectively (p equal to 0.013). This correlated positively with oxygen desaturation (p less than 0.020). The structural abnormalities also correlated positively with the magnitude of hypoxaemia (p less than 0.020). Levels remained higher in the unstable patients throughout the period of follow-up (p equal to 0.006). Tissue-type plasminogen activator was also increased, at 14.3 plus or minus 8.4 versus 6.5 plus or minus 2.7 nanograms per millilitre in controls (p less than 0.001), whereas thrombomodulin was decreased, with values of 14.4 versus 34.6 nanograms per millilitre in controls (p for median values of less than 0.001). There was no correlation with saturations of oxygen. We conclude that measurement of von Willebrand factor, as compared with tissue-type plasminogen activator and thrombomodulin, will prove a better marker of endothelial response to hypoxaemia in patients with the Eisenmenger syndrome.

  10. Asymmetric Dimethylarginine as a Surrogate Marker of Endothelial Dysfunction and Cardiovascular Risk in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Dimitroulas, Theodoros; Sandoo, Aamer; Kitas, George D.

    2012-01-01

    The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease. PMID:23202900

  11. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    PubMed Central

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  12. Consumption of High-Polyphenol Dark Chocolate Improves Endothelial Function in Individuals with Stage 1 Hypertension and Excess Body Weight

    PubMed Central

    Nogueira, Lívia de Paula; Knibel, Marcela Paranhos; Torres, Márcia Regina Simas Gonçalves; Nogueira Neto, José Firmino; Sanjuliani, Antonio Felipe

    2012-01-01

    Background. Hypertension and excess body weight are important risk factors for endothelial dysfunction. Recent evidence suggests that high-polyphenol dark chocolate improves endothelial function and lowers blood pressure. This study aimed to evaluate the association of chocolate 70% cocoa intake with metabolic profile, oxidative stress, inflammation, blood pressure, and endothelial function in stage 1 hypertensives with excess body weight. Methods. Intervention clinical trial includes 22 stage 1 hypertensives without previous antihypertensive treatment, aged 18 to 60 years and presents a body mass index between 25.0 and 34.9 kg/m2. All participants were instructed to consume 50 g of chocolate 70% cocoa/day (2135 mg polyphenols) for 4 weeks. Endothelial function was evaluated by peripheral artery tonometry using Endo-PAT 2000 (Itamar Medical). Results. Twenty participants (10 men) completed the study. Comparison of pre-post intervention revealed that (1) there were no significant changes in anthropometric parameters, percentage body fat, glucose metabolism, lipid profile, biomarkers of inflammation, adhesion molecules, oxidized LDL, and blood pressure; (2) the assessment of endothelial function through the reactive hyperemia index showed a significant increase: 1.94 ± 0.18 to 2.22 ± 0.08, P = 0.01. Conclusion.In individuals with stage 1 hypertension and excess body weight, high-polyphenol dark chocolate improves endothelial function. PMID:23209885

  13. Targeting vascular (endothelial) dysfunction

    PubMed Central

    Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago

    2016-01-01

    Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006

  14. Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome.

    PubMed

    Lin, Meei-Hua; Miller, Joseph B; Kikkawa, Yamato; Suleiman, Hani Y; Tryggvason, Karl; Hodges, Bradley L; Miner, Jeffrey H

    2018-05-01

    Background Laminin α 5 β 2 γ 1 (LM-521) is a major component of the GBM. Mutations in LAMB2 that prevent LM-521 synthesis and/or secretion cause Pierson syndrome, a rare congenital nephrotic syndrome with diffuse mesangial sclerosis and ocular and neurologic defects. Because the GBM is uniquely accessible to plasma, which permeates endothelial cell fenestrae, we hypothesized that intravenous delivery of LM-521 could replace the missing LM-521 in the GBM of Lamb2 mutant mice and restore glomerular permselectivity. Methods We injected human LM-521 (hLM-521), a macromolecule of approximately 800 kD, into the retro-orbital sinus of Lamb2 -/- pups daily. Deposition of hLM-521 into the GBM was investigated by fluorescence microscopy. We assayed the effects of hLM-521 on glomerular permselectivity by urinalysis and the effects on podocytes by desmin immunostaining and ultrastructural analysis of podocyte architecture. Results Injected hLM-521 rapidly and stably accumulated in the GBM of all glomeruli. Super-resolution imaging showed that hLM-521 accumulated in the correct orientation in the GBM, primarily on the endothelial aspect. Treatment with hLM-521 greatly reduced the expression of the podocyte injury marker desmin and attenuated the foot process effacement observed in untreated pups. Moreover, treatment with hLM-521 delayed the onset of proteinuria but did not prevent nephrotic syndrome, perhaps due to its absence from the podocyte aspect of the GBM. Conclusions These studies show that GBM composition and function can be altered in vivo via vascular delivery of even very large proteins, which may advance therapeutic options for patients with abnormal GBM composition, whether genetic or acquired. Copyright © 2018 by the American Society of Nephrology.

  15. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Stull, April J; Cash, Katherine C; Champagne, Catherine M; Gupta, Alok K; Boston, Raymond; Beyl, Robbie A; Johnson, William D; Cefalu, William T

    2015-05-27

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus -0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome.

  16. Blueberries Improve Endothelial Function, but Not Blood Pressure, in Adults with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Champagne, Catherine M.; Gupta, Alok K.; Boston, Raymond; Beyl, Robbie A.; Johnson, William D.; Cefalu, William T.

    2015-01-01

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus −0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome. PMID:26024297

  17. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD).

    PubMed

    Green, Clara E; Turner, Alice M

    2017-01-18

    COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its' progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.

  18. Endothelial-astrocytic interactions in acute liver failure.

    PubMed

    Jayakumar, A R; Norenberg, M D

    2013-06-01

    Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.

  19. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  20. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  1. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers.

    PubMed

    Stewart, Frances M; Freeman, Dilys J; Ramsay, Jane E; Greer, Ian A; Caslake, Muriel; Ferrell, William R

    2007-03-01

    Obesity in pregnancy is increasing and is a risk factor for metabolic pathology such as preeclampsia. In the nonpregnant, obesity is associated with dyslipidemia, vascular dysfunction, and low-grade chronic inflammation. Our aim was to measure microvascular endothelial function in lean and obese pregnant women at intervals throughout their pregnancies and at 4 months after delivery. Plasma markers of endothelial function, inflammation, and placental function and their association with microvascular function were also assessed. Women in the 1st trimester of pregnancy were recruited, 30 with a body mass index (BMI) less than 30 kg/m(2) and 30 with a BMI more than or equal to 30 kg/m(2) matched for age, parity, and smoking status. In vivo endothelial-dependent and -independent microvascular function was measured using laser Doppler imaging in the 1st, 2nd, and 3rd trimesters of pregnancy and at 4 months postnatal. Plasma markers of endothelial activation [soluble intercellular cell adhesion molecule-1 (sVCAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), and plasminogen activator inhibitor (PAI)-1], inflammation (IL-6, TNFalpha, C-reactive protein, and IL-10), and placental function (PAI-1/PAI-2 ratio) were also assessed at each time point. The pattern of improving endothelial function during pregnancy was the same for lean and obese, but endothelial-dependent vasodilation was significantly lower (P < 0.05) in the obese women at each trimester (51, 41, and 39%, respectively). In the postpartum period, the improvement in endothelial-dependent vasodilation persisted in the lean women but declined to near 1st trimester levels in the obese (lean/obese difference, 115%; P < 0.01). There was a small but significant difference in endothelial-independent vasodilation between the two groups, lean response being greater than obese (P = 0.021), and response declined in both groups in the postpartum period. In multivariate analysis, time of sampling had the most impact on endothelial-independent function [18.5% (adjusted sum of squares expressed as a percentage of total means squared), P < 0.001 for sodium nitroprusside response; 9.8%, P < 0.001 for acetylcholine response], and obesity had the most impact on endothelial-dependent microvascular function (1.7%, P = 0.046 for sodium nitroprusside response; 19.3%, P < 0.001 for acetylcholine response). Time of sampling (11.2%, P < 0.001), IL-6 (4.0%, P = 0.002), and IL-10 (2.4%, P = 0.018) were significant independent contributors to variation in endothelial-dependent microvascular function. When obesity was entered into the model, the association with IL-6 and IL-10 was no longer significant, and obesity explained 6.8% (P < 0.001) of the variability in endothelial-dependent microvascular function. In the 1st trimester, obese women had a significantly higher PAI-1/PAI-2 ratio [obese median (interquartile range), 0.87 (0.54-1.21) vs. lean 0.30 (0.21-0.47), P < 0.001), reflecting the lower PAI-2 levels in obese pregnant women. In a multivariate analysis, 1st trimester BMI (7.6%, P = 0.012), IL-10 (8.2%, P < 0.001), and sVCAM-1 (0.73%, P = 0.007) contributed to the 1st trimester PAI-1/PAI-2 ratio. Obese mothers have a lower endothelium-dependent and -independent vasodilation when compared with lean counterparts. There was a higher PAI-1/ PAI-2 ratio in the 1st trimester in obese women, which improved later in pregnancy. Obese pregnancy is associated with chronic preexisting endothelial activation and impairment of endothelial function secondary to increased production of inflammatory T-helper cells-2 cytokines.

  2. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  3. Endothelial function is associated with myocardial diastolic function in women with systemic lupus erythematosus.

    PubMed

    Chin, Calvin W L; Chin, Chee-Yang; Ng, Marie X R; Le, Thu-Thao; Huang, Fei-Qiong; Fong, Kok-Yong; Thumboo, Julian; Tan, Ru-San

    2014-09-01

    Endothelial dysfunction is associated with traditional and systemic lupus erythematosus (SLE)-specific risk factors, and early data suggest reversibility of endothelial dysfunction with therapy. The clinical relevance of endothelial function assessment has been limited by the lack of studies, demonstrating its prognostic significance and impact on early myocardial function. Therefore, we aimed to determine the association between endothelial and myocardial diastolic function in SLE women. Women with SLE and no coronary artery disease were prospectively recruited and underwent radionuclide myocardial perfusion imaging (MPI) (Jetstream, Philips, the Netherlands) to exclude subclinical myocardial ischemia. Cardiac and vascular functions were assessed in all patients (Alpha 10, Aloka, Tokyo). Diastolic function was assessed using pulse wave early (E) and late mitral blood inflow and myocardial tissue Doppler (mean of medial and lateral annulus e') velocities. Endothelial function was measured using brachial artery flow-mediated vasodilatation (FMD%). Univariate and multivariate linear regressions were used to assess the association between FMD% and myocardial diastolic function, adjusting for potential confounders. Thirty-eight patients without detectable myocardial ischemia on MPI were studied (mean age 44 ± 10 years; mean disease duration 14 ± 6 years). About 61 % of patients had normal diastolic function (E/e' ≤ 8), and 5 % of patients had definite diastolic dysfunction with E/e' > 13 (mean 7.1 ± 2.9). FMD% was associated with E/e' (regression coefficient β = -0.35; 95 % CI -0.62 to -0.08; p = 0.01) independent of systolic blood pressure, age, and SLICC/ACR Damage Index.

  4. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  5. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier.

    PubMed

    McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup

    2011-12-01

    The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.

  6. Variable promoter methylation contributes to differential expression of key genes in human placenta-derived venous and arterial endothelial cells.

    PubMed

    Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard

    2013-07-15

    The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.

  7. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling

    PubMed Central

    2017-01-01

    Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804

  8. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  9. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    PubMed

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  10. Coincidence of moderately elevated N-terminal pro-B-type natriuretic peptide, endothelial progenitor cells deficiency and propensity to exercise-induced myocardial ischemia in stable angina.

    PubMed

    Surdacki, Andrzej; Marewicz, Ewa; Rakowski, Tomasz; Szumańska, Monika; Szastak, Grzegorz; Pryjma, Juliusz; Dubiel, Jacek S

    2010-01-01

    To assess endothelial progenitor cells (EPC) counts, a novel prognostic marker, in relation to classical adverse outcome predictors - N-terminal pro-B-type natriuretic peptide (NT-proBNP), impaired left ventricular (LV) relaxation and exercise-induced ischemia - in stable coronary artery disease (CAD) with preserved LV systolic function. We studied 30 non-diabetic men with one-vessel CAD, LV ejection fraction 60% and normal LV diastolic function (n=16) or impaired LV relaxation (by ultrasound including tissue Doppler) (n=14), and 14 non-CAD controls matched for risk profile and medication. CD34+/kinase-insert domain receptor (KDR)+ cells (CD34+/KDR+ cells), a leukocytes subpopulation enriched for EPC, were enumerated by flow cytometry. CAD patients with abnormal LV relaxation exhibited significantly elevated NT-proBNP and decreased CD34+/KDR+ cells vs. CAD with regular diastolic function and non-CAD controls. An inverse NT-proBNP-CD34+/KDR+ cells relationship was precipitated by the clustering of high resting NT-proBNP and low CD34+/KDR+ cells in the subjects with a lower Duke treadmill score. Propensity to symptomatic exertional ischemia may underlie the coincidence of moderately elevated NT-proBNP and EPC deficiency in stable angina. Additionally, chronic subclinical ischemia can also be involved in these associations. These might result from BNP overexpression in the ischemic myocardium and a hypothetical exhaustion of the bone marrow capacity to mobilize EPC at multiple ischemic episodes, thus contributing to NT-proBNP prognostic effect irrespective of hemodynamic factors.

  11. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia.

    PubMed

    Hanratty, C G; McGrath, L T; McAuley, D F; Young, I S; Johnston, D G

    2001-01-01

    Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress.

  12. Sox17 is required for normal pulmonary vascular morphogenesis

    PubMed Central

    Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.

    2015-01-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  13. Transplantation of in vitro cultured endothelial progenitor cells repairs the blood-brain barrier and improves cognitive function of APP/PS1 transgenic AD mice.

    PubMed

    Zhang, Shishuang; Zhi, Yongle; Li, Fei; Huang, Shan; Gao, Huabin; Han, Zhaoli; Ge, Xintong; Li, Dai; Chen, Fanglian; Kong, Xiaodong; Lei, Ping

    2018-04-15

    To date, the pathogenesis of Alzheimer's disease (AD) remains unclear. It is well-known that excessive deposition of Aβ in the brain is a crucial part of the pathogenesis of AD. In recent years, the AD neurovascular unit hypothesis has attracted much attention. Impairment of the blood-brain barrier (BBB) leads to abnormal amyloid-β (Aβ) transport, and chronic cerebral hypoperfusion causes Aβ deposition throughout the onset and progression of AD. Endothelial progenitor cells (EPCs) are the universal cells for repairing blood vessels. Our previous studies have shown that a reduced number of EPCs in the peripheral blood results in cerebral vascular repair disorder, cerebral hypoperfusion and neurodegeneration, which might be related to the cognitive dysfunction of AD patients. This study was designed to confirm whether EPCs transplantation could repair the blood-brain barrier, stimulate angiogenesis and reduce Aβ deposition in AD. The expression of ZO-1, Occludin and Claudin-5 was up-regulated in APP/PS1 transgenic mice after hippocampal transplantation of EPCs. Consistent with previous studies, EPC transplants also increased the microvessel density. We observed that Aβ senile plaque deposition was decreased and hippocampal cell apoptosis was reduced after EPCs transplantation. The Morris water maze test showed that spatial learning and memory functions were significantly improved in mice transplanted with EPCs. Consequently, EPCs could up-regulate the expression of tight junction proteins, repair BBB tight junction function, stimulate angiogenesis, promote Aβ clearance, and decrease neuronal loss, ultimately improve cognitive function. Taken together, these data demonstrate EPCs may play an important role in the therapeutic implications for vascular dysfunction in AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Early detection of endothelial injury and dysfunction in conjunction with correction of hemodynamic maladjustment can effectively restore renal function in type 2 diabetic nephropathy.

    PubMed

    Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse

    2006-01-01

    This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.

  15. Increased intrapulmonary retention of radiolabeled neutrophils in early oxygen toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldo, J.E.; English, D.; Levine, J.

    1988-02-01

    Sequential lung injuries, such as oxygen toxicity followed by septicemia, are common during the adult respiratory distress syndrome (ARDS). As these forms of vascular injury may be mediated in part by polymorphonuclear leukocytes (PMN), aberrant interactions between PMN and previously injured pulmonary endothelium are of both theoretical interest and clinical importance. The present study was undertaken to test the hypothesis that early oxygen toxicity at a dose that injuries pulmonary endothelium relatively selectively alters intrapulmonary neutrophil kinetics. Unanesthetized rats breathing 1.0 atmospheres oxygen for 36 h showed ultrastructural endothelial damage but no edema, injury, or neutrophilic inflammation by histologic criteria.more » However, in these oxygen-toxic animals, whereas initial accumulation of radiolabeled PMN in lungs was normal, washout of PMN was abnormal at 120 min after infusion, at which point the pulmonary retention of radiolabeled PMN in the lungs of oxygen-treated animals was significantly higher than in control animals (139% of control, p less than 0.0096). Features of our methodology, including avoidance of osmotic stress and use of paired control animals, appear to have greatly enhanced the sensitivity of radiolabeled neutrophils for detecting a subtle abnormality of neutrophil-endothelial interactions. Our studies in the oxygen toxicity model provide the first demonstration in vivo of abnormal intrapulmonary neutrophil kinetics in early oxygen toxicity prior to the onset of histologic evidence of lung injury or inflammation.« less

  16. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    PubMed Central

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  17. Deterioration of endothelial function of micro- and macrocirculation in patients with diabetes type 1 and 2.

    PubMed

    Besic, Hana; Jeraj, Luka; Spirkoska, Ana; Jezovnik, Mateja K; Poredoš, Pavel

    2017-08-01

    Vascular complications are an important cause of morbidity in patients with diabetes mellitus (DM). Endothelial dysfunction is an early marker of atherosclerosis and has already been shown in macrocirculation of diabetic patients; however, data on endothelial function of microcirculation is scarce. Our aim was to evaluate endothelial function in macro- and microcirculation and their interrelationship in patients with type 1 and 2 DM. The study included 30 patients with type 1 DM, 30 patients with type 2 DM and 25 healthy controls. The endothelial function of large arteries was studied measuring flow-mediated dilation (FMD). Peripheral arterial tonometry was used for investigation of the endothelial function of microcirculation, measuring Reactive Hyperemia Index (RHI) and Augmentation Index (AI). In comparison to controls, both DM groups had decreased FMD: type 1 (4.0±5.0% vs. 10.0±7.8%, P=0.005) and type 2 (5.0±0.6% vs. 10.0±7.8%, P=0.007). However, only type 2 DM group had a lower RHI (1.71±0.44 vs. 2.05±0.54, P=0.017) in comparison to controls. Patients with type 1 and 2 DM had deteriorated functional capability of macrocirculation. However, endothelial dysfunction of microcirculation was present only in type 2 DM patients. Type 2 DM patients were also at higher risk for atherosclerosis because of the more frequent presence of risk factors.

  18. Androgen actions on endothelium functions and cardiovascular diseases

    PubMed Central

    Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan

    2016-01-01

    The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746

  19. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    PubMed

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  20. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  1. The effects of vitamin E and omega-3 PUFAs on endothelial function among adolescents with metabolic syndrome.

    PubMed

    Ahmadi, Alireza; Gharipour, Mojgan; Arabzadeh, Gholamreza; Moin, Payam; Hashemipour, Mahin; Kelishadi, Roya

    2014-01-01

    The present study aims to explore the effects of vitamin E and omega-3 on endothelial function indicators among adolescents with metabolic syndrome. In a randomized, double blind, and placebo-controlled trial, 90 young individuals, aged 10 to 18 years, with metabolic syndrome were randomly assigned to receive either vitamin E tablets (400 IU/day) or omega-3 tablets (2.4 gr/day) or placebo. For assessing endothelial functional state, the serum level of vascular endothelial growth factor (VEGF) was measured by ELISA test. The use of omega-3 supplementation for eight weeks led to significant increase in serum HDL level compared with the group treated with vitamin E or placebo group. In this regard, no significant correlations were found between the change in VEGF and baseline levels of other markers including anthropometric indices and serum lipids. Omega-3 could significantly reduce VEGF with the presence of other baseline variables (Beta = -12.55; P = 0.012). The administration of omega-3 can effectively improve endothelial function in adolescents with metabolic syndrome by reducing the level of serum VEGF, as a major index for atherosclerosis progression and endothelial destabilization. Omega-3 can be proposed as a VEGF antagonist for improving endothelial function in metabolic syndrome. The clinical implications of our findings should be assessed in future studies.

  2. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    PubMed

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP1), and vascular cell adhesion molecule 1 (VCAM-1) and higher levels of regulated upon activation, normal T cell expressed and presumably secreted (RANTES) but lower levels of interleukin-4 (IL-4) compared to controls. Retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells are fully permissive for ZIKV lytic replication and are primary target cells in the retinal barriers for infection. ZIKV infection of retinal endothelial cells and retinal pericytes induces significantly higher levels of RANTES that likely contributes to ocular inflammation.

  3. Cancer Cells Regulate Biomechanical Properties of Human Microvascular Endothelial Cells*

    PubMed Central

    Mierke, Claudia Tanja

    2011-01-01

    Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1high cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account for the breakdown of endothelial barrier function, suggesting that biomechanical alterations are sufficient to facilitate the transmigration and invasion of invasive cancer cells into 3D-ECMs. PMID:21940631

  4. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors.

    PubMed

    Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P

    2006-10-01

    Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived progenitor cells obtained before or at birth may enable the clinical realization of tissue engineering constructs for pediatric applications.

  5. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.

    PubMed

    Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A

    2017-07-25

    Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.

  6. The effect of α1 -adrenergic blockade on post-exercise brachial artery flow-mediated dilatation at sea level and high altitude.

    PubMed

    Tymko, Michael M; Tremblay, Joshua C; Hansen, Alex B; Howe, Connor A; Willie, Chris K; Stembridge, Mike; Green, Daniel J; Hoiland, Ryan L; Subedi, Prajan; Anholm, James D; Ainslie, Philip N

    2017-03-01

    Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α 1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α 1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α 1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α 1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α 1 -adrenergic blockade (prazosin; 0.05 mg kg  -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow-mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate-intensity exercise at sea level was abolished via α 1 -adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate-intensity exercise, and administration of α 1 -adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α 1 -adrenergic pathway and endothelial function. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. The effect of α1‐adrenergic blockade on post‐exercise brachial artery flow‐mediated dilatation at sea level and high altitude

    PubMed Central

    Tremblay, Joshua C.; Hansen, Alex B.; Howe, Connor A.; Willie, Chris K.; Stembridge, Mike; Green, Daniel J.; Hoiland, Ryan L.; Subedi, Prajan; Anholm, James D.; Ainslie, Philip N.

    2016-01-01

    Key points Our objective was to quantify endothelial function (via brachial artery flow‐mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate‐intensity cycling exercise with and without administration of an α1‐adrenergic blockade.Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise.At sea level, endothelial function decreased following 30 min of moderate‐intensity exercise, and this decrease was abolished with α1‐adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate‐intensity exercise, and administration of α1‐adrenergic blockade resulted in an increase in flow‐mediated dilatation.Our data indicate that post‐exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high‐altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. Abstract We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate‐intensity exercise at both sea level and high altitude are mediated via an α1‐adrenergic pathway. In a double‐blinded, counterbalanced, randomized and placebo‐controlled design, nine healthy participants performed a maximal‐exercise test, and two 30 min sessions of semi‐recumbent cycling exercise at 50% peak output following either placebo or α1‐adrenergic blockade (prazosin; 0.05 mg kg −1). These experiments were completed at both sea‐level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow‐mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate‐intensity exercise at sea level was abolished via α1‐adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate‐intensity exercise, and administration of α1‐adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α1‐adrenergic pathway and endothelial function. PMID:28032333

  8. Role of Vitamin C in the Function of the Vascular Endothelium

    PubMed Central

    Harrison, Fiona E.

    2013-01-01

    Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction. Antioxid. Redox Signal. 19, 2068–2083. PMID:23581713

  9. Nonselective inhibition of prostaglandin-endoperoxide synthase by naproxen ameliorates hepatic injury in animals with acute or chronic liver injury

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev

    2014-01-01

    The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607

  10. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  11. Endothelial dysfunction and negative emotions in adolescent girls.

    PubMed

    Pajer, Kathleen; Hoffman, Robert; Gardner, William; Chang, Chien-Ni; Boley, David; Wang, Wei

    2016-05-01

    Endothelial dysfunction predicts adult cardiovascular disorder and may be associated with negative emotions in adolescents. This study was conducted to determine if hopelessness, hostility, and depressive, anxiety, or conduct disorders were associated with compromised endothelial function and whether those associations were mediated by health risk behaviors. Endothelial function, assessed through brachial artery reactive hyperemia, was measured in a psychopathology enriched sample of 60 15-18-year-old girls. The correlations between hopelessness, hostility, and depressive, anxiety, or conduct disorders and the percent change in forearm vascular resistance (PCFVR) were measured. Possible mediation effects of health risk behaviors were tested. Hopelessness was negatively associated with PCFVR, controlling for race and body mass index. Conduct disorder without any anxiety disorder was associated with better endothelial function. The other negative emotions were not associated with PCFVR. Risky health behaviors were associated with conduct disorder and hopelessness, but not with PCFVR, so there was no evidence of mediation. The main finding was that hopelessness in adolescent girls was associated with endothelial dysfunction. This may indicate that when present, hopelessness places a girl at risk for later cardiovascular disease, whether she has a psychiatric disorder or not. Possible mechanisms for this finding are examined and the surprising finding that conduct disorder is associated with better endothelial function is also discussed. Suggestions for future research are presented.

  12. Cell and Molecular Biology Underpinning the Effects of PEDF on Cancers in General and Osteosarcoma in Particular

    PubMed Central

    Chandolu, Vijay; Dass, Crispin R.

    2012-01-01

    Cancer is becoming an increasingly common disease in which abnormal cells aggressively grow, invade, and metastasize. In this paper, we review the biological functions of PEDF (pigmented epithelium-derived factor) against cancer, with a focus on a particular type of bone cancer called osteosarcoma. PEDF is a 50 kDa glycoprotein and is a potent inhibitor of angiogenesis, via its ability to decrease proliferation and migration of endothelial cells. This paper critically examines the anticancer activities of PEDF via its role in antiangiogenesis, apoptosis-mediated tumor suppression, and increased tumor cell differentiation. Recently, an orthotopic model of osteosarcoma was used to show that treatment with PEDF had the greatest impact on metastases, warranting an evaluation of PEDF efficacy in other types of cancers. PMID:22690122

  13. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  14. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  15. NO-Synthase Activity in Patients with Coronary Heart Disease Associated with Hypertension of Different Age Groups.

    PubMed

    Besedina, Anna

    2016-01-01

    Coronary heart disease is the leading cause of death and disability worldwide. Hypertension is a major independent risk factor for the development of CHD. Abnormalities in NO generation or activity have been proposed as a major mechanism of CHD. The purpose of this article is to determine the activity of eNOS and iNOS in patients with isolated CHD and CHD associated with HT of different age groups. Fifty patients with isolated CHD and 42 patients with CHD associated with HT were enrolled in this study. NOS activity was determined by nitrite anion formed in the reaction. A statistically significant increase in iNOS activity is observed in elderly donors. In patients with isolated coronary heart disease cNOS activity is statistically significantly reduced with respect to the control group. The reduction of enzymatic activity of cNOS is more expressed in elderly patients than in middle-aged patients with coronary heart disease. Alterations in eNOS activity are more expressed in patients with coronary heart disease associated with hypertension than in patients with isolated coronary heart disease. Against the background of cNOS inhibition in the patients, a sharp increase in iNOS activity is observed. It has been shown that disturbance of endothelial function in patients with coronary heart disease associated with hypertension is characterized by reduced endothelial NO synthesis by cNOS and increased systemic NO synthesis due to increased iNOS activity. It has been found that the lack of endothelial NO and hyperproduction of »harmful« NO by iNOS are more expressed in elderly patients.

  16. Pericyte Derived Sphinogosine 1-Phosphate Induces the Expression of Adhesion Proteins and Modulates the Retinal Endothelial Cell Barrier

    PubMed Central

    McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.

    2011-01-01

    Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944

  17. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  18. Endurance capacity is not correlated with endothelial function in male university students.

    PubMed

    Wang, Yan; Zeng, Xian-bo; Yao, Feng-juan; Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Forty-seven healthy male university students (mean age, 20.1 ± 0.6 years; mean height, 172.4 ± 6.3 cm; and mean weight, 60.0 ± 8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator--maximal oxygen uptake (VO2max)--was also measured on a cycle ergometer using a portable gas analyzer. 1000 m run time was correlated with VO2max (r  =  -0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs.

  19. Endurance Capacity Is Not Correlated with Endothelial Function in Male University Students

    PubMed Central

    Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Background Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Methods Forty-seven healthy male university students (mean age, 20.1±0.6 years; mean height, 172.4±6.3 cm; and mean weight, 60.0±8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator - maximal oxygen uptake (VO2 max) - was also measured on a cycle ergometer using a portable gas analyzer. Results 1000 m run time was correlated with VO2max (r = −0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). Conclusion The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs. PMID:25101975

  20. [Thrombotic microangiopathy].

    PubMed

    Beutel, G; Kielstein, J T; Ganser, A

    2013-09-01

    Thrombotic microangiopathy should be suspected every time the combination of microangiopathic hemolytic anemia without a coexisting cause, thrombocytopenia as well as renal and/or neurologic abnormalities occurs. The general term thrombotic microangiopathy includes different subtypes of the disease leading to abnormalities in multiple organ systems by endothelial injury and formation of platelet-rich thrombi in small vessels. The main types include thrombotic thrombocytopenic purpura in case of dominant neurologic abnormalities and the hemolytic uremic syndrome in case of acute kidney injury, respectively. Although these syndromes differ in their etiologies, clinical features, response to treatment, and prognosis, an early initiation of a direct therapeutic intervention frequently determines the clinical course of the patient. Irrespectively of the underlying etiology, plasma exchange is an essential component of acute therapeutic intervention while ongoing diagnostics are used to identify the definite treatment.

  1. Concurrent Acute Retinal Necrosis in a Patient With Iridocorneal Endothelial Syndrome.

    PubMed

    Vignesh, A P; Srinivasan, Renuka

    2016-11-01

    To report a rare case of concurrent acute retinal necrosis in a patient with iridocorneal endothelial syndrome (ICE). Case report. A 42-year-old woman showed acute diminution of vision in the right eye. Her fundus examination revealed features of acute retinal necrosis. She had also experienced gradual diminution of vision in her left eye for 5 years. The examination of her left eye revealed corneal edema with mild corectopia and increased intraocular pressure with abnormal endothelium on specular microscopy pointing to a diagnosis of ICE. This is a rare case where concurrent acute retinal necrosis and ICE syndrome are present in the same patient, possibly pointing to a common viral etiology causing both entities.

  2. A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial.

    PubMed

    Kondo, Keiko; Morino, Katsutaro; Nishio, Yoshihiko; Kondo, Motoyuki; Nakao, Keiko; Nakagawa, Fumiyuki; Ishikado, Atsushi; Sekine, Osamu; Yoshizaki, Takeshi; Kashiwagi, Atsunori; Ugi, Satoshi; Maegawa, Hiroshi

    2014-07-01

    The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs ≧ 3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Inhibition of sickle red cell adhesion and vasoocclusion in the microcirculation by antioxidants.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Ma, Li; Hsia, Carleton J C; Nagel, Ronald L

    2006-07-01

    In sickle cell anemia (SCA), inflammatory (i.e., intravascular sickling and transient vasoocclusive) events result in chronic endothelial activation. In addition to sickling behavior, sickle (SS) red blood cells exhibit abnormal interaction with the vascular endothelium, which is considered to have an important role in initiation of vasoocclusion. Upregulation of endothelial adhesion molecules caused by oxidants (and cytokines) may lead to increased SS red cell adhesion. We hypothesize that endothelial activation is indispensable in SS red cell adhesion to the endothelium and that antioxidants will have an inhibitory effect on this interaction. We examined the effect of selected antioxidants in ex vivo mesocecum vasculature, a well-established model that allows measurement of hemodynamic parameters and, by intravital microscopy, can allow quantification of adhesion. We tested antioxidant enzymes (SOD and catalase) and an intravascular SOD mimetic, polynitroxyl albumin (PNA), in the presence of platelet-activating factor (PAF); the latter causes endothelial oxidant generation and endothelial activation, which characterize SCA. In ex vivo preparations, PAF not only induced marked endothelial oxidant generation, it also enhanced SS red cell adhesion, resulting in frequent blockage of small-diameter venules. The adhesion, inversely related to venular diameter, and vasoocclusion were markedly inhibited by antioxidants, resulting in improved hemodynamics. PNA, the most effective antioxidant, also abolished SS red cell adhesion in non-PAF-activated preparations. Thus SS red cell adhesion and related vasoocclusion may be ameliorated by antioxidant therapy with a stable and long-acting molecule (e.g., PNA).

  4. Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism

    PubMed Central

    Gu, Mingxia; Mordwinkin, Nicholas M.; Kooreman, Nigel G.; Lee, Jaecheol; Wu, Haodi; Hu, Shijun; Churko, Jared M.; Diecke, Sebastian; Burridge, Paul W.; He, Chunjiang; Barron, Frances E.; Ong, Sang-Ging; Gold, Joseph D.; Wu, Joseph C.

    2015-01-01

    Aims High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. Methods and results Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methyl ester. Conclusion This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population. PMID:25368203

  5. Effect of 10-Week Supervised Moderate-Intensity Intermittent vs. Continuous Aerobic Exercise Programs on Vascular Adhesion Molecules in Patients with Heart Failure.

    PubMed

    Aksoy, Sibel; Findikoglu, Gulin; Ardic, Fusun; Rota, Simin; Dursunoglu, Dursun

    2015-10-01

    Abnormal expression of cellular adhesion molecules may be related to endothelial dysfunction, a key feature in chronic heart failure. This study compares the effects of 10-wk supervised moderate-intensity continuous aerobic exercise (CAE) and intermittent aerobic exercise (IAE) programs on markers of endothelial damage, disease severity, functional and metabolic status, and quality-of-life in chronic heart failure patients. Fifty-seven patients between 41 and 81 yrs with New York Heart Association class II-III chronic heart failure and with a left ventricular ejection fraction of 35%-55% were randomized into three groups: nonexercising control, CAE, and IAE, which exercised three times a week for 10 wks. Endothelial damage was assessed by serum markers of vascular cell adhesion molecule-1, serum intercellular adhesion molecule-1, and nitric oxide; disease severity was measured by left ventricular ejection fraction and N-terminal probrain natriuretic peptide; metabolic status was evaluated by body composition analysis and lipid profile levels; functional status was evaluated by cardiorespiratory exercise stress test and 6-min walking distance; quality-of-life was assessed with Left Ventricular Dysfunction-36 and Short-Form 36 questionnaires at the baseline and at the end of the 10th week. Significant decreases in serum vascular cell adhesion molecule-1 or serum intercellular adhesion molecule-1 in IAE and CAE groups after training were found, respectively. Resting systolic and diastolic blood pressure, peak systolic and diastolic blood pressure, 6-min walking distance, and the mental health and vitality components of Short-Form 36 improved in the CAE group, whereas left ventricular ejection fraction and 6-min walking distance improved in the IAE group compared with the control group. Both moderate-intensity CAE and IAE programs significantly reduced serum markers of adhesion molecules and prevented the change in VO2 in patients with chronic heart failure.

  6. Oxidative stress augments secretion of endothelium-derived relaxing peptides, C-type natriuretic peptide and adrenomedullin.

    PubMed

    Chun, T H; Itoh, H; Saito, T; Yamahara, K; Doi, K; Mori, Y; Ogawa, Y; Yamashita, J; Tanaka, T; Inoue, M; Masatsugu, K; Sawada, N; Fukunaga, Y; Nakao, K

    2000-05-01

    Excess oxidative stress is one of the major metabolic abnormalities on vascular walls in hypertension and atherosclerosis. In order to further elucidate the endothelial function under oxidative stress, the effect of hydrogen peroxide (H2O2) on expression of two novel endothelium-derived vasorelaxing peptides, C-type natriuretic peptide (CNP) and adrenomedullin (AM) from bovine carotid artery endothelial cells (BCAECs) was examined. BCAECs were treated with H2O2 (0.1-1.0 mmol/ l) and/or an antioxidant, N-acetylcysteine (NAC) (5-10 mmol/l), and incubated for 48 h. The concentrations of CNP and AM were measured with the specific radioimmuno assays that we originally developed. CNP and AM mRNA expressions were also examined by reverse transcription-polymerase chain reaction (RT-PCR). Treatment of BCAECs with 0.5 and 1 mmol/l H2O2 induced 9-and 10-fold increases of CNP concentration in the media. Addition of 10 mmol/l NAC significantly suppressed the effect of H2O2 by 52%. RT-PCR analysis showed that CNP mRNA expression in BCAECs was also rapidly augmented within 1 h with H2O2 (1 mmol/l) treatment, and reached a peak at 3 h to show a 10-fold increase. AM secretion from BCAECs also increased to two-fold with exposure to 0.5 mmol/l H2O2, accompanied with the augmented level of AM mRNA. NAC 10 mmol/l completely suppressed the effect of H2O2 on AM secretion. In this study, it has been demonstrated that H2O2 augments endothelial secretion of the two endothelium-derived relaxing peptides, CNP and AM. Our findings suggest the increased secretion of CNP and AM from endothelium under oxidative stress may function to compensate the impaired nitric oxide-dependent vasorelaxation in hypertension and atherosclerosis.

  7. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function.

    PubMed

    Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S

    2017-08-15

    The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

  8. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  9. Role of Vascular and Lymphatic Endothelial Cells in Hantavirus Pulmonary Syndrome Suggests Targeted Therapeutic Approaches

    PubMed Central

    Gorbunova, Elena E.; Dalrymple, Nadine A.; Gavrilovskaya, Irina N.

    2013-01-01

    Abstract Background Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. Results We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Conclusions Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease. PMID:24024573

  10. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches.

    PubMed

    Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N

    2013-09-01

    Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

  11. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk?

    PubMed

    Bassareo, P P; Fanos, V; Puddu, M; Demuru, P; Cadeddu, F; Balzarini, M; Mercuro, G

    2010-10-01

    Sporadic data present in literature report how preterm birth and low birth weight constitute the risk factors for the development of cardiovascular diseases in later life. To assess the presence of potential alterations to endothelial function in young adults born preterm at extremely low birth weight (<1000 g; ex ELBW). Thirty-two ex-ELBW subjects (10 males [M] and 22 females [F], aged 17-28 years, mean [+/- DS] 20.1 +/- 2.5 years) were compared with 32 healthy, age-matched subjects born at term (C, 9 M and 23 F). 1) pathological conditions known to affect endothelial function; 2) administration of drugs known to affect endothelial function. Endothelial function was assessed by non-invasive finger plethysmography, previously validated by the US Food and Drug Administration (Endopath; Itamar Medical Ltd., Cesarea, Israel). Endothelial function was significantly reduced in ex-ELBW subjects compared to C (1.94 +/- 0.37 vs. 2.68 +/- 0.41, p < 0.0001). Moreover, this function correlated significantly with gestational age (r = 0.56, p < 0.0009) and birth weight (r = 0.63, p < 0.0001). The results obtained reveal a significant decrease in endothelial function of ex-ELBW subjects compared to controls, underlining a probable correlation with preterm birth and low birth weight. Taken together, these results suggest that an ELBW may underlie the onset of early circulatory dysfunction predictive of increased cardiovascular risk.

  12. Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.

    PubMed

    Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela

    2016-01-26

    Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.

  13. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular abnormalities and restores the normal life expectancy.

  14. Physical activity on endothelial and erectile dysfunction: a literature review.

    PubMed

    Leoni, Luís Antônio B; Fukushima, André R; Rocha, Leandro Y; Maifrino, Laura B M M; Rodrigues, Bruno

    2014-09-01

    Physical inactivity, diabetes, hypertension, dyslipidemia, smoking and obesity were associated with imbalance in oxidative stress, leading to endothelial dysfunction. Such dysfunction is present in both cardiovascular disease (CVD) and erectile dysfunction (ED). ED is the persistent inability to achieve or sustain an erection sufficient for satisfactory sexual performance and is one of the first manifestations of endothelial damage in men with CVD risk factors. The purpose of this article is to review the results of studies involving physical activity, CVD, endothelial dysfunction and ED in order to verify its applicability for improving the health and quality of life of men with such disorders. There is consistent evidence that endothelial damage is intimately linked to ED, and this manifestation seems to be associated with the appearance CVDs. On the other hand, physical activity has been pointed out as an important clinical strategy in the prevention and treatment of CVDs and ED mainly associated with improvement of endothelial function. However, further experimental and clinical prospective investigations are needed to test the role of physical exercises in the modulation of endothelial function and their implications on erectile function and the appearance of CVDs.

  15. Vascular endothelial cells express isoforms of protein kinase A inhibitor.

    PubMed

    Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D

    2002-01-01

    The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.

  16. Age-related changes in endothelial function and blood flow regulation.

    PubMed

    Toda, Noboru

    2012-02-01

    Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The relationship between vascular endothelial dysfunction and treatment frequency in neovascular age-related macular degeneration.

    PubMed

    Ueda-Consolvo, Tomoko; Hayashi, Atsushi; Ozaki, Mayumi; Nakamura, Tomoko; Yagou, Takaaki; Abe, Shinya

    2017-07-01

    To assess the correlation between endothelial dysfunction and frequency of antivascular endothelial growth factor (anti-VEGF) treatment for neovascular age-related macular degeneration (nAMD). We examined 64 consecutive patients with nAMD who were evaluated for endothelial function by use of peripheral arterial tonometry (EndoPAT 2000; Itamar Medical, Caesarea, Israel) at Toyama University Hospital from January 2015. We tallied the number of anti-VEGF treatments between January 2014 and December 2015 and determined the correlation between the number of anti-VEGF injections and endothelial function expressed as the reactive hyperemia index (RHI). Multiple regression analysis was also performed to identify the independent predictors of a larger number of injections. The mean number of anti-VEGF injections was 8.2 ± 3.3. The mean lnRHI was 0.47 ± 0.17. The lnRHI correlated with the number of anti-VEGF injections (r = -0.56; P = 0.030). The multiple regression analysis revealed that endothelial function, neovascular subtypes, and treatment regimens were associated with the number of injections. Endothelial dysfunction may affect the efficacy of anti-VEGF therapy. Neovascular subtypes may also predict a larger number of injections.

  18. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  19. Intracavernous Delivery of a Designed Angiopoietin-1 Variant Rescues Erectile Function by Enhancing Endothelial Regeneration in the Streptozotocin-Induced Diabetic Mouse

    PubMed Central

    Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2011-01-01

    OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous endothelial regeneration by use of the recombinant Ang1 protein as a curative therapy for diabetic erectile dysfunction. PMID:21270241

  20. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  1. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence.

    PubMed

    Yamagata, Kazuo

    2018-02-04

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.

  2. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence

    PubMed Central

    Yamagata, Kazuo

    2018-01-01

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716

  3. Morphological and genetical changes of endothelial progenitor cells after in-vitro conversion into photoreceptors.

    PubMed

    Qiang, Shi; Alsaeedi, Hiba Amer; Yuhong, Cheng; Yang, Hao; Tong, Li; Kumar, Suresh; Higuchi, Akon; Alarfaj, Abdullah A; Munisvaradass, Rusheni; Ling, Mok Pooi; Cheng, Pei

    2018-06-01

    Retinal degeneration is a condition ensued by various ocular disorders such as artery occlusion, diabetic retinopathy, retrolental fibroplasia and retinitis pigmentosa which cause abnormal loss of photoreceptor cells and lead to eventual vision impairment. No efficient treatment has yet been found, however, the use of stem cell therapy such as bone marrow and embryonic stem cells has opened a new treatment modality for retinal degenerative diseases. The major goal of this study is to analyze the potential of endothelial progenitor cells derived from bone marrow to differentiate into retinal neural cells for regenerative medicine purposes. In this study, endothelial progenitor cells were induced in-vitro with photoreceptor growth factor (taurine) for 21 days. Subsequently, the morphology and gene expression of CRX and RHO of the photoreceptors-induced EPCs were examined through immunostaining assay. The results indicated that the induced endothelial progenitor cells demonstrated positive gene expression of CRX and RHO. Our findings suggested that EPC cells may have a high advantage in cell replacement therapy for treating eye disease, in addition to other neural diseases, and may be a suitable cell source in regenerative medicine for eye disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of Fe particle irradiation on human endothelial barrier structure and function

    NASA Astrophysics Data System (ADS)

    Sharma, Preety; Guida, Peter; Grabham, Peter

    2014-07-01

    Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have impact on human endothelial barrier function and represent a risk for degenerative diseases in the space environment.

  5. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  6. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects.

    PubMed

    Mathew, Manoj; Tay, Eric; Cusi, Kenneth

    2010-02-16

    CVD in obesity and T2DM are associated with endothelial activation, elevated plasma vascular inflammation markers and a prothrombotic state. We examined the contribution of FFA to these abnormalities following a 48-hour physiological increase in plasma FFA to levels of obesity and diabetes in a group of healthy subjects. 40 non-diabetic subjects (age = 38 +/- 3 yr, BMI = 28 +/- 1 kg/m2, FPG = 95 +/- 1 mg/dl, HbA1c = 5.3 +/- 0.1%) were admitted twice and received a 48-hour infusion of normal saline or low-dose lipid. Plasma was drawn for intracellular (ICAM-1) and vascular (VCAM-1) adhesion molecules-1, E-selectin (sE-S), myeloperoxidase (MPO) and total plasminogen inhibitor-1 (tPAI-1). Insulin sensitivity was measured by a hyperglycemic clamp (M/I). Lipid infusion increased plasma FFA to levels observed in obesity and T2DM and reduced insulin sensitivity by 27% (p = 0.01). Elevated plasma FFA increased plasma markers of endothelial activation ICAM-1 (138 +/- 10 vs. 186 +/- 25 ng/ml), VCAM-1 (1066 +/- 67 vs. 1204 +/- 65 ng/ml) and sE-S (20 +/- 1 vs. 24 +/- 1 ng/ml) between 13-35% and by > or = 2-fold plasma levels of myeloperoxidase (7.5 +/- 0.9 to 15 +/- 25 ng/ml), an inflammatory marker of future CVD, and tPAI-1 (9.7 +/- 0.6 to 22.5 +/- 1.5 ng/ml), an indicator of a prothrombotic state (all p < or = 0.01). The FFA-induced increase was independent from the degree of adiposity, being of similar magnitude in lean, overweight and obese subjects. An increase in plasma FFA within the physiological range observed in obesity and T2DM induces markers of endothelial activation, vascular inflammation and thrombosis in healthy subjects. This suggests that even transient (48-hour) and modest increases in plasma FFA may initiate early vascular abnormalities that promote atherosclerosis and CVD.

  7. Antiangiogenic Effects and Therapeutic Targets of Azadirachta indica Leaf Extract in Endothelial Cells

    PubMed Central

    Mahapatra, Saswati; Young, Charles Y. F.; Kohli, Manish; Karnes, R. Jeffrey; Klee, Eric W.; Holmes, Michael W.; Tindall, Donald J.; Donkena, Krishna Vanaja

    2012-01-01

    Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2′,3′-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2′,3′-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression. PMID:22461839

  8. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function.

    PubMed

    Lacko, Lauretta A; Hurtado, Romulo; Hinds, Samantha; Poulos, Michael G; Butler, Jason M; Stuhlmann, Heidi

    2017-07-01

    EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7 -/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro , placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1 , Syna and Synb , and in patterning of the extracellular matrix, Mmrn1 , were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality. © 2017. Published by The Company of Biologists Ltd.

  9. Role of ACTH in the Interactive/Paracrine Regulation of Adrenal Steroid Secretion in Physiological and Pathophysiological Conditions

    PubMed Central

    Lefebvre, Hervé; Thomas, Michaël; Duparc, Céline; Bertherat, Jérôme; Louiset, Estelle

    2016-01-01

    In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions. PMID:27489549

  10. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology

    PubMed Central

    2011-01-01

    Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events). Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in women on par with that of men. PMID:21831309

  11. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983

  12. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Higashide, Tomomi; Nitta, Koji; Sugiyama, Kazuhisa

    2012-03-01

    To demonstrate the clinical significance of owl eye morphologic features observed by in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis. Observational case series. participants: Six eyes of 6 patients (6 men; mean age, 73.3 years) with cytomegalovirus corneal endotheliitis diagnosed by clinical manifestations together with polymerase chain reaction from aqueous humor samples. intervention: All patients were examined by slit-lamp biomicroscopy and in vivo laser confocal microscopy. main outcome measures: Clinical manifestations were summarized by reviewing medical records. Selected confocal images of corneal layers were evaluated qualitatively for shape and degree of light reflection of abnormal cells and deposits. All patients had long histories of anterior uveitis with intraocular pressure elevation, corneal edema with keratic precipitates, and decrease of endothelial cell densities. Coin-shaped lesions were observed by slit lamp only in 1 patient at the first visit and in 2 additional patients at subsequent follow-up. In all patients, confocal microscopy demonstrated reduced subepithelial nerves, subepithelial opacity, increased reflectivity of keratocytes, highly reflective dots, and needle-shaped bodies. Owl eye morphologic features were observed consistently in all patients at the initial visit, and highly reflective round bodies were detected in 5 patients; most notably, these confocal features were reversible after resolution of endotheliitis. Owl eye morphologic features and highly reflective round bodies observed by confocal microscopy may be useful as an adjunct for the noninvasive diagnosis of cytomegalovirus corneal endotheliitis. Reversibility of these features after resolution of endotheliitis may be useful for monitoring the therapeutic effects without multiple anterior chamber tap. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  14. Coronary Heart Disease Alters Intercellular Communication by Modifying Microparticle-Mediated MicroRNA Transport

    PubMed Central

    Finn, Nnenna A.; Eapen, Danny; Manocha, Pankaj; Kassem, Hatem Al; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D.

    2013-01-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. PMID:24042051

  15. Vascular abnormalities of the distal deep digital flexor tendon in 8 draught horses identified on histological examination.

    PubMed

    Crişan, Melania Ioana; Damian, Aurel; Gal, Adrian; Miclăuş, Viorel; Cernea, Cristina L; Denoix, Jean-Marie

    2013-08-01

    The purpose of this study was to provide a detailed description of the vascular changes in the distal part of deep digital flexor tendon (DDFT). Eight isolated forelimbs were collected from 8 horses with DDF tendinopathy diagnosed post-mortem by ultrasound and gross anatomopathological examination. The samples were fixed in 10% neutral buffered formalin, softened in 4% phenol and dehydrated with ethylic alcohol. Goldner's Trichrome staining method was used. The histopathological examination revealed vascular proliferation associated with structural disorders of blood vessels. Angiogenesis, fibroplasia and consecutive hypertrophy of the vascular wall with or without vascular occlusion were the most common findings. Other histopathological findings were: endothelial cell edema, progressive metaplasia from squamous to cubic cells, vascular wall hyalinization, endothelial cells apoptosis/necrosis and endothelial desquamation. These results demonstrated damage of the distal deep digital flexor tendon vasculature which may progressively alter the structural integrity of the tendon and contribute to degenerative lesions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  17. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.

    PubMed

    Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev

    2017-01-01

    Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.

  18. Histopathology of a functioning mitomycin-C trabeculectomy.

    PubMed

    Liang, Steve Y-W; Lee, Graham A; Whitehead, Kevin

    2009-04-01

    The ideal trabeculectomy bleb is diffuse, normally vascularized and characterized by microcystic change in the overlying conjunctiva. We compare and contrast the histopathology of a normally functioning mitomycin-C trabeculectomy site obtained from an eye enucleated for iris melanoma with abnormal blebs discussed in the literature. Representative sections of the normally functioning bleb were examined under the light microscope. The conjunctiva is composed of a uniform three-layered non-keratinizing stratified squamous epithelium overlying a single layer of oedematous basal cells. The conjunctival stroma consisted of loose connective tissue, traversed by capillaries and scattered small cystic spaces lined by endothelial cells. There were no goblet cells and few inflammatory cells and fibroblasts. The scleral trapdoor was evident as a cleft in the scleral wall in communication with the anterior chamber at the surgically created sclerostomy. Because the histopathological findings in our case correlate well with this clinical appearance, we conclude that whereas augmentation with anti-metabolites, such as mitomycin-C, can be associated with significantly altered conjunctival histopathology and consequent hypotony, but, if used carefully, normal architecture is conserved.

  19. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  20. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  1. Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function.

    PubMed

    Naka, Katerina K; Tweddel, Ann C; Doshi, Sagar N; Goodfellow, Jonathan; Henderson, Andrew H

    2006-02-01

    To test whether measuring hyperaemic changes in pulse wave velocity (PWV) could be used as a new method of assessing endothelial function for use in clinical practice. Flow-mediated changes in vascular tone may be used to assess endothelial function and may be induced by distal hyperaemia, while endothelium-mediated changes in vascular tone can influence PWV. These three known principles were combined to provide and test a novel method of measuring endothelial function by the acute effects of distal hyperaemia on upper and lower limb PWV (measured by a recently developed method). Flow-mediated changes in upper and lower limb PWV were compared in 17 healthy subjects and seven patients with stable chronic heart failure (CHF), as a condition where endothelial function is impaired but endothelium-independent dilator responses are retained. Corroborative measurements of PWV and brachial artery diameter responses to endothelium-dependent and -independent pharmacological stimuli were performed in a further eight healthy subjects. Flow-mediated reduction of PWV (by 14% with no change in blood pressure) was found in normal subjects but was almost abolished in patients with CHF. PWV responses appear to be inversely related to and relatively greater than brachial artery diameter responses. The method may offer potential advantages of practical use and sensitivity over conduit artery diameter responses to measure endothelial dysfunction.

  2. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    PubMed

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  3. Resveratrol Improves Myocardial Perfusion in a Swine Model of Hypercholesterolemia and Chronic Myocardial Ischemia

    PubMed Central

    Robich, Michael P.; Osipov, Robert M.; Nezafat, Reza; Feng, Jun; Clements, Richard T.; Bianchi, Cesario; Boodhwani, Munir; Coady, Michael A.; Laham, Roger J.; Sellke, Frank W.

    2010-01-01

    Introduction Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac magnetic resonance imaging and coronary angiography 7 weeks later, prior to sacrifice and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (p<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (p=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (p=0.32). Tissue blood flow during stress was 2.8 fold greater in HCRV swine when compared to HCC swine (p=0.04). Endothelial dependent microvascular relaxation response to Substance P was diminished in HCC swine which was rescued by resveratrol treatment (p=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine v. control swine (p=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV v. HCC swine of the following markers of angiogenesis: VEGF (p=0.002), peNOS(ser1177)(p=0.04), NFkB (p=0.004), and pAkt(thr308)(p=0.001). Conclusion Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelial dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. PMID:20837905

  4. Atorvastatin prevents angiotensin II-induced high permeability of human arterial endothelial cell monolayers via ROCK signaling pathway.

    PubMed

    Yi, Ren; Xiao-Ping, Gao; Hui, Liang

    2015-03-27

    Intracranial aneurysm, as a common cause of cerebral hemorrhage, is often discovered when the aneurysm ruptures, causing subarachnoid hemorrhage. Unfortunately, the formation of cerebral aneurysm, which is associated with endothelial damage and macrophage migration, still cannot be prevented now. Tight junctions (TJs) open due to the disappearance of TJ proteins occludin and zona occludens-1 (ZO-1) in damaged endothelia, thus allowing macrophage migration and forming cerebral aneurysm. Therefore, cerebral aneurysm formation can be prevented by increasing TJs of the artery endothelium. Interestingly, statin, which can reduce saccular aneurysm, may prevent aneurysm formation through acting on different steps, but the underlying mechanism remains unclear. In this study, angiotensin II (Ang II) significantly increased the permeability of human arterial endothelial cell (HAEC). Moreover, the distribution of ZO-1 in cell-cell junction area and the total expression in HAECs were significantly decreased by Ang II treatment. However, the abnormal distribution and decreased expression of ZO-1 and hyperpermeability of HAECs were significantly reversed by pretreatment with atorvastatin. Furthermore, Ang II-induced phosphorylations of MYPT1, LIMK and MLC2 were significantly inhibited with atorvastatin or Rho kinase (ROCK) inhibitor (H1152) pretreatment. Knockdown of ROCK-II probably abolished Ang II-induced abnormal ZO-1 distribution and expression deficiency and hyperpermeability of HAECs. In conclusion, atorvastatin prevented Ang II-induced rupture of HAEC monolayers by suppressing the ROCK signaling pathway. Our results may explain, at least in part, some beneficial effects of statins on cardiovascular diseases such as intracranial aneurysm. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed amore » more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.« less

  6. Vascular endothelium summary statement II: Cardiovascular disease prevention and control.

    PubMed

    Mensah, George A; Ryan, Una S; Hooper, W Craig; Engelgau, Michael M; Callow, Allan D; Kapuku, Gaston K; Mantovani, Alberto

    2007-05-01

    The prevention and control of cardiovascular disease (CVD), principally ischemic heart disease and stroke, are a major clinical and public health challenge. Worldwide, CVD accounts for substantial morbidity and mortality. The major modifiable CVD risk factors are known and all of them cause endothelial activation and dysfunction. Preventing and controlling the established risk factors are associated with preserved endothelial function and reduced risk of CVD. Research advances that improve our understanding of strategies to preserve endothelial function or make the endothelial cells resilient to environmental insults may help improve our preventive interventions. This summary statement addresses the current state of the science with respect to endothelial dysfunction and CVD pathogenesis, diagnostic evaluation, and suggested strategies for public health practice and research.

  7. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications.

    PubMed

    Banarjee, Reema; Sharma, Akshay; Bai, Shakuntala; Deshmukh, Arati; Kulkarni, Mahesh

    2018-06-20

    Endothelial dysfunction is one of the primary steps in the development of diabetes associated cardiovascular diseases. Hyperglycemic condition in diabetes promotes accumulation of advanced glycation end products (AGEs) in the plasma, that interact with the receptor for AGEs (RAGE) present on the endothelial cells and negatively affect their function. Using Human umbilical vascular endothelial cells (HUVECs) in culture, the effect of glycated human serum albumin on global proteomic changes was studied by SWATH-MS, a label free quantitative proteomic approach. Out of the 1860 proteins identified, 161 showed higher abundance while 123 showed lesser abundance in cells treated with glycated HSA. Bioinformatic analysis revealed that the differentially regulated proteins were involved in various processes such as apoptosis, oxidative stress etc. that are associated with endothelial dysfunction. Furthermore, the iRegulon analysis and immunofuorescence studies indicated that several of the differentially regulated proteins were transcriptionally regulated by NF-κB, that is downstream to AGE-RAGE axis. Some of the important differentially regulated proteins include ICAM1, vWF, PAI-1that affect important endothelial functions like cell adhesion and blood coagulation. qPCR analysis showed an increase in expression of the AGE receptor RAGE along with other genes involved in endothelial function. AGE treatment to HUVEC cells led to increased oxidative stress and apoptosis. This is the first proteomics study that provides insight into proteomic changes downstream to AGE-RAGE axis leading to endothelial dysfunction and predisposing to cardiovascular complications. Cardiovascular disease (CVD) is a major pathological outcome in diabetic patients and it is important to address ways that target its development before the onset. Elevated plasma AGEs in diabetes can affect endothelial function and can continue to show their effects even after blood glucose levels are back to normal. Since endothelial dysfunction acts as one of the initiating factors for the development of CVD, understanding how AGEs affect the endothelial cell proteome to cause dysfunction will provide insight into the mechanisms involved and aid designing new therapeutic approaches. Copyright © 2018. Published by Elsevier B.V.

  8. Functional and Biochemical Endothelial Profiling In Vivo in a Murine Model of Endothelial Dysfunction; Comparison of Effects of 1-Methylnicotinamide and Angiotensin-converting Enzyme Inhibitor

    PubMed Central

    Bar, Anna; Olkowicz, Mariola; Tyrankiewicz, Urszula; Kus, Edyta; Jasinski, Krzysztof; Smolenski, Ryszard T.; Skorka, Tomasz; Chlopicki, Stefan

    2017-01-01

    Although it is known that 1-methylnicotinamide (MNA) displays vasoprotective activity in mice, as yet the effect of MNA on endothelial function has not been demonstrated in vivo. Here, using magnetic resonance imaging (MRI) we profile the effects of MNA on endothelial phenotype in mice with atherosclerosis (ApoE/LDLR-/-) in vivo, in comparison to angiotensin (Ang) -converting enzyme (ACE) inhibitor (perindopril), with known vasoprotective activity. On a biochemical level, we analyzed whether MNA- or perindopril-induced improvement in endothelial function results in changes in ACE/Ang II-ACE2/Ang-(1–7) balance, and L-arginine/asymmetric dimethylarginine (ADMA) ratio. Endothelial function and permeability were evaluated in the brachiocephalic artery (BCA) in 4-month-old ApoE/LDLR-/- mice that were non-treated or treated for 1 month or 2 months with either MNA (100 mg/kg/day) or perindopril (10 mg/kg/day). The 3D IntraGate®FLASH sequence was used for evaluation of BCA volume changes following acetylcholine (Ach) administration, and for relaxation time (T1) mapping around BCA to assess endothelial permeability using an intravascular contrast agent. Activity of ACE/Ang II and ACE2/Ang-(1–7) pathways as well as metabolites of L-arginine/ADMA pathway were measured using liquid chromatography/mass spectrometry-based methods. In non-treated 6-month-old ApoE/LDLR-/- mice, Ach induced a vasoconstriction in BCA that amounted to –7.2%. 2-month treatment with either MNA or perindopril resulted in the reversal of impaired Ach-induced response to vasodilatation (4.5 and 5.5%, respectively) and a decrease in endothelial permeability (by about 60% for MNA-, as well as perindopril-treated mice). Improvement of endothelial function by MNA and perindopril was in both cases associated with the activation of ACE2/Ang-(1–7) and the inhibition of ACE/Ang II axes as evidenced by an approximately twofold increase in Ang-(1–9) and Ang-(1–7) and a proportional decrease in Ang II and its active metabolites. Finally, MNA and perindopril treatment resulted in an increase in L-arginine/ADMA ratio by 107% (MNA) and 140% (perindopril), as compared to non-treated mice. Functional and biochemical endothelial profiling in ApoE/LDLR-/- mice in vivo revealed that 2-month treatment with MNA (100 mg/kg/day) displayed a similar profile of vasoprotective effect as 2-month treatment with perindopril (10 mg/kg/day): i.e., the improvement in endothelial function that was associated with the beneficial changes in ACE/Ang II-ACE2/Ang (1–7) balance and in L-arginine/ADMA ratio in plasma. PMID:28443021

  9. Weight loss improves biomarkers endothelial function and systemic inflammation in obese postmenopausal Saudi women.

    PubMed

    Abd El-Kader, Shehab Mahmoud; Saiem Al-Dahr, Mohammed H

    2016-06-01

    Although postmenopausal associated disorders are important public health problems worldwide, to date limited studies evaluated the endothelial function and systemic inflammation response to weight loss in obese postmenopausal women. This study was done to evaluate the endothelial function and systemic inflammation response to weight loss in obese postmenopausal Saudi women. Eighty postmenopausal obese Saudi women (mean age 52.64±6.13 year) participated in two groups: Group (A) received aerobic exercise on treadmill and diet whereas, group (B) received no intervention. Markers of inflammation and endothelial function were measured before and after 3 months at the end of the study. The values of body mass index(BMI), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), inter-cellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1) and plasminogen activator inhibitor-1 activity (PAI-1:Ac) were significantly decreased in group (A), while changes were not significant in group (B). Also, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Weight loss ameliorates inflammatory cytokines and markers of endothelial function in obese postmenopausal Saudi women.

  10. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.

  11. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    PubMed Central

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846

  12. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    PubMed

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.

  13. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.

    PubMed

    Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina

    2015-07-15

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.

  14. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  15. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-02-01

    cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.

  16. [Possible effect of E-selectine on structure and function of arterial vessels in patients with metabolic syndrome].

    PubMed

    Voloshyna, O O; Lyzohub, V H; Romanenko, I M

    2007-01-01

    Endothelial dysfunction and endothelial cells activation as it was shown in patients with ischemic heart disease play important role in atherosclerosis progression and the development of cardiovascular events. Relationship between E-selectine and functional/ structural changes of the arterial vessels in patients with metabolic syndrome was not explored. We revealed that both activation of the endothelial cells and structural/functional changes of the arterial wall mostly depend on obesity and dislipedemia and in less extent on carbohydrates metabolism disorders.

  17. Circulating endothelial cells in acute ischaemic stroke.

    PubMed

    Nadar, Sunil K; Lip, Gregory Y H; Lee, Kaeng W; Blann, Andrew D

    2005-10-01

    Increased numbers of CD146-bearing circulating endothelial cells (CECs) in the peripheral blood probably represent the most direct evidence of endothelial cell damage. As acute ischaemic strokes are associated with endothelial abnormalities, we hypothesised that these CECs are raised in acute stroke, and that they would correlate with the other indices of endothelial perturbation, i.e. plasma von Willebrand factor (vWf) and soluble E-selectin. We studied 29 hypertensive patients (19 male; mean age 63 years) who presented with an acute stroke and compared them with 30 high risk hypertensive patients (21 male; mean age 62 years) and 30 normotensive controls (16 male; mean age 58 years). CECs were estimated by CD146 immunobead capture, vWf and soluble E-selectin by ELISA. Patients with an acute ischaemic stroke had significantly higher numbers of CECs/ml of blood (p<0.001) plasma vWf (p=0.008) soluble E-selectin (p=0.002) and higher systolic blood pressure (SBP) as compared to the other groups. The number of CECs significantly correlated with soluble E-selectin (r=0.432, p<0.001) and vWf (r=0.349, p=0.001) but not with SBP (r=0.198, p=0.069). However, in multivariate analysis, only disease group (i.e. health, hypertension or stroke) was associated with increased CECs. Acute ischaemic stroke is associated with increased numbers of CECs. The latter correlate well with established plasma markers of endothelial dysfunction or damage, thus unequivocally confirming severe vasculopathy in this condition. However, the greatest influence on CECs numbers was clinical group.

  18. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    PubMed

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.

  19. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.« less

  1. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  2. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis.

    PubMed

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-02-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  3. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  4. Insulin resistance adds to endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, B; Poredos, P

    2001-02-01

    To evaluate whether endothelium-dependent (nitric oxide-mediated) dilation of the brachial artery (BA) is impaired in patients being treated for essential hypertension (EH), and whether this abnormality can be detected in normotensive offspring of subjects with EH (familial trait, FT); and to investigate the interrelationship between flow-mediated vasodilation (FMD) and hyperinsulinaemia/insulin resistance. Cross-sectional study. Angiology department at a teaching hospital. The study encompassed 172 subjects, of whom 46 were treated hypertonics aged 40-55 (49) years, and 44 age-matched, normotensive volunteers as controls. We also investigated 41 normotonics with FT aged 20-30 (25) years and 41 age-and sex-matched controls without FT. Using high-resolution ultrasound, BA diameters at rest, during reactive hyperaemia (endothelium-dependent dilation) and after sublingual glyceryl trinitrate (GTN) application (endothelium-independent dilation) were measured. In hypertonics FMD was significantly lower than in controls [2.4 (2.9) vs. 7.4 (2.5)%; P < 0.00005], as was GTN-induced dilation [12.1 (4.3) vs. 16.1 (4.6)%; P=0.0007]. In subjects with FT, FMD was also decreased compared with the control group [5.8 (4.1) vs. 10.0 (3.0)%; P < 0.00005]. The response to GTN was comparable in both groups of young subjects. FMD was negatively related to insulin concentration in all subjects studied (P < 0.00005). In treated patients with EH, flow-mediated dilation of the BA as well as endothelium-independent dilation are decreased. In individuals with FT the endothelial function of the peripheral arteries is also altered in the absence of elevated blood pressure. Endothelial dysfunction is related to hyperinsulinaemia/insulin resistance, which could be one of the pathogenetic determinants of EH and its complications.

  5. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver.

    PubMed

    Yin, Chunyue; Evason, Kimberley J; Maher, Jacquelyn J; Stainier, Didier Y R

    2012-11-01

    Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play vital roles in liver development and injury. Our knowledge of HSC biology is limited by the paucity of in vivo data. HSCs and sinusoidal endothelial cells (SECs) reside in close proximity, and interactions between these two cell types are potentially critical for their development and function. Here, we introduce a transgenic zebrafish line, Tg(hand2:EGFP), that labels HSCs. We find that zebrafish HSCs share many similarities with their mammalian counterparts, including morphology, location, lipid storage, gene-expression profile, and increased proliferation and matrix production, in response to an acute hepatic insult. Using the Tg(hand2:EGFP) line, we conducted time-course analyses during development to reveal that HSCs invade the liver after SECs do. However, HSCs still enter the liver in mutants that lack most endothelial cells, including SECs, indicating that SECs are not required for HSC differentiation or their entry into the liver. In the absence of SECs, HSCs become abnormally associated with hepatic biliary cells, suggesting that SECs influence HSC localization during liver development. We analyzed factors that regulate HSC development and show that inhibition of vascular endothelial growth factor signaling significantly reduces the number of HSCs that enter the liver. We also performed a pilot chemical screen and identified two compounds that affect HSC numbers during development. Our work provides the first comprehensive description of HSC development in zebrafish and reveals the requirement of SECs in HSC localization. The Tg(hand2:EGFP) line represents a unique tool for in vivo analysis and molecular dissection of HSC behavior. Copyright © 2012 American Association for the Study of Liver Diseases.

  6. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  7. Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes.

    PubMed

    Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Little, Jonathan P

    2016-11-01

    Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. Copyright © 2016 the American Physiological Society.

  8. Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes

    PubMed Central

    Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.

    2016-01-01

    Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. PMID:27638878

  9. [Functional hypothalamic amenorrhea].

    PubMed

    Stárka, Luboslav; Dušková, Michaela

    2015-10-01

    Functional hypothalamic amenorrhea (FHA) besides pregnancy and syndrome of polycystic ovary is one of the most common causes of secondary amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). FHA is a form of the defence of organism in situations where life functions are more important than reproductive function. FHA is reversible; it can be normalized after ceasing the stress situation. There are three types of FHA: weight loss related, stress-related, and exercise-related amenorrhea. The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. Women health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects.

  10. [Endothelial dysfunction in diabetes mellitus and possible ways of pharmacological correction].

    PubMed

    Chernov, Iu N; Krasiukova, V A; Batishcheva, G A; Mubarakshina, O A

    2010-02-01

    Insulinoresistance (IR) and endothelial dysfunction (ED) take part in forming cardiovascular complications. Hyperglycemia, dyslipidemia, and compensatory hyperinsulinemia are triggering factors in the development of ED in diabetes mellitus. Hyperactivation of the renin--angiotensin--aldosterone system and increasing influence of the sympathoadrenal system play an important role in the appearance of ED, which is characterized by a decrease in the synthesis of nitric oxide and an increase in the production of vasoconstrictors. At present, drugs used for ED correction only indirectly influence the functioning of endothelial cells. Eight pharmacological groups including more than 30 drugs are reviewed, which are capable of improving the endothelial function. Progress in the pharmacotherapy of ED stimulates the development of approaches to the individual choice of drugs and the directed correction of the functional state of vascular endothelium.

  11. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    NASA Astrophysics Data System (ADS)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  12. Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells.

    PubMed

    Krump-Konvalinkova, Vera; Yasuda, Satoshi; Rubic, Tina; Makarova, Natalia; Mages, Jörg; Erl, Wolfgang; Vosseler, Claudia; Kirkpatrick, C James; Tigyi, Gabor; Siess, Wolfgang

    2005-03-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid acting both as a ligand for the G protein-coupled receptors S1P1-5 and as a second messenger. Because S1P1 knockout is lethal in the transgenic mouse, an alternative approach to study the function of S1P1 in endothelial cells is needed. All human endothelial cells analyzed expressed abundant S1P1 transcripts. We permanently silenced (by RNA interference) the expression of S1P1 in the human endothelial cell lines AS-M.5 and ISO-HAS.1. The S1P1 knock-down cells manifested a distinct morphology and showed neither actin ruffles in response to S1P nor an angiogenic reaction. In addition, these cells were more sensitive to oxidant stress-mediated injury. New S1P1-dependent gene targets were identified in human endothelial cells. S1P1 silencing decreased the expression of platelet-endothelial cell adhesion molecule-1 and VE-cadherin and abolished the induction of E-selectin after cell stimulation with lipopolysaccharide or tumor necrosis factor-alpha. Microarray analysis revealed downregulation of further endothelial specific transcripts after S1P1 silencing. Long-term silencing of S1P1 enabled us for the first time to demonstrate the involvement of S1P1 in key functions of endothelial cells and to identify new S1P1-dependent gene targets.

  13. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation

    PubMed Central

    Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2014-01-01

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348

  14. Microcapsules functionalized with neuraminidase can enter vascular endothelial cells in vitro

    PubMed Central

    Liu, Weizhi; Wang, Xiaocong; Bai, Ke; Lin, Miao; Sukhorukov, Gleb; Wang, Wen

    2014-01-01

    Microcapsules made of polyelectrolyte multilayers exhibit no or low toxicity, appropriate mechanical stability, variable controllable degradation and can incorporate remote release mechanisms triggered by various stimuli, making them well suited for targeted drug delivery to live cells. This study investigates interactions between microcapsules made of synthetic (i.e. polystyrenesulfonate sodium salt/polyallylamine hydrochloride) or natural (i.e. dextran sulfate/poly-l-arginine) polyelectrolyte and human umbilical vein endothelial cells with particular focus on the effect of the glycocalyx layer on the intake of microcapsules by endothelial cells. Neuraminidase cleaves N-acetyl neuraminic acid residues of glycoproteins and targets the sialic acid component of the glycocalyx on the cell membrane. Three-dimensional confocal images reveal that microcapsules, functionalized with neuraminidase, can be internalized by endothelial cells. Capsules without neuraminidase are blocked by the glycocalyx layer. Uptake of the microcapsules is most significant in the first 2 h. Following their internalization by endothelial cells, biodegradable DS/PArg capsules rupture by day 5; however, there is no obvious change in the shape and integrity of PSS/PAH capsules within the period of observation. Results from the study support our hypothesis that the glycocalyx functions as an endothelial barrier to cross-membrane movement of microcapsules. Neuraminidase-loaded microcapsules can enter endothelial cells by localized cleavage of glycocalyx components with minimum disruption of the glycocalyx layer and therefore have high potential to act as drug delivery vehicles to reach tissues beyond the endothelial barrier of blood vessels. PMID:25339691

  15. [Vascular aging, arterial hypertension and physical activity].

    PubMed

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.

    PubMed

    Santos-Parker, Jessica R; Strahler, Talia R; Bassett, Candace J; Bispham, Nina Z; Chonchol, Michel B; Seals, Douglas R

    2017-01-03

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBF ACh ; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBF ACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBF ACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.

  17. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress

    PubMed Central

    Santos-Parker, Jessica R.; Strahler, Talia R.; Bassett, Candace J.; Bispham, Nina Z.; Chonchol, Michel B.; Seals, Douglas R.

    2017-01-01

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBFACh; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBFACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBFACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function. PMID:28070018

  18. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes.

    PubMed

    Francois, Monique E; Myette-Cote, Etienne; Bammert, Tyler D; Durrer, Cody; Neudorf, Helena; DeSouza, Christopher A; Little, Jonathan P

    2018-01-01

    Postprandial hyperglycemia has deleterious effects on endothelial function. Restricting carbohydrate intake and postmeal walking have each been shown to reduce postprandial hyperglycemia, but their combination and subsequent effects on endothelial function have not been investigated. Here, we sought to examine the effect of blunting postprandial hyperglycemia by following a low-carbohydrate diet, with or without postmeal walking exercise, on markers of vascular health in type 2 diabetes (T2D). In a randomized crossover design, individuals with T2D ( n = 11) completed three 4-day controlled diet interventions consisting of 1) low-carbohydrate diet alone (LC), 2) low-carbohydrate diet with 15-min postmeal walks (LC + Ex), and 3) low-fat control diet (CON). Fasting blood samples and brachial artery flow-mediated dilation (%FMD) were measured before and after each intervention. Total circulating microparticles (MPs), endothelial MPs, platelet MPs, monocyte-platelet aggregates, and adhesion molecules were assessed as biomarkers of vascular health. There was a significant condition × time interaction for %FMD ( P = 0.01), with post hoc tests revealing improved %FMD after LC + Ex (+0.8 ± 1.0%, P = 0.02), with no change after LC or CON. Endothelial MPs were significantly reduced with the LC diet by ~45% (from 99 ± 60 to 44 ± 31 MPs/μl, P = 0.02), with no change after LC + Ex or CON (interaction: P = 0.04). Total MPs were lower (main effect time: P = 0.02), whereas monocyte-platelet aggregates were higher (main effect time: P < 0.01) after all interventions. Plasma adhesion molecules and C-reactive protein were unaltered. Attenuating postprandial hyperglycemic excursions using a low-carbohydrate diet combined with postmeal walking appears to be an effective strategy to improve endothelial function in individuals with T2D. NEW & NOTEWORTHY Carbohydrate restriction and postmeal walking lower postprandial hyperglycemia in individuals with type 2 diabetes. Here, we show that the combination significantly improved endothelial function and that carbohydrate restriction alone reduced circulating endothelial microparticles in individuals with type 2 diabetes. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/low-carb-diet-and-exercise-improve-endothelial-health/ .

  19. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    PubMed

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione modulators or by inhibitors of neutral sphingomyelinase, p38 MAPK, JNK, and Rho kinase. Amelioration of endothelial permeability may alleviate lung and systemic vascular dysfunction associated with smoking-related chronic obstructive lung diseases.

  20. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    PubMed

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dermal Stem Cells Can Differentiate Down an Endothelial Lineage

    PubMed Central

    Bell, Emma; Richardson, Gavin D.; Jahoda, Colin A.; Gledhill, Karl; Phillips, Helen M.; Henderson, Deborah; Owens, W. Andrew

    2012-01-01

    In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation. We confirmed that these observations were not due to contaminating endothelial cells, by using DP clones. We have also used the WNT1cre/ROSA26R and WNT1cre/YFP lineage-tracing mouse models to identify a population of neural crest-derived cells in DP cultures that express the endothelial marker PECAM (CD31); these cells also form capillary-like structures on Matrigel. Importantly, cells of neural crest origin that express markers of endothelial and mesenchymal lineages exist within the dermal sheath of the vibrissae follicle. PMID:22571645

  2. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    PubMed

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    PubMed

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  4. Endothelial Function and Weight Loss: Comparison of Low-Carbohydrate and Low-Fat Diets

    PubMed Central

    Mohler, Emile R.; Sibley, Alexandra A.; Stein, Richard; Davila-Roman, Victor; Wyatt, Holly; Badellino, Karen; Rader, Daniel J.; Klein, Samuel; Foster, Gary D.

    2012-01-01

    The effect of weight loss on obesity-associated endothelial dysfunction is not clear because of conflicting data, demonstrating both improvement and no change in endothelial function after weight loss in obese subjects. A two-year prospective study (n=121) was conducted to examine: 1) the effect of obesity and weight loss (either a low-carbohydrate or and low-fat diet) on flow mediated vasodilatation (FMD), a measure of endothelial function. Participants reduced body weight by 7.1±4.4%, 8.7±6.8% 7.1±7.8% and 4.1±7.7% at 3, 6, 12 and 24 months, respectively with no significant differences between the low-fat and low-carbohydrate groups. Endothelial function was inversely correlated with waist circumference, triglyceride level, and directly correlated with leptin in obese persons prior to weight loss. These weight losses did not confer any improvements in FMD. There were no differences between the low-fat and low-carbohydrate diets in FMD at any time point. At 6 months (r = 0.26, p = 0.04) and one year (r = 0.28, p = 0.03), there were positive correlations between change in FMD and change in leptin but not at two years. There was no significant improvement in endothelial function after 7.1±7.8% weight loss at one year and 4.1±7.7% at two years, achieved by either a low carbohydrate or a low fat diet. PMID:23404949

  5. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging.

    PubMed

    Bolduc, Virginie; Thorin-Trescases, Nathalie; Thorin, Eric

    2013-09-01

    Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.

  6. Non-invasive endothelial function assessment in patients with neurofibromatosis type 1: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Neurofibromatosis type 1 (NF1) is a multi-systemic disease caused by neurofibromin deficiency. The reduced life expectancy of patients with NF1 has been attributed to NF1-associated malignant neoplasms. However, an analysis of death certificates in the USA suggests that vascular disease could be an important cause of early death among these patients. Endothelial dysfunction (ED) is related to vasculopathy and is an early marker of subclinical atherosclerosis. Since neurofibromin has already been demonstrated to affect endothelial cell function, ED may be associated with NF1. The purpose of this study was to assess endothelial function in patients with NF1 using a non-invasive method. Methods NF1 patients and healthy control subjects, aged 18 to 35 years, were included. Subjects were excluded if they had any risk factor for vascular disease or any other condition known to affect endothelial function. Endothelial function was assessed using reactive hyperemia-peripheral arterial tone (RH-PAT) technology. ED was defined as a reactive hyperemia index (RHI) lower than 1.35. Results Four of the 29 (13.8%) NF1 patients and 1 of the 30 (3.3%) healthy volunteers had ED (p = 0.153). RHI medians and interquartile intervals were 1.8 (1.58-2.43) for the NF1 group and 2.02 (1.74 – 2.49) for the control group (p = 0.361). Conclusion The prevalence of ED was similar in NF1 patients and healthy controls. PMID:23497412

  7. Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

    PubMed Central

    Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten

    2013-01-01

    Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190

  8. Protective effects of dark chocolate on endothelial function and diabetes.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2013-11-01

    Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.

  9. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.

    PubMed

    Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng

    2016-12-01

    The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.

  10. A factorial randomized controlled trial to evaluate the effect of micronutrients supplementation and regular aerobic exercise on maternal endothelium-dependent vasodilatation and oxidative stress of the newborn.

    PubMed

    Ramírez-Vélez, Robinson; Romero, Miryam; Echeverri, Isabella; Ortega, José Guillermo; Mosquera, Mildrey; Salazar, Blanca; Girón, Sandra Lorena; Saldarriaga, Wilmar; Aguilar de Plata, Ana Cecilia; Mateus, Julio Cesar

    2011-02-28

    Many studies have suggested a relationship between metabolic abnormalities and impaired fetal growth with the development of non-transmissible chronic diseases in the adulthood. Moreover, it has been proposed that maternal factors such as endothelial function and oxidative stress are key mechanisms of both fetal metabolic alterations and subsequent development of non-transmissible chronic diseases. The objective of this project is to evaluate the effect of micronutrient supplementation and regular aerobic exercise on endothelium-dependent vasodilation maternal and stress oxidative of the newborn. 320 pregnant women attending to usual prenatal care in Cali, Colombia will be included in a factorial randomized controlled trial. Women will be assigned to the following intervention groups: 1. usual prenatal care (PC) and placebo (maltodextrine). 2. Exercise group: PC, placebo and aerobic physical exercise. 3. Micronutrients group: PC and a micronutrients capsule consisting of zinc (30 mg), selenium (70 μg), vitamin A (400 μg), alphatocopherol (30 mg), vitamin C (200 mg), and niacin (100 mg). 4. Combined interventions Group: PC, supplementation of micronutrients, and aerobic physical exercise. Anthropometric measures will be taken at the start and at the end of the interventions. Since in previous studies has been showed that the maternal endothelial function and oxidative stress are related to oxidative stress of the newborn, this study proposes that complementation with micronutrients during pregnancy and/or regular physical exercise can be an early and innovative alternative to strengthen the prevention of chronic diseases in the population. NCT00872365.

  11. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, Yujiro; Zullo, Joseph A.; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Comparedmore » to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression. - Highlights: • SIRT1 represses Notch1 signaling in capillary endothelial cells in the kidney. • Endothelial SIRT1 is depleted in the kidney following injury. • Activation of endothelial Notch impairs angiogenesis in the kidney. • Increased expression of endothelial DLL4 enhances renal fibrosis.« less

  12. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  13. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947

  14. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    PubMed

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  15. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability.

    PubMed

    Huang, Yu; He, Qing

    2017-06-01

    The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Omega-3 Fatty Acid Supplementation Improves Endothelial Function in Primary Antiphospholipid Syndrome: A Small-Scale Randomized Double-Blind Placebo-Controlled Trial.

    PubMed

    Felau, Sheylla M; Sales, Lucas P; Solis, Marina Y; Hayashi, Ana Paula; Roschel, Hamilton; Sá-Pinto, Ana Lúcia; Andrade, Danieli Castro Oliveira De; Katayama, Keyla Y; Irigoyen, Maria Claudia; Consolim-Colombo, Fernanda; Bonfa, Eloisa; Gualano, Bruno; Benatti, Fabiana B

    2018-01-01

    Endothelial cells are thought to play a central role in the pathogenesis of antiphospholipid syndrome (APS). Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been shown to improve endothelial function in a number of diseases; thus, it could be of high clinical relevance in APS. The aim of this study was to evaluate the efficacy of n-3 PUFA supplementation on endothelial function (primary outcome) of patients with primary APS (PAPS). A 16-week randomized clinical trial was conducted with 22 adult women with PAPS. Patients were randomly assigned (1:1) to receive placebo (PL, n  = 11) or n-3 PUFA (ω-3, n  = 11) supplementation. Before (pre) and after (post) 16 weeks of the intervention, patients were assessed for endothelial function (peripheral artery tonometry) (primary outcome). Patients were also assessed for systemic markers of endothelial cell activation, inflammatory markers, dietary intake, international normalized ratio (INR), and adverse effects. At post, ω-3 group presented significant increases in endothelial function estimates reactive hyperemia index (RHI) and logarithmic transformation of RHI (LnRHI) when compared with PL (+13 vs. -12%, p  = 0.06, ES = 0.9; and +23 vs. -22%, p  = 0.02, ES = 1.0). No changes were observed for e-selectin, vascular adhesion molecule-1, and fibrinogen levels ( p  > 0.05). In addition, ω-3 group showed decreased circulating levels of interleukin-10 (-4 vs. +45%, p  = 0.04, ES = -0.9) and tumor necrosis factor (-13 vs. +0.3%, p  = 0.04, ES = -0.95) and a tendency toward a lower intercellular adhesion molecule-1 response (+3 vs. +48%, p  = 0.1, ES = -0.7) at post when compared with PL. No changes in dietary intake, INR, or self-reported adverse effects were observed. In conclusion, 16 weeks of n-3 PUFA supplementation improved endothelial function in patients with well-controlled PAPS. These results support a role of n-3 PUFA supplementation as an adjuvant therapy in APS. Registered at http://ClinicalTrials.gov as NCT01956188.

  17. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells.

    PubMed

    Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa

    2006-07-01

    Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.

  18. The ACE-DD genotype is associated with endothelial dysfunction in postmenopausal women.

    PubMed

    Méthot, Julie; Hamelin, Bettina A; Arsenault, Marie; Bogaty, Peter; Plante, Sylvain; Poirier, Paul

    2006-01-01

    To evaluate the effects of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D), the angiotensinogen M235T and the angiotensin II type 1 receptor A1166C polymorphisms, and hormone therapy used on endothelial function in postmenopausal women without manifestation of coronary artery disease. Sixty-four postmenopausal women (42 hormone therapy users and 22 hormone therapy nonusers) without clinical manifestation of coronary artery disease were evaluated using external vascular ultrasonography to measure endothelium-dependent (hyperemic response, flow-mediated dilatation) and -independent (nitroglycerin) dilatation. Genotypes were determined by polymerase chain reaction amplification. Women with the ACE-DD genotype displayed a lower flow-mediated dilatation compared to those with the ACE-II genotype (8.4% +/- 3.9% vs 12.6% +/- 5.4%, P = 0.04). Endothelial function was not associated with the angiotensinogen M235T and anglotensin II type 1 receptor A1166C polymorphisms. ACE polymorphism seems to modulate endothelial function among postmenopausal women without hormone therapy (8.2% +/- 5.1% vs 18.4% +/- 5.9% for the DD and the II genotype, respectively, P = 0.02). However, in hormone therapy users, flow-mediated dilatation was similar according to the ACE genotypes. Our findings suggest that ACE-I/D polymorphism is related to endothelial dysfunction in postmenopausal women. Furthermore, a potential interaction between estrogen users and ACE polymorphism on endothelial function may be present.

  19. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    PubMed

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome.

    PubMed

    Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria

    2016-08-01

    Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    PubMed

    Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias

    2017-01-01

    Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.

  2. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport.

    PubMed

    Finn, Nnenna A; Eapen, Danny; Manocha, Pankaj; Al Kassem, Hatem; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D

    2013-11-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. Published by Elsevier B.V.

  3. Endothelial-dependent flow-mediated dilation in African Americans with masked-hypertension.

    PubMed

    Veerabhadrappa, Praveen; Diaz, Keith M; Feairheller, Deborah L; Sturgeon, Katie M; Williamson, Sheara T; Crabbe, Deborah L; Kashem, Abul M; Brown, Michael D

    2011-10-01

    Office-blood pressure (BP) measurements alone overlook a significant number of individuals with masked-hypertension (office-BP: 120/80-139/89 mm Hg and 24-h ambulatory BP monitoring (ABPM) daytime ≥135/85 mm Hg or night-time ≥120/70 mm Hg). Diminished endothelial function contributes to the pathogenesis of hypertension. To better understand the pathophysiology involved in the increased cardiovascular (CV) disease risk associated with masked-hypertension, we estimated the occurrence, assessed the endothelial function, compared plasma levels of inflammatory markers, white blood cell count (WBC count), tumor necrosis factor-α (TNF-α), and high sensitivity C-reactive protein (hsCRP) and examined the possible relationship between endothelial function and inflammatory markers in apparently healthy prehypertensive (office-BP: 120/80-139/89 mm Hg) African Americans. Fifty African Americans who were sedentary, nondiabetic, nonsmoking, devoid of CV disease were recruited. Office-BP was measured according to JNC-7 guidelines to identify prehypertensives in whom ABPM was then assessed. Fasting plasma samples were assayed for inflammatory markers. Brachial artery flow-mediated dilation (FMD) at rest and during reactive hyperemia was measured in a subset of prehypertensives. Subjects in the masked-hypertension sub-group had a higher hsCRP (P = 0.04) and diminished endothelial function (P = 0.03) compared to the true-prehypertensive sub-group (office-BP: 120/80-139/89 mm Hg and ABPM: daytime <135/85 mm Hg or night-time <120/70 mm Hg). Regression analysis showed that endothelial function was inversely related to hsCRP amongst the masked-hypertensive sub-group (R(2) = 0.160; P = 0.04). Masked-hypertension was identified in 58% of African Americans which suggests that a masking phenomenon may exist in a sub-group of prehypertensives who also seem to have a diminished endothelial function that could be mediated by an elevated subclinical inflammation leading to the increased CV disease.

  4. Posttraumatic Stress Disorder Is Associated With Worse Endothelial Function Among Veterans.

    PubMed

    Grenon, S Marlene; Owens, Christopher D; Alley, Hugh; Perez, Sandra; Whooley, Mary A; Neylan, Thomas C; Aschbacher, Kirstin; Gasper, Warren J; Hilton, Joan F; Cohen, Beth E

    2016-03-23

    Current research in behavioral cardiology reveals a significant association between posttraumatic stress disorder (PTSD) and increased risk for cardiovascular disease and mortality; however, the underlying mechanisms remain poorly understood. We hypothesized that patients with PTSD would exhibit endothelial dysfunction, a potential mechanism involved in the development and progression of cardiovascular disease. A total of 214 outpatients treated at the San Francisco Veterans Affairs Medical Center underwent tests of endothelial function and evaluation for PTSD. Flow-mediated vasodilation of the brachial artery was performed to assess endothelial function, and current PTSD status was defined by the PTSD Checklist, based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition), with a score ≥40. Multivariable linear regression models were used to estimate the association between PTSD status and endothelial function. Patients with PTSD (n=67) were more likely to be male (99% versus 91%, P=0.04) and to have depression (58% versus 8%, P<0.0001) and were less likely to be on an angiotensin-converting enzyme inhibitor (17% versus 36%, P=0.007) or β-blocker treatment (25% versus 41%, P=0.03). Univariate analysis demonstrated that patients with PTSD had significantly lower flow-mediated vasodilation (5.8±3.4% versus 7.5±3.7%; P=0.003); furthermore, lower flow-mediated vasodilation was associated with increasing age (P=0.008), decreasing estimated glomerular filtration rate (P=0.003), hypertension (P=0.002), aspirin (P=0.03), and β-blocker treatments (P=0.01). In multivariable analysis, PTSD remained independently associated with lower flow-mediated vasodilation (P=0.0005). After adjusting for demographic, comorbidity, and treatment characteristics, PTSD remained associated with worse endothelial function in an outpatient population. Whether poor endothelial function contributes to the higher risk of cardiovascular disease in patients with PTSD deserves further study. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.

    PubMed

    Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao

    2017-01-01

    Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.

  6. Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus

    PubMed Central

    Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph

    2013-01-01

    Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821

  7. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  8. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    PubMed

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    PubMed

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  10. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.

  11. Endothelial dysfunction in metabolic diseases: role of oxidation and possible therapeutic employment of N-acetylcysteine.

    PubMed

    Masha, A; Martina, V

    2014-01-01

    Several metabolic diseases present a high cardiovascular mortality due to endothelial dysfunction consequences. In the last years of the past century, it has come to light that the endothelial cells, previously considered as inert in what regards an eventual secretion activity, play a pivotal role in regulating different aspects of the vascular function (endothelial function). It was clearly demonstrated that the endothelium acts as a real active organ, owning endocrine, paracrine and autocrine modulation activities by means of which it is able to regulate the vascular homeostasis. The present review will investigate the relationship between some metabolic diseases and the endothelial dysfunction and in particular the mechanisms underlying the effects of metabolic pathologies on the endothelium. Furthermore, it will consider the possible therapeutic employment of the N-acetilcysteine in such conditions.

  12. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair

    PubMed Central

    Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.

    2016-01-01

    There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation. PMID:27388041

  13. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.

    PubMed

    Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens

    2009-05-01

    To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.

  14. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment.

    PubMed

    Williamson, Matthew R; Shuttleworth, Adrian; Canfield, Ann E; Black, Richard A; Kielty, Cay M

    2007-12-01

    The endothelium is an essential modulator of vascular tone and thrombogenicity and a critical barrier between the vessel wall and blood components. In tissue-engineered small-diameter vascular constructs, endothelial cell detachment in flow can lead to thrombosis and graft failure. The subendothelial extracellular matrix provides stable endothelial cell anchorage through interactions with cell surface receptors, and influences the proliferation, migration, and survival of both endothelial cells and smooth muscle cells. We have tested the hypothesis that these desired physiological characteristics can be conferred by surface coatings of natural vascular matrix components, focusing on the elastic fiber molecules, fibrillin-1, fibulin-5 and tropoelastin. On fibrillin-1 or fibulin-5-coated surfaces, endothelial cells exhibited strong integrin-mediated attachment in static conditions (82% and 76% attachment, respectively) and flow conditions (67% and 78% cell retention on fibrillin-1 or fibulin-5, respectively, at 25 dynes/cm2), confluent monolayer formation, and stable functional characteristics. Adhesion to these two molecules also strongly inhibited smooth muscle cell migration to the endothelial monolayer. In contrast, on elastin, endothelial cells attached poorly, did not spread, and had markedly impaired functional properties. Thus, fibrillin-1 and fibulin-5, but not elastin, can be exploited to enhance endothelial stability, and to inhibit SMC migration within vascular graft scaffolds. These findings have important implications for the design of vascular graft scaffolds, the clinical performance of which may be enhanced by exploiting natural cell-matrix biology to regulate cell attachment and function.

  15. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure.

    PubMed

    Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M

    2010-09-01

    Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

  16. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans.

    PubMed

    Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D

    2013-11-01

    The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.

  17. Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease.

    PubMed

    Lippincott, Margaret F; Carlow, Andrea; Desai, Aditi; Blum, Arnon; Rodrigo, Maria; Patibandla, Sushmitha; Zalos, Gloria; Smith, Kevin; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-08-01

    Our purpose was to determine predictors of endothelial function and potential association with cardiovascular risk in women with sedentary occupations, in whom obesity-associated risk factors may contribute to excess morbidity and mortality. Ninety consecutive women (age range 22 to 63 years, 22 overweight (body mass index [BMI] > or =25 to 29.9 kg/m(2)) and 42 obese (BMI > or = 30 kg/m(2)), had vital signs, lipids, insulin, glucose, high-sensitivity C-reactive protein, and sex hormones measured. Endothelial function was determined using brachial artery flow-mediated dilation after 5 minutes of forearm ischemia. Treadmill stress testing was performed with gas exchange analysis at peak exercise (peak oxygen consumption [Vo(2)]) to assess cardiorespiratory fitness. Brachial artery reactivity was negatively associated with Framingham risk score (r = -0.3542, p = 0.0007). Univariate predictors of endothelial function included peak Vo(2) (r = 0.4483, p <0.0001), age (r = -0.3420, p = 0.0010), BMI (r = -0.3065, p = 0.0035), and high-sensitivity C-reactive protein (r = -0.2220, p = 0.0400). Using multiple linear regression analysis with stepwise modeling, peak Vo(2) (p = 0.0003) was the best independent predictor of brachial artery reactivity, with age as the only other variable reaching statistical significance (p = 0.0436) in this model. In conclusion, endothelial function was significantly associated with cardiovascular risk in women with sedentary occupations, who were commonly overweight or obese. Even in the absence of routine exercise, cardiorespiratory fitness, rather than conventional risk factors or body mass, is the dominant predictor of endothelial function and suggests a modifiable approach to risk.

  18. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Widlansky, Michael E; Hamburg, Naomi M; Anter, Elad; Holbrook, Monika; Kahn, David F; Elliott, James G; Keaney, John F; Vita, Joseph A

    2007-04-01

    Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. A total of 42 subjects completed the study, and brachial artery flow-mediated dilation improved from 7.1 +/- 4.1 to 8.6 +/- 4.7% two hours after the first dose of 300 mg of EGCG (P = 0.01), but was similar to baseline (7.8 +/- 4.2%, P = 0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6 +/- 10.9 to 92.8 +/- 78.7 ng/ml after acute EGCG (P < 0.001), but were unchanged from baseline after two weeks of treatment (3.4 +/- 13.1 ng/ml). EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function.

  19. An evolving new paradigm: endothelial cells – conditional innate immune cells

    PubMed Central

    2013-01-01

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413

  20. An evolving new paradigm: endothelial cells--conditional innate immune cells.

    PubMed

    Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng

    2013-08-22

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.

  1. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.

  2. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    EPA Science Inventory

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  3. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison of endothelial function of coronary artery bypass grafts in diabetic and nondiabetic patients: Which graft offers the best?

    PubMed Central

    Gür, Demet Özkaramanlı; Gür, Özcan; Gürkan, Selami; Cömez, Selcem; Gönültaş, Aylin; Yılmaz, Murat

    2016-01-01

    Objective: Diabetes associated endothelial dysfunction, which determines both long and short term graft patency, is not uniform in all coronary artery bypass surgery (CABG) grafts. Herein this study, we aimed to investigate the degree of endothelial dysfunction in diabetic radial artery (RA), internal mammarian artery (IMA) and saphenous vein (SV) grafts in vitro tissue bath system. Methods: This is a prospective experimental study. Fifteen diabetic and 15 non-diabetic patients were included to the study. A total number of 96 graft samples were collected; 16 graft samples for each graft type from both diabetic and non-diabetic patients. Arterial grafts were harvested with pedicles and SV grafts were harvested by ‘no touch’ technique. Vasodilatation response of vascular rings to carbachol, which induces nitric oxide (NO) mediated vasodilatation, was designated as the measure of endothelial function. Results: The IMA grafts had the most prominent NO mediated vasodilatation in both diabetic and non-diabetic patients, concluding a better preserved endothelial function than SV and RA. The ‘no-touch’ SV and RA grafts had similar vasodilatation responses in non-diabetic patients. In diabetic patients, on the other hand, RA grafts exhibited the least vasodilatation response (ie. worst endothelial function), even less vasodilatation than ‘no touch’ SV grafts (p<0.0001). Conclusion: Deteriorated function of RA grafts in diabetic patients, even worse than SV grafts made evident by this study, encourages the use of ‘no touch’ technique as the method of SV harvesting and more meticulous imaging of RA before its use as a graft in diabetic patients. PMID:26301347

  5. A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    PubMed Central

    Ferraro, Francesco; Kriston-Vizi, Janos; Metcalf, Daniel J.; Martin-Martin, Belen; Freeman, Jamie; Burden, Jemima J.; Westmoreland, David; Dyer, Clare E.; Knight, Alex E.; Ketteler, Robin; Cutler, Daniel F.

    2014-01-01

    Summary Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. PMID:24794632

  6. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm Coulthard's hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia.

    PubMed

    Golden, Michael Henry

    2015-05-01

    The various types of oedema in man are considered in relation to Starling's hypothesis of fluid movement from capillaries, with the main emphasis on nutritional oedema and the nephrotic syndrome in children. It is concluded that each condition has sufficient anomalous findings to render Starling's hypothesis untenable. The finding that the endothelial glycocalyx is key to control of fluid movement from and into the capillaries calls for complete revision of our understanding of oedema formation. The factors so far known to affect the function of the glycocalyx are reviewed. As these depend upon sulphated proteoglycans and other glycosaminoglycans, the argument is advanced that the same abnormalities will extend to the interstitial space and that kwashiorkor is fundamentally related to a defect in sulphur metabolism which can explain all the clinical features of the condition, including the formation of oedema.

  7. Potential use of TNF-α inhibitors in systemic sclerosis.

    PubMed

    Murdaca, Giuseppe; Spanò, Francesca; Contatore, Miriam; Guastalla, Andrea; Puppo, Francesco

    2014-01-01

    Systemic sclerosis (SSc) is a rare connective tissue disease characterized by chronic inflammation and fibrosis of the skin, vascular abnormalities and variable involvement of organs. TNF-α has a central role in initial host response to infections and in the pathogenesis of various systemic immune-mediated diseases. Serum levels of TNF-α are elevated in patients with SSc and favor the development of pulmonary fibrosis and pulmonary arterial hypertension. Inflammatory arthritis can occur in patients with SSc. Infliximab and etanercept may improve the inflammatory arthritis and disability in SSc. TNF-α inhibitors reduce the systemic inflammation, improve the endothelial function decreasing the risk of pulmonary arterial hypertension progression and of acute cardiovascular and/or cerebrovascular events. Physicians need to be aware of the potential risks of tuberculosis reactivation and opportunistic infections. Randomized controlled trials with TNF-α inhibitors in patients with SSc are needed to confirm the potential role of these agents in the treatment of SSc.

  8. New findings on venous thrombogenesis

    PubMed Central

    Byrnes, James R.; Wolberg, Alisa S.

    2017-01-01

    Summary Venous thrombosis (VT) is the third most common cause of cardiovascular death worldwide. Complications from VT and pulmonary embolism are the leading cause of lost disability-adjusted life years. Risks include genetic (e.g., non-O blood group, activated protein C resistance, hyperprothrombinemia) and acquired (e.g., age, surgery, cancer, pregnancy, immobilisation, female hormone use) factors. Pathophysiologic mechanisms that promote VT are incompletely understood, but involve abnormalities in blood coagulability, vessel function, and flow (so-called Virchow’s Triad). Epidemiologic studies of humans, animal models, and biochemical and biophysical investigations have revealed contributions from extrinsic, intrinsic, and common pathways of coagulation, endothelial cells, leukocytes, red blood cells, platelets, cell-derived microvesicles, stasis-induced changes in vascular cells, and blood rheology. Knowledge of these mechanisms may yield new therapeutic targets. Characterisation of mechanisms that mediate VT formation and stability, particularly in aging, are needed to advance understanding of VT. PMID:27878206

  9. Redox-dependent impairment of vascular function in sickle cell disease.

    PubMed

    Aslan, Mutay; Freeman, Bruce A

    2007-12-01

    The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.

  10. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  11. Fetoplacental Vascular Endothelial Dysfunction as an Early Phenomenon in the Programming of Human Adult Diseases in Subjects Born from Gestational Diabetes Mellitus or Obesity in Pregnancy

    PubMed Central

    Leiva, Andrea; Pardo, Fabián; Ramírez, Marco A.; Farías, Marcelo; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome. PMID:22144986

  12. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1

    PubMed Central

    Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra

    2017-01-01

    Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110

  13. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  14. Vascular endothelial growth factor-A gene polymorphism is associated with congenital renal lesions in children with urinary tract infections.

    PubMed

    Bimpaki, Eirini; Bitsori, Maria; Choulaki, Christiana; Galanakis, Emmanouil

    2017-08-01

    This study investigated the relationship between vascular endothelial growth factor-A (VEGF-A)-460C/T functional gene polymorphism and renal parenchymal lesions, vesicoureteral reflux and other urinary tract abnormalities in children with a urinary tract infection (UTI). VEGF-A-460C/T gene polymorphism was investigated with restriction length polymorphism analysis in 76 children with their first UTI and in 63 controls without infections. Genotype and allele frequencies were compared between children with UTIs and controls and between different groups with UTIs. The VEGF-A-460C/T genotype frequencies differed significantly between those with and without renal parenchymal lesions in the UTI cohort. Allele C homozygosity was significantly more common in those with renal parenchymal lesions (36.6% versus 8.7%, p = 0.007). A separate analysis showed that allele C was associated with lesions compatible with hypodysplasia, rather than with focal ones associated with infections, with an odds ratio of 11.55 and 95% confidence interval of 3.03-43.9 (p = 0.0001). No significant differences in genotypes or allele frequencies were found between children with and without reflux or other urinary tract anomalies. In children with UTIs, C allele polymorphism of the VEGF-A gene was associated with hypodysplastic renal parenchymal lesions, which were possibly congenital and existed before the infection. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation.

    PubMed

    Dikov, Mikhail M; Ohm, Joyce E; Ray, Neelanjan; Tchekneva, Elena E; Burlison, Jared; Moghanaki, Drew; Nadaf, Sorena; Carbone, David P

    2005-01-01

    Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.

  16. Epigenetics and cardiovascular risk in childhood.

    PubMed

    Martino, Francesco; Magenta, Alessandra; Pannarale, Giuseppe; Martino, Eliana; Zanoni, Cristina; Perla, Francesco M; Puddu, Paolo E; Barillà, Francesco

    2016-08-01

    Cardiovascular disease (CVD) can arise at the early stages of development and growth. Genetic and environmental factors may interact resulting in epigenetic modifications with abnormal phenotypic expression of genetic information without any change in the nucleotide sequence of DNA. Maternal dietary imbalance, inadequate to meet the nutritional needs of the fetus can lead to intrauterine growth retardation, decreased gestational age, low birth weight, excessive post-natal growth and metabolic alterations, with subsequent appearance of CVD risk factors. Fetal exposure to high cholesterol, diabetes and maternal obesity is associated with increased risk and progression of atherosclerosis. Maternal smoking during pregnancy and exposure to various environmental pollutants induce epigenetic alterations of gene expression relevant to the onset or progression of CVD. In children with hypercholesterolemia and/or obesity, oxidative stress activates platelets and monocytes, which release proinflammatory and proatherogenic substances, inducing endothelial dysfunction, decreased Doppler flow-mediated dilation and increased carotid intima-media thickness. Primary prevention of atherosclerosis should be implemented early. It is necessary to identify, through screening, high-risk apparently healthy children and take care of them enforcing healthy lifestyle (mainly consisting of Mediterranean diet and physical activity), prescribing nutraceuticals and eventual medications, if required by a high-risk profile. The key issue is the restoration of endothelial function in the reversible stage of atherosclerosis. Epigenetics may provide new markers for an early identification of children at risk and thereby develop innovative therapies and specific nutritional interventions in critical times.

  17. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes.

    PubMed

    Anastasiou, E; Lekakis, J P; Alevizaki, M; Papamichael, C M; Megas, J; Souvatzoglou, A; Stamatelopoulos, S F

    1998-12-01

    To assess whether otherwise healthy women with a history of gestational diabetes mellitus (GDM) may have abnormalities in endothelial function at a very early stage, before glucose intolerance occurs. A total of 33 women with previous GDM (17 nonobese [BMI < 27] and 16 obese [BMI > or = 27]) and 19 healthy nonobese women were examined. A 75-g oral glucose tolerance test was performed, and insulin levels and biochemical parameters were also measured. Using high-resolution ultrasound, we measured vasodilatory responses of the brachial artery during reactive hyperemia (endothelium-dependent vasodilatation), and after nitroglycerin administration, an endothelium-independent vasodilator. Flow-mediated dilatation (FMD) was significantly and equally decreased in both groups of women with previous GDM, compared with control subjects (1.6 +/- 3.7% in the nonobese GDM group and 1.6 +/- 2.5% in the obese GDM group vs. 10.3 +/- 4.4% in control subjects, P < 0.001). FMD correlated inversely with serum uric acid levels, BMI, serum total cholesterol, and basal insulin resistance (homeostasis model assessment). Nitrate-induced dilatation was significantly decreased only in the obese GDM group compared with control subjects, (21.4 +/- 5.1 vs. 27.9 +/- 9.5, P < 0.05). Endothelial dysfunction, which is considered as a very early index of atherogenesis, is already present in both obese and nonobese women with a history of GDM, even when they have normal glucose tolerance.

  19. Hemorheological alterations in sickle cell anemia and their clinical consequences - The role of genetic modulators.

    PubMed

    Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula

    2016-01-01

    Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.

  20. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice.

    PubMed

    Penas, Federico Nicolás; Carta, Davide; Dmytrenko, Ganna; Mirkin, Gerado A; Modenutti, Carlos Pablo; Cevey, Ágata Carolina; Rada, Maria Jimena; Ferlin, Maria Grazia; Sales, María Elena; Goren, Nora Beatriz

    2017-01-01

    Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP 24 , using virtual docking. Also, we showed that early treatment with HP 24 , decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi -infected mice. Moreover, HP 24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi -infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

  1. Short-term therapy with relatively low-dose cerivastatin improves endothelial function independently of its lipid-lowering effect: Evaluation of brachial artery vasodilatation using B-mode ultrasound imaging.

    PubMed

    Sakabe, Koichi; Fukuda, Nobuo; Nada, Teru; Onose, Yukiko; Soeki, Takeshi; Shinohara, Hisanori; Tamura, Yoshiyuki

    2002-12-01

    Administration of 0.4 to 0.8 mg of cerivastatin per day for 2 weeks has been reported to have pleiotropic effects and improve endothelial function. Whether low-dose cerivastatin would produce these rapid pleiotropic effects in the clinical setting remains uncertain, however. We investigated the effect of short-term therapy with relatively low-dose cerivastatin (0.15 mg/day) on endothelial function, thrombostatic parameters, and C-reactive protein (CRP) levels in hypercholesterolemic patients. Thirteen patients with LDL-cholesterol>160 mg/dl were treated with daily doses of 0.15 mg of cerivastatin for 2 weeks. Endothelial function, thrombostatic parameters (tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor type 1 [PAI-1], and CRP were estimated at baseline and again after 2 weeks of treatment. Endothelial function was measured as flow-mediated vasodilation. Flow-mediated vasodilatation was assessed by measuring the percent change in the diameter of the brachial artery in response to reactive hyperemia using high-resolution ultrasound. Endothelium-independent vasodilatation was also measured using sublingual nitroglycerin. No major complications developed after the treatment. Total cholesterol decreased significantly, from 258±32 to 211±21 mg/dl, and LDL-cholesterol also decreased from 171±15 to 133±16 mg/dl after the treatment. Flow-mediated vasodilatation increased significantly, from 4.6±1.3 percent to 8.7±3.5 percent after 2 weeks of therapy, although endothelium-independent vasodilatation was not affected (9.5±2.4% vs 8.8±3.1%). No relation was found between percent change in flow-mediated vasodilatation and improvement in levels of LDL-cholesterol after therapy (r=0.07). PAI-1, t-PA, and CRP were not significantly changed by 2 weeks of therapy. (1) Evaluating vasodilation of the brachial artery with B-mode ultrasound imaging was useful in investigating the effect of statin on endothelial function. (2) Although no effect was detected in PAI-1, t-PA, or CRP, relatively low-dose cerivastatin therapy for 2 weeks improved endothelial function and lipid level independently and safely in hypercholesterolemic patients.

  2. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and sPECAM-1 [9.3 (6.2-11.1) vs 6.1 (5.4-7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this.

  3. Effect of Saxagliptin on Circulating Endothelial Progenitor Cells and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients.

    PubMed

    Li, Fang; Chen, Jiachao; Leng, Fei; Lu, Zhiqiang; Ling, Yan

    2017-06-01

    Endothelial dysfunction is associated with the risk of cardiovascular complications in diabetic patients. Endothelial progenitor cells (EPCs) and flow-mediated dilation (FMD) are common markers of endothelial function. In this study, we aim to investigate whether the DPP-4 inhibitor saxagliptin modulate EPCs number and FMD in newly diagnosed, treatment-naive type 2 diabetic patients. This was a controlled, randomized, open-label clinical trial. Saxagliptin group and metformin group consumed either saxagliptin 5 mg per day or metformin 1 500 mg per day respectively for 12 weeks. Changes of FMD and EPCs number after 12-week intervention were the primary endpoints. 31 patients were initially enrolled and randomized to saxagliptin group (n=16) and metformin group (n=15). 27 patients completed the trial (saxagliptin group n=14 and metformin group n=13), and 4 patients dropped out during the study. FMD and EPCs number increased significantly in both saxagliptin group and metformin group, and there was no significant difference between groups. 2-h postprandial plasma glucose, HbA1c and diastolic blood pressure improved significantly in both groups, and there was no significant difference between groups. Saxagliptin and metformin had comparable beneficial effects on endothelial function. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis.

    PubMed

    Seinost, Gerald; Wimmer, Gernot; Skerget, Martina; Thaller, Erik; Brodmann, Marianne; Gasser, Robert; Bratschko, Rudolf O; Pilger, Ernst

    2005-06-01

    Because epidemiological studies provide evidence that periodontal infections are associated with an increased risk of progression of cardiovascular and cerebrovascular disease, we postulated that endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis, would be present in patients with periodontal disease. We tested endothelial function in 30 patients with severe periodontitis and 31 control subjects using flow-mediated dilation (FMD) of the brachial artery. The groups were matched for age, sex, and cardiovascular risk factors. Three months after periodontal treatment, including both mechanical and pharmacological therapy, endothelial function was reassessed by brachial artery FMD. Markers of systemic inflammation were measured at baseline and at follow up. Flow-mediated dilation was significantly lower in patients with periodontitis than in control subjects (6.1% +/- 4.4% vs 8.5% +/- 3.4%, P = .002). Successful periodontal treatment resulted in a significant improvement in FMD (9.8% +/- 5.7%; P = .003 compared to baseline) accompanied by a significant decrease in C-reactive protein concentrations (1.1 +/- 1.9 vs 0.8 +/- 0.8 at baseline, P = .026). Endothelium-independent nitro-induced vasodilation did not differ between the study groups at baseline or after periodontal therapy. These results indicate that treatment of severe periodontitis reverses endothelial dysfunction. Whether improved endothelial function will translate into a beneficial effect on atherogenesis and cardiovascular events needs further investigation.

  5. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  6. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study

    PubMed Central

    2010-01-01

    Background Postprandial hyperglycemia is believed to affect vascular endothelial function. The aim of our study was to compare the effects of acarbose and nateglinide on postprandial endothelial dysfunction. Methods We recruited a total of 30 patients with newly diagnosed type 2 diabetes (19 men and 11 women, age 67.8 ± 7.3 years). Patients were randomly assigned to 3 groups receiving either 300 mg/day acarbose, 270 mg/day nateglinide, or no medication. A cookie test (consisting of 75 g carbohydrate, 25 g butter fat, and 7 g protein for a total of 553 kcal) was performed as dietary tolerance testing. During the cookie test, glucose and insulin levels were determined at 0, 30, 60, and 120 min after load. In addition, endothelial function was assessed by % flow-mediated dilation (FMD) of the brachial artery at 0 and 120 min after cookie load. Results Postprandial glucose and insulin levels were similar in the 3 groups. Postprandial endothelial dysfunction was similar in the 3 groups before treatment. After 12 weeks of intervention, postprandial FMD was significantly improved in the acarbose group compared with the control group (6.8 ± 1.3% vs 5.2 ± 1.1%, p = 0.0022). Area under the curve (AUC) for insulin response was significantly increased in the nateglinide and control groups; however, no significant change was observed in the acarbose group. Conclusions Our results suggest that acarbose improves postprandial endothelial function by improvement of postprandial hyperglycemia, independent of postprandial hyperinsulinemia. Acarbose may thus have more beneficial effects on postprandial endothelial function in patients with type 2 diabetes than nateglinide. PMID:20334663

  7. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  8. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    PubMed

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  9. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression.

    PubMed

    Toussaint, Jimmy; Raval, Chirag Bharavi; Nguyen, Tieuvi; Fadaifard, Hadi; Joshi, Shripad; Wolberg, George; Quarfordt, Steven; Jan, Kung-Ming; Rumschitzki, David S

    2017-11-01

    Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop. Copyright © 2017 the American Physiological Society.

  10. Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice.

    PubMed

    Lee, Sewon; Park, Yoonjung; Zhang, Cuihua

    2011-10-01

    Type 2 diabetes (T2D) is a leading risk factor for cardiovascular diseases including atherosclerosis and coronary heart disease. Exercise training (ET) is thought to have a beneficial effect on these disorders, but the basis for this effect is not fully understood. Because endothelial dysfunction plays a key role in the pathological events leading to cardiovascular complications in T2D, we hypothesized that the effects of ET will be evidenced by improvements in coronary endothelial function. To test this hypothesis, we assessed the effects of ET on vascular function of diabetic (db/db, Lepr(db)) mice by evaluating endothelial function of isolated coronary arterioles of wild-type (WT) and db/db mice with/without ET. Although dilation of vessels to the endothelial-independent vasodilator, sodium nitroprusside was not different between db/db and WT, dilation to the endothelial-dependent agonist, acetylcholine (ACh), was impaired in db/db compared to WT mice. Vasodilation to ACh was restored in db/db with ET and insulin sensitivity was improved in the db/db after ET. Exercise did not change body weight of db/db, but superoxide dismutase (SOD1 and SOD2) and phosphorylated- eNOS protein (Ser1177) expression in heart tissue was up-regulated whereas tumor necrosis factor-alpha (TNF-α) protein level was decreased by ET. Serum level of interleukin-6 (IL-6) was higher in db/db mice but ET decreased IL-6. This suggests that ET may improve endothelial function by increasing nitric oxide bioavailability as well as decreasing chronic inflammation. We suggest this connection may be the basis for the benefit of ET in T2D.

  11. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention

    PubMed Central

    Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887

  12. Why are tumour blood vessels abnormal and why is it important to know?

    PubMed Central

    Nagy, J A; Chang, S-H; Dvorak, A M; Dvorak, H F

    2009-01-01

    Tumour blood vessels differ from their normal counterparts for reasons that have received little attention. We report here that they are of at least six distinct types, we describe how each forms, and, looking forward, encourage the targeting of tumour vessel subsets that have lost their vascular endothelial growth factor-A (VEGF-A) dependency and so are likely unresponsive to anti-VEGF-A therapies. PMID:19240721

  13. Rapamycin reversal of VEGF-C–driven lymphatic anomalies in the respiratory tract

    PubMed Central

    Yao, Li-Chin; Flores, Julio C.; Choi, Dongwon; Hong, Young-Kwon; McDonald, Donald M.

    2017-01-01

    Lymphatic malformations are serious but poorly understood conditions that present therapeutic challenges. The goal of this study was to compare strategies for inducing regression of abnormal lymphatics and explore underlying mechanisms. CCSP-rtTA/tetO-VEGF-C mice, in which doxycycline regulates VEGF-C expression in the airway epithelium, were used as a model of pulmonary lymphangiectasia. After doxycycline was stopped, VEGF-C expression returned to normal, but lymphangiectasia persisted for at least 9 months. Inhibition of VEGFR-2/VEGFR-3 signaling, Notch, β-adrenergic receptors, or autophagy and antiinflammatory steroids had no noticeable effect on the amount or severity of lymphangiectasia. However, rapamycin inhibition of mTOR reduced lymphangiectasia by 76% within 7 days without affecting normal lymphatics. Efficacy of rapamycin was not increased by coadministration with the other agents. In prevention trials, rapamycin suppressed VEGF-C–driven mTOR phosphorylation and lymphatic endothelial cell sprouting and proliferation. However, in reversal trials, no lymphatic endothelial cell proliferation was present to block in established lymphangiectasia, and rapamycin did not increase caspase-dependent apoptosis. However, rapamycin potently suppressed Prox1 and VEGFR-3. These experiments revealed that lymphangiectasia is remarkably resistant to regression but is responsive to rapamycin, which rapidly reduces and normalizes the abnormal lymphatics without affecting normal lymphatics. PMID:28814666

  14. Hypoxia and fetal heart development.

    PubMed

    Patterson, A J; Zhang, L

    2010-10-01

    Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.

  15. The endothelial glycocalyx: composition, functions, and visualization

    PubMed Central

    Reitsma, Sietze; Slaaf, Dick W.; Vink, Hans; van Zandvoort, Marc A. M. J.

    2007-01-01

    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging. PMID:17256154

  16. Quantifying effects of cyclic stretch on cell-collagen substrate adhesiveness of vascular endothelial cells.

    PubMed

    Omidvar, Ramin; Tafazzoli-Shadpour, Mohammad; Mahmoodi-Nobar, Farbod; Azadi, Shohreh; Khani, Mohammad-Mehdi

    2018-05-01

    Vascular endothelium is continuously subjected to mechanical stimulation in the form of shear forces due to blood flow as well as tensile forces as a consequence of blood pressure. Such stimuli influence endothelial behavior and regulate cell-tissue interaction for an optimized functionality. This study aimed to quantify influence of cyclic stretch on the adhesive property and stiffness of endothelial cells. The 10% cyclic stretch with frequency of 1 Hz was applied to a layer of endothelial cells cultured on a polydimethylsiloxane substrate. Cell-substrate adhesion of endothelial cells was examined by the novel approach of atomic force microscope-based single-cell force spectroscopy and cell stiffness was measured by atomic force microscopy. Furthermore, the adhesive molecular bonds were evaluated using modified Hertz contact theory. Our results show that overall adhesion of endothelial cells with substrate decreased after cyclic stretch while they became stiffer. Based on the experimental results and theoretical modeling, the decrease in the number of molecular bonds after cyclic stretch was quantified. In conclusion, in vitro cyclic stretch caused alterations in both adhesive capacity and elastic modulus of endothelial cells through mechanotransductive pathways as two major determinants of the function of these cells within the cardiovascular system.

  17. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    PubMed Central

    2012-01-01

    Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426

  18. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function.

    PubMed

    Li, Xiaocong; Jiang, Chunyu; Zhao, Jungong

    2016-08-01

    Wound healing is deeply dependent on neovascularization to restore blood flow. The neovascularization of endothelial progenitor cells (EPCs) through paracrine secretion has been reported in various tissue repair models. Exosomes, key components of cell paracrine mechanism, have been rarely reported in wound healing. Exosomes were isolated from the media of EPCs obtained from human umbilical cord blood. Diabetic rats wound model was established and treated with exosomes. The in vitro effects of exosomes on the proliferation, migration and angiogenic tubule formation of endothelial cells were investigated. We revealed that human umbilical cord blood EPCs derived exosomes transplantation could accelerate cutaneous wound healing in diabetic rats. We also showed that exosomes enhanced the proliferation, migration and tube formation of vascular endothelial cells in vitro. Furthermore, we found that endothelial cells stimulated with these exosomes would increase expression of angiogenesis-related molecules, including FGF-1, VEGFA, VEGFR-2, ANG-1, E-selectin, CXCL-16, eNOS and IL-8. Taken together, our findings indicated that EPCs-derived exosomes facilitate wound healing by positively modulating vascular endothelial cells function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Antihypertensive therapy and endothelial function.

    PubMed

    Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H

    2004-01-01

    The benefits of treating hypertension in terms of reduction of morbidity and mortality are well established. However, it is debatable whether this benefit is derived entirely from the effects of a reduced blood pressure or whether these agents exert effects over and above blood pressure reduction on the endothelium. Hypertension is associated with adverse changes (whether damage or dysfunction) in the endothelium. Indeed, endothelial damage/dysfunction has have been demonstrated to be a reliable prognostic indicator of future cardiovascular events in hypertension. Of the various drug classes, calcium channel blockers and the ACE inhibitors have significant direct effects on the endothelium. This is in contrast to the beta blockers and alpha adrenergic blockers that appear to indirectly influence endothelial function solely as a result of lowered blood pressure. Antioxidants may have a beneficial effect on endothelial function as well, although their clinical use does not seem to translate into clinical benefit.

  20. Low nitric oxide: a key factor underlying copper-deficiency teratogenicity.

    PubMed

    Yang, Soo Jin; Keen, Carl L; Lanoue, Louise; Rucker, Robert B; Uriu-Adams, Janet Y

    2007-12-15

    Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.

  1. Low nitric oxide: a key factor underlying copper deficiency teratogenicity

    PubMed Central

    Yang, Soo Jin; Keen, Carl L.; Lanoue, Louise; Rucker, Robert B.; Uriu-Adams, Janet Y.

    2008-01-01

    Copper (Cu) deficiency-induced teratogenicity is characterized by major cardiac, brain and vascular anomalies, however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity, and increases superoxide anions which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu deficient (Cu−) dams were cultured for 48 h in Cu+ or Cu− medium, respectively. We report that NO levels were low in conditioned media from Cu−/Cu− embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions, and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3′,5′-monophosphate (cGMP) concentrations in the Cu−/Cu− group. The altered NO levels in Cu deficient embryos are functionally significant, as the administration of the NO donor, DETA/NONOate, increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling which contributes to abnormal embryo and yolk sac development. PMID:18037129

  2. Microvascular endothelial function and severity of primary open angle glaucoma.

    PubMed

    Bukhari, S M I; Kiu, K Y; Thambiraja, R; Sulong, S; Rasool, A H G; Liza-Sharmini, A T

    2016-12-01

    PurposeThe role of microvascular endothelial dysfunction on severity of primary open angle glaucoma (POAG) was investigated in this study.Patients and methodsA prospective cohort study was conducted. One hundred and fourteen ethnically Malay patients (114 eyes) with POAG treated at the eye clinic of Hospital University Sains Malaysia between April 2012 and December 2014 were recruited. Patients aged between 40 and 80 years with two consecutive reliable and reproducible Humphrey visual field 24-2 analyses were selected. Patients who were diagnosed with any other type of glaucoma, previous glaucoma-filtering surgery, or other surgeries except uncomplicated cataract and pterygium surgery were excluded. Humphrey visual field analysis 24-2 was used to stratify the severity of glaucoma using Advanced Glaucoma Intervention Study (AGIS) score at the time of recruitment. Microvascular endothelial function was assessed using Laser Doppler fluximetry and iontophoresis. Iontophoresis process with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and -independent vasodilatation, respectively.ResultsBased on the AGIS score, 55 patients showed mild glaucoma, with 29 moderate and 30 severe. There was statistically significant difference in microvascular endothelial function (ACh% and ACh max ) between mild and moderate POAG cases (P=0.023) and between mild and severe POAG cases (P<0.001). There was negative correlation between microvascular endothelial function and severity of POAG (r=-0.457, P<0.001).ConclusionMicrovascular endothelial dysfunction may have a role in influencing the severity of POAG in Malay patients.

  3. Endothelial and kidney function in women with a history of preeclampsia and healthy parous controls: A case control study.

    PubMed

    Lopes van Balen, Veronica A; Spaan, Julia J; Cornelis, Tom; Heidema, Wieteke M; Scholten, Ralph R; Spaanderman, Marc E A

    2018-03-01

    Preeclampsia (PE) is a pregnancy related endothelial disease characterized by hypertension and albuminuria. Postpartum endothelial dysfunction often persists in these women. We postulate that in women with a history of PE reduced endothelial dependent vasodilation coincides with attenuated kidney function, as both reflect endothelial dysfunction. We assessed endothelial and kidney function in women with a history of PE (n=79) and uncomplicated pregnancies (n=49) at least 4years postpartum. Women with hypertension, diabetes or kidney disease prior to pregnancy were excluded. Brachial artery flow mediated dilatation (FMD) was measured and analysed by a custom designed edge-detection and wall-tracking software. We measured albumin and creatinine levels in a 24-h urine sample and calculated glomerular filtration rate (GFR) by CKD-EPI. Women with a history of PE had lower FMD but comparable GFR and albumin creatinine ratio (ACR) compared with controls. Independent of obstetric history, in both controls and women with a history of PE respectively, GFR (r=0.19, p=0.17 and r=0.12, p=0.29) and albumin creatinine ratio (r=0.07, p=0.62 and r=0.06 p=0.57) did not correlate with FMD. At least 4years after pregnancy, women with a history of PE demonstrated decreased flow mediated dilatation when compared to healthy parous controls. In this study, decreased flow mediated dilation however did not coincide with decreased kidney function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. In Vitro Activation of eNOS by Mangifera indica (Careless™) and Determination of an Effective Dosage in a Randomized, Double-Blind, Human Pilot Study on Microcirculation.

    PubMed

    Gerstgrasser, Alexandra; Röchter, Sigrid; Dressler, Dirk; Schön, Christiane; Reule, Claudia; Buchwald-Werner, Sybille

    2016-03-01

    Mangifera indica fruit preparation (Careless™) activates the evolutionary conserved metabolic sensors sirtuin 1 and adenosine monophosphate-activated protein kinase, which have been identified as playing a key role in microcirculation and endothelial function. Here, an acute effect of a single dose of 100 mg or 300 mg Careless™ on microcirculation was investigated in a randomized, double-blind, crossover pilot study in ten healthy women to determine the effective dosage. Microcirculation and endothelial function were assessed by the Oxygen-to-see system and pulse amplitude tonometry (EndoPAT™), respectively. Cutaneous blood flow was increased over time by 100 mg (54% over pre-values, p = 0.0157) and 300 mg (35% over pre-value, p = 0.209) Careless™. The EndoPAT™ reactive hyperemia response was slightly improved 3 h after intake compared to pretesting with 300 mg Careless™. Furthermore, activation of endothelial nitric oxide synthase, as an important regulator for endothelial function, was tested in vitro in primary human umbilical vein endothelial cells. Careless™, after simulation of digestion, increased the activated form of endothelial nitric oxide synthase dose-dependently by 23% (300 µg/mL), 42% (1500 µg/mL), and 60% (3000 µg/mL) compared to the untreated control. In conclusion, the study suggests moderate beneficial effects of Careless™ on microcirculation, which is at least partly mediated by endothelial nitric oxide synthase activation. Georg Thieme Verlag KG Stuttgart · New York.

  5. Endothelial function in highly endurance-trained and sedentary, healthy young women.

    PubMed

    Moe, Ingvild T; Hoven, Heidi; Hetland, Eva V; Rognmo, Oivind; Slørdahl, Stig A

    2005-05-01

    Endothelial function is reduced by age, chronic heart failure, coronary artery disease, hypertension or type 2 diabetes, and it is shown that aerobic exercise may reverse this trend. The effect of a high aerobic training status on endothelial function in young, healthy subjects is however less clear. The present study was designed to determine whether endothelial function is improved in highly endurance-trained young women compared to sedentary, healthy controls. Brachial artery diameter was measured in 16 endurance-trained (age: 23.7 +/- 2.5 years, maximal oxygen uptake (VO2max): 60.6 +/- 4.5 ml/kg per min) and 14 sedentary females (age: 23.7 +/- 2.1 years, VO2max: 40.5 +/- 5.6 ml/kg per min) at rest, during flow-mediated dilation (FMD) and after sublingual glycerol trinitrate administration, using high-resolution ultrasound. FMD did not differ between the endurance-trained and the sedentary females (14.8% vs 16.4%, p = NS), despite a substantial difference in VO2max of 50% (p < 0.001). The endurance-trained group possessed however, a 9% larger resting brachial artery diameter when adjusted for body surface area. The results of the present study suggest that endothelial function is well preserved in young, healthy women, and that a high aerobic training status due to long term aerobic training does not improve the dilating capacity any further.

  6. Wine and endothelial function.

    PubMed

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  7. Cholesteryl ester transfer protein inhibition enhances endothelial repair and improves endothelial function in the rabbit.

    PubMed

    Wu, Ben J; Shrestha, Sudichhya; Ong, Kwok L; Johns, Douglas; Hou, Liming; Barter, Philip J; Rye, Kerry-Anne

    2015-03-01

    High-density lipoproteins (HDLs) can potentially protect against atherosclerosis by multiple mechanisms, including enhancement of endothelial repair and improvement of endothelial function. This study asks if increasing HDL levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, enhances endothelial repair and improves endothelial function in New Zealand White rabbits with balloon injury of the abdominal aorta. New Zealand White rabbits received chow or chow supplemented with 0.07% or 0.14% (wt/wt) des-fluoro-anacetrapib for 8 weeks. Endothelial denudation of the abdominal aorta was carried out after 2 weeks. The animals were euthanized 6 weeks postinjury. Treatment with 0.07% and 0.14% des-fluoro-anacetrapib reduced cholesteryl ester transfer protein activity by 81±4.9% and 92±12%, increased plasma apolipoprotein A-I levels by 1.4±0.1-fold and 1.5±0.1-fold, increased plasma HDL-cholesterol levels by 1.8±0.2-fold and 1.9±0.1-fold, reduced intimal hyperplasia by 37±11% and 51±10%, and inhibited vascular cell proliferation by 25±6.1% and 35±6.7%, respectively. Re-endothelialization of the injured aorta increased from 43±6.7% (control) to 69±6.6% and 76±7.7% in the 0.07% and 0.14% des-fluoro-anacetrapib-treated animals, respectively. Aortic ring relaxation and guanosine 3',5'-cyclic monophosphate production in response to acetylcholine were also improved. Incubation of HDLs from the des-fluoro-anacetrapib-treated animals with human coronary artery endothelial cells increased cell proliferation and migration relative to control. These effects were abolished by knockdown of scavenger receptor-B1 and PDZ domain-containing protein 1 and by pharmacological inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt. Increasing HDL levels by inhibiting cholesteryl ester transfer protein reduces intimal thickening and regenerates functional endothelium in damaged New Zealand White rabbit aortas in an scavenger receptor-B1-dependent and phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt-dependent manner. © 2015 American Heart Association, Inc.

  8. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.

    PubMed

    Verjans, Johan W; Osborn, Eric A; Ughi, Giovanni J; Calfon Press, Marcella A; Hamidi, Ehsan; Antoniadis, Antonios P; Papafaklis, Michail I; Conrad, Mark F; Libby, Peter; Stone, Peter H; Cambria, Richard P; Tearney, Guillermo J; Jaffer, Farouc A

    2016-09-01

    This study sought to determine whether indocyanine green (ICG)-enhanced near-infrared fluorescence (NIRF) imaging can illuminate high-risk histologic plaque features of human carotid atherosclerosis, and in coronary atheroma of living swine, using intravascular NIRF-optical coherence tomography (OCT) imaging. New translatable imaging approaches are needed to identify high-risk biological signatures of atheroma. ICG is a U.S. Food and Drug Administration-approved NIRF imaging agent that experimentally targets plaque macrophages and lipid in areas of enhanced endothelial permeability. However, it is unknown whether ICG can target atheroma in patients. Eight patients were enrolled in the BRIGHT-CEA (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque) trial. Five patients were injected intravenously with ICG 99 ± 25 min before clinically indicated carotid endarterectomy. Three saline-injected endarterectomy patients served as control subjects. Excised plaques underwent analysis by intravascular NIRF-OCT, reflectance imaging, microscopy, and histopathology. Next, following ICG intravenous injection, in vivo intracoronary NIRF-OCT and intravascular ultrasound imaged 3 atheroma-bearing coronary arteries of a diabetic, cholesterol-fed swine. ICG was well tolerated; no adverse clinical events occurred up to 30 days post-injection. Multimodal NIRF imaging including intravascular NIRF-OCT revealed that ICG accumulated in all endarterectomy specimens. Plaques from saline-injected control patients exhibited minimal NIRF signal. In the swine experiment, intracoronary NIRF-OCT identified ICG uptake in all intravascular ultrasound-identified plaques in vivo. On detailed microscopic evaluation, ICG localized to plaque areas exhibiting impaired endothelial integrity, including disrupted fibrous caps, and within areas of neovascularization. Within human plaque areas of endothelial abnormality, ICG was spatially related to localized zones of plaque macrophages and lipid, and, notably, intraplaque hemorrhage. This study demonstrates that ICG targets human plaques exhibiting endothelial abnormalities and provides new insights into its targeting mechanisms in clinical and experimental atheroma. Intracoronary NIRF-OCT of ICG may offer a novel, clinically translatable approach to image pathobiological aspects of coronary atherosclerosis. (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque [BRIGHT-CEA]; NCT01873716). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Correlates of endothelial function and the peak systolic blood pressure response to a graded maximal exercise test.

    PubMed

    Olson, Kayla M; Augeri, Amanda L; Seip, Richard L; Tsongalis, Gregory J; Thompson, Paul D; Pescatello, Linda S

    2012-05-01

    An elevated systolic blood pressure (SBP) response to a graded maximal exercise stress test (GEST) may be a predictor of endothelial dysfunction and hypertension. We examined relationships among the GEST peak SBP response and indicators of endothelial function. Men (n=48, 43.7±1.4 yr) with high BP (145.1±1.5/85.5±1.1 mmHg) completed a GEST. Peak SBP was the highest SBP achieved during the GEST. Blood samples were taken for fasting glucose and insulin, nitric oxide (NO), and DNA. Endothelial nitric oxide synthase (NOS3, rs2070744) -786 T>C genotyping was determined by PCR. NOS3 genotypes were combined using a dominant model [TT (n=24); TC/CC (n=24)]. Brachial artery reactivity (BAR) was determined via ultrasound before, 1 min, and 3 min post occlusion and calculated as % change. Analysis of variance (ANOVA) tested changes in the peak SBP GEST response by NOS3 genotype. Multiple variable regression analyses examined relationships among the GEST peak SBP response and measures of endothelial function. %BAR change at 1 min (r(2)=0.093, p=0.020), glucose (r(2)=0.062, p=0.014), NOS3 -786 T>C (r(2)=0.040, p=0.024), NO (r(2)=0.037, p=0.064), and age (r(2)=0.009, p=0.014) explained 24.1% of the GEST peak SBP response (p=0.043). The GEST peak SBP change from baseline was 11.1±5.0 mmHg higher among those with the NOS3 C allele (92.4 mmHg+3.8) than the NOS3 TT genotype (81.3 mmHg+3.2) (p=0.03). Indicators of endothelial function appear to explain a clinically significant portion of the GEST peak SBP response. Further investigation is needed to unravel the mechanisms by which endothelial function influences the GEST peak SBP response. Published by Elsevier Ireland Ltd.

  10. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    PubMed

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  11. Inhibition of Endothelial Progenitor Cells May Explain the High Cardiovascular Event Rate in Patients with Rheumatoid Arthritis.

    PubMed

    Adawi, Mohamad; Pastuck, Nina; Saaida, Golan; Sirchan, Rizak; Watad, Abdalla; Blum, Arnon

    2018-05-16

    Rheumatoid arthritis (RA) patients may suffer cardiovascular (CV) events much more than the general population, and CV disease is the leading cause of death in patients with RA. Our hypothesis was that impaired function of endothelial progenitor cells may contribute to endothelial dysfunction and the clinical CV events of patients with RA. 27 RA patients (9 males and 18 females) with an active disease and 13 healthy subjects who served as the control group (9 males and 4 females) were enrolled to this prospective study. The ability to grow in culture colony-forming units of endothelial progenitor cells (CFU-EPCs) was measured, as well as their endothelial function using high-resolution ultrasonography of the brachial artery, and levels of C reactive protein (CRP) in the serum. For statistical analysis we used the students T-test test. As a group, patients with RA were older (p < 0.0001), had severe endothelial dysfunction (<0.0001), with impaired ability to grow CFU-EPCs (<0.0001), and a higher inflammatory state (p = 0001). No difference was observed in BMI. All RA patients had an active disease (DAS28 3.9±0.9) for 9.2±6.5 years. The same differences were observed in both genders. Patients with RA had an impaired ability to grow endothelial progenitor cells and severe endothelial dysfunction. Inability to grow colonies of endothelial progenitor cells reflects the impaired regenerative capacity of patients with RA, and may explain the endothelial dysfunction and the high CV event rate among patients with RA.

  12. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate themore » attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.« less

  13. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA.

    PubMed

    Boeckel, Jes-Niels; Jaé, Nicolas; Heumüller, Andreas W; Chen, Wei; Boon, Reinier A; Stellos, Konstantinos; Zeiher, Andreas M; John, David; Uchida, Shizuka; Dimmeler, Stefanie

    2015-10-23

    Circular RNAs (circRNAs) are noncoding RNAs generated by back splicing. Back splicing has been considered a rare event, but recent studies suggest that circRNAs are widely expressed. However, the expression, regulation, and function of circRNAs in vascular cells is still unknown. Here, we characterize the expression, regulation, and function of circRNAs in endothelial cells. Endothelial circRNAs were identified by computational analysis of ribo-minus RNA generated from human umbilical venous endothelial cells cultured under normoxic or hypoxic conditions. Selected circRNAs were biochemically characterized, and we found that the majority of them lacks polyadenylation, is resistant to RNase R digestion and localized to the cytoplasm. We further validated the hypoxia-induced circRNAs cZNF292, cAFF1, and cDENND4C, as well as the downregulated cTHSD1 by reverse transcription polymerase chain reaction in cultured endothelial cells. Cloning of cZNF292 validated the predicted back splicing of exon 4 to a new alternative exon 1A. Silencing of cZNF292 inhibited cZNF292 expression and reduced tube formation and spheroid sprouting of endothelial cells in vitro. The expression of pre-mRNA or mRNA of the host gene was not affected by silencing of cZNF292. No validated microRNA-binding sites for cZNF292 were detected in Argonaute high-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation data sets, suggesting that cZNF292 does not act as a microRNA sponge. We show that the majority of the selected endothelial circRNAs fulfill all criteria of bona fide circRNAs. The circRNA cZNF292 exhibits proangiogenic activities in vitro. These data suggest that endothelial circRNAs are regulated by hypoxia and have biological functions. © 2015 American Heart Association, Inc.

  14. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    PubMed

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    PubMed

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    PubMed

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  17. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells

    PubMed Central

    Sahara, Makoto; Hansson, Emil M; Wernet, Oliver; Lui, Kathy O; Später, Daniela; Chien, Kenneth R

    2014-01-01

    Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14−KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs. PMID:24810299

  18. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.

  19. Hydroquinone stimulates inflammatory functions in microvascular endothelial cells via NF-κB nuclear activation.

    PubMed

    Hebeda, Cristina Bichels; Pinedo, Fernanda Júdice; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Farsky, Sandra Helena Poliselli

    2011-11-01

    Hydroquinone impairs several leucocyte cell functions, which alter the immune response. Although endothelial cell functions are important for the development of immune responses, hydroquinone actions on endothelial cell have not been shown. Therefore, the effect of hydroquinone exposure (10 or 100 μM for 2 hr) on primary culture of microvascular endothelial cells (PMECs) obtained from the cremaster muscle of Wistar rats incubated in the presence or absence of lipopolysaccharide (LPS, 2 μg/mL) was investigated. Hydroquinone treatment induced the membrane expression of cell adhesion molecules (CAMs) from the immunoglobulin superfamilies ICAM-1 (intercellular), VCAM-1(vascular) and PECAM-1 (platelet endothelial) and induced the secretion of cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). The effects were dependent on transcriptional modifications because enhanced CAM mRNA expression as well as both cytokines and nuclear factor κB (NF-κB) nuclear activation was found. These effects may be due to the direct action of hydroquinone rather than its quinone metabolites, because endothelial cells do not present myeloperoxidase enzyme and hydroquinone incubation did not induce the expression of cytochrome P450 2E1 (CYP2E1) or prostaglandin H synthase 1. In addition, the incubation of endothelial cells with benzoquinone (10 μM, 2 hr) impaired PECAM-1 expression and did not modify NF-κB nuclear activation. Taken together, the data herein presented reveal that hydroquinone evokes pro-inflammatory properties in endothelial cells that are triggered by the enhancement of NF-κB nuclear translocation-dependent gene transcription. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  20. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  1. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    USDA-ARS?s Scientific Manuscript database

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  2. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism.

    PubMed

    Chang, Yi-Yao; Chen, Aaron; Chen, Ying-Hsien; Hung, Chi-Sheng; Wu, Vin-Cent; Wu, Xue-Ming; Lin, Yen-Hung; Ho, Yi-Lwun; Wu, Kwan-Dun

    2015-06-01

    Hypokalemia in primary aldosteronism (PA) patients correlates with higher levels of cardiovascular events and altered left ventricular geometry. However, the influence of aldosterone on microvascular endothelial function and the effect of hypokalemia on the vascular structure still remain unclear. We investigated the peripheral arterial functions, including the endothelial function of microvasculature and arterial stiffness in PA and essential hypertension (EH) patients, and the correlation between hypokalemia and peripheral arterial function among PA patients. Twenty patients diagnosed as EH and 37 patients with PA were enrolled in this study. Reactive hyperemia index (RHI) and the augmentation index (AI) were obtained by non-invasive peripheral arterial tonometry. Twenty EH patients and a total of 37 PA patients, including 21 patients with normokalemia and 16 patients with hypokalemia, were enrolled and divided into groups 1, 2 and 3 respectively. PA patients had significantly higher AI (p=0.024) but not RHI than EH patients. RHI showed no difference between groups 1, 2 and 3. Group 3 had higher AI than either group 1 or group 2. In the whole study population, serum potassium level, after multivariate regression analysis testing, was the only factor associated with AI (ß= -0.102; p=0.002). In PA patients, serum potassium level was the only significant factor correlated with AI. (r= -0.458; p=0.004) CONCLUSIONS: PA patients had higher arterial stiffness but comparable microvascular endothelial function to EH patients. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in PA patients. © The Author(s) 2014.

  3. Cardiovascular disease in the polycystic ovary syndrome: new insights and perspectives.

    PubMed

    Cussons, Andrea J; Stuckey, Bronwyn G A; Watts, Gerald F

    2006-04-01

    The new millennium has brought intense focus of interest on the risk of cardiovascular disease in women. The polycystic ovary syndrome (PCOS) is a common endocrine disorder in women characterised by hyperandrogenism and oligomenorrhoea. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Echocardiography, imaging of coronary and carotid arteries, and assessments of both endothelial function and arterial stiffness have recently been employed to address this question. These studies have collectively demonstrated both structural and functional abnormalities of the cardiovascular system in PCOS. These alterations, however, appear to be related to the presence of individual cardiovascular risk factors, particularly insulin resistance, rather than to the presence of PCOS and hyperandrogenaemia per se. However, given the inferential nature of the evidence to date, more rigorous cohort studies of long-term cardiovascular outcomes and clinical trials of risk factor modification are required in women with PCOS.

  4. Physiologically assessed hot flashes and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P < 0.05) indicated that among the younger tertile of women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  5. Reduced neural baroreflex sensitivity is related to enhanced endothelial function in patients with end-stage liver disease.

    PubMed

    Sárközi, Adrienn; Cseh, Domonkos; Gerlei, Zsuzsanna; Kollai, Márk

    2018-02-01

    Reduced baroreflex sensitivity (BRS) is a frequent complication in end-stage liver disease, but the underlying mechanism is unknown. We investigated the mechanical and neural components of BRS. Increased nitric oxide (NO) production has been reported in end-stage liver failure. Based on earlier experiments, we hypothesised that enhanced endothelial function might affect baroreflex function. Therefore, we explored the relation between endothelial function and the components of BRS. We enrolled 24 patients and 23 controls. BRS was determined by the spontaneous sequence method. Mechanical component was characterised by the distensibility coefficient (DC) of common carotid artery. Neural component was estimated as the ratio of integrated BRS and DC. Endothelial function was quantified by flow-mediated dilation (FMD) of the brachial artery. Integrated BRS was reduced in patients [7.00 (5.80-9.25) vs. 11.1 (8.50-14.80) ms/mmHg]. The mechanical component was not different in the two groups, whereas neural component showed significant reduction in patients (3.54 ± 1.20 vs. 4.48 ± 1.43 ms/10 -3 ). FMD was higher in patients (9.81 ± 3.77 vs. 5.59 ± 1.36%). FMD and neural BRS were directly related in controls (r = 0.62), but inversely related in patients (r = -0.49). Baroreflex impairment in end-stage liver disease might be explained by deterioration of the neural component, while the mechanical component appears to be preserved. Endothelial NO may enhance BRS in health; however, central endothelial overproduction of NO likely contributes to the reduction of neural component of BRS in patients awaiting liver transplantation.

  6. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.

    2014-01-01

    The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821

  7. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    PubMed

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Role of splenic reservoir monocytes in pulmonary vascular monocyte accumulation in experimental hepatopulmonary syndrome

    PubMed Central

    Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian

    2016-01-01

    Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414

  9. Hepatic inclusions during interferon therapy in chronic viral hepatitis.

    PubMed

    Schaff, Z; Hoofnagle, J H; Grimley, P M

    1986-01-01

    Two types of cytomembranous abnormalities were identified for the first time in liver biopsies from patients with chronic active type B hepatitis during treatment with recombinant alpha-interferon. Tubuloreticular inclusions were present in the hepatic endothelial cells, Kupffer cells and perisinusoidal cells of liver biopsies from both patients, and they were absent in liver biopsies obtained before treatment. Cylindrical confronting lamellae, having "test tube" or "ring-shape" forms were observed in the cytoplasm both of Kupffer cells and macrophages in the second liver biopsy of one of the patients. The findings suggest that interferon can be involved in the pathogenesis of both cytomembranous abnormalities, but that additional biological factors may play a role in formation of the cylindrical confronting lamellae.

  10. Emerging role of thalidomide in the treatment of gastrointestinal bleeding.

    PubMed

    McFarlane, Michael; O'Flynn, Lauren; Ventre, Rachel; Disney, Benjamin R

    2018-04-01

    Thalidomide was initially synthesised in 1954 and marketed as a sedative and antiemetic for morning sickness. It was withdrawn in 1961 due to the realisation that it was teratogenic with over 10 000 children born with congenital abnormalities. Since then it has been used for treatment of dermatological and oncological conditions, including myeloma. In 1994, it was found to have a potent antiangiogenic effect via downregulation of vascular endothelial growth factor (VEGF). This has led to its use in gastrointestinal bleeding, as vascular abnormalities such as angiodysplasia have been found to have elevated VEGF levels. This article will review the current evidence of the use of thalidomide in bleeding associated with gastrointestinal vascular malformations, including angiodysplasia, gastric cancer and radiation-induced proctitis.

  11. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube lengthmore » by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.« less

  12. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications

    PubMed Central

    Toda, Noboru; Nakanishi, Sadanobu; Tanabe, Shinichi

    2013-01-01

    Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ETA receptor–mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca2+ flux through T-type Ca2+ channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ETA receptor antagonists and T-type Ca2+ channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism. PMID:23190073

  13. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood–brain barrier permeability

    PubMed Central

    De Bock, Marijke; Culot, Maxime; Wang, Nan; Bol, Mélissa; Decrock, Elke; De Vuyst, Elke; da Costa, Anaelle; Dauwe, Ine; Vinken, Mathieu; Simon, Alexander M; Rogiers, Vera; De Ley, Gaspard; Evans, William Howard; Bultynck, Geert; Dupont, Geneviève; Cecchelli, Romeo; Leybaert, Luc

    2011-01-01

    The cytoplasmic Ca2+ concentration ([Ca2+]i) is an important factor determining the functional state of blood–brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca2+]i changes on BBB function. We applied different agonists that trigger [Ca2+]i oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca2+]i oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca2+]i with BAPTA, indicating that [Ca2+]i oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca2+]i oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca2+]i oscillations provoked by exposure to adenosine 5′ triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations. PMID:21654699

  14. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  15. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    PubMed

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.

  16. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients.

    PubMed

    Scotti, Leopoldina; Parborell, Fernanda; Irusta, Griselda; De Zuñiga, Ignacio; Bisioli, Claudio; Pettorossi, Hernan; Tesone, Marta; Abramovich, Dalhia

    2014-08-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, and is characterized by abnormalities in ovarian angiogenesis, among other features. Consistent with this association, follicular fluid (FF) concentration and ovarian expression of vascular endothelial growth factor (VEGF) are increased in PCOS patients. In this study, we examined the protein levels of platelet-derived growth factor (PDGF) BB and DD (PDGFBB and PDGFDD), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), and their soluble receptor sTIE2 in FF from PCOS and control patients undergoing assisted reproductive techniques. We also analyzed the effect of FF from PCOS and control patients on tight and adherens junction protein expression in an endothelial cell line. PDGFBB and PDGFDD were significantly lower whereas ANGPT1 concentration was significantly higher in FF from PCOS patients than from control patients. No changes were found in the concentration of ANGPT2 or sTIE2. Expression of claudin-5 was significantly increased in endothelial cells incubated for 24 hr in the presence of FF from PCOS versus from control patients, while vascular-endothelial cadherin, β-catenin, and zonula occludens 1 expression were unchanged. The changes observed in the levels of PDGF isoforms and ANGPT1 may prevent VEGF-induced vascular permeability in the PCOS ovary by regulating endothelial-cell-junction protein levels. Restoring the levels of angiogenic factors may provide new insights into PCOS treatment and the prevention of ovarian hyperstimulation syndrome in affected women. © 2014 Wiley Periodicals, Inc.

  18. Markers of Vascular Perturbation Correlate with Airway Structural Change in Asthma

    PubMed Central

    Kruger, Stanley J.; Schiebler, Mark L.; Evans, Michael D.; Sorkness, Ronald L.; Denlinger, Loren C.; Busse, William W.; Jarjour, Nizar N.; Montgomery, Robert R.; Mosher, Deane F.; Fain, Sean B.

    2013-01-01

    Rationale: Air trapping and ventilation defects on imaging are characteristics of asthma. Airway wall thickening occurs in asthma and is associated with increased bronchial vascularity and vascular permeability. Vascular endothelial cell products have not been explored as a surrogate to mark structural airway changes in asthma. Objectives: Determine whether reporters of vascular endothelial cell perturbation correlate with airway imaging metrics in patients with asthma of varying severity. Methods: Plasma from Severe Asthma Research Program subjects was analyzed by ELISAs for soluble von Willebrand factor mature protein (VWF:Ag) and propeptide (VWFpp), P-selectin, and platelet factor 4. Additional subjects were analyzed over 48 hours after whole-lung antigen challenge. We calculated ventilation defect volume by hyperpolarized helium-3 magnetic resonance imaging and areas of low signal density by multidetector computed tomography (less than −856 Hounsfield units [HU] at functional residual capacity and −950 HU at total lung capacity [TLC]). Measurements and Main Results: VWFpp and VWFpp/Ag ratio correlated with and predicted greater percentage defect volume on hyperpolarized helium-3 magnetic resonance imaging. P-selectin correlated with and predicted greater area of low density on chest multidetector computed tomography less than −950 HU at TLC. Platelet factor 4 did not correlate. Following whole-lung antigen challenge, variation in VWFpp, VWFpp/Ag, and P-selectin among time-points was less than that among subjects, indicating stability and repeatability of the measurements. Conclusions: Plasma VWFpp and P-selectin may be useful as surrogates of functional and structural defects that are evident on imaging. The results raise important questions about why VWFpp and P-selectin are associated specifically with different imaging abnormalities. PMID:23855693

  19. Urban air pollution: influences on olfactory function and pathology in exposed children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8+/-8.5 years were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC/25 controls 21.2+/-2.7 years. MC subjects had significantly lower UPSIT scores: 34.24+/-0.42 versus controls 35.76+/-0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE epsilon 4 carriers failed 2.4+/-0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36+/-0.16 items, p=0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid betaA(42) (29/35) and/or alpha-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. Copyright 2009 Elsevier GmbH. All rights reserved.

  20. A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development

    PubMed Central

    Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.

    2003-01-01

    Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999

  1. Phosphodiesterase-3 inhibitor cilostazol reverses endothelial dysfunction with ageing in rat mesenteric resistance arteries.

    PubMed

    Moreira, Hicla S; Lima-Leal, Geórgia A; Santos-Rocha, Juliana; Gomes-Pereira, Leonardo; Duarte, Gloria P; Xavier, Fabiano E

    2018-03-05

    Ageing impairs endothelial function, which is considered a hallmark of the development of cardiovascular diseases in elderly. Cilostazol, a phosphodiesterase-3 inhibitor, has antiplatelet, antithrombotic and protective effects on endothelial cells. Here, we hypothesized that cilostazol could improve endothelial function in mesenteric resistance arteries (MRA) from old rats. Using eight-week cilostazol-treated (100mg/kg/day) or untreated 72-week-old Wistar rats, we evaluate the relaxation to acetylcholine, sodium nitroprusside (SNP), forskolin and isoproterenol and the noradrenaline-induced contraction in MRA. Superoxide anion and nitric oxide (NO) was measured by dihydroethidium- and diaminofluorescein-2-emitted fluorescence, respectively. Normotensive old rats had impaired acetylcholine-induced NO- and EDHF-mediated relaxation and increased noradrenaline vasoconstriction than young rats. This age-associated endothelial dysfunction was restored by cilostazol treatment. Relaxation to SNP, forskolin or isoproterenol remained unmodified by cilostazol. Diaminofluorescein-2-emitted fluorescence was increased while dihydroethidium-emitted was decreased by cilostazol, indicating increased NO and reduced superoxide generation, respectively. Cilostazol improves endothelial function in old MRA without affecting blood pressure. This protective effect of cilostazol could be attributed to reduced oxidative stress, increased NO bioavailability and EDHF-type relaxation. Although these results are preliminary, we believe that should stimulate further interest in cilostazol as an alternative for the treatment of age-related vascular disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells

    PubMed Central

    Corre, Isabelle; Paris, François; Huot, Jacques

    2017-01-01

    By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process. PMID:28903453

  3. A novel immunotoxin reveals a new role for CD321 in endothelial cells

    PubMed Central

    Kim, Jia; Hokaiwado, Shintaro; Nawa, Makiko; Okamoto, Hayato; Kogiso, Tomohiko; Watabe, Tetsuro; Hattori, Nobutaka

    2017-01-01

    There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy. PMID:29028806

  4. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  5. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    PubMed

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  7. Abnormal neutrophil-pulmonary interaction in the adult respiratory distress syndrome. Qualitative and quantitative assessment of pulmonary neutrophil kinetics in humans with in vivo /sup 111/indium neutrophil scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshawski, F.J.; Sibbald, W.J.; Driedger, A.A.

    1986-05-01

    In the absence of direct toxins, the majority of evidence from animal models suggests that neutrophils (PMN) are necessary for the full expression of the abnormal pulmonary permeability accompanying acute microvascular lung injury. We therefore studied the role of the PMN in the human correlate of this disease, the adult respiratory distress syndrome (ARDS), by assessing the pulmonary retention of infused autologous /sup 111/Indium-labeled PMN (PMN-In). We evaluated 79 patients, prospectively categorized as: active ARDS (Aa; n = 30), active ARDS and concurrent corticosteroid therapy (As; n = 11), resolving ARDS (Ar; n = 13), sepsis without pulmonary edema (S;more » n = 7), and cardiac pulmonary edema (C; n = 18). This clinical separation was confirmed by retrospective analysis of associated measures of hemodynamic and respiratory dysfunction. We found that both analog scintigrams (positive/negative for diffuse pulmonary PMN-In sequestration) and computer-assisted quantitative analysis in 46 patients (T 1/2 of first hour demargination and percentage of peak activity/pixel/second remaining at 17 to 20 h) showed a significant rank order decrease in the pulmonary retention of labeled PMN-In through the Groups Aa----As----S----Ar----C. Our findings recognized aspects of in vivo PMN-In behavior that implied pathophysiologic differences between groups of critically ill patients in either the PMN themselves or in PMN-pulmonary endothelial interaction. This demonstrates the possibility of abnormal in vivo PMN-endothelial interaction in ARDS by virtue of the greater pulmonary localization of PMN in active ARDS versus resolving disease, septic non-ARDS states, and cardiac pulmonary edema.« less

  8. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  9. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainlymore » mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.« less

  10. Poor oral health, that is, decreased frequency of tooth brushing, is associated with endothelial dysfunction.

    PubMed

    Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Matsumoto, Takeshi; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Taguchi, Akira; Noma, Kensuke; Higashi, Yukihito

    2014-01-01

     Poor oral health is an independent predictor of cardiovascular outcome. Endothelial dysfunction is the initial step of atherosclerosis, resulting in cardiovascular outcomes; but there is no information on the association between oral health and endothelial function. The purpose of this study was to determine the relationships between oral health and endothelial function.  A total of 190 subjects who underwent health examinations (mean age, 57±18 years), including patients with cardiovascular disease, completed a questionnaire on oral health and frequency of tooth brushing, and underwent measurement of vascular function, flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation. The subjects were divided into 2 groups according to frequency of tooth brushing (≥twice/day and

  11. Carbohydrates and Endothelial Function: Is a Low-Carbohydrate Diet or a Low-Glycemic Index Diet Favourable for Vascular Health?

    PubMed Central

    Jovanovski, Elena; Zurbau, Andreea

    2015-01-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727

  12. Carbohydrates and endothelial function: is a low-carbohydrate diet or a low-glycemic index diet favourable for vascular health?

    PubMed

    Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir

    2015-04-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.

  13. Isoflavone supplementation and endothelial function in menopausal women.

    PubMed

    Hale, Georgina; Paul-Labrador, Maura; Dwyer, James H; Merz, C Noel Bairey

    2002-06-01

    Despite strong observational evidence for a beneficial role of oestrogen in cardiovascular disease, recent trial results suggest that hormone replacement therapy (HRT) may have adverse effects in menopausal women with established coronary heart disease. Isoflavones are oestrogen analogues found in plants with oestrogen-like properties and, because of a favourable side-effect profile, may be ideal alternatives to HRT with respect to cardiovascular benefits. Endothelial function is a marker of cardiovascular health. We aimed to determine the effect of isoflavones on endothelial function using the brachial artery reactivity test. Twenty-nine healthy menopausal women underwent entry and exit brachial artery reactivity testing following randomization to 2 weeks of an oral soy isoflavone concentrate containing 80 mg of soy isoflavones (Archer Daniel Midland Inc., IL, USA) or placebo. At study exit, there was no difference between placebo and isoflavone groups with respect to flow-mediated dilation (%FMD(max)), change (entry to exit) in %FMD(max) or response to nitroglycerine (%TNG). Subgroup analyses assessing lipid and oestrogen effects did not produce any significant results. These results suggest that short-term oral isoflavone supplements do not improve endothelial function in healthy menopausal women.

  14. Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.

    PubMed

    Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H

    2018-05-01

    Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.

  15. Functional hypothalamic amenorrhea and its influence on women's health.

    PubMed

    Meczekalski, B; Katulski, K; Czyzyk, A; Podfigurna-Stopa, A; Maciejewska-Jeske, M

    2014-11-01

    Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea. There are three types of FHA: weight loss-related, stress-related, and exercise-related amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. The aim of this work is to review the available data concerning the effects of FHA on different aspects of women's health. Functional hypothalamic amenorrhea is related to profound impairment of reproductive functions including anovulation and infertility. Women's health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects. FHA patients should be carefully diagnosed and properly managed to prevent both short- and long-term medical consequences.

  16. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360

  17. Gestational diabetes, preeclampsia and cytokine release: similarities and differences in endothelial cell function.

    PubMed

    Rao, Rashmi; Sen, Suvajit; Han, Bing; Ramadoss, Sivakumar; Chaudhuri, Gautam

    2014-01-01

    Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy affects the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. Similarly, some but not all studies have suggested that infection of the mother under certain circumstances can also lead to preeclampsia as women with either a bacterial or viral infection were at a higher risk of developing preeclampsia, compared to women without infection and infection also leads to a release in TNFα. Endothelial cells exposed to either high glucose or TNFα leads to an increase in the production of H2O2 and to a decrease in endothelial cell proliferation. The cellular and molecular mechanisms involved in this phenomenon are discussed.Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy has profound effects on the fetus and long term effects on the neonate. All three conditions affect the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. It has also been suggested although not universally accepted that under certain circumstances maternal infection may also predispose to pre-eclampsia. Pre-eclampsia is also associated with the release of TNFα and endothelial dysfunction. However, the cellular and molecular mechanism(s) leading to the endothelial dysfunction by either hyperglycemia or by the cytokine TNFα appear to be different. In this chapter, we explore some of the similarities and differences leading to endothelial dysfunction by both hyperglycemia and by the inflammatory cytokine TNFα and the cellular and molecular mechanism(s) involved.

  18. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    PubMed

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the recruitment of endothelial progenitor cells was decreased in the non-treated SHR and partially restored by kefir treatment. Kefir treatment for 60 days was able to improve the endothelial function in SHR by partially restoring the ROS/NO imbalance and the endothelial architecture due to endothelial progenitor cells recruitment.

  19. Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey.

    PubMed

    Thoma, Eva C; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph

    2016-10-25

    Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.

  20. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study.

    PubMed

    Flint, Nir; Hamburg, Naomi M; Holbrook, Monika; Dorsey, Pamela G; LeLeiko, Rebecca M; Berger, Alvin; de Cock, Peter; Bosscher, Douwina; Vita, Joseph A

    2014-01-01

    Sugar substitutes are important in the dietary management of diabetes mellitus. Erythritol is a non-caloric dietary bulk sweetener that reverses endothelial dysfunction in diabetic rats. We completed a pilot study to examine the effects of erythritol on vascular function in patients with type 2 diabetes mellitus. Participants (n = 24) consumed erythritol 36 g/day as an orange-flavored beverage for 4 weeks and a single dose of 24 g during the baseline and final visits. We assessed vascular function before and after acute (2 h) and chronic (4 weeks) erythritol consumption. Acute erythritol improved endothelial function measured by fingertip peripheral arterial tonometry (0.52 ± 0.48 to 0.87 ± 0.29 au, P = 0.005). Chronic erythritol decreased central pulse pressure (47 ± 13 to 41 ± 9 mmHg, P = 0.02) and tended to decrease carotid-femoral pulse wave velocity (P = 0.06). Thus, erythritol consumption acutely improved small vessel endothelial function, and chronic treatment reduced central aortic stiffness. Erythritol may be a preferred sugar substitute for patients with diabetes mellitus.

  1. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  2. Anger, depression and anxiety associated with endothelial function in childhood and adolescence.

    PubMed

    Osika, W; Montgomery, S M; Dangardt, F; Währborg, P; Gan, L M; Tideman, E; Friberg, P

    2011-01-01

    Psychosocial adversity is a risk factor for cardiovascular disease (CVD) in adults. The authors assessed associations of reactive hyperaemia peripheral arterial tonometry (RH-PAT), a measure of endothelial function predictive of CVD, with self-assessed psychological health among school children. A total of 248 healthy school children (mean (SD) age 14.0 (1.0); 136 girls and 112 boys) underwent RH-PAT testing. They completed the Beck Youth Inventories (BYI) of emotional and social impairment scales, which is used to screen for depression, anxiety, anger and disruptive behaviour. No sex differences were observed for the RH-PAT score. Statistically significant differences were observed for the BYI scores; girls had higher scores for depression, anger and anxiety. Among the girls, there were statistically significant associations between lower RH-PAT scores and higher scores for anger (B coefficient=-0.100, p=0.040), depression (-0.108, p=0.009) and anxiety (-0.138, p=0.039) after adjustment for age. Among the boys, disruptive behaviour was associated with higher RH-PAT scores (0.09, p=0.006). The girls have higher levels of self-assessed anger; depression and anxiety compared with the boys, and these characteristics are associated with lower RH-PAT scores, indicating attenuated endothelial function. Among the boys, disruptive behaviour was associated with better endothelial function. Although psychological ill-health is associated with impaired endothelial function and CVD among adults, such processes may also be relevant to children. Psychosocial adversity in childhood might be a risk factor for subsequent CVD.

  3. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women.

    PubMed

    Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A

    2015-06-01

    Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.

  4. Acute EGCG Supplementation Reverses Endothelial Dysfunction in Patients with Coronary Artery Disease

    PubMed Central

    Widlansky, Michael E.; Hamburg, Naomi M.; Anter, Elad; Holbrook, Monika; Kahn, David F.; Elliott, James G.; Keaney, John F.; Vita, Joseph A.

    2013-01-01

    Background Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. Objective We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. Design We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. Results A total of 42 subjects were enrolled, and brachial artery flow-mediated dilation improved from 7.1±4.1 to 8.6±4.7% two hours after the first dose of 300mg of EGCG (P=0.01), but was similar to baseline (7.8±4.2%, P=0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6±10.9 to 92.8±78.7 ng/ml after acute EGCG (P<0.001), but were unchanged from baseline after two weeks of treatment (3.4±13.1 ng/ml). Conclusion EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function. PMID:17536120

  5. New assessment of endothelial function measured by short time flow-mediated vasodilation: Comparison with conventional flow-mediated vasodilation measurement.

    PubMed

    Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Hashimoto, Haruki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Yusoff, Farina Mohamad; Kishimoto, Shinji; Nakashima, Ayumu; Noma, Kensuke; Kawaguchi, Tomohiro; Matsumoto, Takeo; Higashi, Yukihito

    2018-05-04

    Measurement of flow-mediated vasodilation (FMD) is an established method for assessing endothelial function. Measurement of FMD is useful for showing the relationship between atherosclerosis and endothelial function, mechanisms of endothelial dysfunction, and clinical implications including effects of interventions and cardiovascular events. To shorten and simplify the measurement of FMD, we have developed a novel technique named short time FMD (stFMD). We investigated the validity of stFMD for assessment of endothelial function compared with conventional FMD. We evaluated stFMD and conventional FMD in 82 subjects including patients with atherosclerotic risk factors and cardiovascular disease (66 men and 16 women, 57 ± 16 years). Both stFMD and conventional FMD were significantly correlated with age, systolic blood pressure, diastolic blood pressure and baseline brachial artery diameter. In addition, stFMD was significantly correlated with conventional FMD (r = 0.76, P < 0.001). Bland-Altman plot analysis showed good agreement between stFMD and conventional FMD. Moreover, stFMD in the at risk group and that in the cardiovascular disease group were significantly lower than that in the no risk group (4.6 ± 2.3% and 4.4 ± 2.2% vs. 7.3 ± 1.9%, P < 0.001, respectively). Optimal cutoff value of stFMD for diagnosing atherosclerosis was 7.0% (sensitivity of 71.0% and specificity of 85.0%). These findings suggest that measurement of stFMD, a novel and simple method, is useful for assessing endothelial function. Measurement of stFMD may be suitable for screening of atherosclerosis when repeated measurements of vascular function are required and when performing a clinical trial using a large population. URL for Clinical Trial: http://UMIN; Registration Number for Clinical Trial: UMIN000025458. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers.

    PubMed

    Boon, Evan A J; Croft, Kevin D; Shinde, Sujata; Hodgson, Jonathan M; Ward, Natalie C

    2017-09-20

    A diet rich in plant polyphenols has been suggested to reduce the incidence of cardiovascular disease and type 2 diabetes mellitus, in part, via improvements in endothelial function. Coffee is a rich source of phenolic compounds including the phenolic acid, chlorogenic acid (CGA). The aim of the study was to investigate the effect of coffee as a whole beverage on endothelial function, blood pressure and blood glucose concentration. Twelve healthy men and women were recruited to a randomised, placebo-controlled, cross-over study, with three treatments tested: (i) 18 g of ground caffeinated coffee containing 300 mg CGA in 200 mL of hot water, (ii) 18 g of decaffeinated coffee containing 287 mg CGA in 200 mL of hot water, and (iii) 200 mL of hot water (control). Treatment beverages were consumed twice, two hours apart, with the second beverage consumed simultaneously with a 75 g glucose load. Blood pressure was recorded and the finger prick glucose test was performed at time = 0 and then every 30 minutes up to 2 hours. Endothelial function, assessed using flow-mediated dilatation (FMD) of the brachial artery, was measured at 1 hour and a blood sample taken at 2 hours to measure plasma nitrate/nitrite and 5-CGA concentrations. The FMD response was significantly higher in the caffeinated coffee group compared to both decaffeinated coffee and water groups (P < 0.001). There was no significant difference in the FMD response between decaffeinated coffee and water. Blood glucose concentrations and blood pressure were not different between the three treatment groups. In conclusion, the consumption of caffeinated coffee resulted in a significant improvement in endothelial function, but there was no evidence for benefit regarding glucose metabolism or blood pressure. Although the mechanism has yet to be elucidated the results suggest that coffee as a whole beverage may improve endothelial function, or that caffeine is the component of coffee responsible for improving FMD.

  7. Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: The FAITH randomized clinical trial

    PubMed Central

    Larijani, Vahid Nabavi; Ahmadi, Naser; Zeb, Irfan; Khan, Faraz; Flores, Ferdinand; Budoff, Matthew

    2014-01-01

    Objective Aged garlic extract (AGE) is associated with a significant decrease in atherosclerotic plaque progression and endothelial function improvement. Similarly, coenzyme Q10 (CoQ10) has significant beneficial effects on endothelial function. A stressful lifestyle is a well-known risk factor for the presence and progression of atherosclerosis. This study investigated the effect of AGE plus CoQ10 on vascular elasticity measured by pulse-wave velocity (PWV) and endothelial function measured by digital thermal monitoring (DTM) in firefighters. Methods Sixty-five Los-Angeles County firefighters who met the eligibility criteria were enrolled in this placebo-controlled, double-blinded randomized trial. The firefighters were randomized to four tablets of AGE (300 mg/tablet) plus CoQ10 (30 mg/tablet) or placebo. The participants underwent quarterly visits and 1-year follow-up. PWV and DTM were measured at baseline and at the 1-year follow-up. Results There were no significant differences in age, cardiovascular risk factors, PWV, and DTM between the AGE/CoQ10 and placebo groups at baseline (P > 0.5). At 1-y, PWV and DTM significantly improved in the AGE/CoQ10 compared with the placebo group (P < 0.05). After an adjustment for cardiovascular risk factors and statin therapy, the mean decrease in vascular stiffness (PWV) was 1.21 m/s in the AGE/CoQ10 compared with the placebo group (P = 0.005). Similarly, the mean increase in the area under the temperature curve, the DTM index of endothelial function, was 31.3 in the AGE/CoQ10 compared with the placebo group (P = 0.01). Conclusion The combination of AGE and CoQ10 was independently associated with significant beneficial effects on vascular elasticity and endothelial function in firefighters with high occupational stress, highlighting the important role of AGE and CoQ10 in atherosclerotic prevention of such individuals. PMID:22858191

  8. Impaired postprandial endothelial function depends on the type of fat consumed by healthy men.

    PubMed

    Berry, Sarah E E; Tucker, Sally; Banerji, Radhika; Jiang, Benyu; Chowienczyk, Phillip J; Charles, Sonia M; Sanders, Thomas A B

    2008-10-01

    Postprandial lipemia impairs endothelial function possibly via an oxidative stress mechanism. A stearic acid-rich triacylglycerol (TAG) (shea butter) results in a blunted postprandial increase in plasma TAG compared with an oleic acid-rich TAG; however, its acute effects on endothelial function and oxidative stress are unknown. A randomized crossover trial (n = 17 men) compared the effects of 50 g fat, rich in stearic acid [shea butter blend (SA)] or oleic acid [high oleic sunflower oil (HO)], on changes in endothelial function [brachial artery flow-mediated dilatation (FMD)], arterial tone [pulse wave analysis (PWA), and carotid-femoral pulse wave velocity (PWV(c-f))], and oxidative stress (plasma 8-isoprostane F2alpha) at fasting and 3 h following the test meals. The postprandial increase in plasma TAG was lower (66% lower incremental area under curve) following the SA meal [28.3 (9.7, 46.9)] than after the HO meal [83.4 (57.0, 109.8); P < 0.001] (geometric means with 95% CI, arbitary units). Following the HO meal, there was a decrease in FMD [-3.0% (-4.4, -1.6); P < 0.001] and an increase in plasma 8-isoprostane F2alpha [10.4ng/L (3.8, 16.9); P = 0.005] compared with fasting values, but no changes followed the SA meal. The changes in 8-isoprostane F2alpha and FMD differed between meals and were 14.0 ng/L (6.4, 21.6; P = 0.001) and 1.75% (0.10, 3.39; P = 0.02), respectively. The reductions in PWA and PWV c-f did not differ between meals. This study demonstrates that a stearic acid-rich fat attenuates the postprandial impairment in endothelial function compared with an oleic acid-rich fat and supports the hypothesis that postprandial lipemia impairs endothelial function via an increase in oxidative stress.

  9. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    PubMed

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  10. Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility.

    PubMed

    Zhang, Kun; Chen, Jun-ying; Qin, Wei; Li, Jing-an; Guan, Fang-xia; Huang, Nan

    2016-04-01

    The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.

  11. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

    PubMed Central

    Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A

    2018-01-01

    Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648

  12. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  13. Levels of Soluble Adhesion Molecules PECAM-1 and P-Selectin are Decreased in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul

    2012-01-01

    Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029

  14. Hypothesis: Pentoxifylline explores new horizons in treatment of preeclampsia.

    PubMed

    Azimi, Arsalan; Ziaee, Seyyed Mohyeddin; Farhadi, Pouya; Sagheb, Mohammad Mahdi

    2015-10-01

    Preeclampsia, the leading cause of maternal morbidity and perinatal mortality, initiates as inappropriate immune response to trophoblastic invasion impairs placentation and placental circulation. A poorly perfused placenta generates superoxide anions as well as anti-angiogenic factors and this series of events result in impairment of endothelial function, followed by maternal morbidities such as hypertension, kidney injury and proteinuria. Renal loss of anti-coagulant proteins and subsequent hyper-coagulable state along with endothelial dysfunction accelerates progression of the disease toward eclampsia. Since Pentoxifylline, a methyl-xanthine derivative known for enhancement of vascular endothelial function, down-regulation of many inflammatory cytokines increased during preeclampsia, improvement of placental circulation, reduction of ischemia-reperfusion injury, enhancement of vasodilatation and endothelial function, ameliorating proteinuria, inhibition of platelet aggregation and decreasing risk of preterm labor, which are all amongst morbidities of preeclampsia, here it is hypothesized that Pentoxifylline prevents development of preeclampsia and/or decelerate progression of the disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake.

    PubMed

    Bode, Gerard H; Coué, Gregory; Freese, Christian; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; van Winden, Ewoud C; Tziveleka, Leto-Aikaterini; Sideratou, Zili; Engbersen, Johan F J; Singh, Smriti; Albrecht, Krystyna; Groll, Jürgen; Möller, Martin; Pötgens, Andy J G; Schmitz, Christoph; Fröhlich, Eleonore; Grandfils, Christian; Sinner, Frank M; Kirkpatrick, C James; Steinbusch, Harry W M; Frank, Hans-Georg; Unger, Ronald E; Martinez-Martinez, Pilar

    2017-04-01

    Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells.

    PubMed

    Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying

    2017-07-01

    Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  18. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    PubMed Central

    Ali, Saher F.; Woodman, Owen L.

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function. PMID:26075031

  19. The Effect of the Oral Administration of Leucine on Endothelial Function, Glucose and Insulin Concentrations in Healthy Subjects.

    PubMed

    Argyrakopoulou, Georgia; Kontrafouri, Paraskevi; Eleftheriadou, Ioanna; Kokkinos, Alexander; Arapostathi, Christina; Kyriaki, Despoina; Perrea, Despoina; Revenas, Constantinos; Katsilambros, Nicholas; Tentolouris, Nicholas

    2018-06-11

    The aim of our study was to investigate the potential differential effect of hyperglycaemia and hyperinsulinaemia induced by glucose infusion alone and in combination with leucine consumption on endothelial function in healthy individuals. Ten male volunteers were examined in random order twice. In one visit, they consumed 250 ml water (baseline) and 30 min later glucose was infused iv. In the other visit, they consumed 250 ml water with 25 g of leucine and 30 min later the same amount of glucose was infused. Serum glucose and insulin were measured at baseline and every 10 min after glucose infusion for 1 h. Endothelial function was evaluated by measurement of flow mediated vasodilatation (FMD) at baseline, 10 and 60 min after glucose infusion. In both visits, glucose levels increased to the same degree, whereas insulin response was significantly higher after leucine administration. FMD values declined significantly compared to baseline 10 min after glucose infusion in the control visit (6.9±2.7 vs. 3.2±3.5%, respectively, p=0.006), while no significant change was observed when glucose infusion was followed by leucine consumption. Acute hyperglycaemia impairs endothelial function in healthy male individuals. Leucine administration prevents hyperglycaemia-mediated endothelial dysfunction probably due to enhanced insulin secretion. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress.

    PubMed

    Ali, Saher F; Woodman, Owen L

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function.

  1. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation.

    PubMed

    Kappus, Rebecca M; Bunsawat, Kanokwan; Rosenberg, Alexander J; Fernhall, Bo

    2017-03-01

    This study investigated the effects of acute antioxidant supplementation on endothelial function, exercise blood flow and oxidative stress biomarkers in 9 young African American compared to 10 Caucasian males (25.7±1.2 years). We hypothesized that African American males would have lower exercise blood flow and endothelial responsiveness compared to Caucasian males, and these responses would be improved following antioxidant supplementation. Ultrasonography was used to measure blood flow during handgrip exercise. Endothelial function was assessed using flow-mediated dilation, and lipid peroxidation was assessed by measuring levels of malondialdehyde-thiobarbituric acid reactive substances. African American males exhibited lower endothelial function than Caucasians at baseline (8.3±1.7 vs. 12.2±1.7%) and the difference was ameliorated with antioxidant supplementation (10.7±1.9% vs. 10.8±1.8%), but the interaction was not significant (p=0.10). There were no significant changes in malondialdehyde-thiobarbituric acid reactive substances following antioxidant supplementation. There was a significant increase in brachial blood flow and forearm vascular conductance with exercise but no differences with antioxidant supplementation. There were no group differences in exercise responses and no differences with antioxidant supplementation, suggesting a lack of influence of oxidative stress during exercise in this cohort. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Testicular cellular toxicity of cadmium : transmission electron microscopy examination.

    PubMed

    Haffor, A S; Abou-Tarboush, F M

    2004-07-01

    It is clear that environmental heavy metals influence life systems and reproductive system. In the present study histological investigation revealed that cadmium was testicular toxicant in mice. Here we compared the fine-structure of spermatogenesis in two groups of mice (SWR), experimental and control. The experimental group underwent cadmium ingestion at 1 mg/kg daily for 4 weeks. The control group underwent ingestion of distilled water with equal dosages, using the same type of injectors, for 4-weeks. After cadmium exposure period both control and experimental groups were killed and samples of the testes were processed for microscopic examination. Ultra sections were examined and photographed by Transmission Electron Microscope (JEOL- 100SX) at 80KV. Ultrastructure examination revealed, vascular endothelial, interstitial, and sertoli cells damages. Early impairments of germinal cellular differentiation resulted in deformations in all parts of late spermatid. There were dislocation of accrosomal granules, nuclear damage associated with chromatin heterogeneity, detached spermatid from the apical process of sertoli cell, disarrangement of the mitochondria, abnormal oriented tail piece, and abnormal microtubules complex. These ultra morphological abnormalities relate to cell injury and to the resulting physiological abnormality, necrobiosis. Based on the results of this investigation it can be concluded that cadmium ingestion at 1000 microg/kg caused testicular toxicity and abnormalities in early sperm development.

  3. Lymphatic endothelial cell line (CH3) from a recurrent retroperitoneal lymphangioma.

    PubMed

    Way, D; Hendrix, M; Witte, M; Witte, C; Nagle, R; Davis, J

    1987-09-01

    An endothelial cell line derived from a massive recurrent chyle-containing retroperitoneal lymphangioma was isolated in monolayer culture. Scanning and transmission electron microscopy and immunohistochemistry confirmed a close resemblance to blood vascular endothelium with typical cobblestone morphology, positive immunofluorescence staining for endothelial marker Factor VIII-associated antigen and fibronectin, and prominent Weibel-Palade bodies. The endothelial cells also exhibited other ultrastructural features characteristic of lymphatic endothelium, including sparse microvillous surface projections, overlapping intercellular junctions, and abundant intermediate filaments. This endothelial cell line represents a new source of proliferating lymphatic endothelium for future study, including structural and functional comparison to blood vascular endothelium.

  4. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    PubMed

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  5. S-nitrosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability.

    PubMed

    Zamorano, Patricia; Marín, Natalie; Córdova, Francisco; Aguilar, Alejandra; Meininger, Cynthia; Boric, Mauricio P; Golenhofen, Nikola; Contreras, Jorge E; Sarmiento, José; Durán, Walter N; Sánchez, Fabiola A

    2017-07-01

    We tested the hypothesis that platelet-activating factor (PAF) induces S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S -nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S -nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S -nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S -nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist. NEW & NOTEWORTHY Here, we demonstrate that S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S -nitrosylation of VASP contributes to the onset of endothelial permeability. Copyright © 2017 the American Physiological Society.

  6. Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells.

    PubMed

    Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C

    2000-09-01

    The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.

  7. Functional Characterization of S100A8 and S100A9 in Altering Monolayer Permeability of Human Umbilical Endothelial Cells

    PubMed Central

    Wang, Liqun; Luo, Haihua; Chen, Xiaohuan; Jiang, Yong; Huang, Qiaobing

    2014-01-01

    S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP) proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs). The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration. PMID:24595267

  8. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  9. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.

    PubMed

    Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye

    2015-11-09

    Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.

  10. Endothelial to mesenchymal transition in the cardiovascular system.

    PubMed

    Gong, Hui; Lyu, Xing; Wang, Qiong; Hu, Min; Zhang, Xiangyu

    2017-09-01

    Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system. Copyright © 2017. Published by Elsevier Inc.

  11. Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells.

    PubMed

    Fonseca, Ana Catarina; Oliveira, Catarina R; Pereira, Cláudia F; Cardoso, Sandra M

    2014-06-01

    Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Diagnosis and Management of Iridocorneal Endothelial Syndrome

    PubMed Central

    Sacchetti, Marta; Mantelli, Flavio; Macchi, Ilaria; Ambrosio, Oriella; Rama, Paolo

    2015-01-01

    The iridocorneal endothelial (ICE) syndrome is a rare ocular disorder that includes a group of conditions characterized by structural and proliferative abnormalities of the corneal endothelium, the anterior chamber angle, and the iris. Common clinical features include corneal edema, secondary glaucoma, iris atrophy, and pupillary anomalies, ranging from distortion to polycoria. The main subtypes of this syndrome are the progressive iris atrophy, the Cogan-Reese syndrome, and the Chandler syndrome. ICE syndrome is usually diagnosed in women in the adult age. Clinical history and complete eye examination including tonometry and gonioscopy are necessary to reach a diagnosis. Imaging techniques, such as in vivo confocal microscopy and ultrasound biomicroscopy, are used to confirm the diagnosis by revealing the presence of “ICE-cells” on the corneal endothelium and the structural changes of the anterior chamber angle. An early diagnosis is helpful to better manage the most challenging complications such as secondary glaucoma and corneal edema. Treatment of ICE-related glaucoma often requires glaucoma filtering surgery with antifibrotic agents and the use of glaucoma drainage implants should be considered early in the management of these patients. Visual impairment and pain associated with corneal edema can be successfully managed with endothelial keratoplasty. PMID:26451377

  13. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1.

    PubMed

    Liu, Xinyi; Uemura, Akiyoshi; Fukushima, Yoko; Yoshida, Yutaka; Hirashima, Masanori

    2016-11-22

    The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    PubMed

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  15. Evidence for Post-Translational Processing of Vascular Endothelial (VE)-Cadherin in Brain Tumors: Towards a Candidate Biomarker

    PubMed Central

    Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François

    2013-01-01

    Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106

  16. Serial cytokine alterations and abnormal neuroimaging in newborn infants with encephalopathy.

    PubMed

    O'Hare, Fiona M; Watson, R William G; O'Neill, Amanda; Segurado, Ricardo; Sweetman, Deirdre; Downey, Paul; Mooney, Eoghan; Murphy, John; Donoghue, Veronica; Molloy, Eleanor J

    2017-04-01

    Inflammatory cytokines may play a role in the final common pathway in the pathogenesis of hypoxic-ischaemic injury in experimental models. We aimed to profile the systemic pro-and anti-inflammatory response over the first week of life in term infants at risk of neonatal encephalopathy. In a tertiary referral university neonatal intensive care unit, serial blood samples were analysed from 41 term infants (requiring resuscitation at birth) in this prospective observational pilot study. Serum levels of 10 pro-and anti-inflammatory cytokines were evaluated including interleukin(IL)-1α, IL-1β, IL-6, IL-8, IL-10, tumour necrosis factor(TNF)-α, interferon (IFN)-γ, vascular endothelial growth factor (VEGF), granulocyte/colony-stimulating factor (G-CSF) and granulocyte macrophage/colony-stimulating factor (GM-CSF). Infants with neonatal encephalopathy and abnormal neuroimaging (n = 15) had significantly elevated granulocyte macrophage/colony-stimulating factor at 0-24 h and interleukin-8, interleukin-6 and interleukin-10 at 24-48 hour. Tumour necrosis factor-α and vascular endothelial growth factor levels were lower at 72-96 hour (p < 0.05). Significantly elevated levels of interleukin-10 were associated with mortality. Serum cytokine changes and innate immune dysregulation in the first week of life may be indicators of outcome in neonatal encephalopathy but require validation in larger studies. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta.

    PubMed

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures). Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients.

  18. The effects of Ramadan fasting on endothelial function in patients with cardiovascular diseases.

    PubMed

    Yousefi, B; Faghfoori, Z; Samadi, N; Karami, H; Ahmadi, Y; Badalzadeh, R; Shafiei-Irannejad, V; Majidinia, M; Ghavimi, H; Jabbarpour, M

    2014-07-01

    Endothelial dysfunction, which can be manifested by loss of nitric oxide bioavailability, is an increasingly recognized cause of cardiovascular diseases. Previous studies showed that diets affect endothelial function and modify cardiovascular risks. This study aimed to assess the effects of Ramadan fasting, as a diet intervention, on endothelial function. The study population consisted of 21 male patients (mean age: 52±9 years) with cardiovascular risks (coronary artery disease, cerebrovascular or peripheral arterial diseases). The biochemical variables in serum of patients were measured 2 days before and after Ramadan fasting. The levels of asymmetric dimethylarginine (ADMA) and vascular endothelial growth factor (VEGF) were evaluated using the enzyme-linked immunosorbent assay. Nitric oxide (NO) and Malondialdehyde (MDA) levels were measured by the Griess and thiobarbituric acid reaction substances assay, respectively. NO levels in patients after Ramadan fasting were significantly higher compared with the baseline value (85.1±11.54 vs 75.8±10.7 μmol/l) (P<0.05). Post-Ramadan levels of ADMA decreased significantly in comparison with pre-Ramadan levels (802.6±60.9 vs 837.6±51.0 nmol/l) (P<0.05). In addition, the levels of VEGF and MDA changed during Ramadan fasting, but these changes were not statistically significant (228.1±27.1 vs 222.7±22.9 pg/ml and 3.2±0.7 vs 3.6±1.1 μmol/l, respectively). Ramadan fasting may have beneficial effects on endothelial function and can modulate cardiovascular risks. Further studies are needed to confirm the clinical significance of Ramadan fasting on cardiovascular health.

  19. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function.

    PubMed

    Kiss, Levente; Chen, Min; Gero, Domokos; Módis, Katalin; Lacza, Zsombor; Szabó, Csaba

    2006-12-01

    Oxidative and nitrosative stress play an important role in the development of endothelial vascular dysfunction during early atherosclerosis. Oxidative stress activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in endothelial cells. In patients with atherosclerosis the level of oxidized LDL in the plasma is elevated. In oxidized LDL various oxysterols have been identified, such as 7-ketocholesterol (7K). 7K has been shown to induce PARP activation in microglial cells. The aim of the current study was to clarify the effects of 7K on the activity of endothelial PARP and on the endothelium-dependent relaxant function of blood vessels. We treated human umbilical vein endothelial (HUVEC) cells with 2-16 microg/ml 7K as well as vascular rings harvested from BALB/c mouse thoracic aorta with 90 microg/ml 7K for 2 h. A group of mice was treated with 7K subcutaneously for 1 week (10 mg/kg/day). We also conducted in vitro and in vivo experiments using pretreatment with buthionine sulphoximine (BSO), a glutathione-lowering agent. The activity of PARP was calculated by measurement of tritiated NAD incorporation. The activity of PARP increased significantly in 7K-treated HUVEC cells. After BSO pretreatment, this increase was higher. Isolated vascular rings demonstrated no change in endothelium-dependent relaxant function after 2 h of incubation with 7K, even after BSO pretreatment. In vivo treatment with 7K for 1 week had no effect on the relaxant function. Our experimental results suggest that although 7-ketocholesterol can activate PARP enzyme in endothelial cells, it is not sufficient on its own to cause impairment in the endothelium-dependent vascular reactivity.

  20. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.

Top