Sample records for abnormal endothelial function

  1. Does endothelial dysfunction correlate with endocrinal abnormalities in patients with polycystic ovary syndrome?

    PubMed Central

    Dube, Rajani

    2016-01-01

    To study and critically analyze the published evidence on correlation of hormonal abnormalities and endothelial dysfunction (ED) in polycystic ovary syndrome (PCOS) through a systematic review. The databases including MEDLINE, PubMed, Up-To-Date, and Science Direct were searched using Medical subject handling terms and free text term keywords such as endocrine abnormalities in PCOS, ED assessment in PCOS, ED in combination with insulin resistance (IR), hyperandrogenism (HA), increased free testosterone, free androgen index (FAI), gonadotrophin levels, luteinizing hormone (LH), prolactin, estrogen, adipocytokines to search trials, and observational studies published from January 1987 to September 2015. Authors of original studies were contacted for additional data when necessary. PCOS increases the risk of cardiovascular disease in women. ED, which is a reliable indicator of cardiovascular risk in general population, is seen in most (but not all) women with PCOS. IR, seen in 70% patients with PCOS, is associated with ED in these women, but patients can have normal endothelial function even in the presence of IR. Free testosterone and FAI are consistently associated with ED, but endothelial function can be normal despite HA. Estradiol (not estrone) appears to be protective against ED though estrone is the predominant estrogen produced in PCOS. Increased levels of adipocytokines (visfatin) are promising in predicting ED and cardiovascular risk. However, more studies are required focusing on direct correlation of levels of prolactin, LH, estrone, and visfatin with ED in PCOS. PMID:27843797

  2. Effects of Flavonoid-Containing Beverages and EGCG on Endothelial Function

    PubMed Central

    Shenouda, Sherene M.; Vita, Joseph A.

    2009-01-01

    Abnormalities of the vascular endothelium contribute to all stages of atherosclerosis from lesion development to clinical cardiovascular disease events. Recognized risk factors, including diabetes mellitus, hypertension, dyslipidemia, cigarette smoking, and sedentary lifestyle are associated with endothelial dysfunction. A variety of pharmacological and behavioral interventions have been shown to reverse endothelial dysfunction in patients with cardiovascular disease. A large number of epidemiological studies suggest that dietary factors, including increased intake of flavonoid-containing foods and beverages, reduce cardiovascular risk, and recent studies have shown that such beverages have favorable effects on endothelial function. These studies have engendered interest in the development of dietary supplements or drugs that would allow for more convenient and higher dose administration of flavonoids and might prove useful for prevention or treatment of cardiovascular disease. In this paper, we will review the contribution of endothelial dysfunction to the pathogenesis and clinical expression of atherosclerosis and recent data linking flavonoid and EGCG consumption to improved endothelial function and reduced cardiovascular risk. PMID:17906190

  3. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  4. Mitochondria and Endothelial Function

    PubMed Central

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  5. The impact of physical training on endothelial function in myocardial infarction survivors: pilot study.

    PubMed

    Peller, Michał; Balsam, Paweł; Główczyńska, Renata; Ossoliński, Krzysztof; Gilarowska, Anna; Kołtowski, Łukasz; Grabowski, Marcin; Filipiak, Krzysztof J; Opolski, Grzegorz

    Endothelial dysfunction (ED) may indirectly influence the outcome of patients with coronary artery disease. To assess the influence of cardiac rehabilitation (CR) on endothelial function in patients after ST-segment elevation myocardial infarction (STEMI). Twenty-nine patients scheduled for CR were included in the study. CR began at least four weeks after STEMI and consisted of 12 or 24 training sessions. Endothelial function assessment was performed before and after CR, using reactive hyperaemia peripheral arterial tonometry. Before the CR, ED was diagnosed in 16 of 29 (55.2%) patients. A total of 25 patients had two assessments of endothelial function: before and after CR. In univariate analysis the factors of negative response of endothelial function to CR were: higher baseline hyperaemia index (lnRHI) (odds ratio [OR] for positive response to CR 0.01; 95% confidence interval [CI] 0.00-0.33; p = 0.01) and higher peak serum troponin I level during index hospitalisation (OR 0.97; 95% CI 0.94-1.00; p = 0.04). The independent, negative predictor of response to CR was lnRHI (OR 0.01; 95% CI 0.01-0.16; p = 0.03). Patients training for 24 sessions (n = 16) had similar lnRHI changes to those of patients training for 12 sessions (n = 9); [0.16 (-0.06)-0.30 vs. 0.10 (0.05-0.15); p = 0.44, respectively]. ED is a frequent abnormality in STEMI survivors. Despite the lack of statistically significant improvement of endothelial function after CR in the analysed group of patients, some factors can influence the efficacy of this type of physical activity. The best effect of CR on endothelial function was observed in patients with baseline ED.

  6. Association of Abacavir and Impaired Endothelial Function in Treated and Suppressed HIV-Infected Patients

    PubMed Central

    Hsue, Priscilla Y.; Hunt, Peter W.; Wu, Yuaner; Schnell, Amanda; Ho, Jennifer E.; Hatano, Hiroyu; Xie, Yu; Martin, Jeffrey N.; Ganz, Peter; Deeks, Steven G.

    2009-01-01

    Background HIV-infected patients have accelerated atherosclerosis. Abacavir has been associated with increased risk of cardiovascular events, for reasons that remain to be elucidated. As endothelial dysfunction is central to the pathogenesis of atherosclerosis, we tested the hypothesis that current treatment with abacavir is associated with impaired endothelial function. Methods We studied a cohort of 61 antiretroviral-treated patients who had undetectable plasma HIV RNA levels. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD) of the brachial artery. We compared FMD in patients treated with or without abacavir, while adjusting for traditional risk factors and HIV-specific characteristics. Results The median age was 50 years (IQR 45–57). The median duration of HIV infection was 18 years, and the median CD4 cell count was 369 cells/mm3. Thirty subjects (49%) were receiving abacavir. Overall, the median FMD in the HIV-infected patients was low (3.5%; IQR 2.3–5.6%). The FMD was lower in the abacavir-treated patients than those not on abacavir (2.8% vs. 4.9%, p=0.01). After adjustment for traditional risk factors, HIV specific factors, and baseline brachial artery diameter, current abacavir use was independently associated with lower FMD (p=0.017). Duration of therapy and CD4 count were not associated with reduced FMD. Conclusions Endothelial function, a central mechanism in atherosclerosis and a marker of cardiovascular risk, is impaired among antiretroviral-treated patients with undetectable viral loads. Current use of abacavir was independently associated with impaired endothelial function. This finding suggests that abnormal endothelial function may underlie the clinically observed increased risk in myocardial infarction among abacavir-treated patients. PMID:19542863

  7. Wine and endothelial function.

    PubMed

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  8. Defenders and Challengers of Endothelial Barrier Function

    PubMed Central

    Rahimi, Nader

    2017-01-01

    Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721

  9. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  10. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  11. ANGIOTENSIN-CONVERTING ENZYME 2 ACTIVATION IMPROVES ENDOTHELIAL FUNCTION

    PubMed Central

    Fraga-Silva, Rodrigo A.; Costa-Fraga, Fabiana P.; Murça, Tatiane M.; Moraes, Patrícia L.; Lima, Augusto Martins; Lautner, Roberto Q.; Castro, Carlos H.; Soares, Célia Maria A.; Borges, Clayton L.; Nadu, Ana Paula; Oliveira, Marilene L.; Shenoy, Vinayak; Katovich, Michael J.; Santos, Robson A.S.; Raizada, Mohan K.; Ferreira, Anderson J.

    2013-01-01

    Diminished release and function of endothelium-derived nitric oxide (NO) coupled with increases in reactive oxygen species (ROS) production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)] and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic ACE2 would improve endothelial function by decreasing the ROS production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule ACE2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1mg/kg/day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7) and it was reduced in Mas knockout mice. These effects were associated with reduction in ROS production. In addition, Ang II-induced ROS production in human aortic endothelial cells was attenuated by pre-incubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that ACE2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease. PMID:23608648

  12. Effect of metabolic abnormalities on endothelial dysfunction in normotensive offspring of subject with hypertension.

    PubMed

    Žižek, B; Žižek, D; Bedenčič, K; Jerin, A; Poredoš, P

    2013-08-01

    Essential hypertension (EH) is often accompanied by hyperinsulinemia/insulin resistance (IR) and deranged adiponectin secretion. IR may in turn be associated with endothelial dysfunction and increased levels of asymmetric dimethylarginine (ADMA). Therefore, we aimed to determine metabolic abnormalities in normotensive offspring of subjects with essential hypertension (familial trait-FT) and to examine their relations to endothelium-dependent vasodilation of the brachial artery (BA). We included 77 subjects, 38 were normotensive individuals with FT aged 28-39 (mean 33) years and 39 age-matched Controls without FT. Insulin, adiponectin and ADMA plasma levels were determined by radioimmunoassay. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperemia (flow-mediated dilation-FMD) were measured. Subjects with FT had higher insulin and lower adiponectin levels than controls (13.65±6.70 vs. 7.09±2.20 mE/L; P<0.001 and 13.60±5.98 vs. 17.27±7.17 mg/L respectively; P<0.05). Insulin and adiponectin levels were negatively interrelated (r=-0.33, P=0.003). ADMA levels were comparable in both groups. The study group had worse FMD than Controls (6.11±3.28 vs. 10.20±2.07%; P<0.001). IR was independently associated with FMD (partial R2=0.23, P<0.001). Increased insulin and decreased adiponectin levels along with endothelial dysfunction are present in normotensive subjects with FT. IR and hypoadiponectinemia are interrelated, but only hyperinsulinemia has an independent adverse influence on endothelial function. Results of our study did not confirm the role of ADMA in pathogenesis of evolving hypertension.

  13. Antihypertensive therapy and endothelial function.

    PubMed

    Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H

    2004-01-01

    The benefits of treating hypertension in terms of reduction of morbidity and mortality are well established. However, it is debatable whether this benefit is derived entirely from the effects of a reduced blood pressure or whether these agents exert effects over and above blood pressure reduction on the endothelium. Hypertension is associated with adverse changes (whether damage or dysfunction) in the endothelium. Indeed, endothelial damage/dysfunction has have been demonstrated to be a reliable prognostic indicator of future cardiovascular events in hypertension. Of the various drug classes, calcium channel blockers and the ACE inhibitors have significant direct effects on the endothelium. This is in contrast to the beta blockers and alpha adrenergic blockers that appear to indirectly influence endothelial function solely as a result of lowered blood pressure. Antioxidants may have a beneficial effect on endothelial function as well, although their clinical use does not seem to translate into clinical benefit.

  14. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy?

    PubMed

    Borges, Juliana Pereira; Mendes, Fernanda de Souza Nogueira Sardinha; Lopes, Gabriella de Oliveira; Sousa, Andréa Silvestre de; Mediano, Mauro Felippe Felix; Tibiriçá, Eduardo

    2018-08-15

    Chronic Chagas cardiomyopathy (CCC) and cardiomyopathies due to other etiologies involve differences in pathophysiological pathways that are still unclear. Systemic microvascular abnormalities are associated with the pathogenesis of ischemic heart disease. However, systemic microvascular endothelial function in CCC remains to be elucidated. Thus, we compared the microvascular endothelial function of patients presenting with CCC to those with ischemic cardiomyopathy disease. Microvascular reactivity was assessed in 21 patients with cardiomyopathy secondary to Chagas disease, 21 patients with cardiomyopathy secondary to ischemic disease and 21 healthy controls. Microvascular blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with iontophoresis of acetylcholine (ACh). Peak increase in forearm blood flow with ACh iontophoresis in relation to baseline was greater in healthy controls than in patients with heart disease (controls: 162.7 ± 58.4% vs. ischemic heart disease: 74.1 ± 48.3% and Chagas: 85.1 ± 68.1%; p < 0.0001). Patients with Chagas and ischemic cardiomyopathy presented similar ACh-induced changes from baseline in skin blood flow (p = 0.55). Endothelial microvascular function was equally impaired among patients with CCC and ischemic cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  16. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  17. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling.

    PubMed

    Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min

    2016-09-02

    Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.

  18. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    PubMed

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin

  19. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  20. Anti-TNFα therapy transiently improves high density lipoprotein cholesterol levels and microvascular endothelial function in patients with rheumatoid arthritis: a Pilot Study

    PubMed Central

    2012-01-01

    Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166

  1. Pharmacological Treatment of Hypertension: Effects in Endothelial Function.

    PubMed

    Cobos-Segarra, Leonardo; Lopez-Jaramillo, Patricio; Ponte-Negretti Ci, Carlos; Villar, Raul; Penaherrera, Ernesto

    2018-05-07

    The vascular endothelium plays a crucial role to maintain the functional integrity of the cardiovascular system through the secretion of vasoactive substances such as prostacyclin and NO. Endothelial dysfunction participate in the genesis of HTA, but also hypertension produces endothelial damage. The mayor class of antihypertensive drugs have beneficial effects in the recuperation of the endothelial function, actions that are contributing to explain the impact of the adequate control of HTA in the reduction of CV events. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  3. Regional Coronary Endothelial Function is Closely Related to Local Early Coronary Atherosclerosis in Patients with Mild Coronary Artery Disease: A Pilot Study

    PubMed Central

    Hays, Allison G.; Kelle, Sebastian; Hirsch, Glenn A.; Soleimanifard, Sahar; Yu, Jing; Agarwal, Harsh K.; Gerstenblith, Gary; Schär, Michael; Stuber, Matthias; Weiss, Robert G.

    2012-01-01

    Background Coronary endothelial function (endoFx) is abnormal in patients with established coronary artery disease (CAD) and was recently shown by MRI to relate to the severity of luminal stenosis. Recent advances in MRI now allow the non-invasive assessment of both anatomic and functional (endoFx) changes that previously required invasive studies. We tested the hypothesis that abnormal coronary endoFx is related to measures of early atherosclerosis such as increased coronary wall thickness (CWT). Methods and Results Seventeen arteries in fourteen healthy adults and seventeen arteries in fourteen patients with non-obstructive CAD were studied. To measure endoFx, coronary MRI was performed before and during isometric handgrip exercise, an endothelial-dependent stressor and changes in coronary cross-sectional area (CSA) and flow were measured. Black blood imaging was performed to quantify CWT and other indices of arterial remodeling. The mean stress-induced change in CSA was significantly higher in healthy adults (13.5%±12.8%, mean±SD, n=17) than in those with mildly diseased arteries (-2.2±6.8%, p<0.0001, n=17). Mean CWT was lower in healthy subjects (0.9±0.2mm) than in CAD patients (1.4±0.3mm, p<0.0001). In contrast to healthy subjects, stress-induced changes in CSA, a measure of coronary endoFx, correlated inversely with CWT in CAD patients (r= -0.73, p=0.0008). Conclusions There is an inverse relationship between coronary endothelial function and local CWT in CAD patients but not in healthy adults. These findings demonstrate that local endothelial-dependent functional changes are related to the extent of early anatomic atherosclerosis in mildly diseased arteries. This combined MRI approach enables the anatomic and functional investigation of early coronary disease. PMID:22492483

  4. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  5. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    PubMed

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-06-01

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  6. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  7. Molecular Regulation of Endothelial Cells by NF-1

    DTIC Science & Technology

    2013-01-01

    cancer progression. The mammalian target of rapamycin (mTOR) is a serine threonine kinase, that exists in two distinct signaling complexes: mTORC1 and...abnormalities such as diabetes , with known vascular complications. Thus mTOR may be a significant regulator of endothelial cell functions

  8. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    PubMed Central

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  9. Endothelial function is associated with myocardial diastolic function in women with systemic lupus erythematosus.

    PubMed

    Chin, Calvin W L; Chin, Chee-Yang; Ng, Marie X R; Le, Thu-Thao; Huang, Fei-Qiong; Fong, Kok-Yong; Thumboo, Julian; Tan, Ru-San

    2014-09-01

    Endothelial dysfunction is associated with traditional and systemic lupus erythematosus (SLE)-specific risk factors, and early data suggest reversibility of endothelial dysfunction with therapy. The clinical relevance of endothelial function assessment has been limited by the lack of studies, demonstrating its prognostic significance and impact on early myocardial function. Therefore, we aimed to determine the association between endothelial and myocardial diastolic function in SLE women. Women with SLE and no coronary artery disease were prospectively recruited and underwent radionuclide myocardial perfusion imaging (MPI) (Jetstream, Philips, the Netherlands) to exclude subclinical myocardial ischemia. Cardiac and vascular functions were assessed in all patients (Alpha 10, Aloka, Tokyo). Diastolic function was assessed using pulse wave early (E) and late mitral blood inflow and myocardial tissue Doppler (mean of medial and lateral annulus e') velocities. Endothelial function was measured using brachial artery flow-mediated vasodilatation (FMD%). Univariate and multivariate linear regressions were used to assess the association between FMD% and myocardial diastolic function, adjusting for potential confounders. Thirty-eight patients without detectable myocardial ischemia on MPI were studied (mean age 44 ± 10 years; mean disease duration 14 ± 6 years). About 61 % of patients had normal diastolic function (E/e' ≤ 8), and 5 % of patients had definite diastolic dysfunction with E/e' > 13 (mean 7.1 ± 2.9). FMD% was associated with E/e' (regression coefficient β = -0.35; 95 % CI -0.62 to -0.08; p = 0.01) independent of systolic blood pressure, age, and SLICC/ACR Damage Index.

  10. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  11. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  12. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    PubMed

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-06-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  13. The endothelial glycocalyx: composition, functions, and visualization

    PubMed Central

    Reitsma, Sietze; Slaaf, Dick W.; Vink, Hans; van Zandvoort, Marc A. M. J.

    2007-01-01

    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging. PMID:17256154

  14. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  15. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  16. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    PubMed

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  17. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  18. Cholesteryl ester transfer protein inhibition enhances endothelial repair and improves endothelial function in the rabbit.

    PubMed

    Wu, Ben J; Shrestha, Sudichhya; Ong, Kwok L; Johns, Douglas; Hou, Liming; Barter, Philip J; Rye, Kerry-Anne

    2015-03-01

    High-density lipoproteins (HDLs) can potentially protect against atherosclerosis by multiple mechanisms, including enhancement of endothelial repair and improvement of endothelial function. This study asks if increasing HDL levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, enhances endothelial repair and improves endothelial function in New Zealand White rabbits with balloon injury of the abdominal aorta. New Zealand White rabbits received chow or chow supplemented with 0.07% or 0.14% (wt/wt) des-fluoro-anacetrapib for 8 weeks. Endothelial denudation of the abdominal aorta was carried out after 2 weeks. The animals were euthanized 6 weeks postinjury. Treatment with 0.07% and 0.14% des-fluoro-anacetrapib reduced cholesteryl ester transfer protein activity by 81±4.9% and 92±12%, increased plasma apolipoprotein A-I levels by 1.4±0.1-fold and 1.5±0.1-fold, increased plasma HDL-cholesterol levels by 1.8±0.2-fold and 1.9±0.1-fold, reduced intimal hyperplasia by 37±11% and 51±10%, and inhibited vascular cell proliferation by 25±6.1% and 35±6.7%, respectively. Re-endothelialization of the injured aorta increased from 43±6.7% (control) to 69±6.6% and 76±7.7% in the 0.07% and 0.14% des-fluoro-anacetrapib-treated animals, respectively. Aortic ring relaxation and guanosine 3',5'-cyclic monophosphate production in response to acetylcholine were also improved. Incubation of HDLs from the des-fluoro-anacetrapib-treated animals with human coronary artery endothelial cells increased cell proliferation and migration relative to control. These effects were abolished by knockdown of scavenger receptor-B1 and PDZ domain-containing protein 1 and by pharmacological inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt. Increasing HDL levels by inhibiting cholesteryl ester transfer protein reduces intimal thickening and regenerates functional endothelium in damaged New Zealand White rabbit aortas

  19. Trauma exposure and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Barinas-Mitchell, Emma; von Känel, Roland; Chang, Yuefang; Koenen, Karestan C; Matthews, Karen A

    2018-04-01

    Trauma is a potent exposure that can have implications for health. However, little research has considered whether trauma exposure is related to endothelial function, a key process in the pathophysiology of cardiovascular disease (CVD). We tested whether exposure to traumatic experiences was related to poorer endothelial function among midlife women, independent of CVD risk factors, demographic factors, psychosocial factors, or a history of childhood abuse. In all, 272 nonsmoking perimenopausal and postmenopausal women aged 40 to 60 years without clinical CVD completed the Brief Trauma Questionnaire, the Child Trauma Questionnaire, physical measures, a blood draw, and a brachial ultrasound for assessment of brachial artery flow-mediated dilation (FMD). Relations between trauma and FMD were tested in linear regression models controlling for baseline vessel diameter, demographics, depression/anxiety, CVD risk factors, health behaviors, and, additionally, a history of childhood abuse. Over 60% of the sample had at least one traumatic exposure, and 18% had three or more exposures. A greater number of traumatic exposures was associated with lower FMD, indicating poorer endothelial function in multivariable models (beta, β [standard error, SE] -1.05 [0.40], P = 0.01). Relations between trauma exposure and FMD were particularly pronounced for three or more trauma exposures (b [SE] -1.90 [0.71], P = 0.008, relative to no exposures, multivariable). A greater number of traumatic exposures were associated with poorer endothelial function. Relations were not explained by demographics, CVD risk factors, mood/anxiety, or a by history of childhood abuse. Women with greater exposure to trauma over life maybe at elevated CVD risk.

  20. Age-related changes in endothelial function and blood flow regulation.

    PubMed

    Toda, Noboru

    2012-02-01

    Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID

  2. Evaluation of the Effects of Different Energy Drinks and Coffee on Endothelial Function.

    PubMed

    Molnar, Janos; Somberg, John C

    2015-11-01

    Endothelial function plays an important role in circulatory physiology. There has been differing reports on the effect of energy drink on endothelial function. We set out to evaluate the effect of 3 energy drinks and coffee on endothelial function. Endothelial function was evaluated in healthy volunteers using a device that uses digital peripheral arterial tonometry measuring endothelial function as the reactive hyperemia index (RHI). Six volunteers (25 ± 7 years) received energy drink in a random order at least 2 days apart. Drinks studied were 250 ml "Red Bull" containing 80 mg caffeine, 57 ml "5-hour Energy" containing 230 mg caffeine, and a can of 355 ml "NOS" energy drink containing 120 mg caffeine. Sixteen volunteers (25 ± 5 years) received a cup of 473 ml coffee containing 240 mg caffeine. Studies were performed before drink (baseline) at 1.5 and 4 hours after drink. Two of the energy drinks (Red Bull and 5-hour Energy) significantly improved endothelial function at 4 hours after drink, whereas 1 energy drink (NOS) and coffee did not change endothelial function significantly. RHI increased by 82 ± 129% (p = 0.028) and 63 ± 37% (p = 0.027) after 5-hour Energy and Red Bull, respectively. The RHI changed after NOS by 2 ± 30% (p = 1.000) and by 7 ± 30% (p = 1.000) after coffee. In conclusion, some energy drinks appear to significantly improve endothelial function. Caffeine does not appear to be the component responsible for these differences. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Association between anthropometry, cardiometabolic risk factors, & early life factors & adult measures of endothelial function: Results from the New Delhi Birth Cohort.

    PubMed

    Huffman, Mark D; Khalil, Anita; Osmond, Clive; Fall, Caroline H D; Tandon, Nikhil; Lakshmy, Ramakrishnan; Ramji, Siddharth; Gera, Tarun; Prabhakaran, Poornima; Dey Biswas, S K; Reddy, K Srinath; Bhargava, Santosh K; Sachdev, Harshpal S; Prabhakaran, Dorairaj

    2015-12-01

    Abnormal endothelial function represents a preclinical marker of atherosclerosis. This study was conducted to evaluate associations between anthropometry, cardiometabolic risk factors, and early life factors and adult measures of endothelial function in a young urban Indian cohort free of clinical cardiovascular disease. Absolute changes in brachial artery diameter following cuff inflation and sublingual nitroglycerin (400 µg) were recorded to evaluate endothelium-dependent and -independent measures of endothelial function in 600 participants (362 men; 238 women) from the New Delhi Birth Cohort (2006-2009). Data on anthropometry, cardiometabolic risk factors, medical history, socio-economic position, and lifestyle habits were collected. Height and weight were recorded at birth, two and 11 yr of age. Age- and sex-adjusted linear regression models were developed to evaluate these associations. The mean age of participants was 36±1 yr. Twenty two per cent men and 29 per cent women were obese (BMI th > 30 kg/m [2] ). Mean systolic blood pressure (SBP) was 131±14 and 119±13 mmHg, and diabetes prevalence was 12 and 8 per cent for men and women, respectively. Brachial artery diameter was higher for men compared with women both before (3.48±0.37 and 2.95±0.35 cm) and after hyperaemia (3.87±0.37 vs. 3.37±0.35 cm). A similar difference was seen before and after nitroglycerin. Markers of increased adiposity, smoking, SBP, and metabolic syndrome, but not early life anthropometry, were inversely associated with endothelial function after adjustment for age and sex. The analysis of the current prospective data from a young urban Indian cohort showed that cardiometabolic risk factors, but not early life anthropometry, were associated with worse endothelial function.

  4. Association between anthropometry, cardiometabolic risk factors, & early life factors & adult measures of endothelial function: Results from the New Delhi Birth Cohort

    PubMed Central

    Huffman, Mark D.; Khalil, Anita; Osmond, Clive; Fall, Caroline H. D.; Tandon, Nikhil; Lakshmy, Ramakrishnan; Ramji, Siddharth; Gera, Tarun; Prabhakaran, Poornima; Dey Biswas, S. K.; Reddy, K. Srinath; Bhargava, Santosh K.; Sachdev, Harshpal S.; Prabhakaran, Dorairaj

    2015-01-01

    Background & objectives: Abnormal endothelial function represents a preclinical marker of atherosclerosis. This study was conducted to evaluate associations between anthropometry, cardiometabolic risk factors, and early life factors and adult measures of endothelial function in a young urban Indian cohort free of clinical cardiovascular disease. Methods: Absolute changes in brachial artery diameter following cuff inflation and sublingual nitroglycerin (400 µg) were recorded to evaluate endothelium-dependent and -independent measures of endothelial function in 600 participants (362 men; 238 women) from the New Delhi Birth Cohort (2006-2009). Data on anthropometry, cardiometabolic risk factors, medical history, socio-economic position, and lifestyle habits were collected. Height and weight were recorded at birth, two and 11 yr of age. Age- and sex-adjusted linear regression models were developed to evaluate these associations. Results: The mean age of participants was 36±1 yr. Twenty two per cent men and 29 per cent women were obese (BMI > 30 kg/m2). Mean systolic blood pressure (SBP) was 131±14 and 119±13 mmHg, and diabetes prevalence was 12 and 8 per cent for men and women, respectively. Brachial artery diameter was higher for men compared with women both before (3.48±0.37 and 2.95±0.35 cm) and after hyperaemia (3.87±0.37 vs. 3.37±0.35 cm). A similar difference was seen before and after nitroglycerin. Markers of increased adiposity, smoking, SBP, and metabolic syndrome, but not early life anthropometry, were inversely associated with endothelial function after adjustment for age and sex. Interpretation & conclusions: The analysis of the current prospective data from a young urban Indian cohort showed that cardiometabolic risk factors, but not early life anthropometry, were associated with worse endothelial function. PMID:26831418

  5. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    PubMed

    Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  6. Isoflavone supplementation and endothelial function in menopausal women.

    PubMed

    Hale, Georgina; Paul-Labrador, Maura; Dwyer, James H; Merz, C Noel Bairey

    2002-06-01

    Despite strong observational evidence for a beneficial role of oestrogen in cardiovascular disease, recent trial results suggest that hormone replacement therapy (HRT) may have adverse effects in menopausal women with established coronary heart disease. Isoflavones are oestrogen analogues found in plants with oestrogen-like properties and, because of a favourable side-effect profile, may be ideal alternatives to HRT with respect to cardiovascular benefits. Endothelial function is a marker of cardiovascular health. We aimed to determine the effect of isoflavones on endothelial function using the brachial artery reactivity test. Twenty-nine healthy menopausal women underwent entry and exit brachial artery reactivity testing following randomization to 2 weeks of an oral soy isoflavone concentrate containing 80 mg of soy isoflavones (Archer Daniel Midland Inc., IL, USA) or placebo. At study exit, there was no difference between placebo and isoflavone groups with respect to flow-mediated dilation (%FMD(max)), change (entry to exit) in %FMD(max) or response to nitroglycerine (%TNG). Subgroup analyses assessing lipid and oestrogen effects did not produce any significant results. These results suggest that short-term oral isoflavone supplements do not improve endothelial function in healthy menopausal women.

  7. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    PubMed

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  8. Assessing endothelial function and providing calibrated UFMD data using a blood pressure cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan S.

    Methods and apparatus are provided for assessing endothelial function in a mammal. In certain embodiments the methods involve using a cuff to apply pressure to an artery in a subject to determine a plurality of baseline values for a parameter related to endothelial function as a function of applied pressure (P.sub.m); b) applying a stimulus to the subject; and applying external pressure P.sub.m to the artery to determine a plurality of stimulus-effected values for the parameter related to endothelial function as a function of applied pressure (P.sub.m); where the baseline values are determined from measurements made when said mammal ismore » not substantially effected by said stimulus and differences in said baseline values and said stimulus-effected values provide a measure of endothelial function in said mammal.« less

  9. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    PubMed

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  10. Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after CPAP

    PubMed Central

    Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C.; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    Study objectives This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Design Observational study, before and after CPAP therapy. Setting and Patients We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. Measurements and results After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. Conclusions CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage. PMID:25815511

  11. Endurance capacity is not correlated with endothelial function in male university students.

    PubMed

    Wang, Yan; Zeng, Xian-bo; Yao, Feng-juan; Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Forty-seven healthy male university students (mean age, 20.1 ± 0.6 years; mean height, 172.4 ± 6.3 cm; and mean weight, 60.0 ± 8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator--maximal oxygen uptake (VO2max)--was also measured on a cycle ergometer using a portable gas analyzer. 1000 m run time was correlated with VO2max (r  =  -0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs.

  12. Endurance Capacity Is Not Correlated with Endothelial Function in Male University Students

    PubMed Central

    Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Background Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Methods Forty-seven healthy male university students (mean age, 20.1±0.6 years; mean height, 172.4±6.3 cm; and mean weight, 60.0±8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator - maximal oxygen uptake (VO2 max) - was also measured on a cycle ergometer using a portable gas analyzer. Results 1000 m run time was correlated with VO2max (r = −0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). Conclusion The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs. PMID:25101975

  13. Protective effects of dark chocolate on endothelial function and diabetes.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2013-11-01

    Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.

  14. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    PubMed

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated

  15. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    PubMed

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  17. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  18. Comparison of Endothelial Function in Asian Indians Versus Caucasians.

    PubMed

    Pusalavidyasagar, Snigdha; Sert Kuniyoshi, Fatima H; Shamsuzzaman, Abu S M; Singh, Prachi; Maharaj, Shantal; Leinveber, Pavel; Nykodym, Jiri; Somers, Virend K

    2016-09-01

    Asian Indians have markedly increased mortality due to coronary artery disease (CAD). Impaired endothelial function has been linked to an increased risk of acute cardiovascular events. We tested the hypothesis that endothelial function was attenuated in Asian Indians and Caucasians. We studied 14 Asian Indians [mean age: 30 ± 6 years; mean body mass index (BMI): 25 ± 3 kg/m(2)] and 11 Caucasians (mean age: 30 ± 5 years; mean BMI: 26 ± 2 kg/m(2)). All 25 subjects were healthy men and nonsmokers without any history of CAD or diabetes and were not taking medications. Endothelial function was evaluated by ultrasound measures of flow-mediated dilatation (FMD) and endothelium-independent nonflow mediated vasodilatation (NFMD) of the brachial artery, in the morning immediately after awakening (6 a.m.) in a fasting state. Mean age, BMI, apnea-hypopnea index, heart rate, and blood pressure were similar in both groups (P = >0.05). When correcting for body surface area, brachial artery diameter was not different between the two groups (2.1% ± 0.3% vs. 2.2% ± 0.4%; P = 0.29). FMD and NFMD were similar in Asian Indians and Caucasians (5.9% ± 4.1% vs. 5.7% ± 2.6%, P = 0.70; 16.4% ± 8% vs. 14.8% ± 4.1%, P = 0.58, respectively). Endothelial function in Asian Indian men is not attenuated in comparison to Caucasian men.

  19. Effects of Fe particle irradiation on human endothelial barrier structure and function

    NASA Astrophysics Data System (ADS)

    Sharma, Preety; Guida, Peter; Grabham, Peter

    2014-07-01

    Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have

  20. Microvascular endothelial function and severity of primary open angle glaucoma.

    PubMed

    Bukhari, S M I; Kiu, K Y; Thambiraja, R; Sulong, S; Rasool, A H G; Liza-Sharmini, A T

    2016-12-01

    PurposeThe role of microvascular endothelial dysfunction on severity of primary open angle glaucoma (POAG) was investigated in this study.Patients and methodsA prospective cohort study was conducted. One hundred and fourteen ethnically Malay patients (114 eyes) with POAG treated at the eye clinic of Hospital University Sains Malaysia between April 2012 and December 2014 were recruited. Patients aged between 40 and 80 years with two consecutive reliable and reproducible Humphrey visual field 24-2 analyses were selected. Patients who were diagnosed with any other type of glaucoma, previous glaucoma-filtering surgery, or other surgeries except uncomplicated cataract and pterygium surgery were excluded. Humphrey visual field analysis 24-2 was used to stratify the severity of glaucoma using Advanced Glaucoma Intervention Study (AGIS) score at the time of recruitment. Microvascular endothelial function was assessed using Laser Doppler fluximetry and iontophoresis. Iontophoresis process with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and -independent vasodilatation, respectively.ResultsBased on the AGIS score, 55 patients showed mild glaucoma, with 29 moderate and 30 severe. There was statistically significant difference in microvascular endothelial function (ACh% and ACh max ) between mild and moderate POAG cases (P=0.023) and between mild and severe POAG cases (P<0.001). There was negative correlation between microvascular endothelial function and severity of POAG (r=-0.457, P<0.001).ConclusionMicrovascular endothelial dysfunction may have a role in influencing the severity of POAG in Malay patients.

  1. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia.

    PubMed

    Hanratty, C G; McGrath, L T; McAuley, D F; Young, I S; Johnston, D G

    2001-01-01

    Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the

  2. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.

    PubMed

    Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A

    2017-07-25

    Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.

  3. Arterial endothelial function measurement method and apparatus

    DOEpatents

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  4. Comparison of Endothelial Function in Asian Indians Versus Caucasians

    PubMed Central

    Sert Kuniyoshi, Fatima H.; Shamsuzzaman, Abu S.M.; Singh, Prachi; Maharaj, Shantal; Leinveber, Pavel; Nykodym, Jiri; Somers, Virend K.

    2016-01-01

    Abstract Background: Asian Indians have markedly increased mortality due to coronary artery disease (CAD). Impaired endothelial function has been linked to an increased risk of acute cardiovascular events. We tested the hypothesis that endothelial function was attenuated in Asian Indians and Caucasians. Methods: We studied 14 Asian Indians [mean age: 30 ± 6 years; mean body mass index (BMI): 25 ± 3 kg/m2] and 11 Caucasians (mean age: 30 ± 5 years; mean BMI: 26 ± 2 kg/m2). All 25 subjects were healthy men and nonsmokers without any history of CAD or diabetes and were not taking medications. Endothelial function was evaluated by ultrasound measures of flow-mediated dilatation (FMD) and endothelium-independent nonflow mediated vasodilatation (NFMD) of the brachial artery, in the morning immediately after awakening (6 a.m.) in a fasting state. Results: Mean age, BMI, apnea–hypopnea index, heart rate, and blood pressure were similar in both groups (P = >0.05). When correcting for body surface area, brachial artery diameter was not different between the two groups (2.1% ± 0.3% vs. 2.2% ± 0.4%; P = 0.29). FMD and NFMD were similar in Asian Indians and Caucasians (5.9% ± 4.1% vs. 5.7% ± 2.6%, P = 0.70; 16.4% ± 8% vs. 14.8% ± 4.1%, P = 0.58, respectively). Conclusion: Endothelial function in Asian Indian men is not attenuated in comparison to Caucasian men. PMID:27172431

  5. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls.

    PubMed

    Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S

    2017-09-01

    Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.

  6. RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS.

    PubMed

    Sherpa, Rinzhin T; Atkinson, Kimberly F; Ferreira, Viviana P; Nauli, Surya M

    2016-12-01

    Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

  7. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries.

    PubMed

    Aghajanian, Haig; Cho, Young Kuk; Rizer, Nicholas W; Wang, Qiaohong; Li, Li; Degenhardt, Karl; Jain, Rajan

    2017-09-01

    Originating as a single vessel emerging from the embryonic heart, the truncus arteriosus must septate and remodel into the aorta and pulmonary artery to support postnatal life. Defective remodeling or septation leads to abnormalities collectively known as conotruncal defects, which are associated with significant mortality and morbidity. Multiple populations of cells must interact to coordinate outflow tract remodeling, and the cardiac neural crest has emerged as particularly important during this process. Abnormalities in the cardiac neural crest have been implicated in the pathogenesis of multiple conotruncal defects, including persistent truncus arteriosus, double outlet right ventricle and tetralogy of Fallot. However, the role of the neural crest in the pathogenesis of another conotruncal abnormality, transposition of the great arteries, is less well understood. In this report, we demonstrate an unexpected role of Pdgfra in endothelial cells and their derivatives during outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in double outlet right ventricle and transposition of the great arteries. Our data suggest that loss of Pdgfra in endothelial-derived mesenchyme in the outflow tract endocardial cushions leads to a secondary defect in neural crest migration during development. © 2017. Published by The Company of Biologists Ltd.

  8. Microcapsules functionalized with neuraminidase can enter vascular endothelial cells in vitro

    PubMed Central

    Liu, Weizhi; Wang, Xiaocong; Bai, Ke; Lin, Miao; Sukhorukov, Gleb; Wang, Wen

    2014-01-01

    Microcapsules made of polyelectrolyte multilayers exhibit no or low toxicity, appropriate mechanical stability, variable controllable degradation and can incorporate remote release mechanisms triggered by various stimuli, making them well suited for targeted drug delivery to live cells. This study investigates interactions between microcapsules made of synthetic (i.e. polystyrenesulfonate sodium salt/polyallylamine hydrochloride) or natural (i.e. dextran sulfate/poly-l-arginine) polyelectrolyte and human umbilical vein endothelial cells with particular focus on the effect of the glycocalyx layer on the intake of microcapsules by endothelial cells. Neuraminidase cleaves N-acetyl neuraminic acid residues of glycoproteins and targets the sialic acid component of the glycocalyx on the cell membrane. Three-dimensional confocal images reveal that microcapsules, functionalized with neuraminidase, can be internalized by endothelial cells. Capsules without neuraminidase are blocked by the glycocalyx layer. Uptake of the microcapsules is most significant in the first 2 h. Following their internalization by endothelial cells, biodegradable DS/PArg capsules rupture by day 5; however, there is no obvious change in the shape and integrity of PSS/PAH capsules within the period of observation. Results from the study support our hypothesis that the glycocalyx functions as an endothelial barrier to cross-membrane movement of microcapsules. Neuraminidase-loaded microcapsules can enter endothelial cells by localized cleavage of glycocalyx components with minimum disruption of the glycocalyx layer and therefore have high potential to act as drug delivery vehicles to reach tissues beyond the endothelial barrier of blood vessels. PMID:25339691

  9. Physiologically assessed hot flashes and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P < 0.05) indicated that among the younger tertile of women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  10. Posttraumatic Stress Disorder Is Associated With Worse Endothelial Function Among Veterans.

    PubMed

    Grenon, S Marlene; Owens, Christopher D; Alley, Hugh; Perez, Sandra; Whooley, Mary A; Neylan, Thomas C; Aschbacher, Kirstin; Gasper, Warren J; Hilton, Joan F; Cohen, Beth E

    2016-03-23

    Current research in behavioral cardiology reveals a significant association between posttraumatic stress disorder (PTSD) and increased risk for cardiovascular disease and mortality; however, the underlying mechanisms remain poorly understood. We hypothesized that patients with PTSD would exhibit endothelial dysfunction, a potential mechanism involved in the development and progression of cardiovascular disease. A total of 214 outpatients treated at the San Francisco Veterans Affairs Medical Center underwent tests of endothelial function and evaluation for PTSD. Flow-mediated vasodilation of the brachial artery was performed to assess endothelial function, and current PTSD status was defined by the PTSD Checklist, based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition), with a score ≥40. Multivariable linear regression models were used to estimate the association between PTSD status and endothelial function. Patients with PTSD (n=67) were more likely to be male (99% versus 91%, P=0.04) and to have depression (58% versus 8%, P<0.0001) and were less likely to be on an angiotensin-converting enzyme inhibitor (17% versus 36%, P=0.007) or β-blocker treatment (25% versus 41%, P=0.03). Univariate analysis demonstrated that patients with PTSD had significantly lower flow-mediated vasodilation (5.8±3.4% versus 7.5±3.7%; P=0.003); furthermore, lower flow-mediated vasodilation was associated with increasing age (P=0.008), decreasing estimated glomerular filtration rate (P=0.003), hypertension (P=0.002), aspirin (P=0.03), and β-blocker treatments (P=0.01). In multivariable analysis, PTSD remained independently associated with lower flow-mediated vasodilation (P=0.0005). After adjusting for demographic, comorbidity, and treatment characteristics, PTSD remained associated with worse endothelial function in an outpatient population. Whether poor endothelial function contributes to the higher risk of cardiovascular disease in patients with PTSD

  11. Endothelial progenitor cells and rheumatic disease modifying therapy.

    PubMed

    Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino

    2018-05-26

    Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc

  13. A systematic review of vascular and endothelial function: effects of fruit, vegetable and potassium intake.

    PubMed

    Blanch, N; Clifton, P M; Keogh, J B

    2015-03-01

    To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Endothelial function in highly endurance-trained and sedentary, healthy young women.

    PubMed

    Moe, Ingvild T; Hoven, Heidi; Hetland, Eva V; Rognmo, Oivind; Slørdahl, Stig A

    2005-05-01

    Endothelial function is reduced by age, chronic heart failure, coronary artery disease, hypertension or type 2 diabetes, and it is shown that aerobic exercise may reverse this trend. The effect of a high aerobic training status on endothelial function in young, healthy subjects is however less clear. The present study was designed to determine whether endothelial function is improved in highly endurance-trained young women compared to sedentary, healthy controls. Brachial artery diameter was measured in 16 endurance-trained (age: 23.7 +/- 2.5 years, maximal oxygen uptake (VO2max): 60.6 +/- 4.5 ml/kg per min) and 14 sedentary females (age: 23.7 +/- 2.1 years, VO2max: 40.5 +/- 5.6 ml/kg per min) at rest, during flow-mediated dilation (FMD) and after sublingual glycerol trinitrate administration, using high-resolution ultrasound. FMD did not differ between the endurance-trained and the sedentary females (14.8% vs 16.4%, p = NS), despite a substantial difference in VO2max of 50% (p < 0.001). The endurance-trained group possessed however, a 9% larger resting brachial artery diameter when adjusted for body surface area. The results of the present study suggest that endothelial function is well preserved in young, healthy women, and that a high aerobic training status due to long term aerobic training does not improve the dilating capacity any further.

  15. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function.

    PubMed

    Li, Xiaocong; Jiang, Chunyu; Zhao, Jungong

    2016-08-01

    Wound healing is deeply dependent on neovascularization to restore blood flow. The neovascularization of endothelial progenitor cells (EPCs) through paracrine secretion has been reported in various tissue repair models. Exosomes, key components of cell paracrine mechanism, have been rarely reported in wound healing. Exosomes were isolated from the media of EPCs obtained from human umbilical cord blood. Diabetic rats wound model was established and treated with exosomes. The in vitro effects of exosomes on the proliferation, migration and angiogenic tubule formation of endothelial cells were investigated. We revealed that human umbilical cord blood EPCs derived exosomes transplantation could accelerate cutaneous wound healing in diabetic rats. We also showed that exosomes enhanced the proliferation, migration and tube formation of vascular endothelial cells in vitro. Furthermore, we found that endothelial cells stimulated with these exosomes would increase expression of angiogenesis-related molecules, including FGF-1, VEGFA, VEGFR-2, ANG-1, E-selectin, CXCL-16, eNOS and IL-8. Taken together, our findings indicated that EPCs-derived exosomes facilitate wound healing by positively modulating vascular endothelial cells function. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function.

    PubMed

    Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2012-08-01

    Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.

  17. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Effect of aspirin on acute changes in peripheral arterial stiffness and endothelial function following exertional heat stress in firefighters: The factorial group results of the Enhanced Firefighter Rehab Trial.

    PubMed

    Olafiranye, Oladipupo; Hostler, David; Winger, Daniel G; Wang, Li; Reis, Steven E

    2015-06-01

    Peripheral arterial stiffness and endothelial function, which are independent predictors of cardiac events, are abnormal in firefighters. We examined the effects of aspirin on peripheral arterial stiffness and endothelial function in firefighters. Fifty-two firefighters were randomized to receive daily 81 mg aspirin or placebo for 14 days before treadmill exercise in thermal protection clothing, and a single dose of 325 mg aspirin or placebo immediately following exertion. Peripheral arterial augmentation index adjusted for a heart rate of 75 (AI75) and reactive hyperemia index (RHI) were determined immediately before, and 30, 60, and 90 minutes after exertion. Low-dose aspirin was associated with lower AI75 (-15.25±9.25 vs -8.08±10.70, p=0.014) but not RHI. On repeated measures analysis, treatment with low-dose aspirin before, but not single-dose aspirin after exertion, was associated with lower AI75 following exertional heat stress (p=0.018). Low-dose aspirin improved peripheral arterial stiffness and wave reflection but not endothelial function in firefighters. © The Author(s) 2015.

  19. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    PubMed

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients.

  20. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers.

    PubMed

    Stewart, Frances M; Freeman, Dilys J; Ramsay, Jane E; Greer, Ian A; Caslake, Muriel; Ferrell, William R

    2007-03-01

    Obesity in pregnancy is increasing and is a risk factor for metabolic pathology such as preeclampsia. In the nonpregnant, obesity is associated with dyslipidemia, vascular dysfunction, and low-grade chronic inflammation. Our aim was to measure microvascular endothelial function in lean and obese pregnant women at intervals throughout their pregnancies and at 4 months after delivery. Plasma markers of endothelial function, inflammation, and placental function and their association with microvascular function were also assessed. Women in the 1st trimester of pregnancy were recruited, 30 with a body mass index (BMI) less than 30 kg/m(2) and 30 with a BMI more than or equal to 30 kg/m(2) matched for age, parity, and smoking status. In vivo endothelial-dependent and -independent microvascular function was measured using laser Doppler imaging in the 1st, 2nd, and 3rd trimesters of pregnancy and at 4 months postnatal. Plasma markers of endothelial activation [soluble intercellular cell adhesion molecule-1 (sVCAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), and plasminogen activator inhibitor (PAI)-1], inflammation (IL-6, TNFalpha, C-reactive protein, and IL-10), and placental function (PAI-1/PAI-2 ratio) were also assessed at each time point. The pattern of improving endothelial function during pregnancy was the same for lean and obese, but endothelial-dependent vasodilation was significantly lower (P < 0.05) in the obese women at each trimester (51, 41, and 39%, respectively). In the postpartum period, the improvement in endothelial-dependent vasodilation persisted in the lean women but declined to near 1st trimester levels in the obese (lean/obese difference, 115%; P < 0.01). There was a small but significant difference in endothelial-independent vasodilation between the two groups, lean response being greater than obese (P = 0.021), and response declined in both groups in the postpartum period. In multivariate analysis, time of

  1. Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes.

    PubMed

    Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Little, Jonathan P

    2016-11-01

    Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. Copyright © 2016 the American Physiological Society.

  2. Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes

    PubMed Central

    Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.

    2016-01-01

    Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. PMID:27638878

  3. Perceived functional impact of abnormal facial appearance.

    PubMed

    Rankin, Marlene; Borah, Gregory L

    2003-06-01

    Functional facial deformities are usually described as those that impair respiration, eating, hearing, or speech. Yet facial scars and cutaneous deformities have a significant negative effect on social functionality that has been poorly documented in the scientific literature. Insurance companies are declining payments for reconstructive surgical procedures for facial deformities caused by congenital disabilities and after cancer or trauma operations that do not affect mechanical facial activity. The purpose of this study was to establish a large, sample-based evaluation of the perceived social functioning, interpersonal characteristics, and employability indices for a range of facial appearances (normal and abnormal). Adult volunteer evaluators (n = 210) provided their subjective perceptions based on facial physical appearance, and an analysis of the consequences of facial deformity on parameters of preferential treatment was performed. A two-group comparative research design rated the differences among 10 examples of digitally altered facial photographs of actual patients among various age and ethnic groups with "normal" and "abnormal" congenital deformities or posttrauma scars. Photographs of adult patients with observable congenital and posttraumatic deformities (abnormal) were digitally retouched to eliminate the stigmatic defects (normal). The normal and abnormal photographs of identical patients were evaluated by the large sample study group on nine parameters of social functioning, such as honesty, employability, attractiveness, and effectiveness, using a visual analogue rating scale. Patients with abnormal facial characteristics were rated as significantly less honest (p = 0.007), less employable (p = 0.001), less trustworthy (p = 0.01), less optimistic (p = 0.001), less effective (p = 0.02), less capable (p = 0.002), less intelligent (p = 0.03), less popular (p = 0.001), and less attractive (p = 0.001) than were the same patients with normal facial

  4. Effect of Saxagliptin on Circulating Endothelial Progenitor Cells and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients.

    PubMed

    Li, Fang; Chen, Jiachao; Leng, Fei; Lu, Zhiqiang; Ling, Yan

    2017-06-01

    Endothelial dysfunction is associated with the risk of cardiovascular complications in diabetic patients. Endothelial progenitor cells (EPCs) and flow-mediated dilation (FMD) are common markers of endothelial function. In this study, we aim to investigate whether the DPP-4 inhibitor saxagliptin modulate EPCs number and FMD in newly diagnosed, treatment-naive type 2 diabetic patients. This was a controlled, randomized, open-label clinical trial. Saxagliptin group and metformin group consumed either saxagliptin 5 mg per day or metformin 1 500 mg per day respectively for 12 weeks. Changes of FMD and EPCs number after 12-week intervention were the primary endpoints. 31 patients were initially enrolled and randomized to saxagliptin group (n=16) and metformin group (n=15). 27 patients completed the trial (saxagliptin group n=14 and metformin group n=13), and 4 patients dropped out during the study. FMD and EPCs number increased significantly in both saxagliptin group and metformin group, and there was no significant difference between groups. 2-h postprandial plasma glucose, HbA1c and diastolic blood pressure improved significantly in both groups, and there was no significant difference between groups. Saxagliptin and metformin had comparable beneficial effects on endothelial function. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  6. Nebivolol: impact on cardiac and endothelial function and clinical utility.

    PubMed

    Toblli, Jorge Eduardo; DiGennaro, Federico; Giani, Jorge Fernando; Dominici, Fernando Pablo

    2012-01-01

    Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/ nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This

  7. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    PubMed

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  8. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  9. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.

  10. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  11. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  12. Endothelial ERK signaling controls lymphatic fate specification

    PubMed Central

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  13. The endothelial glycocalyx

    PubMed Central

    Yang, Yimu; Schmidt, Eric P.

    2013-01-01

    Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386

  14. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and

  15. Endothelial Function and Weight Loss: Comparison of Low-Carbohydrate and Low-Fat Diets

    PubMed Central

    Mohler, Emile R.; Sibley, Alexandra A.; Stein, Richard; Davila-Roman, Victor; Wyatt, Holly; Badellino, Karen; Rader, Daniel J.; Klein, Samuel; Foster, Gary D.

    2012-01-01

    The effect of weight loss on obesity-associated endothelial dysfunction is not clear because of conflicting data, demonstrating both improvement and no change in endothelial function after weight loss in obese subjects. A two-year prospective study (n=121) was conducted to examine: 1) the effect of obesity and weight loss (either a low-carbohydrate or and low-fat diet) on flow mediated vasodilatation (FMD), a measure of endothelial function. Participants reduced body weight by 7.1±4.4%, 8.7±6.8% 7.1±7.8% and 4.1±7.7% at 3, 6, 12 and 24 months, respectively with no significant differences between the low-fat and low-carbohydrate groups. Endothelial function was inversely correlated with waist circumference, triglyceride level, and directly correlated with leptin in obese persons prior to weight loss. These weight losses did not confer any improvements in FMD. There were no differences between the low-fat and low-carbohydrate diets in FMD at any time point. At 6 months (r = 0.26, p = 0.04) and one year (r = 0.28, p = 0.03), there were positive correlations between change in FMD and change in leptin but not at two years. There was no significant improvement in endothelial function after 7.1±7.8% weight loss at one year and 4.1±7.7% at two years, achieved by either a low carbohydrate or a low fat diet. PMID:23404949

  16. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    PubMed Central

    2013-01-01

    Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/−) mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE−/− and the wild-type (WT) mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data

  17. Abnormal lung function at preschool age asthma in adolescence?

    PubMed

    Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J

    2018-05-01

    Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling

    PubMed Central

    2017-01-01

    Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804

  19. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-02-01

    cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.

  20. Dissociation of endothelial function and arterial stiffness in nonobese women with polycystic ovary syndrome (PCOS).

    PubMed

    Cussons, Andrea J; Watts, Gerald F; Stuckey, Bronwyn G A

    2009-12-01

    Polycystic ovary syndrome (PCOS) is associated with cardiovascular risk but it is not clear if this is independent of obesity and insulin resistance. This study therefore investigates endothelial function and arterial stiffness in nonobese, noninsulin resistant women with PCOS. This is cross-sectional case-control study. A total of 19 young women with PCOS, with body mass index (BMI) <30 kg/m(2), and 19 healthy controls matched for age and BMI were included in the study. Endothelial function was assessed with flow mediated dilatation (FMD) of the brachial artery, while arterial stiffness was assessed with pulse wave velocity (PWV) and augmentation index (AI). There were no significant differences between PCOS and control subjects when assessing the following clinical and biochemical variables: blood pressure, homeostasis model assessment insulin-resistance index, lipids and oestradiol. Women with PCOS had higher free androgen index scores (5.14 ± 3.47 vs. 3.25 ± 1.42, P = 0.036). The PCOS subjects had significantly lower FMD of the brachial artery compared with the controls (6.5 ± 2.9%vs. 10.5 ± 4.0%, P < 0.01). There were no significant differences in markers of arterial stiffness (PWV 5.8 ± 1.1 vs. 6.0 ± 1.0, P = 0.58, AI 16.5 ± 10.2 vs. 20.3 ± 10.2, P = 0.25). Women with polycystic ovary syndrome who are young, nonobese, and have no biochemical evidence of insulin resistance, have abnormal vascular function, but normal arterial stiffness, when compared with age and weight matched control subjects. Whether this leads to a greater risk of cardiovascular disease requires further investigation. © 2009 Blackwell Publishing Ltd.

  1. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    PubMed

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  2. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    PubMed

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential

  4. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment.

    PubMed

    Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N

    2016-04-01

    There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment. Results were analyzed using the SPSS 20 statistical software package. Student's t test and MANOVA were calculated and linear regression analysis with 95% confidence intervals and α<0.05 was performed. Arterial dilation at 24 hours was lower compared to baseline in both groups; values corresponding to the groups receiving angiotensin-converting enzyme inhibitors were 11.89 ± 4.87 vs. 7.30 ± 2.90% (p<0.01) and those corresponding to the group not receiving ACE inhibitors were 12.72 ± 4.62 vs. 3.56 ± 2.39 (p<0.001). The differences between groups were statistically significant (p<0.001). The increase in endothelial dysfunction after intensive periodontal treatment was significantly lower in hypertensive patients treated with angiotensin-converting enzyme inhibitors. Endothelial

  5. Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function.

    PubMed

    Naka, Katerina K; Tweddel, Ann C; Doshi, Sagar N; Goodfellow, Jonathan; Henderson, Andrew H

    2006-02-01

    To test whether measuring hyperaemic changes in pulse wave velocity (PWV) could be used as a new method of assessing endothelial function for use in clinical practice. Flow-mediated changes in vascular tone may be used to assess endothelial function and may be induced by distal hyperaemia, while endothelium-mediated changes in vascular tone can influence PWV. These three known principles were combined to provide and test a novel method of measuring endothelial function by the acute effects of distal hyperaemia on upper and lower limb PWV (measured by a recently developed method). Flow-mediated changes in upper and lower limb PWV were compared in 17 healthy subjects and seven patients with stable chronic heart failure (CHF), as a condition where endothelial function is impaired but endothelium-independent dilator responses are retained. Corroborative measurements of PWV and brachial artery diameter responses to endothelium-dependent and -independent pharmacological stimuli were performed in a further eight healthy subjects. Flow-mediated reduction of PWV (by 14% with no change in blood pressure) was found in normal subjects but was almost abolished in patients with CHF. PWV responses appear to be inversely related to and relatively greater than brachial artery diameter responses. The method may offer potential advantages of practical use and sensitivity over conduit artery diameter responses to measure endothelial dysfunction.

  6. Exercise training improves endothelial function in young prehypertensives

    PubMed Central

    Beck, Darren T; Casey, Darren P; Martin, Jeffrey S; Emerson, Blaze D; Braith, Randy W

    2015-01-01

    Prehypertensives exhibit marked endothelial dysfunction, a risk factor for future cardiovascular morbidity and mortality. However, the ability of exercise to ameliorate endothelial dysfunction in prehypertensives is grossly underinvestigated. This prospective randomized and controlled study examined the separate effects of resistance and endurance training on conduit artery endothelial function in young prehypertensives. Forty-three unmedicated prehypertensive (systolic blood pressure [SBP]=120–139 mmHg; diastolic blood pressure [DBP]=80–89 mmHg) but otherwise healthy men and women and 15 normotensive matched time-controls (NMTC); n = 15) between 18 and 35 y of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to either a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). The treatment groups performed exercise training three days per week for eight weeks. The control groups did not initiate exercise programs throughout the study. Flow mediated dilation (FMD) of the brachial artery, biomarkers of enodothelial function and peripheral blood pressure were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP (9.6 ± 3.6 and 11.9 ± 3.4 mmHg, respectively; P < 0.05) and DBP (8.0 ± 5.1 and 7.2 ± 3.4 mmHg, respectively; P < 0.05). Exercise training improved brachial artery FMD absolute diameter, percent dilation and normalized percent dilation by 30%, 34% and 19% for PHRT, P < 0.05; and by 54%, 63% and 75% for PHET, P < 0.05; respectively. PHRT and PHET increased plasma concentrations of 6-keto prostaglandin F1α (19% and 22%, respectively; P < 0.05), NOx (19% and 23%, respectively; P < 0.05), and reduced endothelin-1 by (16% and 24%, respectively; P < 0.01). This study provides novel evidence that resistance and endurance exercise separately have beneficial effects on resting

  7. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function

    PubMed Central

    Betteridge, Kai B.; Arkill, Kenton P.; Neal, Christopher R.; Harper, Steven J.; Foster, Rebecca R.; Satchell, Simon C.; Bates, David O.

    2017-01-01

    Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability.Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel.The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth.Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same

  8. Endothelial function in patients with migraine during the interictal period.

    PubMed

    Silva, Federico A; Rueda-Clausen, Christian F; Silva, Sandra Y; Zarruk, Juan G; Guzmán, Juan C; Morillo, Carlos A; Vesga, Boris; Pradilla, Gustavo; Flórez, Mildred; López-Jaramillo, Patricio

    2007-01-01

    The aim of this study is to evaluate endothelial function in migraineurs subjects during the asymptomatic period. Migraine has been proposed as a risk factor for cerebrovascular events. The underlying mechanisms that relate these 2 pathologies are unknown. Nitric oxide (NO) has been proposed as the final causative molecule of migraine. Increased NO metabolites concentrations have been reported in migraineurs subjects during acute migraine attacks, but there is no evidence indicating alterations in endothelial NO release during the symptom free period in theses subjects. Fifty migraineurs subjects and 25 healthy subjects matched by gender and age were included. Every subject underwent a complete examination that included medical history, physical examination, resting electrocardiogram, forearm flow-mediated vasodilation (FMD), blood determinations of fasting nitrates and nitrites (NO(2) (-)+ NO(3) (-)), glucose, lipid profile, creatinine, C-reactive protein, and blood cell count. No differences in FMD or NO(2) (-)+ NO(3) (-) were detected among groups. The only difference between migraineurs and control subjects was a higher mean blood pressure 92.1 (8.8) mmHg versus 86.7 (8.2) mmHg P= .01. The endothelial function is not altered during the interictal period in migraineurs subjects.

  9. Regulation of vascular endothelial function by procyanidin-rich foods and beverages.

    PubMed

    Caton, Paul W; Pothecary, Mark R; Lees, Delphine M; Khan, Noorafza Q; Wood, Elizabeth G; Shoji, Toshihiko; Kanda, Tomomasa; Rull, Gurvinder; Corder, Roger

    2010-04-14

    Flavonoid-rich diets are associated with a lower mortality from cardiovascular disease. This has been linked to improvements in endothelial function. However, the specific flavonoids, or biologically active metabolites, conferring these beneficial effects have yet to be fully defined. In this experimental study of the effect of flavonoids on endothelial function cultured endothelial cells have been used as a bioassay with endothelin-1 (ET-1) synthesis being measured an index of the response. Evaluation of the relative effects of extracts of cranberry juice compared to apple, cocoa, red wine, and green tea showed inhibition of ET-1 synthesis was dependent primarily on their oligomeric procyanidin content. Procyanidin-rich extracts of cranberry juice triggered morphological changes in endothelial cells with reorganization of the actin cytoskeleton and increased immunostaining for phosphotyrosine residues. These actions were independent of antioxidant activity. Comparison of the effects of apple procyanidin monomers through heptamer showed a clear structure-activity relationship. Although monomer, dimer, and trimer had little effect on ET-1 synthesis, procyanidin tetramer, pentamer, hexamer, and heptamer produced concentration-dependent decreases with IC(50) values of 5.4, 1.6, 0.9, and 0.7 microM, respectively. Levels of ET-1 mRNA showed a similar pattern of decreases, which were inversely correlated with increased expression of Kruppel-like factor 2 (KLF2), a key endothelial transcription factor with a broad range of antiatherosclerotic actions including suppression of ET-1 synthesis. Future investigations of procyanidin-rich products should assess the role KLF2 induction plays in the beneficial vascular effects of high flavonoid consumption.

  10. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function.

    PubMed

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves

    2017-11-01

    Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy ( P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy ( P < 0.001). Endothelial function, obtained by FMD, is deteriorated in PE versus normal pregnancy ( P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy ( P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.

  11. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  12. Weight loss improves biomarkers endothelial function and systemic inflammation in obese postmenopausal Saudi women.

    PubMed

    Abd El-Kader, Shehab Mahmoud; Saiem Al-Dahr, Mohammed H

    2016-06-01

    Although postmenopausal associated disorders are important public health problems worldwide, to date limited studies evaluated the endothelial function and systemic inflammation response to weight loss in obese postmenopausal women. This study was done to evaluate the endothelial function and systemic inflammation response to weight loss in obese postmenopausal Saudi women. Eighty postmenopausal obese Saudi women (mean age 52.64±6.13 year) participated in two groups: Group (A) received aerobic exercise on treadmill and diet whereas, group (B) received no intervention. Markers of inflammation and endothelial function were measured before and after 3 months at the end of the study. The values of body mass index(BMI), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), inter-cellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1) and plasminogen activator inhibitor-1 activity (PAI-1:Ac) were significantly decreased in group (A), while changes were not significant in group (B). Also, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Weight loss ameliorates inflammatory cytokines and markers of endothelial function in obese postmenopausal Saudi women.

  13. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  14. Functional and Biochemical Endothelial Profiling In Vivo in a Murine Model of Endothelial Dysfunction; Comparison of Effects of 1-Methylnicotinamide and Angiotensin-converting Enzyme Inhibitor

    PubMed Central

    Bar, Anna; Olkowicz, Mariola; Tyrankiewicz, Urszula; Kus, Edyta; Jasinski, Krzysztof; Smolenski, Ryszard T.; Skorka, Tomasz; Chlopicki, Stefan

    2017-01-01

    Although it is known that 1-methylnicotinamide (MNA) displays vasoprotective activity in mice, as yet the effect of MNA on endothelial function has not been demonstrated in vivo. Here, using magnetic resonance imaging (MRI) we profile the effects of MNA on endothelial phenotype in mice with atherosclerosis (ApoE/LDLR-/-) in vivo, in comparison to angiotensin (Ang) -converting enzyme (ACE) inhibitor (perindopril), with known vasoprotective activity. On a biochemical level, we analyzed whether MNA- or perindopril-induced improvement in endothelial function results in changes in ACE/Ang II-ACE2/Ang-(1–7) balance, and L-arginine/asymmetric dimethylarginine (ADMA) ratio. Endothelial function and permeability were evaluated in the brachiocephalic artery (BCA) in 4-month-old ApoE/LDLR-/- mice that were non-treated or treated for 1 month or 2 months with either MNA (100 mg/kg/day) or perindopril (10 mg/kg/day). The 3D IntraGate®FLASH sequence was used for evaluation of BCA volume changes following acetylcholine (Ach) administration, and for relaxation time (T1) mapping around BCA to assess endothelial permeability using an intravascular contrast agent. Activity of ACE/Ang II and ACE2/Ang-(1–7) pathways as well as metabolites of L-arginine/ADMA pathway were measured using liquid chromatography/mass spectrometry-based methods. In non-treated 6-month-old ApoE/LDLR-/- mice, Ach induced a vasoconstriction in BCA that amounted to –7.2%. 2-month treatment with either MNA or perindopril resulted in the reversal of impaired Ach-induced response to vasodilatation (4.5 and 5.5%, respectively) and a decrease in endothelial permeability (by about 60% for MNA-, as well as perindopril-treated mice). Improvement of endothelial function by MNA and perindopril was in both cases associated with the activation of ACE2/Ang-(1–7) and the inhibition of ACE/Ang II axes as evidenced by an approximately twofold increase in Ang-(1–9) and Ang-(1–7) and a proportional decrease in Ang II

  15. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease.

    PubMed

    Aminzadeh, Mohammad A; Reisman, Scott A; Vaziri, Nosratola D; Shelkovnikov, Stan; Farzaneh, Seyed H; Khazaeli, Mahyar; Meyer, Colin J

    2013-01-01

    Chronic kidney disease (CKD) is associated with endothelial dysfunction and accelerated cardiovascular disease, which are largely driven by systemic oxidative stress and inflammation. Oxidative stress and inflammation in CKD are associated with and, in part, due to impaired activity of the cytoprotective transcription factor Nrf2. RTA dh404 is a synthetic oleanane triterpenoid compound which potently activates Nrf2 and inhibits the pro-inflammatory transcription factor NF-κB. This study was designed to test the effects of RTA dh404 on endothelial function, inflammation, and the Nrf2-mediated antioxidative system in the aorta of rats with CKD induced by 5/6 nephrectomy. Sham-operated rats served as controls. Subgroups of CKD rats were treated orally with RTA dh404 (2 mg/kg/day) or vehicle for 12 weeks. The aortic rings from untreated CKD rats exhibited a significant reduction in the acetylcholine-induced relaxation response which was restored by RTA dh404 administration. Impaired endothelial function in the untreated CKD rats was accompanied by significant reduction of Nrf2 activity (nuclear translocation) and expression of its cytoprotective target genes, as well as accumulation of nitrotyrosine and upregulation of NAD(P)H oxidases, 12-lipoxygenase, MCP-1, and angiotensin II receptors in the aorta. These abnormalities were ameliorated by RTA dh404 administration, as demonstrated by the full or partial restoration of the expression of all the above analytes to sham control levels. Collectively, the data demonstrate that endothelial dysfunction in rats with CKD induced by 5/6 nephrectomy is associated with impaired Nrf2 activity in arterial tissue, which can be reversed with long term administration of RTA dh404.

  16. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.

    PubMed

    Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye

    2015-11-09

    Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas

  17. Anger, depression and anxiety associated with endothelial function in childhood and adolescence.

    PubMed

    Osika, W; Montgomery, S M; Dangardt, F; Währborg, P; Gan, L M; Tideman, E; Friberg, P

    2011-01-01

    Psychosocial adversity is a risk factor for cardiovascular disease (CVD) in adults. The authors assessed associations of reactive hyperaemia peripheral arterial tonometry (RH-PAT), a measure of endothelial function predictive of CVD, with self-assessed psychological health among school children. A total of 248 healthy school children (mean (SD) age 14.0 (1.0); 136 girls and 112 boys) underwent RH-PAT testing. They completed the Beck Youth Inventories (BYI) of emotional and social impairment scales, which is used to screen for depression, anxiety, anger and disruptive behaviour. No sex differences were observed for the RH-PAT score. Statistically significant differences were observed for the BYI scores; girls had higher scores for depression, anger and anxiety. Among the girls, there were statistically significant associations between lower RH-PAT scores and higher scores for anger (B coefficient=-0.100, p=0.040), depression (-0.108, p=0.009) and anxiety (-0.138, p=0.039) after adjustment for age. Among the boys, disruptive behaviour was associated with higher RH-PAT scores (0.09, p=0.006). The girls have higher levels of self-assessed anger; depression and anxiety compared with the boys, and these characteristics are associated with lower RH-PAT scores, indicating attenuated endothelial function. Among the boys, disruptive behaviour was associated with better endothelial function. Although psychological ill-health is associated with impaired endothelial function and CVD among adults, such processes may also be relevant to children. Psychosocial adversity in childhood might be a risk factor for subsequent CVD.

  18. Deterioration of endothelial function of micro- and macrocirculation in patients with diabetes type 1 and 2.

    PubMed

    Besic, Hana; Jeraj, Luka; Spirkoska, Ana; Jezovnik, Mateja K; Poredoš, Pavel

    2017-08-01

    Vascular complications are an important cause of morbidity in patients with diabetes mellitus (DM). Endothelial dysfunction is an early marker of atherosclerosis and has already been shown in macrocirculation of diabetic patients; however, data on endothelial function of microcirculation is scarce. Our aim was to evaluate endothelial function in macro- and microcirculation and their interrelationship in patients with type 1 and 2 DM. The study included 30 patients with type 1 DM, 30 patients with type 2 DM and 25 healthy controls. The endothelial function of large arteries was studied measuring flow-mediated dilation (FMD). Peripheral arterial tonometry was used for investigation of the endothelial function of microcirculation, measuring Reactive Hyperemia Index (RHI) and Augmentation Index (AI). In comparison to controls, both DM groups had decreased FMD: type 1 (4.0±5.0% vs. 10.0±7.8%, P=0.005) and type 2 (5.0±0.6% vs. 10.0±7.8%, P=0.007). However, only type 2 DM group had a lower RHI (1.71±0.44 vs. 2.05±0.54, P=0.017) in comparison to controls. Patients with type 1 and 2 DM had deteriorated functional capability of macrocirculation. However, endothelial dysfunction of microcirculation was present only in type 2 DM patients. Type 2 DM patients were also at higher risk for atherosclerosis because of the more frequent presence of risk factors.

  19. Impaired endothelial function in lone atrial fibrillation.

    PubMed

    Polovina, Marija; Potpara, Tatjana; Giga, Vojislav; Stepanović, Jelena; Ostojić, Miodrag

    2013-10-01

    Impaired endothelial function has been previously documented in patients with atrial fibrillation (AF) and underlying comorbidities or older patients with idiopathic AF. The aim of this study was to evaluate systemic endothelial function in younger AF patients (less than < 60 years old) with lone AF (that is, without associated cardiopulmonary comorbidities, including arterial hypertension), by comparing brachial artery flow-mediated dilation (FMD) in lone AF patients with FMD of healthy subjects in sinus rhythm. Two groups of participants were prospectively enrolled. The first group comprised of 38 AF patients (the mean age 45 +/- 11 years, 68% male) with persistent (> 7 days) lone AF. The second group comprised of 28 healthy controls in sinus rhythm (the mean age 43 +/- 13, 53% male), matched by age, gender and atherosclerotic risk factors. All the participants underwent physical examination, laboratory analysis [including determination of C-reactive protein (CRP)], standard echocardiography and exercise-stress testing. Brachial artery FMD and endothelium independent dilation (NMD) were assessed with a high-resolution ultrasound probe and arterial diameters taken from 5 consecutive cardiac cycles were averaged for each measurement to accommodate to beat-to-beat flow variations in AF. There were no differences between the 2 groups regarding age, gender and most clinical, laboratory and echocardiographic characteristics (all p > 0.05), apart from the increased heart rate (p = 0.018), body mass index (p = 0.027), CRP levels (p = 0.007) and left atrial anteroposterior dimension (p < 0.001) in AF patients. FMD of AF patients [median value 5.0%, interquartile range (IQR) 2.87%-7.50%] was significantly lower (p < 0.001) than FMD of healthy controls (median value 8.85%, IQR 5.80%-12.50%), whereas there were no differences in median NMD values (p > 0.05). In the multivariate analysis, the independent FMD determinants in our study population were the presence of AF

  20. Abnormal Structure–Function Relationship in Spasmodic Dysphonia

    PubMed Central

    Ludlow, Christy L.

    2012-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. Although recent studies have found abnormal brain function and white matter organization in SD, the extent of gray matter alterations, their structure–function relationships, and correlations with symptoms remain unknown. We compared gray matter volume (GMV) and cortical thickness (CT) in 40 SD patients and 40 controls using voxel-based morphometry and cortical distance estimates. These measures were examined for relationships with blood oxygen level–dependent signal change during symptomatic syllable production in 15 of the same patients. SD patients had increased GMV, CT, and brain activation in key structures of the speech control system, including the laryngeal sensorimotor cortex, inferior frontal gyrus (IFG), superior/middle temporal and supramarginal gyri, and in a structure commonly abnormal in other primary dystonias, the cerebellum. Among these regions, GMV, CT and activation of the IFG and cerebellum showed positive relationships with SD severity, while CT of the IFG correlated with SD duration. The left anterior insula was the only region with decreased CT, which also correlated with SD symptom severity. These findings provide evidence for coupling between structural and functional abnormalities at different levels within the speech production system in SD. PMID:21666131

  1. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  2. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Role of folic acid in nitric oxide bioavailability and vascular endothelial function

    PubMed Central

    Kenney, W. Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. PMID:27974600

  4. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

    PubMed Central

    Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; Karabina, Sonia A.; Lusis, Aldons J.; Cambien, François; Ninio, Ewa

    2016-01-01

    Aims Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. Conclusions We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3. PMID:27694435

  5. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  8. Impaired postprandial endothelial function depends on the type of fat consumed by healthy men.

    PubMed

    Berry, Sarah E E; Tucker, Sally; Banerji, Radhika; Jiang, Benyu; Chowienczyk, Phillip J; Charles, Sonia M; Sanders, Thomas A B

    2008-10-01

    Postprandial lipemia impairs endothelial function possibly via an oxidative stress mechanism. A stearic acid-rich triacylglycerol (TAG) (shea butter) results in a blunted postprandial increase in plasma TAG compared with an oleic acid-rich TAG; however, its acute effects on endothelial function and oxidative stress are unknown. A randomized crossover trial (n = 17 men) compared the effects of 50 g fat, rich in stearic acid [shea butter blend (SA)] or oleic acid [high oleic sunflower oil (HO)], on changes in endothelial function [brachial artery flow-mediated dilatation (FMD)], arterial tone [pulse wave analysis (PWA), and carotid-femoral pulse wave velocity (PWV(c-f))], and oxidative stress (plasma 8-isoprostane F2alpha) at fasting and 3 h following the test meals. The postprandial increase in plasma TAG was lower (66% lower incremental area under curve) following the SA meal [28.3 (9.7, 46.9)] than after the HO meal [83.4 (57.0, 109.8); P < 0.001] (geometric means with 95% CI, arbitary units). Following the HO meal, there was a decrease in FMD [-3.0% (-4.4, -1.6); P < 0.001] and an increase in plasma 8-isoprostane F2alpha [10.4ng/L (3.8, 16.9); P = 0.005] compared with fasting values, but no changes followed the SA meal. The changes in 8-isoprostane F2alpha and FMD differed between meals and were 14.0 ng/L (6.4, 21.6; P = 0.001) and 1.75% (0.10, 3.39; P = 0.02), respectively. The reductions in PWA and PWV c-f did not differ between meals. This study demonstrates that a stearic acid-rich fat attenuates the postprandial impairment in endothelial function compared with an oleic acid-rich fat and supports the hypothesis that postprandial lipemia impairs endothelial function via an increase in oxidative stress.

  9. Ethinyl estradiol-to-desogestrel ratio impacts endothelial function in young women✩

    PubMed Central

    Meendering, Jessica R.; Torgrimson, Britta N.; Miller, Nicole P.; Kaplan, Paul F.; Minson, Christopher T.

    2010-01-01

    Background Ethinyl estradiol (EE) and progestins have the ability to alter endothelial function. The type of progestin and the ratio of EE to progestin used in oral contraceptive pills (OCPs) may determine how they affect the arterial vasculature. Study Design In this study, we investigated endothelial function across a cycle in very low dose (VLD) and low dose (LD) combination EE and desogestrel (DSG) OCP users during two phases: active (VLD=20 mcg EE/150 mcg DSG; LD=30 mcg EE/150 mcg DSG) and pill-free. Endothelial function was also measured during an EE-only hormone phase (10 mcg EE) in group VLD. Results Endothelium-dependent vasodilation was greater during the active phase compared to the pill-free phase in group LD (9.02±0.72% vs. 7.33±0.84%; p=.029). This phase difference was not observed in group VLD (5.86±0.63% vs. 6.56±0.70%; p=.108). However, endothelium-dependent vasodilation was higher during the EE-only phase, compared to the active and pill-free phases (8.92±0.47% vs. 5.86±0.63%, and 6.56±0.70%; pb.001) in group VLD. Conclusions These data suggest DSG may antagonize the vasodilatory activity of EE and that this effect is further modulated by the EE-toDSG ratio. PMID:19041440

  10. Effect of breaking up sedentary time with callisthenics on endothelial function.

    PubMed

    Carter, Sophie E; Gladwell, Valerie F

    2017-08-01

    Periods of prolonged sitting impairs endothelial function in lower limb conduit arteries, which is attenuated with physical activity breaks. The effect of activity breaks on upper limb arteries has not been examined. This study assessed changes in brachial artery endothelial function following either a prolonged sitting period or breaking up this sedentary time by performing sets of callisthenics exercises. Ten healthy participants (6 men) completed 2 conditions in a counterbalanced order: (a) 1-h 26-min sitting, or (b) breaking up this period every 20 min by performing a set of 5 callisthenics exercises. Brachial artery endothelial function was assessed via ultrasound using the flow-mediated dilation (FMD) technique prior to and following each condition, while brachial shear rate (SR) was acquired after each set of callisthenics. There was no significant change in FMD over time (P = 0.09) or between conditions (P = 0.12). Compared to sitting, brachial SR increased following each set of callisthenics, with a significant difference after the third break (Sit: 33.94 ± 12.79 s -1 ; Callisthenics: 57.16 ± 30.48 s -1 , P = 0.02). Alterations in SR in the upper limbs suggest callisthenics may be an effective intervention to break up sedentary time and attenuate the potentially deleterious effects of prolonged sitting on cardiovascular health.

  11. Gestational diabetes, preeclampsia and cytokine release: similarities and differences in endothelial cell function.

    PubMed

    Rao, Rashmi; Sen, Suvajit; Han, Bing; Ramadoss, Sivakumar; Chaudhuri, Gautam

    2014-01-01

    Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy affects the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. Similarly, some but not all studies have suggested that infection of the mother under certain circumstances can also lead to preeclampsia as women with either a bacterial or viral infection were at a higher risk of developing preeclampsia, compared to women without infection and infection also leads to a release in TNFα. Endothelial cells exposed to either high glucose or TNFα leads to an increase in the production of H2O2 and to a decrease in endothelial cell proliferation. The cellular and molecular mechanisms involved in this phenomenon are discussed.Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy has profound effects on the fetus and long term effects on the neonate. All three conditions affect the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. It has also been suggested although not universally accepted that under certain circumstances maternal infection may also predispose to pre-eclampsia. Pre-eclampsia is also associated with the release of TNFα and endothelial dysfunction. However, the cellular and molecular mechanism(s) leading to the endothelial dysfunction by either

  12. Non-invasive endothelial function assessment in patients with neurofibromatosis type 1: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Neurofibromatosis type 1 (NF1) is a multi-systemic disease caused by neurofibromin deficiency. The reduced life expectancy of patients with NF1 has been attributed to NF1-associated malignant neoplasms. However, an analysis of death certificates in the USA suggests that vascular disease could be an important cause of early death among these patients. Endothelial dysfunction (ED) is related to vasculopathy and is an early marker of subclinical atherosclerosis. Since neurofibromin has already been demonstrated to affect endothelial cell function, ED may be associated with NF1. The purpose of this study was to assess endothelial function in patients with NF1 using a non-invasive method. Methods NF1 patients and healthy control subjects, aged 18 to 35 years, were included. Subjects were excluded if they had any risk factor for vascular disease or any other condition known to affect endothelial function. Endothelial function was assessed using reactive hyperemia-peripheral arterial tone (RH-PAT) technology. ED was defined as a reactive hyperemia index (RHI) lower than 1.35. Results Four of the 29 (13.8%) NF1 patients and 1 of the 30 (3.3%) healthy volunteers had ED (p = 0.153). RHI medians and interquartile intervals were 1.8 (1.58-2.43) for the NF1 group and 2.02 (1.74 – 2.49) for the control group (p = 0.361). Conclusion The prevalence of ED was similar in NF1 patients and healthy controls. PMID:23497412

  13. The effects of Ramadan fasting on endothelial function in patients with cardiovascular diseases.

    PubMed

    Yousefi, B; Faghfoori, Z; Samadi, N; Karami, H; Ahmadi, Y; Badalzadeh, R; Shafiei-Irannejad, V; Majidinia, M; Ghavimi, H; Jabbarpour, M

    2014-07-01

    Endothelial dysfunction, which can be manifested by loss of nitric oxide bioavailability, is an increasingly recognized cause of cardiovascular diseases. Previous studies showed that diets affect endothelial function and modify cardiovascular risks. This study aimed to assess the effects of Ramadan fasting, as a diet intervention, on endothelial function. The study population consisted of 21 male patients (mean age: 52±9 years) with cardiovascular risks (coronary artery disease, cerebrovascular or peripheral arterial diseases). The biochemical variables in serum of patients were measured 2 days before and after Ramadan fasting. The levels of asymmetric dimethylarginine (ADMA) and vascular endothelial growth factor (VEGF) were evaluated using the enzyme-linked immunosorbent assay. Nitric oxide (NO) and Malondialdehyde (MDA) levels were measured by the Griess and thiobarbituric acid reaction substances assay, respectively. NO levels in patients after Ramadan fasting were significantly higher compared with the baseline value (85.1±11.54 vs 75.8±10.7 μmol/l) (P<0.05). Post-Ramadan levels of ADMA decreased significantly in comparison with pre-Ramadan levels (802.6±60.9 vs 837.6±51.0 nmol/l) (P<0.05). In addition, the levels of VEGF and MDA changed during Ramadan fasting, but these changes were not statistically significant (228.1±27.1 vs 222.7±22.9 pg/ml and 3.2±0.7 vs 3.6±1.1 μmol/l, respectively). Ramadan fasting may have beneficial effects on endothelial function and can modulate cardiovascular risks. Further studies are needed to confirm the clinical significance of Ramadan fasting on cardiovascular health.

  14. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  15. The effects of vitamin E and omega-3 PUFAs on endothelial function among adolescents with metabolic syndrome.

    PubMed

    Ahmadi, Alireza; Gharipour, Mojgan; Arabzadeh, Gholamreza; Moin, Payam; Hashemipour, Mahin; Kelishadi, Roya

    2014-01-01

    The present study aims to explore the effects of vitamin E and omega-3 on endothelial function indicators among adolescents with metabolic syndrome. In a randomized, double blind, and placebo-controlled trial, 90 young individuals, aged 10 to 18 years, with metabolic syndrome were randomly assigned to receive either vitamin E tablets (400 IU/day) or omega-3 tablets (2.4 gr/day) or placebo. For assessing endothelial functional state, the serum level of vascular endothelial growth factor (VEGF) was measured by ELISA test. The use of omega-3 supplementation for eight weeks led to significant increase in serum HDL level compared with the group treated with vitamin E or placebo group. In this regard, no significant correlations were found between the change in VEGF and baseline levels of other markers including anthropometric indices and serum lipids. Omega-3 could significantly reduce VEGF with the presence of other baseline variables (Beta = -12.55; P = 0.012). The administration of omega-3 can effectively improve endothelial function in adolescents with metabolic syndrome by reducing the level of serum VEGF, as a major index for atherosclerosis progression and endothelial destabilization. Omega-3 can be proposed as a VEGF antagonist for improving endothelial function in metabolic syndrome. The clinical implications of our findings should be assessed in future studies.

  16. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis.

    PubMed

    Loffredo, L; Baratta, F; Ludovica, P; Battaglia, S; Carnevale, R; Nocella, C; Novo, M; Pannitteri, G; Ceci, F; Angelico, F; Violi, F; Del Ben, M

    2018-02-01

    Oxidative stress plays a pivotal role in inducing endothelial dysfunction and progression from simple fatty liver steatosis (FLD) to non-alcoholic steatohepatitis (NASH). Polyphenols could reduce oxidative stress and restore endothelial function by inhibiting the nicotinamide-adenine-dinucleotide-phosphate (NADPH) oxidase isoform Nox2. The aim of this study was to assess endothelial function and oxidative stress in a population affected by simple FLD and NASH. Furthermore, we analysed the effect of high vs low content of cocoa polyphenols on endothelial function and oxidative stress in patients with NASH. In a cross-sectional study we analysed endothelial function, as assessed by flow-mediated dilation (FMD), and oxidative stress, as assessed by Nox2 activation, serum isoprostanes and nitric oxide bioavailability (NOx), in patients with NASH (n = 19), FLD (n = 19) and controls (n = 19). Then, we performed a randomized, cross-over study in 19 subjects with NASH comparing the effect of 14-days administration of 40 g of chocolate at high (dark chocolate, cocoa >85%) versus low content (milk chocolate, cocoa <35%) of polyphenols on FMD and oxidative stress. Compared to controls, NASH and FLD patients had higher Nox2 activity and isoprostanes levels and lower FMD and NOx, with a significant gradient between FLD and NASH. The interventional study showed that, compared to baseline, FMD and NOx increased (from 2.9 ± 2.4 to 7.2 ± 3.0% p < 0.001 and from 15.9 ± 3.6 to 20.6 ± 4.9 μM, p < 0.001, respectively) in subjects given dark but not in those given milk chocolate. A simple linear regression analysis showed that Δ (expressed by difference of values between before and after 14 days of chocolate assumption) of FMD was associated with Δ of Nox2 activity (Rs = -0.323; p = 0.04), serum isoprostanes (Rs: -0.553; p < 0.001) and NOx (Rs: 0.557; p < 0.001). Cocoa polyphenols improve endothelial function via Nox2 down-regulation in NASH patients

  17. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  18. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Hydroquinone stimulates inflammatory functions in microvascular endothelial cells via NF-κB nuclear activation.

    PubMed

    Hebeda, Cristina Bichels; Pinedo, Fernanda Júdice; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Farsky, Sandra Helena Poliselli

    2011-11-01

    Hydroquinone impairs several leucocyte cell functions, which alter the immune response. Although endothelial cell functions are important for the development of immune responses, hydroquinone actions on endothelial cell have not been shown. Therefore, the effect of hydroquinone exposure (10 or 100 μM for 2 hr) on primary culture of microvascular endothelial cells (PMECs) obtained from the cremaster muscle of Wistar rats incubated in the presence or absence of lipopolysaccharide (LPS, 2 μg/mL) was investigated. Hydroquinone treatment induced the membrane expression of cell adhesion molecules (CAMs) from the immunoglobulin superfamilies ICAM-1 (intercellular), VCAM-1(vascular) and PECAM-1 (platelet endothelial) and induced the secretion of cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). The effects were dependent on transcriptional modifications because enhanced CAM mRNA expression as well as both cytokines and nuclear factor κB (NF-κB) nuclear activation was found. These effects may be due to the direct action of hydroquinone rather than its quinone metabolites, because endothelial cells do not present myeloperoxidase enzyme and hydroquinone incubation did not induce the expression of cytochrome P450 2E1 (CYP2E1) or prostaglandin H synthase 1. In addition, the incubation of endothelial cells with benzoquinone (10 μM, 2 hr) impaired PECAM-1 expression and did not modify NF-κB nuclear activation. Taken together, the data herein presented reveal that hydroquinone evokes pro-inflammatory properties in endothelial cells that are triggered by the enhancement of NF-κB nuclear translocation-dependent gene transcription. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  20. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  1. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  2. SHBG and endothelial function in older subjects.

    PubMed

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Mantovani, Marco; Buttò, Valeria; De Vita, Francesca; Volpi, Riccardo; Artoni, Andrea; Giallauria, Francesco; Zuliani, Giovanni; Aloe, Rosalia; Lippi, Giuseppe; Ceresini, Graziano; Cederholm, Tommy; Ceda, Gian Paolo; Lind, Lars

    2013-10-03

    Endothelial dysfunction is predictor of cardiovascular diseases that have different prevalence in men and women before menopause. Sex hormones and sex hormone binding globulin (SHBG), novel risk factors for diabetes and cardiovascular diseases even in older individuals, might explain this difference. However, the relationship between these hormones and endothelial function has never been addressed in the elderly. 430 men and,424 women 70 years older of Prospective Study of the Vasculature in Uppsala Seniors study, with complete data on SHBG, testosterone(T), estradiol(E2), endothelium-independent vasodilation (EIDV), endothelium-dependent vasodilation(EDV), flow-mediated vasodilation (FMD) and the pulse wave analysis (reflection index, RI) were evaluated. Multivariate regression analysis adjusted for confounders was used to assess the relationship between T, E2, SHBG and endothelial function. In men we found a positive relationship between SHBG and EDV (β ± SE 3.60 ± 0.83, p<0.0001), EIDV (2.42 ± 0.58, p<0.0001) but not with FMD. The relationship between SHBG and EDV and EIDV was maintained after adjustment for sex (1.64 ± 0.47, p<0.001 and 1.79 ± 0.35, p<0.0006, respectively). After adjustment for confounders, the relationship between SHBG and EDV and EIDV was still statistically significant (2.63 ± 0.90 and 1.86 ± 0.63, p = 0.004 for both). In women SHBG and EIDV were positively associated (1.58 ± 0.46; p = 0.0007), and this relationship was independent of sex (1.79 ± 0.35; p<0.001). No significant interaction SHBG * SEX was found for EIDV (p = 0.72). In a combined analysis in two sexes, SHBG and EIDV were positively associated (1.13 ± 0.45; p = 0.01). SHBG was not associated with EDV, FMD and RI. No significant relationship was found between T or E2 and EDV, EIDV, FMD or RI in both sexes. In older men SHBG, but not T and E2, is positively and independently associated with EDV in resistance arteries. In both sexes, SHBG was positively and independently

  3. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin.

    PubMed

    Mason, R Preston; Dawoud, Hazem; Jacob, Robert F; Sherratt, Samuel C R; Malinski, Tadeusz

    2018-07-01

    The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO - ) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier

  4. Improvement of endothelial function by pitavastatin: a meta-analysis.

    PubMed

    Katsiki, Niki; Reiner, Željko; Tedeschi Reiner, Eugenia; Al-Rasadi, Khalid; Pirro, Matteo; Mikhailidis, Dimitri P; Sahebkar, Amirhossein

    2018-02-01

    Dyslipidemia is commonly associated with endothelial dysfunction and increased cardiovascular risk. Pitavastatin has been shown to reduce total and low-density lipoprotein cholesterol, to increase high-density lipoprotein (HDL)-cholesterol and improve HDL function. Furthermore, several trials explored its effects on flow-mediated dilation (FMD), as an index of endothelial function. The authors evaluated the effect of pitavastatin therapy on FMD. The authors performed a systematic review and meta-analysis of all clinical trials exploring the impact of pitavastatin on FMD. The search included PubMed-Medline, Scopus, ISI Web of Knowledge and Google Scholar databases. Quantitative data synthesis was performed using a random-effects model, with weighted mean difference (WMD) and 95% confidence interval (CI) as summary statistics. Six eligible studies comprising 7 treatment arms were selected for this meta-analysis. Overall, WMD was significant for the effect of pitavastatin on FMD (2.45%, 95% CI: 1.31, 3.60, p < 0.001) and the effect size was robust in the leave-one-out sensitivity analysis. This meta-analysis of all available clinical trials revealed a significant increase of FMD induced by pitavastatin.

  5. Targeting vascular (endothelial) dysfunction

    PubMed Central

    Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago

    2016-01-01

    Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006

  6. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    PubMed

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    PubMed

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the

  8. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism.

    PubMed

    Chang, Yi-Yao; Chen, Aaron; Chen, Ying-Hsien; Hung, Chi-Sheng; Wu, Vin-Cent; Wu, Xue-Ming; Lin, Yen-Hung; Ho, Yi-Lwun; Wu, Kwan-Dun

    2015-06-01

    Hypokalemia in primary aldosteronism (PA) patients correlates with higher levels of cardiovascular events and altered left ventricular geometry. However, the influence of aldosterone on microvascular endothelial function and the effect of hypokalemia on the vascular structure still remain unclear. We investigated the peripheral arterial functions, including the endothelial function of microvasculature and arterial stiffness in PA and essential hypertension (EH) patients, and the correlation between hypokalemia and peripheral arterial function among PA patients. Twenty patients diagnosed as EH and 37 patients with PA were enrolled in this study. Reactive hyperemia index (RHI) and the augmentation index (AI) were obtained by non-invasive peripheral arterial tonometry. Twenty EH patients and a total of 37 PA patients, including 21 patients with normokalemia and 16 patients with hypokalemia, were enrolled and divided into groups 1, 2 and 3 respectively. PA patients had significantly higher AI (p=0.024) but not RHI than EH patients. RHI showed no difference between groups 1, 2 and 3. Group 3 had higher AI than either group 1 or group 2. In the whole study population, serum potassium level, after multivariate regression analysis testing, was the only factor associated with AI (ß= -0.102; p=0.002). In PA patients, serum potassium level was the only significant factor correlated with AI. (r= -0.458; p=0.004) CONCLUSIONS: PA patients had higher arterial stiffness but comparable microvascular endothelial function to EH patients. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in PA patients. © The Author(s) 2014.

  9. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  10. Exercise training improves endothelial function in resistance arteries of young prehypertensives.

    PubMed

    Beck, D T; Martin, J S; Casey, D P; Braith, R W

    2014-05-01

    Prehypertension is associated with reduced conduit artery endothelial function and perturbation of oxidant/antioxidant status. It is unknown whether endothelial dysfunction persists to resistance arteries and whether exercise training affects oxidant/antioxidant balance in young prehypertensives. We examined resistance artery function using venous occlusion plethysmography measurement of forearm (FBF) and calf blood flow (CBF) at rest and during reactive hyperaemia (RH), as well as lipid peroxidation (8-iso-PGF2α) and antioxidant capacity (Trolox-equivalent antioxidant capacity; TEAC) before and after exercise intervention or time control. Forty-three unmedicated prehypertensive and 15 matched normotensive time controls met screening requirements and participated in the study (age: 21.1±0.8 years). Prehypertensive subjects were randomly assigned to resistance exercise training (PHRT; n=15), endurance exercise training (PHET; n=13) or time-control groups (PHTC; n=15). Treatment groups exercised 3 days per week for 8 weeks. Peak and total FBF were lower in prehypertensives than normotensives (12.7±1.2 ml min(-1) per100 ml tissue and 89.1±7.7 ml min(-1) per 100 ml tissue vs 16.3±1.0 ml min(-1) per 100 ml tissue and 123.3±6.4 ml min(-1) per 100 ml tissue, respectively; P<0.05). Peak and total CBF were lower in prehypertensives than normotensives (15.3±1.2 ml min(-1) per 100 ml tissue and 74±8.3 ml min(-1) per 100 ml tissue vs 20.9±1.4 ml min(-1) per 100 ml tissue and 107±9.2 ml min(-1) per 100 ml tissue, respectively; P<0.05). PHRT and PHET improved humoral measures of TEAC (+24 and +30%) and 8-iso-PGF2α (-43 and -40%, respectively; P < or = 0.05). This study provides evidence that young prehypertensives exhibit reduced resistance artery endothelial function and that short-term (8 weeks) resistance or endurance training are effective in improving resistance artery endothelial function and oxidant

  11. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  12. Consumption of High-Polyphenol Dark Chocolate Improves Endothelial Function in Individuals with Stage 1 Hypertension and Excess Body Weight

    PubMed Central

    Nogueira, Lívia de Paula; Knibel, Marcela Paranhos; Torres, Márcia Regina Simas Gonçalves; Nogueira Neto, José Firmino; Sanjuliani, Antonio Felipe

    2012-01-01

    Background. Hypertension and excess body weight are important risk factors for endothelial dysfunction. Recent evidence suggests that high-polyphenol dark chocolate improves endothelial function and lowers blood pressure. This study aimed to evaluate the association of chocolate 70% cocoa intake with metabolic profile, oxidative stress, inflammation, blood pressure, and endothelial function in stage 1 hypertensives with excess body weight. Methods. Intervention clinical trial includes 22 stage 1 hypertensives without previous antihypertensive treatment, aged 18 to 60 years and presents a body mass index between 25.0 and 34.9 kg/m2. All participants were instructed to consume 50 g of chocolate 70% cocoa/day (2135 mg polyphenols) for 4 weeks. Endothelial function was evaluated by peripheral artery tonometry using Endo-PAT 2000 (Itamar Medical). Results. Twenty participants (10 men) completed the study. Comparison of pre-post intervention revealed that (1) there were no significant changes in anthropometric parameters, percentage body fat, glucose metabolism, lipid profile, biomarkers of inflammation, adhesion molecules, oxidized LDL, and blood pressure; (2) the assessment of endothelial function through the reactive hyperemia index showed a significant increase: 1.94 ± 0.18 to 2.22 ± 0.08, P = 0.01. Conclusion.In individuals with stage 1 hypertension and excess body weight, high-polyphenol dark chocolate improves endothelial function. PMID:23209885

  13. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  14. Evaluation of abnormal liver function tests.

    PubMed

    Agrawal, Swastik; Dhiman, Radha K; Limdi, Jimmy K

    2016-04-01

    Incidentally detected abnormality in liver function tests is a common situation encountered by physicians across all disciplines. Many of these patients do not have primary liver disease as most of the commonly performed markers are not specific for the liver and are affected by myriad factors unrelated to liver disease. Also, many of these tests like liver enzyme levels do not measure the function of the liver, but are markers of liver injury, which is broadly of two types: hepatocellular and cholestatic. A combination of a careful history and clinical examination along with interpretation of pattern of liver test abnormalities can often identify type and aetiology of liver disease, allowing for a targeted investigation approach. Severity of liver injury is best assessed by composite scores like the Model for End Stage Liver Disease rather than any single parameter. In this review, we discuss the interpretation of the routinely performed liver tests along with the indications and utility of quantitative tests. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  16. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology

    PubMed Central

    2011-01-01

    Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events). Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in

  17. Bipolar disorder and related mood states are not associated with endothelial function of small arteries in adults without heart disease.

    PubMed

    Tong, Brian; Abosi, Oluchi; Schmitz, Samantha; Myers, Janie; Pierce, Gary L; Fiedorowicz, Jess G

    Individuals with bipolar disorder are at increased risk for adverse cardiovascular disease (CVD) events. This study aimed to assess endothelial function and wave reflection, a risk factor for CVD, as measured by finger plethysmography in bipolar disorder to investigate whether CVD risk was higher in bipolar disorder and altered during acute mood episodes. We hypothesized that EndoPAT would detect a lower reactive hyperemia index (RHI) and higher augmentation index (AIX) in individuals with bipolar disorder compared with controls. Second, we predicted lower RHI and higher AIX during acute mood episodes. Reactive hyperemia index and augmentation index, measures of microvascular endothelial function and arterial pressure wave reflection respectively, were assessed using the EndoPAT 2000 device in a sample of 56 participants with a DSM-IV diagnosis of bipolar I disorder with 82 measures spanning different mood states (mania, depression, euthymia) and cross-sectionally in 26 healthy controls. RHI and AIX were not different between adults with and without bipolar disorder (mean age 40.3 vs. 41.2years; RHI: 2.04±0.67 vs. 2.05±0.51; AIX@75 (AIX adjusted for heart rate of 75): 1.4±19.7 vs. 0.8±22.4). When modeled in linear mixed models with a random intercept (to account for repeated observations of persons with bipolar disorder) and adjusting for age and sex, there were no significant differences between those with bipolar disorder and controls (p=0.89 for RHI; p=0.85 for AIX@75). Microvascular endothelial function and wave reflection estimated by finger plethysmography were unable to detect differences between adults with and without bipolar disorder or changes with mood states. Future research is necessary to identify more proximal and sensitive, yet relevant, biomarkers of abnormal mood-related influences on CVD risk or must target higher risk samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Acute effects of coffee on endothelial function in healthy subjects.

    PubMed

    Buscemi, S; Verga, S; Batsis, J A; Donatelli, M; Tranchina, M R; Belmonte, S; Mattina, A; Re, A; Cerasola, G

    2010-05-01

    Coffee is the most widely consumed beverage in the world, but its effect on the cardiovascular system has not been fully understood. Coffee contains caffeine and antioxidants, which may influence endothelial function, both of which have not yet been investigated. The objective of this study was to investigate the acute effects of coffee on endothelial function measured by brachial artery flow-mediated dilation (FMD). A total of 20 (10 males and 10 females) healthy non-obese subjects underwent a double-blind, crossover study. Subjects ingested one cup of caffeinated (CC) and one cup of decaffeinated (DC) Italian espresso coffee in random order at 5- to 7-day intervals. Following CC ingestion, FMD decreased progressively and significantly (mean+/-s.e.m.: 0 min, 7.7+/-0.6; 30 min, 6.3+/-0.7; 60 min, 6.0+/-0.8%; ANOVA (analysis of variance), P<0.05), but it did not significantly increase after DC ingestion (0 min, 6.9+/-0.6; 30 min, 8.1+/-0.9; 60 min, 8.5+/-0.9%; P=0.115). Similarly, CC significantly increased both systolic and diastolic blood pressure; this effect was not observed after DC ingestion. Blood glucose concentrations remained unchanged after ingestion of both CC and DC, but insulin (0 min, 15.8+/-0.9; 60 min, 15.0+/-0.8 muU/ml; P<0.05) and C-peptide (0 min, 1.25+/-0.09; 60 min, 1.18+/-0.09 ng/ml; P<0.01) blood concentrations decreased significantly only after CC ingestion. CC acutely induced unfavorable cardiovascular effects, especially on endothelial function. In the fasting state, insulin secretion is also likely reduced after CC ingestion. Future studies will determine whether CC has detrimental clinically relevant effects, especially in unhealthy subjects.

  19. Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis.

    PubMed

    Poulos, Michael G; Ramalingam, Pradeep; Gutkin, Michael C; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J P; Elemento, Olivier; Levine, Ross L; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B; Shim, Jae-Hyuck; Butler, Jason M

    2016-12-21

    Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens.

  20. Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis

    PubMed Central

    Poulos, Michael G.; Ramalingam, Pradeep; Gutkin, Michael C.; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J. P.; Elemento, Olivier; Levine, Ross L.; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B.; Shim, Jae-Hyuck; Butler, Jason M.

    2016-01-01

    Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens. PMID:28000664

  1. Optimizing donor heart outcome after prolonged storage with endothelial function analysis and continuous perfusion.

    PubMed

    Poston, Robert S; Gu, Junyan; Prastein, Deyanira; Gage, Fred; Hoffman, John W; Kwon, Michael; Azimzadeh, Agnes; Pierson, Richard N; Griffith, Bartley P

    2004-10-01

    By minimizing tissue ischemia, continuous perfusion (CP) during organ transport may increase the safety of "marginal donors." My colleagues and I investigated whether an analysis of donor heart viability predicts recovery of grafts challenged with a 24-hour preservation interval. Dog hearts underwent cold static storage (CS) for 8 hours (n = 8) or 24 hours (n = 2) or CP for 24 hours with cold asanguinous, oxygenated solution (n = 8). Myocardial systolic and diastolic function and oxygen and lactate consumption were assessed at base line, during CP, and after Langendorff blood reperfusion. Base line endothelial function was evaluated by the percentage transcoronary change ([coronary sinus - aorta]/aorta) in myeloperoxidase and by platelet function and coronary flow reserve after 20 seconds of coronary artery occlusion. During CP, the endothelium was assessed by transcoronary protein release and coronary resistance. Edema was assessed by weight gain and histology. Base line systolic and metabolic functions showed no relation to post-Langendorff function. Compared with CS, CP resulted in a greater recovery in systolic function (87% +/- 35% vs 65% +/- 15% of baseline; p = 0.05) and a shorter interval required for lactate consumption to exceed production (7.0 +/- 6.8 minutes vs 15.0 +/- 8.9 minutes; p = 0.06). Endothelial function was heterogeneous: coronary flow reserve, 2.7 +/- 0.7; percentage change in myeloperoxidase, -8.4% +/- 6.8%; and change in platelet function, 4.3% +/- 3.5%, as determined by thromboelastography angle at base line. Protein release during CP for 24 hours was 8.3 +/- 7.1 g. Two factors predicted more than 75% systolic pressure generation recovery: use of CP and normal endothelial function (p = 0.05; Fisher's exact test). However, CP led to edema according to histology, weight gain (72 +/- 29 g), and impaired diastolic function versus CS (end-diastolic pressure-volume relationship, 1.4 +/- 0.4 mm Hg/mL vs 0.8 +/- 0.3 mm Hg/mL; p = 0.08). Better

  2. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells.

    PubMed

    Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying

    2017-07-01

    Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  4. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  5. Acute and subacute effects of EV iron sucrose on endothelial functions in hemodialysis patients.

    PubMed

    Ozkurt, Sultan; Ozenc, Fatma; Degirmenci, Nevbahar Akcar; Temiz, Gokhan; Musmul, Ahmet; Sahin, Garip; Yalcin, Ahmet Ugur

    2012-01-01

    Iron support is an important component of treatment of anemia in hemodialysis (HD) patients. However, there are concerns about endovenous (EV) iron therapy that may cause endothelial dysfunction (ED) by increasing oxidative stress (OS) and lead to cardiovascular events. In this study, we aimed to evaluate the effects of high and repeated doses of EV iron sucrose on endothelial functions in acute and subacute phases. We included 15 HD patients to our study. There were 16 patients with iron deficiency but normal kidney functions in control group. We also evaluated endothelium-dependent vasodilatation (EDV) and nitroglycerin-induced vasodilatation (NIV) from the brachial artery by ultrasonography at the beginning of the study, and then 200 mg EV iron sucrose was given initially to both groups for 1 h in 250 cc 0.9% saline and 4 h after the end of the infusion (acute phase) sonographic vasodilatation parameters were measured from brachial artery. These measurements and laboratory tests were repeated 1 week after the end of a total 1000 mg EV iron sucrose replacement (200 mg/week). There was a statistically significant increase in hemoglobin and ferritin levels after the EV iron sucrose therapy in both control and patient groups. EDV values in the HD group were significantly lower than that in the control group before therapy (6.25% vs. 10.53%, p < 0.05). EV iron sucrose therapy did not alter EDV and NIV values at the 4th hour and 6th week in both control and patient groups. According to our study, compared with the control group with normal kidney functions, HD patients had impaired endothelial functions. However, in HD patients, high and repeated doses of EV iron sucrose do not have deleterious effects on endothelial functions at acute and subacute phases and can be used safely in that patient group.

  6. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Shiftwork and Decline in Endothelial Function Among Police Officers

    PubMed Central

    Charles, Luenda E.; Zhao, Songzhu; Fekedulegn, Desta; Violanti, John M.; Andrew, Michael E.; Burchfiel, Cecil M.

    2016-01-01

    Background Our objective was to assess the influence of shiftwork on change in endothelial function. Methods This longitudinal study was conducted in 188 police officers (78.2% men). Shiftwork status (day, afternoon, night) was assessed objectively using daily Buffalo, NY payroll work history records. Brachial artery flow-mediated dilation (FMD) was assessed using ultrasound. Mean change in FMD% between 2004–2009 and 2010–2015 was compared across shiftwork using analysis of variance/covariance. Results Overall, mean FMD% decreased from 5.74 ± 2.83 to 3.88 ± 2.11 over an average of 7 years among all officers; P < 0.0001. Effect modification by gender was significant. Among men (but not women), those who worked day shifts had a smaller mean (±SE) decrease in FMD% (−0.89 ± 0.35) compared with those who worked the afternoon (−2.69 ± 0.39; P = 0.001) or night shifts (−2.31 ± 0.45; P = 0.020) after risk factor adjustment. Conclusions Larger declines in endothelial function were observed among men who worked afternoon or night shifts. Further investigation is warranted. Am. J. Ind. Med. Published 2016. This article is a U.S. Government work and is in the public domain in the USA PMID:27245641

  8. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  9. FOXO3 Modulates Endothelial Gene Expression and Function by Classical and Alternative Mechanisms*

    PubMed Central

    Czymai, Tobias; Viemann, Dorothee; Sticht, Carsten; Molema, Grietje; Goebeler, Matthias; Schmidt, Marc

    2010-01-01

    FOXO transcription factors represent targets of the phosphatidylinositol 3-kinase/protein kinase B survival pathway controlling important biological processes, such as cell cycle progression, apoptosis, vascular remodeling, stress responses, and metabolism. Recent studies suggested the existence of alternative mechanisms of FOXO-dependent gene expression beyond classical binding to a FOXO-responsive DNA-binding element (FRE). Here we analyzed the relative contribution of those mechanisms to vascular function by comparing the transcriptional and cellular responses to conditional activation of FOXO3 and a corresponding FRE-binding mutant in human primary endothelial cells. We demonstrate that FOXO3 controls expression of vascular remodeling genes in an FRE-dependent manner. In contrast, FOXO3-induced cell cycle arrest and apoptosis occurs independently of FRE binding, albeit FRE-dependent gene expression augments the proapoptotic response. These findings are supported by bioinformatical analysis, which revealed a statistical overrepresentation of cell cycle regulators and apoptosis-related genes in the group of co-regulated genes. Molecular analysis of FOXO3-induced endothelial apoptosis excluded modulators of the extrinsic death receptor pathway and demonstrated important roles for the BCL-2 family members BIM and NOXA in this process. Although NOXA essentially contributed to FRE-dependent apoptosis, BIM was effectively induced in the absence of FRE-binding, and small interfering RNA-mediated BIM depletion could rescue apoptosis induced by both FOXO3 mutants. These data suggest BIM as a critical cell type-specific mediator of FOXO3-induced endothelial apoptosis, whereas NOXA functions as an amplifying factor. Our study provides the first comprehensive analysis of alternatively regulated FOXO3 targets in relevant primary cells and underscores the importance of such genes for endothelial function and integrity. PMID:20123982

  10. Atorvastatin Restores Endothelial Function in Normocholesterolemic Smokers Independent of Changes in Low-Density Lipoprotein

    PubMed Central

    Beckman, Joshua A.; Liao, James K.; Hurley, Shauna; Garrett, Leslie A.; Chui, Daoshan; Mitra, Debi; Creager, Mark A.

    2009-01-01

    Cigarette smoking impairs endothelial function. Hydroxymethylglutaryl (HMG) CoA reductase inhibitors (statins) may favorably affect endothelial function via nonlipid mechanisms. We tested the hypothesis that statins would improve endothelial function independent of changes in lipids in cigarette smokers. Twenty normocholesterolemic cigarette smokers and 20 matched healthy control subjects were randomized to atorvastatin 40 mg daily or placebo for 4 weeks, washed out for 4 weeks, and then crossed-over to the other treatment. Baseline low-density lipoprotein (LDL) levels were similar in smokers and healthy subjects, 103±22 versus 95±27 mg/dL, respectively (P=NS) and were reduced similarly in smokers and control subjects by atorvastatin, to 55±30 and 58±20 mg/dL, respectively (P=NS). Vascular ultrasonography was used to determine brachial artery, flow-mediated, endothelium-dependent, and nitroglycerin-mediated, endothelium-independent vasodilation. To elucidate potential molecular mechanisms that may account for changes in endothelial function, skin biopsy specimens were assayed for eNOS mRNA, eNOS activity, and nitrotyrosine. Endothelium-dependent vasodilation was less in smokers than nonsmoking control subjects during placebo treatment, 8.0±0.6% versus 12.1±1.1%, (P=0.003). Atorvastatin increased endothelium-dependent vasodilation in smokers to 10.5±1.3% (P=0.017 versus placebo) but did not change endothelium-dependent vasodilation in control subjects (to 11.0±0.8%, P=NS). Endothelium-independent vasodilation did not differ between groups during placebo treatment and was not significantly affected by atorvastatin. Multivariate analysis did not demonstrate any association between baseline lipid levels or the change in lipid levels and endothelium-dependent vasodilation. Cutaneous nitrotyrosine levels and skin microvessel eNOS mRNA, but not ENOS activity, were increased in smokers compared with controls but unaffected by atorvastatin treatment. Atorvastatin

  11. The effect of diet and exercise on markers of endothelial function in overweight and obese women with polycystic ovary syndrome.

    PubMed

    Thomson, R L; Brinkworth, G D; Noakes, M; Clifton, P M; Norman, R J; Buckley, J D

    2012-07-01

    Women with polycystic ovary syndrome (PCOS) present with vascular abnormalities, including elevated markers of endothelial dysfunction. There is limited evidence for the effect of lifestyle modification and weight loss on these markers. The aim of this study was to determine if 20 weeks of a high-protein energy-restricted diet with or without exercise in women with PCOS could improve endothelial function. This is a secondary analysis of a subset of 50 overweight/obese women with PCOS (age: 30.3 ± 6.3 years; BMI: 36.5 ± 5.7 kg/m(2)) from a previous study. Participants were randomly assigned by computer generation to one of three 20-week interventions: diet only (DO; n = 14, ≈ 6000 kJ/day), diet and aerobic exercise (DA; n = 16, ≈ 6000 kJ/day and five walking sessions/week) and diet and combined aerobic-resistance exercise (DC; n = 20, ≈ 6000 kJ/day, three walking and two strength sessions/week). At Weeks 0 and 20, weight, markers of endothelial function [vascular cell adhesion molecule-1 (sVCAM-1), inter-cellular adhesion molecule-1 (sICAM-1), plasminogen activator inhibitor-1 (PAI-1) and asymmetric dimethylarginine (ADMA)], insulin resistance and hormonal profile were assessed. All three treatments resulted in significant weight loss (DO 7.9 ± 1.2%, DA 11.0 ± 1.6%, DC 8.8 ± 1.1; P < 0.001 for time; P = 0.6 time × treatment). sVCAM-1, sICAM-1 and PAI-1 levels decreased with weight loss (P≤ 0.01), with no differences between treatments (P ≥ 0.4). ADMA levels did not change significantly (P = 0.06). Testosterone, sex hormone-binding globulin and the free androgen index (FAI) and insulin resistance also improved (P < 0.001) with no differences between treatments (P ≥ 0.2). Reductions in sVCAM-1 were correlated to reductions in testosterone (r = 0.32, P = 0.03) and FAI (r = 0.33, P = 0.02) as well as weight loss (r= 0.44, P = 0.002). Weight loss was also associated with reductions in sICAM-1 (r= 0.37, P = 0.008). Exercise training provided no

  12. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    PubMed

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  13. Angiocrine functions of organ-specific endothelial cells

    PubMed Central

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  14. Endothelial dysfunction in patients with coronary atherosclerosis.

    PubMed

    Chapidze, L; Kapanadze, S; Dolidze, N; Bakhutashvili, Z; Latsabidze, N

    2007-01-01

    It is well known that endothelial dysfunction as a nontraditional risk factor is an important early event in the pathogenesis of coronary atherosclerosis, contributing to plaque initiation and progression. In order to assess endothelial function plasma nitric oxide (NO) concentrations were determined. A total of 157 patients (119 men and 38 women, mean age 57+/-5,4 years) with coronary atherosclerosis were enrolled in the research. The study was cross-sectional in design. Most of the patients (n=127) had undergone myocardial revascularization procedures. There was statistically significant difference in mean values of plasma nitric oxide levels between patients with coronary atherosclerosis and healthy subjects (11,1+/-2,52 mkmol/L and 22,3+/-3,27 mkmol/L, respectively. p<0,01). Among all 157 patients only 17% had normal NO concentrations. In 59% cases low and in 24% cases high nitric oxide levels were found. Extent of coronary artery disease was associated with severity of endothelial dysfunction. The patients with three-vessel disease had the lowest mean plasma NO concentration. There was statistically significant negative correlation between mean plasma NO level and extent of coronary artery disease. Measurement of plasma nitric oxide concentration will give useful information for cardiologists, modification of abnormal levels of this parameter may delay progression of aggressive atherosclerotic process and thus, may prevent recurrent coronary events in patients with coronary atherosclerosis.

  15. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia.

    PubMed

    Zhang, Ying; Liu, Hao; Shi, Xinwei; Qiao, Fuyuan; Zeng, Wanjiang; Feng, Ling; Deng, Dongrui; Liu, Haiyi; Wu, Yuanyuan

    2017-09-29

    Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.

  16. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes.

    PubMed

    Francois, Monique E; Myette-Cote, Etienne; Bammert, Tyler D; Durrer, Cody; Neudorf, Helena; DeSouza, Christopher A; Little, Jonathan P

    2018-01-01

    Postprandial hyperglycemia has deleterious effects on endothelial function. Restricting carbohydrate intake and postmeal walking have each been shown to reduce postprandial hyperglycemia, but their combination and subsequent effects on endothelial function have not been investigated. Here, we sought to examine the effect of blunting postprandial hyperglycemia by following a low-carbohydrate diet, with or without postmeal walking exercise, on markers of vascular health in type 2 diabetes (T2D). In a randomized crossover design, individuals with T2D ( n = 11) completed three 4-day controlled diet interventions consisting of 1) low-carbohydrate diet alone (LC), 2) low-carbohydrate diet with 15-min postmeal walks (LC + Ex), and 3) low-fat control diet (CON). Fasting blood samples and brachial artery flow-mediated dilation (%FMD) were measured before and after each intervention. Total circulating microparticles (MPs), endothelial MPs, platelet MPs, monocyte-platelet aggregates, and adhesion molecules were assessed as biomarkers of vascular health. There was a significant condition × time interaction for %FMD ( P = 0.01), with post hoc tests revealing improved %FMD after LC + Ex (+0.8 ± 1.0%, P = 0.02), with no change after LC or CON. Endothelial MPs were significantly reduced with the LC diet by ~45% (from 99 ± 60 to 44 ± 31 MPs/μl, P = 0.02), with no change after LC + Ex or CON (interaction: P = 0.04). Total MPs were lower (main effect time: P = 0.02), whereas monocyte-platelet aggregates were higher (main effect time: P < 0.01) after all interventions. Plasma adhesion molecules and C-reactive protein were unaltered. Attenuating postprandial hyperglycemic excursions using a low-carbohydrate diet combined with postmeal walking appears to be an effective strategy to improve endothelial function in individuals with T2D. NEW & NOTEWORTHY Carbohydrate restriction and postmeal walking lower postprandial hyperglycemia in individuals with type 2 diabetes. Here, we show

  17. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    PubMed

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; p<0.01) and CPT (1.43±0.30 vs. 2.23±0.48; p<0.01), compared to basal values. No differences in vascular end-points were shown at 3-month and 4-year follow-up after BS. Our data show that, in morbidly obese patients, BS exerts beneficial and long lasting effects on peripheral endothelial function and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  18. Quercetin, Hyperin, and Chlorogenic Acid Improve Endothelial Function by Antioxidant, Antiinflammatory, and ACE Inhibitory Effects.

    PubMed

    Huang, Wu-Yang; Fu, Lin; Li, Chun-Yang; Xu, Li-Ping; Zhang, Li-Xia; Zhang, Wei-Min

    2017-05-01

    In recent years, the blueberry cultivation and processing industry developed quickly because blueberries are super-fruit with healthy function. Blueberry leaves are byproducts of the blueberry industry, which are rich in bioactive phenolics, such as quercetin (Q), hyperin (H), and chlorogenic acid (C). This study investigated protective effects of 3 phenolics (Q, H, and C) from leaves of rabbiteye blueberry Vaccinium ashei on human umbilical vein endothelial cells. The results showed that all these 3 phenolics could improve endothelial function by inhibiting oxidative damage and proinflammatory cytokines caused by tumor necrosis factor-α (TNF-α). The cell vitalities of endothelial cells pretreated with Q, H, and C were higher than those stimulated with TNF-α only. These phenolics could decrease reactive oxygen species and xanthine oxidase-1 levels and increase superoxide dismutase and heme oxygenase-1 levels in endothelial cells. They also could decrease the protein expressions of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemotactic protein-1 induced by TNF-α. In addition, Q, H, and C also exhibited vasodilatory effect by reducing the angiotensin I-converting enzyme (ACE) protein levels in endothelial cells. Mostly 3 phenolics exhibited bioactivities as a function of concentration, but the effects not always depended on the concentration. The antioxidant and antiinflammatory effects of Q seemed to be more pronounced than H; however, H exhibited higher cell vitalities. The results indicated that phenolics from rabbiteye blueberry leaves could be potential antioxidants, inflammation and ACE inhibitors, and rabbiteye blueberry leaves provide a new resources of phytochemicals beneficial for cardiovascular health. © 2017 Institute of Food Technologists®.

  19. Tansig activation function (of MLP network) for cardiac abnormality detection

    NASA Astrophysics Data System (ADS)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  20. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Stull, April J; Cash, Katherine C; Champagne, Catherine M; Gupta, Alok K; Boston, Raymond; Beyl, Robbie A; Johnson, William D; Cefalu, William T

    2015-05-27

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus -0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome.

  1. Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease.

    PubMed

    Lippincott, Margaret F; Carlow, Andrea; Desai, Aditi; Blum, Arnon; Rodrigo, Maria; Patibandla, Sushmitha; Zalos, Gloria; Smith, Kevin; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-08-01

    Our purpose was to determine predictors of endothelial function and potential association with cardiovascular risk in women with sedentary occupations, in whom obesity-associated risk factors may contribute to excess morbidity and mortality. Ninety consecutive women (age range 22 to 63 years, 22 overweight (body mass index [BMI] > or =25 to 29.9 kg/m(2)) and 42 obese (BMI > or = 30 kg/m(2)), had vital signs, lipids, insulin, glucose, high-sensitivity C-reactive protein, and sex hormones measured. Endothelial function was determined using brachial artery flow-mediated dilation after 5 minutes of forearm ischemia. Treadmill stress testing was performed with gas exchange analysis at peak exercise (peak oxygen consumption [Vo(2)]) to assess cardiorespiratory fitness. Brachial artery reactivity was negatively associated with Framingham risk score (r = -0.3542, p = 0.0007). Univariate predictors of endothelial function included peak Vo(2) (r = 0.4483, p <0.0001), age (r = -0.3420, p = 0.0010), BMI (r = -0.3065, p = 0.0035), and high-sensitivity C-reactive protein (r = -0.2220, p = 0.0400). Using multiple linear regression analysis with stepwise modeling, peak Vo(2) (p = 0.0003) was the best independent predictor of brachial artery reactivity, with age as the only other variable reaching statistical significance (p = 0.0436) in this model. In conclusion, endothelial function was significantly associated with cardiovascular risk in women with sedentary occupations, who were commonly overweight or obese. Even in the absence of routine exercise, cardiorespiratory fitness, rather than conventional risk factors or body mass, is the dominant predictor of endothelial function and suggests a modifiable approach to risk.

  2. Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

    PubMed Central

    2014-01-01

    Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. Methods: We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30min, 10min, 1min, and 4 breaths (roughly 15 s). Results: We observed a dose-response relationship between SHS particle concentration over 30min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. Conclusions: Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1min of SHS exposure can cause reduction of endothelial function. PMID:24302638

  3. A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    PubMed Central

    Ferraro, Francesco; Kriston-Vizi, Janos; Metcalf, Daniel J.; Martin-Martin, Belen; Freeman, Jamie; Burden, Jemima J.; Westmoreland, David; Dyer, Clare E.; Knight, Alex E.; Ketteler, Robin; Cutler, Daniel F.

    2014-01-01

    Summary Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. PMID:24794632

  4. Abnormal Barrier Function in Gastrointestinal Disorders.

    PubMed

    Farré, Ricard; Vicario, María

    2017-01-01

    There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.

  5. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    PubMed Central

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  6. Endothelial Function and Serum Concentration of Toxic Metals in Frequent Consumers of Fish

    PubMed Central

    Buscemi, Silvio; Vasto, Sonya; Di Gaudio, Francesca; Grosso, Giuseppe; Bergante, Sonia; Galvano, Fabio; Massenti, Fatima Maria; Amodio, Emanuele; Rosafio, Giuseppe; Verga, Salvatore

    2014-01-01

    Background Endothelial dysfunction is involved in the pathogenesis of atherosclerosis. Consumption of fish is associated with reduced cardiovascular risk, but there is paucity of data concerning its effect on endothelial function. Furthermore, investigation of the effects of fish consumption on health must take into account the ingestion of contaminants, including transition metals and some metalloids, which may have unfavorable effects on health, including those on the cardiovascular system. We investigated the association between fish consumption, endothelial function (flow mediated dilation of the brachial artery), and serum concentration of some toxic metals in apparently healthy people. Methods Twenty-nine high fish consumers (at least 3 portions a week) were compared with 25 low fish consumers (less than 1 portion a week). All participants were free of diabetes, cardiovascular or other systemic diseases. Serum metal (antimonium, arsenic, mercury, lead, cobalt, copper, zinc, selenium, strontium) concentrations were measured in subgroups of 24 high fish consumers and 19 low fish consumers. Results Both groups exhibited similar habitual dietary patterns, age and anthropometric characteristics. The high fish consumers had higher flow mediated dilation (9.7±1.8 vs. 7.3±1.9%; P<0.001), but also higher serum concentrations of mercury (5.87±2.69 vs. 1.65±1.10 mcg/L; P<0.001) and arsenic (6.04±3.25 vs. 2.30±1.58 mcg/L; P<0.001). The fasting plasma glucose concentrations were significantly correlated with both mercury (r = 0.39; P = 0.01) and arsenic concentrations (r = 0.55; P<0.001). Conclusions Habitual consumption of high amounts of fish is associated with better endothelial function despite higher serum concentrations of mercury and arsenic. PMID:25401695

  7. Acute effect of sidestream cigarette smoke extract on vascular endothelial function.

    PubMed

    Argacha, J F; Fontaine, D; Adamopoulos, D; Ajose, A; van de Borne, P; Fontaine, J; Berkenboom, G

    2008-09-01

    Acute exposure to passive smoking adversely affects vascular function by promoting oxidative stress and endothelial dysfunction. However, it is not known whether tobacco sidestream (SS) smoke has a greater deleterious effect on the endothelium than non-tobacco SS smoke and whether these effects are related to nicotinic endothelial stimulation. To test these hypotheses, endothelial-dependent relaxation and superoxide anion production were assessed in isolated rat aortas incubated with tobacco SS smoke, non-tobacco SS smoke, or pure nicotine. Tobacco SS smoke decreased the maximal relaxation to acetylcholine (Ach) from 79 +/- 6% to 57 +/- 7.3% (% inhibition of phenylephrine-induced plateau, P < 0.001) and increased superoxide anion production from 31 +/- 9.7 to 116 +/- 24 count/10 sec/mg (P < 0.01, lucigenin-enhanced chemiluminescence technique). The non-tobacco SS smoke extract had no significant effect on the response to Ach but increased superoxide anion production in the aortic wall to 133 +/- 2 count/10 sec/mg (P < 0.001). Furthermore, concentration-response curves to Ach and superoxide production remained unaltered with nicotine (0.001, 0.01, or 0.1 mM). In conclusion, despite similar increases in vascular wall superoxide production with tobacco and non-tobacco SS smoke, only the tobacco SS smoke extracts affected endothelium-dependent vasorelaxation. Nicotine alone does not reproduce the effects seen with tobacco SS smoke, suggesting that the acute endothelial toxicity of passive smoking cannot simply be ascribed to a nicotine-dependent mechanism.

  8. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  9. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    PubMed

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  10. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    PubMed

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow

  11. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    PubMed

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  13. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians.

    PubMed

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-08-01

    Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants.

  14. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  15. Blueberries Improve Endothelial Function, but Not Blood Pressure, in Adults with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Champagne, Catherine M.; Gupta, Alok K.; Boston, Raymond; Beyl, Robbie A.; Johnson, William D.; Cefalu, William T.

    2015-01-01

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus −0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome. PMID:26024297

  16. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    PubMed Central

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  17. The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid.

    PubMed

    Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip

    2007-06-01

    Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.

  18. Impaired endothelial function in patients with mild primary hyperparathyroidism improves after parathyroidectomy.

    PubMed

    Tuna, Mazhar M; Doğan, Berçem A; Arduç, Ayşe; Imga, Narin Nasiroğlu; Tütüncü, Yasemin; Berker, Dilek; Güler, Serdar

    2015-12-01

    Primary hyperparathyroidism (PHPT) is associated with cardiovascular morbidity; however, data on the reversibility of cardiovascular disease in mild primary hyperparathyroidism are conflicting. The aim of this study was to assess endothelial function in patients with mild PHPT before and after parathyroidectomy (Ptx). We prospectively evaluated 53 patients with mild PHPT (Group 1; 45 women, eight men; aged 52 ± 3·1 years) and 46 healthy control subjects (Group 2; 38 women, eight men; aged 46 ± 9·5 years). Endothelial function was measured as flow-mediated dilation (FMD) and carotid intima-media thickness (CIMT) using Doppler ultrasonography. Patients with diabetes mellitus, coronary heart disease, impaired renal function, hyperthyroidism, hypothyroidism and a history of smoking were excluded from the study. Patients were studied at baseline and 6-12 months after the first evaluation. There were no differences with respect to age, gender and BMI between the two groups. Hypertension prevalence was three times higher in group 1 than in controls. % FMD was lower in group 1 than in group 2 (2·6 ± 1·2 vs 14·8 ± 9·6, P < 0·001). CIMT was higher in patients with PHPT than controls (0·69 ± 0·18 vs 0·61 ± 0·12, P = 0·045). This significance remained when hypertensive patients were excluded from the analysis. While FMD and CIMT improved significantly after Ptx, there were no differences in mild PHPT patients who followed without parathyroidectomy. FMD and CIMT are impaired in patients with mild PHPT compared to controls and improved significantly after a successful Ptx. Ptx improves endothelial function in patients with mild PHPT that may lead to decreased cardiovascular morbidity and mortality. © 2014 John Wiley & Sons Ltd.

  19. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy.

    PubMed

    Gozal, David; Kheirandish-Gozal, Leila; Serpero, Laura D; Sans Capdevila, Oscar; Dayyat, Ehab

    2007-11-13

    Obstructive sleep apnea (OSA) in children is associated with cardiovascular morbidity such as systemic and pulmonary hypertension. However, it remains unclear whether endothelial dysfunction occurs in pediatric OSA and whether it is reversible on effective treatment of OSA. Consecutive nonobese children (aged 6 to 11 years) who were diagnosed with OSA after overnight polysomnography and control children matched on the basis of age, gender, ethnicity, and body mass index underwent blood draw the next morning for soluble CD40 ligand, asymmetric dimethylarginine (ADMA), and nitrotyrosine levels, as well as 2 iterations of 60-second cuff-occlusion tests for assessment of endothelial function. These tests were repeated 4 to 6 months after adenotonsillectomy. OSA children showed blunted reperfusion kinetics after release of occlusion, which completely normalized in 20 of 26 patients after adenotonsillectomy. All 6 children in whom no improvements occurred had a strong family history of cardiovascular disease (versus 2 of the remaining 20 patients; P<0.04). Plasma nitrotyrosine and ADMA levels were similar in OSA and control children; however, soluble CD40 ligand levels were higher in OSA children and were reduced after treatment, particularly in those with normalized hyperemic responses. Postocclusive hyperemia is consistently blunted in children with OSA, and such altered endothelial function is reversible 4 to 6 months after treatment, particularly if a family history of cardiovascular disease is not present. Although no evidence for either nitric oxide-dependent oxidative/nitrosative stress or for the increased presence of the circulating nitric oxide synthase inhibitor ADMA was found in children with OSA, soluble CD40 ligand levels were increased in OSA and reflected the changes in endothelial function after treatment.

  20. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Effects of antioxidants on endothelial function in human saphenous vein in an ex vivo model.

    PubMed

    Sharif, Muhammed Anees; Bayraktutan, Ulvi; Arya, Nityanand; Badger, Stephen A; O'Donnell, Mark E; Young, Ian S; Soong, Chee V

    2009-01-01

    This ex vivo study is aimed at determining the beneficial effects of antioxidant agents on human saphenous vein endothelial function. Vein rings harvested during infrainguinal bypass surgery were assessed in an organ bath for endothelium-dependent relaxation, initially without and then with the addition of 10 microM manganese tetrakis benzoic acid porphyrin (MnTBAP), 0.01% N-acetylcysteine (NAC), 0.02% NAC, 10 microM vitamin C, and 100 microM vitamin C. Fifty-five vein rings from 22 patients were analyzed. MnTBAP improved the endothelium-dependent relaxation when compared with control (57.0% vs 37.8%, P < .01). Addition of 0.01% or 0.02% NAC did not improve the endothelium-dependent vasorelaxation (28.2% vs 18.6%, P = ns and 37.8% vs 29.8%, P = ns, respectively). Although 10-microM vitamin C failed to improve endothelial function (50.6% vs 37.2%, P = ns), 100-microM vitamin C significantly enhanced endothelium-dependent relaxation (66.5% vs 38.3%, P < .001). These results suggest that the addition of MnTBAP and high-dose vitamin C can improve the endothelial function of harvested saphenous vein segments in an ex vivo model.

  2. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    PubMed

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reduced neural baroreflex sensitivity is related to enhanced endothelial function in patients with end-stage liver disease.

    PubMed

    Sárközi, Adrienn; Cseh, Domonkos; Gerlei, Zsuzsanna; Kollai, Márk

    2018-02-01

    Reduced baroreflex sensitivity (BRS) is a frequent complication in end-stage liver disease, but the underlying mechanism is unknown. We investigated the mechanical and neural components of BRS. Increased nitric oxide (NO) production has been reported in end-stage liver failure. Based on earlier experiments, we hypothesised that enhanced endothelial function might affect baroreflex function. Therefore, we explored the relation between endothelial function and the components of BRS. We enrolled 24 patients and 23 controls. BRS was determined by the spontaneous sequence method. Mechanical component was characterised by the distensibility coefficient (DC) of common carotid artery. Neural component was estimated as the ratio of integrated BRS and DC. Endothelial function was quantified by flow-mediated dilation (FMD) of the brachial artery. Integrated BRS was reduced in patients [7.00 (5.80-9.25) vs. 11.1 (8.50-14.80) ms/mmHg]. The mechanical component was not different in the two groups, whereas neural component showed significant reduction in patients (3.54 ± 1.20 vs. 4.48 ± 1.43 ms/10 -3 ). FMD was higher in patients (9.81 ± 3.77 vs. 5.59 ± 1.36%). FMD and neural BRS were directly related in controls (r = 0.62), but inversely related in patients (r = -0.49). Baroreflex impairment in end-stage liver disease might be explained by deterioration of the neural component, while the mechanical component appears to be preserved. Endothelial NO may enhance BRS in health; however, central endothelial overproduction of NO likely contributes to the reduction of neural component of BRS in patients awaiting liver transplantation.

  4. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study.

    PubMed

    Flint, Nir; Hamburg, Naomi M; Holbrook, Monika; Dorsey, Pamela G; LeLeiko, Rebecca M; Berger, Alvin; de Cock, Peter; Bosscher, Douwina; Vita, Joseph A

    2014-01-01

    Sugar substitutes are important in the dietary management of diabetes mellitus. Erythritol is a non-caloric dietary bulk sweetener that reverses endothelial dysfunction in diabetic rats. We completed a pilot study to examine the effects of erythritol on vascular function in patients with type 2 diabetes mellitus. Participants (n = 24) consumed erythritol 36 g/day as an orange-flavored beverage for 4 weeks and a single dose of 24 g during the baseline and final visits. We assessed vascular function before and after acute (2 h) and chronic (4 weeks) erythritol consumption. Acute erythritol improved endothelial function measured by fingertip peripheral arterial tonometry (0.52 ± 0.48 to 0.87 ± 0.29 au, P = 0.005). Chronic erythritol decreased central pulse pressure (47 ± 13 to 41 ± 9 mmHg, P = 0.02) and tended to decrease carotid-femoral pulse wave velocity (P = 0.06). Thus, erythritol consumption acutely improved small vessel endothelial function, and chronic treatment reduced central aortic stiffness. Erythritol may be a preferred sugar substitute for patients with diabetes mellitus.

  5. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  7. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation

    PubMed Central

    Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2014-01-01

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348

  8. Targeted endothelial nanomedicine for common acute pathological conditions

    PubMed Central

    Shuvaev, Vladimir V.; Brenner, Jacob S.; Muzykantov, Vladimir R.

    2017-01-01

    Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal

  9. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells.

    PubMed

    Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa

    2006-07-01

    Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.

  10. Correlates of endothelial function and the peak systolic blood pressure response to a graded maximal exercise test.

    PubMed

    Olson, Kayla M; Augeri, Amanda L; Seip, Richard L; Tsongalis, Gregory J; Thompson, Paul D; Pescatello, Linda S

    2012-05-01

    An elevated systolic blood pressure (SBP) response to a graded maximal exercise stress test (GEST) may be a predictor of endothelial dysfunction and hypertension. We examined relationships among the GEST peak SBP response and indicators of endothelial function. Men (n=48, 43.7±1.4 yr) with high BP (145.1±1.5/85.5±1.1 mmHg) completed a GEST. Peak SBP was the highest SBP achieved during the GEST. Blood samples were taken for fasting glucose and insulin, nitric oxide (NO), and DNA. Endothelial nitric oxide synthase (NOS3, rs2070744) -786 T>C genotyping was determined by PCR. NOS3 genotypes were combined using a dominant model [TT (n=24); TC/CC (n=24)]. Brachial artery reactivity (BAR) was determined via ultrasound before, 1 min, and 3 min post occlusion and calculated as % change. Analysis of variance (ANOVA) tested changes in the peak SBP GEST response by NOS3 genotype. Multiple variable regression analyses examined relationships among the GEST peak SBP response and measures of endothelial function. %BAR change at 1 min (r(2)=0.093, p=0.020), glucose (r(2)=0.062, p=0.014), NOS3 -786 T>C (r(2)=0.040, p=0.024), NO (r(2)=0.037, p=0.064), and age (r(2)=0.009, p=0.014) explained 24.1% of the GEST peak SBP response (p=0.043). The GEST peak SBP change from baseline was 11.1±5.0 mmHg higher among those with the NOS3 C allele (92.4 mmHg+3.8) than the NOS3 TT genotype (81.3 mmHg+3.2) (p=0.03). Indicators of endothelial function appear to explain a clinically significant portion of the GEST peak SBP response. Further investigation is needed to unravel the mechanisms by which endothelial function influences the GEST peak SBP response. Published by Elsevier Ireland Ltd.

  11. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    PubMed

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  12. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and

  13. Impaired function of endothelial progenitor cells in children with primary systemic vasculitis.

    PubMed

    Hong, Ying; Eleftheriou, Despina; Klein, Nigel J; Brogan, Paul A

    2015-10-16

    Previously, we demonstrated that children with active systemic vasculitis (SV) have higher circulating CD34 + CD133 + KDR+ endothelial progenitor cells (EPC); the function of these EPCs, and their relationship with disease activity in vasculitis remains largely unexplored. We hypothesized that although EPC numbers are higher, EPC function is impaired in active SV of the young. The aims of this study were therefore to: 1. investigate the relationship between disease activity and EPC function in children with SV; and 2. study the influence of systemic inflammation on EPC function by investigating the effects of hyperthermia and TNF-α on EPC function. We performed a cross-sectional study of unselected children with SV with different levels of disease activity attending a single center (Great Ormond Street Hospital, London) between October 2008 and December 2014. EPCs were isolated from peripheral blood of children with SV, and healthy child controls. EPC function was assessed by their potential to form colonies (EPC-CFU), and ability to form clusters and incorporate into human umbilical vein endothelial cell (HUVEC) vascular structures in matrigel. The effects of hyperthermia and TNF-α on EPC function were also studied. Twenty children, median age 12-years (5-16.5; nine males) were studied. EPC-CFU and the number of EPC clusters formed on matrigel were significantly reduced in children with active vasculitis compared with healthy controls (p = 0.02 for EPC-CFU; p = 0.01 for EPC cluster formation). Those with active vasculitis had lower EPC-CFU and EPC cluster formation than those with inactive disease, although non-significantly so. In addition, EPC incorporation into matrigel HUVEC networks was lower in children with SV compared with healthy children, irrespective of disease activity. Ex-vivo pre-treatment of EPC with hyperthermia impaired EPC function; TNF-α down-regulated EPC expression of CD18/CD11b and resulted in decreased incorporation into

  14. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    PubMed

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  15. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    PubMed

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  17. A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial.

    PubMed

    Kondo, Keiko; Morino, Katsutaro; Nishio, Yoshihiko; Kondo, Motoyuki; Nakao, Keiko; Nakagawa, Fumiyuki; Ishikado, Atsushi; Sekine, Osamu; Yoshizaki, Takeshi; Kashiwagi, Atsunori; Ugi, Satoshi; Maegawa, Hiroshi

    2014-07-01

    The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs ≧ 3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. MicroRNAs as Regulators of Endothelial Cell Functions in Cardiometabolic Diseases

    PubMed Central

    Araldi, Elisa; Suárez, Yajaira

    2016-01-01

    Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. PMID:26825686

  19. Remote ischemic preconditioning and endothelial function in patients with acute myocardial infarction and primary PCI.

    PubMed

    Manchurov, Vladimir; Ryazankina, Nadezda; Khmara, Tatyana; Skrypnik, Dmitry; Reztsov, Roman; Vasilieva, Elena; Shpektor, Alexander

    2014-07-01

    Remote ischemic preconditioning by transient limb ischemia reduces myocardial ischemia-reperfusion injury in patients undergoing percutaneous coronary intervention. The aim of the study we report here was to assess the effect of remote ischemic preconditioning on endothelial function in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. Forty-eight patients with acute myocardial infarction were enrolled. All participants were randomly divided into 2 groups. In Group I (n = 23), remote ischemic preconditioning was performed before primary percutaneous coronary intervention (intermittent arm ischemia-reperfusion through 4 cycles of 5-minute inflation and 5-minute deflation of a blood-pressure cuff to 200 mm Hg). In Group II (n = 25), standard percutaneous coronary intervention without preconditioning was performed. We assessed endothelial function using the flow-mediated dilation test on baseline, then within 1-3 hours after percutaneous coronary intervention, and again on days 2 and 7 after percutaneous coronary intervention. The brachial artery flow-mediated dilation results were significantly higher on the first day after primary percutaneous coronary intervention in the preconditioning group (Group I) than in the control group (Group II) (12.1% vs 0.0%, P = .03, and 11.1% vs 6.3%, P = .016, respectively), and this difference remained on the seventh day (12.3% vs 7.4%, P = .0005, respectively). We demonstrated for the first time that remote ischemic preconditioning before primary percutaneous coronary intervention significantly improves endothelial function in patients with acute myocardial infarction, and this effect remains constant for at least a week. We suppose that the improvement of endothelial function may be one of the possible explanations of the effect of remote ischemic preconditioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    PubMed

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  2. Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk.

    PubMed

    Rosano, Giuseppe M C; Aversa, Antonio; Vitale, Cristiana; Fabbri, Andrea; Fini, Massimo; Spera, Giovanni

    2005-02-01

    Erectile dysfunction (ED) is often associated with a cluster of risk factors for coronary artery disease and reduced endothelial function. Acute and chronic administration of oral sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor, improves endothelial function in patients with ED. Tadalafil (TAD) is a new PDE5 inhibitor with a long half life that allows alternate day administration. Aim of the study was to evaluate whether chronic therapy (4 weeks) with TAD improves endothelial function in patients with increased cardiovascular risk and whether this effect is sustained after discontinuation of therapy. We randomized 32 patients with increased cardiovascular risk to receive either TAD 20 mg on alternate days or matching placebo (PLB) for 4 weeks. Patients underwent evaluation of brachial artery flow-mediated dilation (FMD), nitrite/nitrate and endothelin-1 plasma levels at baseline, at the end of treatment period and after two-weeks follow-up. At 4 weeks, FMD was significantly improved by TAD (from 4.2+/-3.2 to 9.3+/-3.7%, p<0.01 vs. baseline), but was not modified by PLB (from 4.1+/-2.8 to 4.0+/-3.4%, p=NS). At 6 weeks the benefit in FMD was sustained in patients that received TAD (9.1+/-3.9% vs. 4.2+/-3.2%, p=0.01 vs. baseline; 9.1+/-3.9% vs. 9.3+/-3.7%, vs. 4 weeks, p=NS) while no changes in FMD were observed in patients randomized to PLB. Also, compared to baseline, a net increase in nitrite/nitrate levels (38.2+/-12.3 vs. 52.6+/-11.7 and 51.1+/-3.1, p<0.05) and a decrease in endothelin-1 levels (3.3+/-0.9 vs. 2.9.+/-0.7 and 2.9+/-0.9, p<0.05) was found both at four and six-weeks after TAD; these changes were inversely correlated as shown by regression analysis (adjusted R2=0.81, p<0.0001). Chronic therapy with TAD improves endothelial function in patients with increased cardiovascular risk regardless their degree of ED. The benefit of this therapy is sustained for at least two weeks after the discontinuation of therapy. Larger studies are needed in order

  3. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  4. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  5. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial.

    PubMed

    Faridi, Zubaida; Njike, Valentine Yanchou; Dutta, Suparna; Ali, Ather; Katz, David L

    2008-07-01

    Studies suggest cardioprotective benefits of dark chocolate containing cocoa. This study examines the acute effects of solid dark chocolate and liquid cocoa intake on endothelial function and blood pressure in overweight adults. Randomized, placebo-controlled, single-blind crossover trial of 45 healthy adults [mean age: 53 y; mean body mass index (in kg/m(2)): 30]. In phase 1, subjects were randomly assigned to consume a solid dark chocolate bar (containing 22 g cocoa powder) or a cocoa-free placebo bar (containing 0 g cocoa powder). In phase 2, subjects were randomly assigned to consume sugar-free cocoa (containing 22 g cocoa powder), sugared cocoa (containing 22 g cocoa powder), or a placebo (containing 0 g cocoa powder). Solid dark chocolate and liquid cocoa ingestion improved endothelial function (measured as flow-mediated dilatation) compared with placebo (dark chocolate: 4.3 +/- 3.4% compared with -1.8 +/- 3.3%; P < 0.001; sugar-free and sugared cocoa: 5.7 +/- 2.6% and 2.0 +/- 1.8% compared with -1.5 +/- 2.8%; P < 0.001). Blood pressure decreased after the ingestion of dark chocolate and sugar-free cocoa compared with placebo (dark chocolate: systolic, -3.2 +/- 5.8 mm Hg compared with 2.7 +/- 6.6 mm Hg; P < 0.001; and diastolic, -1.4 +/- 3.9 mm Hg compared with 2.7 +/- 6.4 mm Hg; P = 0.01; sugar-free cocoa: systolic, -2.1 +/- 7.0 mm Hg compared with 3.2 +/- 5.6 mm Hg; P < 0.001; and diastolic: -1.2 +/- 8.7 mm Hg compared with 2.8 +/- 5.6 mm Hg; P = 0.014). Endothelial function improved significantly more with sugar-free than with regular cocoa (5.7 +/- 2.6% compared with 2.0 +/- 1.8%; P < 0.001). The acute ingestion of both solid dark chocolate and liquid cocoa improved endothelial function and lowered blood pressure in overweight adults. Sugar content may attenuate these effects, and sugar-free preparations may augment them.

  6. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair

    PubMed Central

    Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.

    2016-01-01

    There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation. PMID:27388041

  7. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    PubMed

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process.

    PubMed

    Patel, Jatin; Seppanen, Elke J; Rodero, Mathieu P; Wong, Ho Yi; Donovan, Prudence; Neufeld, Zoltan; Fisk, Nicholas M; Francois, Mathias; Khosrotehrani, Kiarash

    2017-02-21

    During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. Lineage tracing by using Cdh5cre ERt2 /Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9 , Il33 , Egfr , and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2 , Gata2 , Cd31 , Vwf , and Notch . The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on S ox18Cre ERt2 /Rosa

  9. Placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction.

    PubMed

    Yoshida, Atsumi; Watanabe, Kazushi; Iwasaki, Ai; Kimura, Chiharu; Matsushita, Hiroshi; Wakatsuki, Akihiko

    2018-04-01

    The purpose of this study was to investigate the relationship between placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction (FGR). We examined serum concentrations of oxygen free radicals (d-ROMs), maternal angiogenic factor (PlGF), and sFlt-1, placental oxidative DNA damage, and maternal endothelial function in 17 women with early-onset preeclampsia (PE), 18 with late-onset PE, 14 with normotensive FGR, and 21 controls. Flow-mediated vasodilation (FMD) was assessed as a marker of maternal endothelial function. Immunohistochemical analysis was performed to measure the proportion of placental trophoblast cell nuclei staining positive for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Maternal serum d-ROM, sFlt-1 concentrations, and FMD did not significantly differ between the control and normotensive FGR groups. The proportion of nuclei staining positive for 8-OHdG was significantly higher in the normotensive FGR group relative to the control group. Our findings demonstrate that, despite the presence of placental oxidative DNA damage as observed in PE patients, pregnant women with normotensive FGR show no increase in the concentrations of sFlt-1 and d-ROMs, or a decrease in FMD.

  10. Identification and functional analysis of endothelial tip cell-enriched genes.

    PubMed

    del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne

    2010-11-11

    Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.

  11. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians

    PubMed Central

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-01-01

    Summary Background Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. Material/Methods This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. Results This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. Conclusions These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants. PMID:22847195

  12. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  13. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    PubMed

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The effect of Bikram yoga on endothelial function in young and middle-aged and older adults.

    PubMed

    Hunter, Stacy D; Dhindsa, Mandeep S; Cunningham, Emily; Tarumi, Takashi; Alkatan, Mohammed; Nualnim, Nantinee; Elmenshawy, Ahmed; Tanaka, Hirofumi

    2017-01-01

    The purpose of this investigation was to determine if Bikram yoga, a style of heated hatha yoga, would improve endothelial function in young and middle-aged and older, healthy adults. This trial was performed in 36 young (n = 17) and middle-aged and older adults (n = 19) who completed 3 weekly Bikram yoga classes for 8 weeks. Height, body weight and body composition were determined and endothelial function was measured noninvasively using brachial artery flow-mediated dilation (FMD) before and after the intervention. No changes in body weight, BMI or body fat percentage occurred as a result of the intervention in either group. Brachial artery FMD was significantly increased in middle-aged and older (P < 0.05) but not in young adults as a result of the intervention. The results demonstrate that a relatively short-term Bikram yoga practice might significantly improve vascular endothelial function in middle-aged and older adults. While apparently healthy individuals in this study experienced no adverse events, those with preexisting conditions should take caution and consult with a physician prior to engaging in this style of yoga. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Relationship between Magnesium and Endothelial Function in End-Stage Renal Disease Patients on Hemodialysis.

    PubMed

    Lee, Shina; Ryu, Jung Hwa; Kim, Seung Jung; Ryu, Dong Ryeol; Kang, Duk Hee; Choi, Kyu Bok

    2016-11-01

    Chronic kidney disease (CKD) patients tend to have higher serum magnesium values than healthy population due to their positive balance of magnesium in kidney. Recent studies found that magnesium level is positively correlated with endothelial function. Therefore, this study was conducted to define the relationship between magnesium level and endothelial dysfunction in end stage renal disease (ESRD) patients on hemodialysis (HD). A total of 27 patients were included in this cross-sectional study. Iontophoresis with laser-Doppler flowmetry, flow mediated dilation (FMD), and carotid intima-media thickness were measured. Patients' average serum magnesium levels were measured over previous three months, including the examination month. Pearson's correlation coefficient analysis and multivariate regression model were used to define the association between magnesium and endothelial function. In the univariate analysis, higher magnesium levels were associated with better endothelium-dependent vasodilation (EDV) of the FMD in ESRD patients on HD (r=0.516, p=0.007). When the participants were divided into two groups according to the median magnesium level (3.47 mg/dL), there was a significant difference in EDV of FMD (less than 3.47 mg/dL, 2.8±1.7%; more than 3.47 mg/dL, 5.1±2.0%, p=0.004). In multivariate analysis, magnesium and albumin were identified as independent factors for FMD (β=1.794, p=0.030 for serum magnesium; β=3.642, p=0.012 for albumin). This study demonstrated that higher serum magnesium level may be associated with better endothelial function in ESRD patients on HD. In the future, a large, prospective study is needed to elucidate optimal range of serum magnesium levels in ESRD on HD patients.

  16. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans.

    PubMed

    Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D

    2013-11-01

    The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.

  17. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1

    PubMed Central

    Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra

    2017-01-01

    Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110

  18. Comparison of endothelial function of coronary artery bypass grafts in diabetic and nondiabetic patients: Which graft offers the best?

    PubMed Central

    Gür, Demet Özkaramanlı; Gür, Özcan; Gürkan, Selami; Cömez, Selcem; Gönültaş, Aylin; Yılmaz, Murat

    2016-01-01

    Objective: Diabetes associated endothelial dysfunction, which determines both long and short term graft patency, is not uniform in all coronary artery bypass surgery (CABG) grafts. Herein this study, we aimed to investigate the degree of endothelial dysfunction in diabetic radial artery (RA), internal mammarian artery (IMA) and saphenous vein (SV) grafts in vitro tissue bath system. Methods: This is a prospective experimental study. Fifteen diabetic and 15 non-diabetic patients were included to the study. A total number of 96 graft samples were collected; 16 graft samples for each graft type from both diabetic and non-diabetic patients. Arterial grafts were harvested with pedicles and SV grafts were harvested by ‘no touch’ technique. Vasodilatation response of vascular rings to carbachol, which induces nitric oxide (NO) mediated vasodilatation, was designated as the measure of endothelial function. Results: The IMA grafts had the most prominent NO mediated vasodilatation in both diabetic and non-diabetic patients, concluding a better preserved endothelial function than SV and RA. The ‘no-touch’ SV and RA grafts had similar vasodilatation responses in non-diabetic patients. In diabetic patients, on the other hand, RA grafts exhibited the least vasodilatation response (ie. worst endothelial function), even less vasodilatation than ‘no touch’ SV grafts (p<0.0001). Conclusion: Deteriorated function of RA grafts in diabetic patients, even worse than SV grafts made evident by this study, encourages the use of ‘no touch’ technique as the method of SV harvesting and more meticulous imaging of RA before its use as a graft in diabetic patients. PMID:26301347

  19. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults.

    PubMed

    Kaplon, Rachelle E; Hill, Sierra D; Bispham, Nina Z; Santos-Parker, Jessica R; Nowlan, Molly J; Snyder, Laura L; Chonchol, Michel; LaRocca, Thomas J; McQueen, Matthew B; Seals, Douglas R

    2016-06-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.

  20. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults

    PubMed Central

    Kaplon, Rachelle E.; Hill, Sierra D.; Bispham, Nina Z.; Santos-Parker, Jessica R.; Nowlan, Molly J.; Snyder, Laura L.; Chonchol, Michel; LaRocca, Thomas J.; McQueen, Matthew B.; Seals, Douglas R.

    2016-01-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass<2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ∼30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ∼30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass≥2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO. PMID:27208415

  1. Effect of the transdermal low-level laser therapy on endothelial function.

    PubMed

    Szymczyszyn, Alicja; Doroszko, Adrian; Szahidewicz-Krupska, Ewa; Rola, Piotr; Gutherc, Radosław; Jasiczek, Jakub; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-09-01

    The effect of low-level laser therapy (LLLT) on the cardiovascular system is not fully established. Since the endothelium is an important endocrine element, establishing the mechanisms of LLLT action is an important issue.The aim of the study was to evaluate the effect of transdermal LLLT on endothelial function.In this study, healthy volunteers (n = 40, age = 20-40 years) were enrolled. N = 30 (14 female, 16 male, mean age 30 ± 5 years) constituted the laser-irradiated group (LG). The remaining 10 subjects (6 women, 4 men, mean age 28 ± 5 years) constituted the control group (CG). Participants were subjected to LLLT once a day for three consecutive days. Blood for biochemical assessments was drawn before the first irradiation and 24 h after the last session. In the LG, transdermal illumination of radial artery was conducted (a semiconductor laser λ = 808 nm, irradiation 50 mW, energy density 1.6 W/cm(2) and a dose 20 J/day, a total dose of 60 J). Biochemical parameters (reflecting angiogenesis: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiostatin; antioxidative status: glutathione (GSH) and the nitric oxide metabolic pathway: symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA) and L-arginine) were assessed. In the LG, a significant increase in GSH levels and considerable decrease in angiostatin concentration following the LLLT were observed. No significant differences in levels of the VEGF, FGF, SDMA, ADMA were observed.LLLT modifies vascular endothelial function by increasing its antioxidant and angiogenic potential. We found no significant differences in levels of the nitric oxide pathway metabolites within 24 h following the LLLT irradiation.

  2. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation.

    PubMed

    Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline

    2016-01-01

    To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.

  3. Regular physical exercise improves endothelial function in heart transplant recipients.

    PubMed

    Schmidt, Alice; Pleiner, Johannes; Bayerle-Eder, Michaela; Wiesinger, Günther F; Rödler, Suzanne; Quittan, Michael; Mayer, Gert; Wolzt, Michael

    2002-04-01

    Impaired endothelial function is detectable in heart transplant (HTX) recipients and regarded as risk factor for coronary artery disease. We have studied whether endothelial function can be improved in HTX patients participating in a regular physical training program as demonstrated in patients with chronic heart failure, hypertension and coronary artery disease. Male HTX patients and healthy, age-matched controls were studied. Seven HTX patients (age: 60 +/- 6 yr; 6 +/- 2 yr of HTX) participated in an outpatient training program, six HTX patients (age: 63 +/- 8 yr; 7 +/- 1 yr of HTX) maintained a sedentary lifestyle without regular physical exercise since transplantation. A healthy control group comprised six subjects (age: 62 +/- 6 yr). Vascular function was assessed by flow-mediated dilation of the brachial artery (FMD). Systemic haemodynamic responses to intravenous infusion of the endothelium independent vasodilator sodium nitroprusside (SNP) and to NG-monomethyl-L-arginine (L-NMMA), an inhibitor of constitutive nitric oxide synthase, were also measured. Resting heart rate was significantly lower (p < 0.05) in healthy controls (66 +/- 13) than in the HTX training group (83 +/- 11) and in non-training HTX patients (91 +/- 9), baseline blood pressure also tended to be lower in healthy subjects and in the training HTX patients. FMD was significantly higher (p < 0.05) in the control group (8.4 +/- 2.2%) and in the training group (7.1 +/- 2.4%), compared with non-training HTX patients (1.4 +/- 0.8%). The response of systolic blood pressure (p = 0.08) and heart rate (p < 0.05) to L-NMMA was reduced in sedentary HTX patients compared with healthy controls and heart rate response to SNP was also impaired in sedentary HTX patients. Regular aerobic physical training restores vascular function in HTX patients, who are at considerable risk for developing vascular complications. This effect is demonstrable in conduit and systemic resistance arteries.

  4. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    PubMed

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  5. Relations of arterial stiffness and endothelial function to brain aging in the community.

    PubMed

    Tsao, Connie W; Seshadri, Sudha; Beiser, Alexa S; Westwood, Andrew J; Decarli, Charles; Au, Rhoda; Himali, Jayandra J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Larson, Martin G; Benjamin, Emelia J; Wolf, Philip A; Vasan, Ramachandran S; Mitchell, Gary F

    2013-09-10

    To determine the association of arterial stiffness and pressure pulsatility, which can damage small vessels in the brain, with vascular and Alzheimer-type brain aging. Stroke- and dementia-free Framingham Offspring Study participants (n = 1,587, 61 ± 9 years, 45% male) underwent study of tonometric arterial stiffness and endothelial function (1998-2001) and brain MRI and cognition (1999-2002). We related carotid-femoral pulse wave velocity (CFPWV), mean arterial and central pulse pressure, and endothelial function to vascular brain aging by MRI (total cerebral brain volume [TCBV], white matter hyperintensity volume, silent cerebral infarcts) and vascular and Alzheimer-type cognitive aging (Trails B minus Trails A and logical memory-delayed recall, respectively). Higher CFPWV was associated with lower TCBV, greater white matter hyperintensity volume, and greater prevalence of silent cerebral infarcts (all p < 0.05). Each SD greater CFPWV was associated with lower TCBV equivalent to 1.2 years of brain aging. Mean arterial and central pulse pressure were associated with greater white matter hyperintensity volume (p = 0.005) and lower TCBV (p = 0.02), respectively, and worse verbal memory (both p < 0.05). Associations of tonometry variables with TCBV and white matter hyperintensity volume were stronger among those aged 65 years and older vs those younger than 65 years (p < 0.10 for interaction). Brachial artery endothelial function was unrelated to MRI measures (all p > 0.05). Greater arterial stiffness and pressure pulsatility are associated with brain aging, MRI vascular insults, and memory deficits typically seen in Alzheimer dementia. Future investigations are warranted to evaluate the potential impact of prevention and treatment of unfavorable arterial hemodynamics on neurocognitive outcomes.

  6. The acute effect of green tea consumption on endothelial function in healthy individuals.

    PubMed

    Alexopoulos, Nikolaos; Vlachopoulos, Charalambos; Aznaouridis, Konstantinos; Baou, Katerina; Vasiliadou, Carmen; Pietri, Panagiota; Xaplanteris, Panagiotis; Stefanadi, Elli; Stefanadis, Christodoulos

    2008-06-01

    Tea consumption is associated with decreased cardiovascular risk. Flow-mediated dilatation (FMD) of the brachial artery is related to coronary endothelial function and it is an independent predictor of cardiovascular risk. Black tea has a beneficial effect on endothelial function; the effect, however, of green tea on brachial artery reactivity has not been defined yet. We studied 14 healthy individuals (age 30+/-3 years) with no cardiovascular risk factors except from smoking (50%) on three separate occasions on which they took: (a) 6 g of green tea, (b) 125 mg of caffeine (the amount contained in 6 g of tea), or (c) hot water. FMD of the brachial artery was measured before each intervention and 30, 90, and 120 min afterward. High-sensitivity C-reactive protein, interleukins 6 (Il-6) and 1b (Il-1b), total plasma antioxidative capacity, and total plasma oxidative status/stress were measured at baseline and at 120 min after each intervention. Resting and hyperemic brachial artery diameter did not change either with tea or with caffeine. FMD increased significantly with tea (by 3.69%, peak at 30 min, P<0.02), whereas it did not change significantly with caffeine (increase by 1.72%, peak at 30 min, P=NS). Neither tea nor caffeine had any effect on high-sensitivity C-reactive protein, Il-6, Il-1b, total plasma antioxidative capacity, or total plasma oxidative status/stress. Green tea consumption has an acute beneficial effect on endothelial function, assessed with FMD of the brachial artery, in healthy individuals. This may be involved in the beneficial effect of tea on cardiovascular risk.

  7. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  8. Endothelial atypical cannabinoid receptor: do we have enough evidence?

    PubMed Central

    Bondarenko, Alexander I

    2014-01-01

    Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1, non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. PMID:25073723

  9. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    PubMed

    Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias

    2017-01-01

    Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that

  10. Intracavernous Delivery of a Designed Angiopoietin-1 Variant Rescues Erectile Function by Enhancing Endothelial Regeneration in the Streptozotocin-Induced Diabetic Mouse

    PubMed Central

    Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2011-01-01

    OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous

  11. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that evenmore » under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)« less

  12. New assessment of endothelial function measured by short time flow-mediated vasodilation: Comparison with conventional flow-mediated vasodilation measurement.

    PubMed

    Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Hashimoto, Haruki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Yusoff, Farina Mohamad; Kishimoto, Shinji; Nakashima, Ayumu; Noma, Kensuke; Kawaguchi, Tomohiro; Matsumoto, Takeo; Higashi, Yukihito

    2018-05-04

    Measurement of flow-mediated vasodilation (FMD) is an established method for assessing endothelial function. Measurement of FMD is useful for showing the relationship between atherosclerosis and endothelial function, mechanisms of endothelial dysfunction, and clinical implications including effects of interventions and cardiovascular events. To shorten and simplify the measurement of FMD, we have developed a novel technique named short time FMD (stFMD). We investigated the validity of stFMD for assessment of endothelial function compared with conventional FMD. We evaluated stFMD and conventional FMD in 82 subjects including patients with atherosclerotic risk factors and cardiovascular disease (66 men and 16 women, 57 ± 16 years). Both stFMD and conventional FMD were significantly correlated with age, systolic blood pressure, diastolic blood pressure and baseline brachial artery diameter. In addition, stFMD was significantly correlated with conventional FMD (r = 0.76, P < 0.001). Bland-Altman plot analysis showed good agreement between stFMD and conventional FMD. Moreover, stFMD in the at risk group and that in the cardiovascular disease group were significantly lower than that in the no risk group (4.6 ± 2.3% and 4.4 ± 2.2% vs. 7.3 ± 1.9%, P < 0.001, respectively). Optimal cutoff value of stFMD for diagnosing atherosclerosis was 7.0% (sensitivity of 71.0% and specificity of 85.0%). These findings suggest that measurement of stFMD, a novel and simple method, is useful for assessing endothelial function. Measurement of stFMD may be suitable for screening of atherosclerosis when repeated measurements of vascular function are required and when performing a clinical trial using a large population. URL for Clinical Trial: http://UMIN; Registration Number for Clinical Trial: UMIN000025458. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Relationship between Magnesium and Endothelial Function in End-Stage Renal Disease Patients on Hemodialysis

    PubMed Central

    Lee, Shina; Ryu, Jung-Hwa; Kim, Seung-Jung; Ryu, Dong-Ryeol; Kang, Duk-Hee

    2016-01-01

    Purpose Chronic kidney disease (CKD) patients tend to have higher serum magnesium values than healthy population due to their positive balance of magnesium in kidney. Recent studies found that magnesium level is positively correlated with endothelial function. Therefore, this study was conducted to define the relationship between magnesium level and endothelial dysfunction in end stage renal disease (ESRD) patients on hemodialysis (HD). Materials and Methods A total of 27 patients were included in this cross-sectional study. Iontophoresis with laser-Doppler flowmetry, flow mediated dilation (FMD), and carotid intima-media thickness were measured. Patients' average serum magnesium levels were measured over previous three months, including the examination month. Pearson's correlation coefficient analysis and multivariate regression model were used to define the association between magnesium and endothelial function. Results In the univariate analysis, higher magnesium levels were associated with better endothelium-dependent vasodilation (EDV) of the FMD in ESRD patients on HD (r=0.516, p=0.007). When the participants were divided into two groups according to the median magnesium level (3.47 mg/dL), there was a significant difference in EDV of FMD (less than 3.47 mg/dL, 2.8±1.7%; more than 3.47 mg/dL, 5.1±2.0%, p=0.004). In multivariate analysis, magnesium and albumin were identified as independent factors for FMD (β=1.794, p=0.030 for serum magnesium; β=3.642, p=0.012 for albumin). Conclusion This study demonstrated that higher serum magnesium level may be associated with better endothelial function in ESRD patients on HD. In the future, a large, prospective study is needed to elucidate optimal range of serum magnesium levels in ESRD on HD patients. PMID:27593873

  14. Resveratrol Treatment Normalizes the Endothelial Function and Blood Pressure in Ovariectomized Rats.

    PubMed

    Fabricio, Victor; Oishi, Jorge Camargo; Biffe, Bruna Gabriele; Ruffoni, Leandro Dias Gonçalves; Silva, Karina Ana da; Nonaka, Keico Okino; Rodrigues, Gerson Jhonatan

    2017-02-01

    Despite knowing that resveratrol has effects on blood vessels, blood pressure and that phytostrogens can also improve the endothelium-dependent relaxation/vasodilation, there are no reports of reveratrol's direct effect on the endothelial function and blood pressure of animals with estrogen deficit (mimicking post-menopausal increased blood pressure). To verify the effect of two different periods of preventive treatment with resveratrol on blood pressure and endothelial function in ovariectomized young adult rats. 3-month old female Wistar rats were used and distributed in 6 groups: intact groups with 60 or 90 days, ovariectomized groups with 60 or 90 days, and ovariectomized treated with resveratrol (10 mg/kg of body weight per day) for 60 or 90 days. The number of days in each group corresponds to the duration of the experimental period. Vascular reactivity study was performed in abdominal aortic rings, systolic blood pressure was measured and serum nitric oxide (NO) concentration was quantified. Ovariectomy induced blood pressure increase 60 and 90 days after surgery, whereas the endothelial function decreased only 90 days after surgery, with no difference in NO concentration among the groups. Only longer treatment (90 days) with resveratrol was able to improve the endothelial function and normalize blood pressure. Our results suggest that 90 days of treatment with resveratrol is able to improve the endothelial function and decrease blood pressure in ovariectomized rats. Apesar de se saber que o resveratrol apresenta efeitos sobre a pressão arterial e os vasos sanguíneos, e que os fitoestrógenos podem melhorar o relaxamento/vasodilatação dependente do endotélio, não há relatos do efeito direto do resveratrol sobre a pressão arterial e a função endotelial em animais com deficiência de estrógeno (mimetizando a pressão arterial aumentada pós-menopausa). Verificar o efeito de dois diferentes períodos de tratamento preventivo com resveratrol sobre a

  15. Endothelial and kidney function in women with a history of preeclampsia and healthy parous controls: A case control study.

    PubMed

    Lopes van Balen, Veronica A; Spaan, Julia J; Cornelis, Tom; Heidema, Wieteke M; Scholten, Ralph R; Spaanderman, Marc E A

    2018-03-01

    Preeclampsia (PE) is a pregnancy related endothelial disease characterized by hypertension and albuminuria. Postpartum endothelial dysfunction often persists in these women. We postulate that in women with a history of PE reduced endothelial dependent vasodilation coincides with attenuated kidney function, as both reflect endothelial dysfunction. We assessed endothelial and kidney function in women with a history of PE (n=79) and uncomplicated pregnancies (n=49) at least 4years postpartum. Women with hypertension, diabetes or kidney disease prior to pregnancy were excluded. Brachial artery flow mediated dilatation (FMD) was measured and analysed by a custom designed edge-detection and wall-tracking software. We measured albumin and creatinine levels in a 24-h urine sample and calculated glomerular filtration rate (GFR) by CKD-EPI. Women with a history of PE had lower FMD but comparable GFR and albumin creatinine ratio (ACR) compared with controls. Independent of obstetric history, in both controls and women with a history of PE respectively, GFR (r=0.19, p=0.17 and r=0.12, p=0.29) and albumin creatinine ratio (r=0.07, p=0.62 and r=0.06 p=0.57) did not correlate with FMD. At least 4years after pregnancy, women with a history of PE demonstrated decreased flow mediated dilatation when compared to healthy parous controls. In this study, decreased flow mediated dilation however did not coincide with decreased kidney function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Abnormal liver function in different patients with Schistosoma japonicum.

    PubMed

    Ning, An; Wu, Xiaoying; Li, Hongyu; Liang, Jinyi; Gao, Zulu; Shen, Jia; Liu, Zhen; Xu, Jun; Hu, Fei; Wu, Feng; Ji, Pengyu; Wu, Zhongdao; Sun, Xi

    2015-01-01

    Schistosomiasis japonica, caused by Schistosoma japonicum, is still a serious public health problem in China. It is important for schistosomiasis control to prevent from infection and advanced patients. Recent years, however, the form of the prevalence of schistosomiasis japonica in China was changed these days. Paying attention to the quality of life of these patients already infected with S. japonicum becomes a new objective to schistosomiasis control program. Although most of the chronic infections with S. japonicum will finally appear as liver fibrosis symptoms, it is still unknown liver function abnormalities in patients with severe forms of schistosomiasis, and there is also no evidence whether S. japonicum infection will directly cause damage to liver cells. Thus, this study investigated 494 patients diagnosed with S. japonicum (87.7%) and 69 healthy subjects from a endemic areas belonging to Jiangxi Province of China and aimed to evaluate the liver function abnormalities in patients with severe forms of schistosomiasis and possible associations with coinfection with HBV. The results showed that the hepatic metabolism situation significantly changed in patients infected with S. japonicum; meanwhile, the abnormal rates of ALT and AST in patients with schistosomiasis were significantly higher than that in the control group, which confirmed that patients infected with S. japonicum not only had damaged liver function but also the hepatic cells were directly influenced. And the coinfection of CHB and schistosomiasis japonica can be a risk factor for more serious outcomes in patients from endemic areas. These results give us the advice that in the further treatment of patients infected with S. japonicum, especially these coinfections, we should better give the routine liver-protection treatment in advance.

  17. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression.

    PubMed

    Toussaint, Jimmy; Raval, Chirag Bharavi; Nguyen, Tieuvi; Fadaifard, Hadi; Joshi, Shripad; Wolberg, George; Quarfordt, Steven; Jan, Kung-Ming; Rumschitzki, David S

    2017-11-01

    Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop. Copyright © 2017 the American Physiological Society.

  18. Association of Plasmodium falciparum with Human Endothelial Cells in vitro

    PubMed Central

    Utter, Christopher; Serrano, Adelfa E.; Glod, John W.; Leibowitz, Michael J.

    2017-01-01

    Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria. PMID:28656007

  19. Impact of an endothelial progenitor cell capturing stent on coronary microvascular function: comparison with drug-eluting stents.

    PubMed

    Choi, Woong Gil; Kim, Soo Hyun; Yoon, Hyung Seok; Lee, Eun Joo; Kim, Dong Woon

    2015-01-01

    Although drug-eluting stents (DESs) effectively reduce restenosis following percutaneous coronary intervention (PCI), they also delay re-endothelialization and impair microvascular function, resulting in adverse clinical outcomes. Endothelial progenitor cell (EPC) capturing stents, by providing a functional endothelial layer on the stent, have beneficial effects on microvascular function. However, data on coronary microvascular function in patients with EPC stents versus DESs are lacking. Seventy-four patients who previously underwent PCI were enrolled in this study. Microvascular function was evaluated 6 months after PCI based on the index of microvascular resistance (IMR) and the coronary flow reserve (CFR). IMR was calculated as the ratio of the mean distal coronary pressure at maximal hyperemia to the inverse of the hyperemic mean transit time (hTmn). The CFR was calculated by dividing the hTmn by the baseline mean transit time. Twenty-one patients (age, 67.2 ± 9.6 years; male:female, 15:6) with an EPC stent and 53 patients (age, 61.5 ± 14.7 years; male:female, 40:13) with second-generation DESs were included in the study. There were no significant differences in the baseline clinical and angiographic characteristics of the two groups. Angiography performed 6 months postoperatively did not show significant differences in their CFR values. However, patients with the EPC stent had a significantly lower IMR than patients with second-generation DESs (median, 25.5 [interquartile range, 12.85 to 28.18] vs. 29.0 [interquartile range, 15.42 to 39.23]; p = 0.043). Microvascular dysfunction was significantly improved after 6 months in patients with EPC stents compared to those with DESs. The complete re-endothelialization achieved with the EPC stent may provide clinical benefits over DESs, especially in patients with microvascular dysfunction.

  20. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  1. The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction.

    PubMed

    Corder, Roger; Warburton, Richard C; Khan, Noorafza Q; Brown, Ruth E; Wood, Elizabeth G; Lees, Delphine M

    2004-11-01

    Reduced endothelium-dependent vasodilator responses with increased synthesis of ET-1 (endothelin-1) are characteristics of endothelial dysfunction in heart failure and are predictive of mortality. Identification of treatments that correct these abnormalities may have particular benefit for patients who become refractory to current regimens. Hawthorn preparations have a long history in the treatment of heart failure. Therefore we tested their inhibitory effects on ET-1 synthesis by cultured endothelial cells. These actions were compared with that of GSE (grape seed extract), as the vasoactive components of both these herbal remedies are mainly oligomeric flavan-3-ols called procyanidins. This showed extracts of hawthorn and grape seed were equipotent as inhibitors of ET-1 synthesis. GSE also produced a potent endothelium-dependent vasodilator response on preparations of isolated aorta. Suppression of ET-1 synthesis at the same time as induction of endothelium-dependent vasodilation is a similar response to that triggered by laminar shear stress. Based on these results and previous findings, we hypothesize that through their pharmacological properties procyanidins stimulate a pseudo laminar shear stress response in endothelial cells, which helps restore endothelial function and underlies the benefit from treatment with hawthorn extract in heart failure.

  2. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function.

    PubMed

    Cortés, Berenice; Núñez, Isabel; Cofán, Montserrat; Gilabert, Rosa; Pérez-Heras, Ana; Casals, Elena; Deulofeu, Ramón; Ros, Emilio

    2006-10-17

    We sought to investigate whether the addition of walnuts or olive oil to a fatty meal have differential effects on postprandial vasoactivity, lipoproteins, markers of oxidation and endothelial activation, and plasma asymmetric dimethylarginine (ADMA). Compared with a Mediterranean diet, a walnut diet has been shown to improve endothelial function in hypercholesterolemic patients. We hypothesized that walnuts would reverse postprandial endothelial dysfunction associated with consumption of a fatty meal. We randomized in a crossover design 12 healthy subjects and 12 patients with hypercholesterolemia to 2 high-fat meal sequences to which 25 g olive oil or 40 g walnuts had been added. Both test meals contained 80 g fat and 35% saturated fatty acids, and consumption of each meal was separated by 1 week. Venipunctures and ultrasound measurements of brachial artery endothelial function were performed after fasting and 4 h after test meals. In both study groups, flow-mediated dilation (FMD) was worse after the olive oil meal than after the walnut meal (p = 0.006, time-period interaction). Fasting, but not postprandial, triglyceride concentrations correlated inversely with FMD (r = -0.324; p = 0.024). Flow-independent dilation and plasma ADMA concentrations were unchanged, and the concentration of oxidized low-density lipoproteins decreased (p = 0.051) after either meal. The plasma concentrations of soluble inflammatory cytokines and adhesion molecules decreased (p < 0.01) independently of meal type, except for E-selectin, which decreased more (p = 0.033) after the walnut meal. Adding walnuts to a high-fat meal acutely improves FMD independently of changes in oxidation, inflammation, or ADMA. Both walnuts and olive oil preserve the protective phenotype of endothelial cells.

  3. Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells.

    PubMed

    Krump-Konvalinkova, Vera; Yasuda, Satoshi; Rubic, Tina; Makarova, Natalia; Mages, Jörg; Erl, Wolfgang; Vosseler, Claudia; Kirkpatrick, C James; Tigyi, Gabor; Siess, Wolfgang

    2005-03-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid acting both as a ligand for the G protein-coupled receptors S1P1-5 and as a second messenger. Because S1P1 knockout is lethal in the transgenic mouse, an alternative approach to study the function of S1P1 in endothelial cells is needed. All human endothelial cells analyzed expressed abundant S1P1 transcripts. We permanently silenced (by RNA interference) the expression of S1P1 in the human endothelial cell lines AS-M.5 and ISO-HAS.1. The S1P1 knock-down cells manifested a distinct morphology and showed neither actin ruffles in response to S1P nor an angiogenic reaction. In addition, these cells were more sensitive to oxidant stress-mediated injury. New S1P1-dependent gene targets were identified in human endothelial cells. S1P1 silencing decreased the expression of platelet-endothelial cell adhesion molecule-1 and VE-cadherin and abolished the induction of E-selectin after cell stimulation with lipopolysaccharide or tumor necrosis factor-alpha. Microarray analysis revealed downregulation of further endothelial specific transcripts after S1P1 silencing. Long-term silencing of S1P1 enabled us for the first time to demonstrate the involvement of S1P1 in key functions of endothelial cells and to identify new S1P1-dependent gene targets.

  4. Early detection of endothelial injury and dysfunction in conjunction with correction of hemodynamic maladjustment can effectively restore renal function in type 2 diabetic nephropathy.

    PubMed

    Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse

    2006-01-01

    This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.

  5. The Effect of the Oral Administration of Leucine on Endothelial Function, Glucose and Insulin Concentrations in Healthy Subjects.

    PubMed

    Argyrakopoulou, Georgia; Kontrafouri, Paraskevi; Eleftheriadou, Ioanna; Kokkinos, Alexander; Arapostathi, Christina; Kyriaki, Despoina; Perrea, Despoina; Revenas, Constantinos; Katsilambros, Nicholas; Tentolouris, Nicholas

    2018-06-11

    The aim of our study was to investigate the potential differential effect of hyperglycaemia and hyperinsulinaemia induced by glucose infusion alone and in combination with leucine consumption on endothelial function in healthy individuals. Ten male volunteers were examined in random order twice. In one visit, they consumed 250 ml water (baseline) and 30 min later glucose was infused iv. In the other visit, they consumed 250 ml water with 25 g of leucine and 30 min later the same amount of glucose was infused. Serum glucose and insulin were measured at baseline and every 10 min after glucose infusion for 1 h. Endothelial function was evaluated by measurement of flow mediated vasodilatation (FMD) at baseline, 10 and 60 min after glucose infusion. In both visits, glucose levels increased to the same degree, whereas insulin response was significantly higher after leucine administration. FMD values declined significantly compared to baseline 10 min after glucose infusion in the control visit (6.9±2.7 vs. 3.2±3.5%, respectively, p=0.006), while no significant change was observed when glucose infusion was followed by leucine consumption. Acute hyperglycaemia impairs endothelial function in healthy male individuals. Leucine administration prevents hyperglycaemia-mediated endothelial dysfunction probably due to enhanced insulin secretion. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Effect of teriparatide treatment on endothelial function, glucose metabolism and inflammation markers in patients with postmenopausal osteoporosis.

    PubMed

    Celer, Ozgen; Akalın, Aysen; Oztunali, Cigdem

    2016-10-01

    Teriparatide, an anabolic agent used in the treatment of postmenopausal osteoporosis, can induce effects similar to primary hyperparathyroidism. Our objective was to evaluate the effects of teriparatide on endothelial functions, glucose metabolism and inflammation markers in patients diagnosed with postmenopausal osteoporosis. This was a single-centre, single-arm, 6-month prospective study. Twenty-three postmenopausal women over 65 years old with a lumbar spine or femoral neck T-score of -4·0 or lower and having at least two compression fractures in thoracic or lumbar spine were studied. Low-dose intermittent teriparatide (20 μg/day) was supplemented with calcium carbonate (1000 mg elemental calcium) and 880 IU cholecalciferol for 6 months. The biochemical parameters for glucose metabolism, inflammation and atherosclerosis were determined. For the assessment of vascular endothelial function, carotid intima-media thickness (CIMT), brachial artery intima-media thickness (BIMT), per cent change in flow-mediated dilation (FMD%) and nitroglycerine-induced dilations (NID%) were measured on ultrasonography. The fasting plasma glucose, homoeostatic model assessment of insulin resistance, fibrinogen, homocysteine and high-density lipoprotein cholesterol increased significantly with teriparatide treatment (P < 0·05 for all). Baseline CIMT and BIMT did not change significantly with 6 months of teriparatide treatment (P > 0·05); however, FMD% and NID% showed significant decrease after treatment (P < 0·01 for both). Intermittent teriparatide treatment may adversely affect some parameters of glucose metabolism, inflammation and endothelial function. On the basis of our findings, further large-scale and controlled studies are needed to clarify the exact effect of teriparatide treatment on glucose metabolism, inflammation and endothelial function. © 2016 John Wiley & Sons Ltd.

  7. Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome.

    PubMed

    Gaubert, Mélanie; Marlinge, Marion; Alessandrini, Marine; Laine, Marc; Bonello, Laurent; Fromonot, Julien; Cautela, Jennifer; Thuny, Franck; Barraud, Jeremie; Mottola, Giovanna; Rossi, Pascal; Fenouillet, Emmanuel; Ruf, Jean; Guieu, Régis; Paganelli, Franck

    2018-06-01

    The role of serum uric acid in coronary artery disease has been extensively investigated. It was suggested that serum uric acid level (SUA) is an independent predictor of endothelial dysfunction and related to coronary artery lesions. However, the relationship between SUA and severity of coronary atherosclerosis evaluated via endothelial dysfunction using peripheral arterial tone (PAT) and the reactive hyperhemia index (RHI) has not been investigated during a first episode of acute coronary syndrome (ACS). The aim of our study was to address this point. We prospectively enrolled 80 patients with a first episode of ACS in a single-center observational study. All patients underwent coronary angiography, evaluation of endothelial function via the RHI, and SUA measurement. The severity of the coronary artery lesion was assessed angiographically, and patients were classified in three groups based on the extent of disease and Gensini and SYNTAX scores. Endothelial function was considered abnormal if RHI < 1.67. We identified a linear correlation between SUA and RHI (R 2  = 0.66 P < 0.001). In multivariable analyses, SUA remained associated with RHI, even after adjustment for traditional cardiovascular risk factors and renal function. SUA was associated with severity of coronary artery disease. SUA is associated with severity of coronary atherosclerosis in patients with asymptomatic hyperuricemia. This inexpensive, readily measured biological parameter may be useful to monitor ACS patients.

  8. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells

    PubMed Central

    Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy

    2015-01-01

    Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452

  9. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    PubMed

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  10. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  11. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  12. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells.

    PubMed

    Lopes Pinheiro, Melissa A; Kroon, Jeffrey; Hoogenboezem, Mark; Geerts, Dirk; van Het Hof, Bert; van der Pol, Susanne M A; van Buul, Jaap D; de Vries, Helga E

    2016-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  14. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease.

    PubMed

    Thethi, Tina K; Bajwa, Muhammad A; Ghanim, Husam; Jo, Chanhee; Weir, Monica; Goldfine, Allison B; Umpierrez, Guillermo; Desouza, Cyrus; Dandona, Paresh; Fang-Hollingsworth, Ying; Raghavan, Vasudevan; Fonseca, Vivian A

    2015-04-01

    Patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD) have impaired endothelial function. Vitamin D and its analogs may play a role in regulation of endothelial function and inflammation. We studied effects of paricalcitol compared to placebo on endothelial function and markers of inflammation and oxidative stress in patients with T2DM and CKD. A double blind, randomized, placebo-controlled trial was conducted in 60 patients with T2DM and stage 3 or 4 CKD. Paricalcitol 1 mcg or placebo was administered orally once daily for three months. Brachial artery flow mediated dilatation (FMD), nitroglycerine mediated dilation (NMD), and plasma concentrations of inflammatory cytokines, tumor necrosis factor -α and interleukin-6, highly-sensitive C-reactive protein; endothelial surface proteins, intercellular adhesion molecule -1 and monocyte chemo attractant protein-1, and plasma glucose, insulin, free fatty acids, and urinary isoprostane were measured at baseline and end of three months. 27 patients in the paricalcitol group and 28 patients in the control group completed the study, though analysis of FMD at both time points was possible in 23 patients in each group. There was no significant difference in the change in FMD, NMD or the biomarkers examined after paricalcitol or placebo treatment. Treatment with paricalcitol at this dose and duration did not affect brachial artery FMD or biomarkers of inflammation and oxidative stress. The lack of significance may be due to the fact that the study patients had advanced CKD and that effects of paricalcitol are not additive to the effects of glycemic, lipid and anti-hypertensive therapies. Published by Elsevier Inc.

  15. Mechanical Adaptability of the MMP-Responsive Film Improves the Functionality of Endothelial Cell Monolayer.

    PubMed

    Hu, Mi; Chang, Hao; Zhang, He; Wang, Jing; Lei, Wen-Xi; Li, Bo-Chao; Ren, Ke-Feng; Ji, Jian

    2017-07-01

    Extracellular matrix and cells are inherent in coordinating and adapting to each other during all physiological and pathological processes. Synthetic materials, however, show rarely reciprocal and spatiotemporal responses to cells, and lacking self-adapting properties as well. Here, a mechanical adaptability based on the matrix metalloproteinase (MMPs) sensitive polyelectrolyte film is reported. Poly-lysine (PLL) and methacrylated hyaluronic acid (HA-MA) nanolayers are employed to build the thin film through the layer-by-layer assembly, and it is further crosslinked using MMP sensitive peptides, which endows the films with changeable mechanical properties in response to MMPs. It is demonstrated that stiffness of the (PLL/HA-MA) films increases with the crosslinking, and then decreases in response to a treatment of enzyme. Consequently, the crosslinked (PLL/HA-MA) films reveal effective growth of endothelial cells (ECs), leading to fast formation of EC monolayer. Importantly, significantly improved endothelial function of the EC monolayer, which is characterized by integrity, biomolecules release, expression of function related gene, and antithrombotic properties, is achieved along with the decrosslinking of the film because of EC-secreted MMPs. These results suggest that mechanical adaptability of substrate in Young's modulus plays a significant role in endothelial progression, which shows great application potential in tissue engineering, regenerative medicine, and organ-on-a-chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells

    PubMed Central

    Sahara, Makoto; Hansson, Emil M; Wernet, Oliver; Lui, Kathy O; Später, Daniela; Chien, Kenneth R

    2014-01-01

    Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14−KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs. PMID:24810299

  17. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation.

    PubMed

    Gallo, Cristina; Dallaglio, Katiuscia; Bassani, Barbara; Rossi, Teresa; Rossello, Armando; Noonan, Douglas M; D'Uva, Gabriele; Bruno, Antonino; Albini, Adriana

    2016-09-13

    Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.

  18. Brachial artery endothelial function is unchanged after acute sprint interval exercise in sedentary men and women.

    PubMed

    Shenouda, Ninette; Skelly, Lauren E; Gibala, Martin J; MacDonald, Maureen J

    2018-05-03

    What is the central question of this study? What is the acute brachial artery endothelial function response to sprint interval exercise and are there sex-based differences? What is the main finding and its importance? Brachial artery endothelial function did not change in either men or women following an acute session of SIT consisting of 3 × 20 s 'all-out' cycling sprints. Our findings suggest this low-volume protocol may not be sufficient to induce functional changes in the brachial artery of sedentary, but otherwise healthy adults. Sprint interval training (SIT) is a potent metabolic stimulus, but studies examining its acute effects on brachial artery endothelial function are limited. The influence of oestradiol on the acute arterial response to this type of exercise is also unknown. We investigated the brachial artery endothelial function response to a single session of SIT in sedentary healthy men (n = 8; 22 ± 4 years) and premenopausal women tested in the mid-follicular phase of the menstrual cycle (n = 8; 21 ± 3 years). Participants performed 3 × 20 s 'all-out' cycling sprints interspersed with 2 min of active recovery. Brachial artery flow-mediated dilatation (FMD) and haemodynamic parameters were measured before and 1 and 24 h post-exercise. Despite attenuations in some haemodynamic parameters at 1 h post-exercise, there were no changes in absolute (P = 0.23), relative (P = 0.23) or allometrically scaled FMD (P = 0.38) following a single session of SIT. Resting and peak dilatory diameters did not change in men or women (P > 0.05 for all) and there were no interactions between time and sex for any measure (P > 0.05). Oestradiol was not correlated with relative FMD at baseline (r = -0.22, P = 0.42) or with the change in relative FMD from baseline to 1 h post-exercise (r = 0.24, P = 0.40). Overall, brachial artery FMD appears to be unchanged in men and women following an acute session of SIT, and the higher oestradiol

  19. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary

  20. Abnormal liver function in common variable immunodeficiency disorders due to nodular regenerative hyperplasia.

    PubMed

    Ward, C; Lucas, M; Piris, J; Collier, J; Chapel, H

    2008-09-01

    Patients with common variable immunodeficiency disorders are monitored for liver function test abnormalities. A proportion of patients develop deranged liver function and some also develop hepatomegaly. We investigated the prevalence of abnormalities and types of liver disease, aiming to identify those at risk and determine outcomes. The local primary immunodeficiency database was searched for patients with a common variable immunodeficiency disorder and abnormal liver function and/or a liver biopsy. Patterns of liver dysfunction were determined and biopsies reviewed. A total of 47 of 108 patients had deranged liver function, most commonly raised alkaline phosphatase levels. Twenty-three patients had liver biopsies. Nodular regenerative hyperplasia was found in 13 of 16 with unexplained pathology. These patients were more likely to have other disease-related complications of common variable immunodeficiency disorders, in particular non-coeliac (gluten insensitive) lymphocytic enteropathy. However, five had no symptoms of liver disease and only one died of liver complications. Nodular regenerative hyperplasia is a common complication of common variable immunodeficiency disorders but was rarely complicated by portal hypertension.

  1. Treatment of denture-related stomatitis improves endothelial function assessed by flow-mediated vascular dilation.

    PubMed

    Osmenda, Grzegorz; Maciąg, Joanna; Wilk, Grzegorz; Maciąg, Anna; Nowakowski, Daniel; Loster, Jolanta; Dembowska, Elżbieta; Robertson, Douglas; Guzik, Tomasz; Cześnikiewicz-Guzik, Marta

    2017-02-01

    The presence of oral inflammation has recently been linked with the pathogenesis of cardiovascular diseases. While numerous studies have described links between periodontitis and endothelial dysfunction, little is known about the influence of denture-related stomatitis (DRS) on cardiovascular risk. Therefore, the aim of this study was to determine whether the treatment of DRS can lead to improvement of the clinical measures of vascular dysfunction. The DRS patients were treated with a local oral antifungal agent for 3 weeks. Blood pressure, flow-mediated dilatation (FMD) and nitroglycerine-mediated vascular dilatation (NMD) were measured during three study visits: before treatment, one day and two months after conclusion of antifungal therapy. Flow-mediated dilatation measurements showed significant improvement of endothelial function 2 months after treatment (FMD median 5%, 95 CI: 3-8.3 vs. 11%, 95% CI: 8.8-14.4; p < 0.01), while there was no difference in control, endothelium-independent vasorelaxations (NMD; median = 15.3%, 95% CI: 10.8-19.3 vs. 12.7%, 95% CI: 10.6-15; p = 0.3). Other cardiovascular parameters such as systolic (median = 125 mm Hg; 95% CI: 116-129 vs. 120 mm Hg, 95% CI: 116-126; p = 0.1) as well as diastolic blood pressure and heart rate (median = 65.5 bpm, 95% CI: 56.7-77.7 vs. 71 bpm, 95% CI: 66.7-75; p = 0.5) did not change during or after the treatment. Treatment of DRS is associated with improvement of endothelial function. Since endothelial dysfunction is known to precede the development of severe cardiovascular disorders such as atherosclerosis and hypertension, patients should be more carefully screened for DRS in general dental practice, and immediate DRS treatment should be advised.

  2. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.

    PubMed

    Santos-Parker, Jessica R; Strahler, Talia R; Bassett, Candace J; Bispham, Nina Z; Chonchol, Michel B; Seals, Douglas R

    2017-01-03

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBF ACh ; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBF ACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBF ACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.

  3. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress

    PubMed Central

    Santos-Parker, Jessica R.; Strahler, Talia R.; Bassett, Candace J.; Bispham, Nina Z.; Chonchol, Michel B.; Seals, Douglas R.

    2017-01-01

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBFACh; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBFACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBFACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function. PMID:28070018

  4. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function.

    PubMed

    Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S

    2017-08-15

    The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

  5. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  6. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  7. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    PubMed Central

    McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.

    2015-01-01

    Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061

  8. Omega-3 Fatty Acid Supplementation Improves Endothelial Function in Primary Antiphospholipid Syndrome: A Small-Scale Randomized Double-Blind Placebo-Controlled Trial.

    PubMed

    Felau, Sheylla M; Sales, Lucas P; Solis, Marina Y; Hayashi, Ana Paula; Roschel, Hamilton; Sá-Pinto, Ana Lúcia; Andrade, Danieli Castro Oliveira De; Katayama, Keyla Y; Irigoyen, Maria Claudia; Consolim-Colombo, Fernanda; Bonfa, Eloisa; Gualano, Bruno; Benatti, Fabiana B

    2018-01-01

    Endothelial cells are thought to play a central role in the pathogenesis of antiphospholipid syndrome (APS). Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been shown to improve endothelial function in a number of diseases; thus, it could be of high clinical relevance in APS. The aim of this study was to evaluate the efficacy of n-3 PUFA supplementation on endothelial function (primary outcome) of patients with primary APS (PAPS). A 16-week randomized clinical trial was conducted with 22 adult women with PAPS. Patients were randomly assigned (1:1) to receive placebo (PL, n  = 11) or n-3 PUFA (ω-3, n  = 11) supplementation. Before (pre) and after (post) 16 weeks of the intervention, patients were assessed for endothelial function (peripheral artery tonometry) (primary outcome). Patients were also assessed for systemic markers of endothelial cell activation, inflammatory markers, dietary intake, international normalized ratio (INR), and adverse effects. At post, ω-3 group presented significant increases in endothelial function estimates reactive hyperemia index (RHI) and logarithmic transformation of RHI (LnRHI) when compared with PL (+13 vs. -12%, p  = 0.06, ES = 0.9; and +23 vs. -22%, p  = 0.02, ES = 1.0). No changes were observed for e-selectin, vascular adhesion molecule-1, and fibrinogen levels ( p  > 0.05). In addition, ω-3 group showed decreased circulating levels of interleukin-10 (-4 vs. +45%, p  = 0.04, ES = -0.9) and tumor necrosis factor (-13 vs. +0.3%, p  = 0.04, ES = -0.95) and a tendency toward a lower intercellular adhesion molecule-1 response (+3 vs. +48%, p  = 0.1, ES = -0.7) at post when compared with PL. No changes in dietary intake, INR, or self-reported adverse effects were observed. In conclusion, 16 weeks of n-3 PUFA supplementation improved endothelial function in patients with well-controlled PAPS. These results support a role of n-3 PUFA supplementation as an

  9. Liver function tests abnormality and clinical severity of dengue infection in adult patients.

    PubMed

    Kittitrakul, Chatporn; Silachamroon, Udomsak; Phumratanaprapin, Weerapong; Krudsood, Srivicha; Wilairatana, Polrat; Treeprasertsuk, Sombat

    2015-01-01

    The clinical manifestations of dengue infection in the adult are different from those in children, i.e. having less prevalence to bleeding, and more commonly, abnormal liver function tests. The primary objective is to describe the clinical manifestations of dengue infection in adult patients. The secondary objective is to compare the clinical manifestations of dengue infection between the groups of normal and abnormal liver function tests in adult patients. Retrospective study was done in adults (age 15 years) dengue patients admitted at the Hospital for Tropical Diseases from 2000-2002. Dengue infection diagnosed by WHO clinical criteria 1997 with serological tests confirmed by ELISA test or Rapid Immunochromatographic test. Liver function test was recorded by day of fever. There were 127 adult dengue patients with mean age 26.4 ± 11.5 years. Classifications of dengue infection by WHO criteria were DF 4.7%, DHF grade 126.0%, DHF grade 2 63.0% and DHF grade 3 6.3%. Mean duration of fever clearance time was 6.0 ± 1.9 days but the fever lasted longer in cases of high-level transaminases (> 10 folds). The common presenting symptoms and signs were myalgia (95.9%), nausea/vomiting (87.7%), positive tourniquet test (77.2%), abdominal pain (42.7%), hepatomegaly (34.6%), and bleeding (20.5%). The ratio of AST and ALTwas 1.8:1. Abnormal AST and ALT were found in 88.2% and 69.3% of the patients, respectively. Patients with nausea/vomiting, petechiae or duration of fever > 7 days more frequently had abnormal transaminases. Abnormal AST during the febrile stage was associated with bleeding. High-level AST and ALT occurred in 11.0% and 7.0%, respectively. Shock was associated with high-level ALT during the febrile stage. Adult dengue patients commonly showed abnormal liver function tests and accounted for at least two-thirds of them. High-level ALT during the febrile stage showed association with shock.

  10. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress.

    PubMed

    Liu, Limei; Liu, Jian; Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Xu, Aimin; Xu, Gang; Ng, Chi Fai; Yao, Xiaoqiang; Gao, Yuansheng; Huang, Yu

    2014-10-10

    Although uncoupling protein 2 (UCP2) negatively regulates intracellular reactive oxygen species (ROS) production and protects vascular function, its participation in vascular benefits of drugs used to treat cardiometabolic diseases is largely unknown. This study investigated whether UCP2 and associated oxidative stress reduction contribute to the improvement of endothelial function by a dipeptidyl peptidase-4 inhibitor, sitagliptin, in hypertension. Pharmacological inhibition of cyclooxygenase-2 (COX-2) but not COX-1 prevented endothelial dysfunction, and ROS scavengers reduced COX-2 mRNA and protein expression in spontaneously hypertensive rats (SHR) renal arteries. Angiotensin II (Ang II) evoked endothelium-dependent contractions (EDCs) in C57BL/6 and UCP2 knockout (UCP2KO) mouse aortae. Chronic sitagliptin administration attenuated EDCs in SHR arteries and Ang II-infused C57BL/6 mouse aortae and eliminated ROS overproduction in SHR arteries, which were reversed by glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin 9-39, AMP-activated protein kinase (AMPK)α inhibitor compound C, and UCP2 inhibitor genipin. By contrast, sitagliptin unaffected EDCs in Ang II-infused UCP2KO mice. Sitagliptin increased AMPKα phosphorylation, upregulated UCP2, and downregulated COX-2 expression in arteries from SHR and Ang II-infused C57BL/6 mice. Importantly, exendin 9-39, compound C, and genipin reversed the inhibitory effect of GLP-1R agonist exendin-4 on Ang II-stimulated mitochondrial ROS rises in SHR endothelial cells. Moreover, exendin-4 improved the endothelial function of renal arteries from SHR and hypertensive patients. We elucidate for the first time that UCP2 serves as an important signal molecule in endothelial protection conferred by GLP-1-related agents. UCP2 could be a useful target in treating hypertension-related vascular events. UCP2 inhibits oxidative stress and downregulates COX-2 expression through GLP-1/GLP-1R/AMPKα cascade.

  11. Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Schimke, Jane E.; Gutterman, David D.

    2013-01-01

    Objective To determine the prevalence of the 3 components of the female athlete triad [disordered eating, menstrual dysfunction, low bone mineral density (BMD)] and their relationships with brachial artery flow-mediated dilation in professional dancers. Design Prospective study. Setting Academic institution in the Midwest. Participants Twenty-two professional ballet dancers volunteered for this study. Interventions The prevalence of the female athlete triad and its relationship to endothelial dysfunction. Main Outcome Measures Subjects completed questionnaires to assess disordered eating and menstrual status/history. They also completed a 3-day food record and wore an accelerometer for 3 days to determine energy availability. Serum baseline thyrotropin, prolactin, and hormonal concentrations were obtained. Bone mineral density and body composition were measured with a GE Lunar Prodigy dual-energy X-ray absorptiometry. Endothelial function was determined as flow-mediated vasodilation measured by high-frequency ultrasound in the brachial artery. An increase in brachial diameter <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Results Seventeen dancers (77%) had evidence of low/negative energy availability. Thirty-two percent had disordered eating (EDE-Q score). Thirty-six percent had menstrual dysfunction and 14% were currently using hormone contraception. Twenty-three percent had evidence of low bone density (Z-score < −1.0). Sixty-four percent had abnormal brachial artery flow-mediated dilation (<5%). Flow-mediated dilation values were significantly correlated with serum estrogen and whole-body and lumbar BMD. All the 3 components of the triad plus endothelial dysfunction were present in 14% of the subjects. Conclusions Endothelial dysfunction was correlated with reduced BMD, menstrual dysfunction, and low serum estrogen. These findings may have profound implications for cardiovascular and bone health in professional women dancers

  12. Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers.

    PubMed

    Siasos, Gerasimos; Tousoulis, Dimitris; Kokkou, Eleni; Oikonomou, Evangelos; Kollia, Maria-Eleni; Verveniotis, Aleksis; Gouliopoulos, Nikolaos; Zisimos, Konstantinos; Plastiras, Aris; Maniatis, Konstantinos; Stefanadis, Christodoulos

    2014-01-01

    Smoking is associated with impaired vascular function. Concord grape juice (CGJ), a rich source of flavonoids, can modify cardiovascular risk factors. Endothelial function and arterial stiffness are surrogate markers of arterial health. We examined the impact of CGJ on arterial wall properties in healthy smokers. We studied the effect of a 2-week oral treatment with CGJ in 26 healthy smokers on 3 occasions (day 0 (baseline), day 7, and day 14) in a randomized, placebo-controlled, double-blind, crossover study. Measurements were taken before (pSm), immediately after (Sm0), and 20 minutes after (Sm20) cigarette smoking. Endothelial function was evaluated by flow-mediated dilation (FMD) of the brachial artery. Carotid-femoral pulse wave velocity (PWV) was measured as an index of aortic stiffness. Compared with placebo, treatment with CGJ resulted in a significant improvement in pSm values of FMD (P = 0.02) and PWV (P = 0.04). At baseline, smoking decreased FMD in both the CGJ group (P < 0.001) and the placebo group (P < 0.001). Compared with placebo, CGJ treatment prevented the acute smoking-induced decrease in FMD on day 7 (P = 0.02) and day 14 (P < 0.001). Moreover, at baseline, smoking induced a significant elevation in PWV in both the CGJ group (P = 0.02) and the placebo group (P = 0.04). Treatment with CGJ prevented the smoking-induced elevation in PWV on day 7 (P = 0.003) and day 14 (P < 0.001). CGJ consumption improved endothelial function and vascular elastic properties of the arterial tree in healthy smokers and attenuated acute smoking-induced impairment of arterial wall properties.

  13. Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes

    PubMed Central

    Sprenger, Richard R.; Fontijn, Ruud D.; van Marle, Jan; Pannekoek, Hans; Horrevoets, Anton J. G.

    2006-01-01

    Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (∼5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane. PMID:16886909

  14. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers.

    PubMed

    Boon, Evan A J; Croft, Kevin D; Shinde, Sujata; Hodgson, Jonathan M; Ward, Natalie C

    2017-09-20

    A diet rich in plant polyphenols has been suggested to reduce the incidence of cardiovascular disease and type 2 diabetes mellitus, in part, via improvements in endothelial function. Coffee is a rich source of phenolic compounds including the phenolic acid, chlorogenic acid (CGA). The aim of the study was to investigate the effect of coffee as a whole beverage on endothelial function, blood pressure and blood glucose concentration. Twelve healthy men and women were recruited to a randomised, placebo-controlled, cross-over study, with three treatments tested: (i) 18 g of ground caffeinated coffee containing 300 mg CGA in 200 mL of hot water, (ii) 18 g of decaffeinated coffee containing 287 mg CGA in 200 mL of hot water, and (iii) 200 mL of hot water (control). Treatment beverages were consumed twice, two hours apart, with the second beverage consumed simultaneously with a 75 g glucose load. Blood pressure was recorded and the finger prick glucose test was performed at time = 0 and then every 30 minutes up to 2 hours. Endothelial function, assessed using flow-mediated dilatation (FMD) of the brachial artery, was measured at 1 hour and a blood sample taken at 2 hours to measure plasma nitrate/nitrite and 5-CGA concentrations. The FMD response was significantly higher in the caffeinated coffee group compared to both decaffeinated coffee and water groups (P < 0.001). There was no significant difference in the FMD response between decaffeinated coffee and water. Blood glucose concentrations and blood pressure were not different between the three treatment groups. In conclusion, the consumption of caffeinated coffee resulted in a significant improvement in endothelial function, but there was no evidence for benefit regarding glucose metabolism or blood pressure. Although the mechanism has yet to be elucidated the results suggest that coffee as a whole beverage may improve endothelial function, or that caffeine is the component of coffee responsible for improving FMD.

  15. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  16. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  17. False Positive Stress Testing: Does Endothelial Vascular Dysfunction Contribute to ST-Segment Depression in Women? A Pilot Study.

    PubMed

    Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel

    2018-06-19

    The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit.

    PubMed

    Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C

    2009-04-01

    The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty

  19. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  20. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  1. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013

  2. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function.

    PubMed

    Kiss, Levente; Chen, Min; Gero, Domokos; Módis, Katalin; Lacza, Zsombor; Szabó, Csaba

    2006-12-01

    Oxidative and nitrosative stress play an important role in the development of endothelial vascular dysfunction during early atherosclerosis. Oxidative stress activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in endothelial cells. In patients with atherosclerosis the level of oxidized LDL in the plasma is elevated. In oxidized LDL various oxysterols have been identified, such as 7-ketocholesterol (7K). 7K has been shown to induce PARP activation in microglial cells. The aim of the current study was to clarify the effects of 7K on the activity of endothelial PARP and on the endothelium-dependent relaxant function of blood vessels. We treated human umbilical vein endothelial (HUVEC) cells with 2-16 microg/ml 7K as well as vascular rings harvested from BALB/c mouse thoracic aorta with 90 microg/ml 7K for 2 h. A group of mice was treated with 7K subcutaneously for 1 week (10 mg/kg/day). We also conducted in vitro and in vivo experiments using pretreatment with buthionine sulphoximine (BSO), a glutathione-lowering agent. The activity of PARP was calculated by measurement of tritiated NAD incorporation. The activity of PARP increased significantly in 7K-treated HUVEC cells. After BSO pretreatment, this increase was higher. Isolated vascular rings demonstrated no change in endothelium-dependent relaxant function after 2 h of incubation with 7K, even after BSO pretreatment. In vivo treatment with 7K for 1 week had no effect on the relaxant function. Our experimental results suggest that although 7-ketocholesterol can activate PARP enzyme in endothelial cells, it is not sufficient on its own to cause impairment in the endothelium-dependent vascular reactivity.

  3. Carbohydrates and Endothelial Function: Is a Low-Carbohydrate Diet or a Low-Glycemic Index Diet Favourable for Vascular Health?

    PubMed Central

    Jovanovski, Elena; Zurbau, Andreea

    2015-01-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727

  4. Carbohydrates and endothelial function: is a low-carbohydrate diet or a low-glycemic index diet favourable for vascular health?

    PubMed

    Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir

    2015-04-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.

  5. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?☆

    PubMed Central

    Cortese-Krott, Miriam M.; Kelm, Malte

    2014-01-01

    Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO sinks”, but exert an erythrocrine function – i.e an endocrine function of RBC – by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology. PMID:24494200

  6. Analysis on influencing factors of abnormal renal function in elderly patients with type 2 diabetes mellitus.

    PubMed

    Chai, Tao; Zhang, Dawei; Li, Zhongxin

    2018-04-12

    To investigate the related influencing factors of abnormal renal function in elderly in patients with type 2 diabetes mellitus (T2DM) and their clinical significance. The clinical data of elderly T2DM patients hospitalized in Beijing Luhe Hospital from January 2013 to June2016 were retrospectively analyzed. According to their glomerular filtration rate (GFR) levels, these patients were divided into GFR ≥90 mL/min/1.73m2 group (Group A), GFR =60-90 mL/min/1.73m2 group (Group B), and GFR <60 mL/min/1.73m2 group (Group C, i.e., abnormal renal function group). Clinical and laboratory indicators were compared among each group. A total of 614 elderly T2DM patients were collected and divided into Group A (n=186), Group B (n=280) and Group C (n=148, 24.10%). Among them, patients clinically diagnosed with diabetic nephropathy (DN) accounted for 13.68%, and those complicated with high blood pressure (HBP) accounted for 61.40%. In Group C, DN accounted for only 29.73%. In elderly T2DM patients, HBP course, systolic blood pressure (SBP), diastolic blood pressure (DBP), 2h postprandial blood glucose (2hPBG), serum total cholesterol (TC) and blood uric acid (BUA) were independent influencing factors associated with abnormal renal function, among which HBP had a more significant impact on abnormal renal function. With the increase of blood pressure (BP) level, the extension in the course of DM, the increase in urinary albumin/creatinine (Alb/Cr) and the decrease in GFR, the incidence rate of abnormal renal function was increased. HBP course, SBP, DBP, 2hPBG, TC and BUA are independent risk factors for abnormal renal function in elderly patients with T2DM. Well-controlled BP and blood glucose are protective factors, and a comprehensive treatment targeting to the above influencing factors has important clinical significance in preventing and delaying the occurrence and development of abnormal renal function.

  7. Influence of methylenetetrahydrofolate reductase genotype, exercise and other risk factors on endothelial function in healthy individuals.

    PubMed

    Pullin, Catherine H; Wilson, John F; Ashfield-Watt, Pauline A L; Clark, Zoë E; Whiting, Jenny M; Lewis, Malcolm J; McDowell, Ian F W

    2002-01-01

    Cardiovascular disease has a multifactorial aetiology that is influenced by both genetic and environmental factors. Endothelial dysfunction is a key event in the pathogenesis of vascular disease that occurs before structural vascular changes or clinical symptoms are evident. Conventional risk factors, for example hypertension and diabetes mellitus, are associated with endothelial dysfunction, but the influence of other putative risk factors is not clear. The methylenetetrahydrofolate reductase (MTHFR) C677T genotype, a common polymorphism that induces hyperhomocysteinaemia, has been proposed as being a genetic risk factor for cardiovascular disease. A total of 126 healthy adults recruited by MTHFR C677T genotype (42 of each genotype, i.e. CC, CT and TT) underwent assessment of endothelial function. Brachial artery endothelium-dependent flow-mediated dilatation (FMD) was measured using high-resolution ultrasonic vessel "wall-tracking". Using multiple regression analysis, MTHFR genotype and 21 other subject and subject-lifestyle variables were investigated as potential predictors of endothelial function. FMD was influenced positively by frequency of aerobic exercise and by hormone replacement therapy, and negatively by increases in systolic blood pressure. MTHFR C677T genotype and the associated variation in plasma homocysteine levels did not influence FMD. Additionally, other factors, including plasma cholesterol and self-supplementation with either antioxidant vitamins or cod liver oil, showed no significant relationship with FMD, although these findings are compromised by the narrow range studied for cholesterol and the small number of subjects taking supplements. These observations have implications for risk factor management in the primary prevention of cardiovascular disease in healthy individuals.

  8. Long-term Renal Function in Living Kidney Donors Who Had Histological Abnormalities at Donation.

    PubMed

    Fahmy, Lara M; Massie, Allan B; Muzaale, Abimereki D; Bagnasco, Serena M; Orandi, Babak J; Alejo, Jennifer L; Boyarsky, Brian J; Anjum, Saad K; Montgomery, Robert A; Dagher, Nabil N; Segev, Dorry L

    2016-06-01

    Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5-8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73 m decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (P < 0.01). In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, whereas no other subclinical histological abnormalities provided additional information.

  9. Sustained apnea induces endothelial activation.

    PubMed

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  10. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    PubMed Central

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.

    2013-01-01

    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population

  11. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.

    PubMed

    Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev

    2017-01-01

    Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.

  12. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to

  13. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    PubMed Central

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  14. Endothelial dysfunction and negative emotions in adolescent girls.

    PubMed

    Pajer, Kathleen; Hoffman, Robert; Gardner, William; Chang, Chien-Ni; Boley, David; Wang, Wei

    2016-05-01

    Endothelial dysfunction predicts adult cardiovascular disorder and may be associated with negative emotions in adolescents. This study was conducted to determine if hopelessness, hostility, and depressive, anxiety, or conduct disorders were associated with compromised endothelial function and whether those associations were mediated by health risk behaviors. Endothelial function, assessed through brachial artery reactive hyperemia, was measured in a psychopathology enriched sample of 60 15-18-year-old girls. The correlations between hopelessness, hostility, and depressive, anxiety, or conduct disorders and the percent change in forearm vascular resistance (PCFVR) were measured. Possible mediation effects of health risk behaviors were tested. Hopelessness was negatively associated with PCFVR, controlling for race and body mass index. Conduct disorder without any anxiety disorder was associated with better endothelial function. The other negative emotions were not associated with PCFVR. Risky health behaviors were associated with conduct disorder and hopelessness, but not with PCFVR, so there was no evidence of mediation. The main finding was that hopelessness in adolescent girls was associated with endothelial dysfunction. This may indicate that when present, hopelessness places a girl at risk for later cardiovascular disease, whether she has a psychiatric disorder or not. Possible mechanisms for this finding are examined and the surprising finding that conduct disorder is associated with better endothelial function is also discussed. Suggestions for future research are presented.

  15. Co-localisation of abnormal brain structure and function in specific language impairment.

    PubMed

    Badcock, Nicholas A; Bishop, Dorothy V M; Hardiman, Mervyn J; Barry, Johanna G; Watkins, Kate E

    2012-03-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Prevalence and factors associated with the presence of abnormal function liver tests in patients with ulcerative colitis.

    PubMed

    Yamamoto-Furusho, Jesús K; Sánchez-Osorio, Magdalena; Uribe, Misael

    2010-01-01

    To investigate the prevalence of abnormal function liver tests and risk factors associated with their development in Mexican patients with UC. A total of 200 patients with confirmed diagnosis of UC were evaluated prospectively during a one year period from January 1, 2007 to December 31, 2008. A total of 94 females and 106 males patients with UC were analyzed. The age at diagnosis was 31.4 ± 13.2 years and the mean of disease duration was 6.7 ± 5.2 years. We found a high prevalence of abnormal function livers tests in 40% of UC patients. The pattern of abnormal function liver test was hepatitis in 70%, cholestatic (20%) and mixed (10%). The most common cause of abnormal function liver test was transient elevation in 50 patients (63%) followed by fatty liver disease (11.2%), primary sclerosing cholangitis (6.3%), drug-toxicity (6%) and others (13.5%) including chronic hepatitis C, total parenteral nutrition, granulomatous and ischemic hepatitis. In the multivariate logistic regression model, active disease, colectomy and abdominal sepsis were factors that persisted associated with the development of abnormal liver tests in UC patients. A high prevalence of abnormal function liver tests (40%) was found in Mexican UC patients is likely to be related to active disease, colectomy and the presence of sepsis.

  17. Local coronary wall eccentricity and endothelial function are closely related in patients with atherosclerotic coronary artery disease.

    PubMed

    Hays, Allison G; Iantorno, Micaela; Schär, Michael; Mukherjee, Monica; Stuber, Matthias; Gerstenblith, Gary; Weiss, Robert G

    2017-07-06

    Coronary endothelial function (CEF) in patients with coronary artery disease (CAD) varies among coronary segments in a given patient. Because both coronary vessel wall eccentricity and coronary endothelial dysfunction are predictors of adverse outcomes, we hypothesized that local coronary endothelial dysfunction is associated with local coronary artery eccentricity. We used 3 T coronary CMR to measure CEF as changes in coronary cross-sectional area (CSA) and coronary blood flow (CBF) during isometric handgrip exercise (IHE), a known endothelial-dependent stressor, in 29 patients with known CAD and 16 healthy subjects. Black-blood MRI quantified mean coronary wall thickness (CWT) and coronary eccentricity index (EI) and CEF was determined in the same segments. IHE-induced changes in CSA and CBF in healthy subjects (10.6 ± 6.6% and 38.3 ± 29%, respectively) were greater than in CAD patients 1.3 ± 7.7% and 6.5 ± 19.6%, respectively, p < 0.001 vs. healthy for both measures), as expected. Mean CWT and EI in healthy subjects (1.1 ± 0.3 mm 1.9 ± 0.5, respectively) were less than those in CAD patients (1.6 ± 0.4 mm, p < 0.0001; and 2.6 ± 0.6, p = 0.006 vs. healthy). In CAD patients, we observed a significant inverse relationship between stress-induced %CSA change and both EI (r = -0.60, p = 0.0002), and CWT (r = -0.54, p = 0.001). Coronary EI was independently and significantly related to %CSA change with IHE even after controlling for mean CWT (adjusted r = -0.69, p = 0.0001). For every unit increase in EI, coronary CSA during IHE is expected to change by -6.7 ± 9.4% (95% confidence interval: -10.3 to -3.0, p = 0.001). There is a significant inverse and independent relationship between coronary endothelial macrovascular function and the degree of local coronary wall eccentricity in CAD patients. Thus anatomic and physiologic indicators of high-risk coronary vascular pathology are

  18. KLF2 and KLF4 control endothelial identity and vascular integrity

    PubMed Central

    Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E. Ricky; Kang, Dong-Won; Zhang, Rongli; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D.; Ghosh, Chandra C.; Higgins, Sarah J.; Parikh, Samir M.; Jain, Mukesh K.

    2017-01-01

    Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal. PMID:28239661

  19. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk

    PubMed Central

    Reverri, Elizabeth J.; LaSalle, Colette D.; Franke, Adrian A.; Steinberg, Francene M.

    2015-01-01

    Scope Systemic inflammation, endothelial dysfunction, and oxidative stress are involved in the pathogenesis of the metabolic syndrome (MetS). Epidemiological evidence supports an association between whole soy food consumption and reduced risk of cardiovascular disease (CVD). The objective of this randomized, controlled, crossover study was to evaluate the effects of soy nut consumption on inflammatory biomarkers and endothelial function and to assess whether isoflavone metabolism to secondary products, equol and/or O-desmethylangolensin (ODMA), modifies these responses. Methods and Results n=17 adults at cardiometabolic risk were randomly assigned to the order of two snack interventions, soy nuts and macronutrient-matched control snack, for four weeks each, separated by a two week washout period. Outcome measures included biomarkers of inflammation, oxidative stress, and glycemic control (ELISA and clinical analyzers), endothelial function and arterial stiffness (peripheral arterial tonometry (PAT)), and isoflavone metabolites (LC-MS/MS). Results revealed that consuming soy nuts improved arterial stiffness as assessed by the augmentation index using PAT (P=0.03), despite lack of improvement in inflammatory biomarkers. Addition of equol and/ODMA production status as covariates did not significantly change these results. Conclusions Soy nuts when added to a usual diet for one month provide some benefit on arterial stiffness in adults at cardiometabolic risk. PMID:25351805

  20. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    PubMed Central

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  1. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  2. Circulating endothelial cells in acute ischaemic stroke.

    PubMed

    Nadar, Sunil K; Lip, Gregory Y H; Lee, Kaeng W; Blann, Andrew D

    2005-10-01

    Increased numbers of CD146-bearing circulating endothelial cells (CECs) in the peripheral blood probably represent the most direct evidence of endothelial cell damage. As acute ischaemic strokes are associated with endothelial abnormalities, we hypothesised that these CECs are raised in acute stroke, and that they would correlate with the other indices of endothelial perturbation, i.e. plasma von Willebrand factor (vWf) and soluble E-selectin. We studied 29 hypertensive patients (19 male; mean age 63 years) who presented with an acute stroke and compared them with 30 high risk hypertensive patients (21 male; mean age 62 years) and 30 normotensive controls (16 male; mean age 58 years). CECs were estimated by CD146 immunobead capture, vWf and soluble E-selectin by ELISA. Patients with an acute ischaemic stroke had significantly higher numbers of CECs/ml of blood (p<0.001) plasma vWf (p=0.008) soluble E-selectin (p=0.002) and higher systolic blood pressure (SBP) as compared to the other groups. The number of CECs significantly correlated with soluble E-selectin (r=0.432, p<0.001) and vWf (r=0.349, p=0.001) but not with SBP (r=0.198, p=0.069). However, in multivariate analysis, only disease group (i.e. health, hypertension or stroke) was associated with increased CECs. Acute ischaemic stroke is associated with increased numbers of CECs. The latter correlate well with established plasma markers of endothelial dysfunction or damage, thus unequivocally confirming severe vasculopathy in this condition. However, the greatest influence on CECs numbers was clinical group.

  3. Effect of Intermittent Energy Restriction on Flow Mediated Dilatation, a Measure of Endothelial Function: A Short Report.

    PubMed

    Headland, Michelle L; Clifton, Peter M; Keogh, Jennifer B

    2018-06-04

    Intermittent energy restriction is a popular alternative to daily energy restriction for weight loss; however, it is unknown if endothelial function, a risk factor for cardiovascular disease, is altered by periods of severe energy restriction. The objective of the study was to determine the impact of two consecutive very low energy intake days, which is the core component of the 5:2 intermittent energy restriction diet strategy, on endothelial function compared to consecutive ad libitum eating days. The secondary objective was to explore the effects of these dietary conditions on fasting glucose concentrations. This was a 4-week randomized, single-blinded, crossover study of 35 participants. Participants consumed a very low energy diet (500 calories for women, 600 calories for men) on two consecutive days per week and 5 days of habitual eating. In weeks 3 and 4 of the trial, participants had measurements of flow mediated dilatation (FMD) and blood samples taken following either 2 habitual eating days or 2 energy restricted days in a randomized order. FMD values were not different after the two eating states (8.6% vs. 8.3%, p = 0.7). All other outcome variables were unchanged. Endothelial function, as measured by flow mediated dilatation, was not altered by two consecutive very low energy intake days. Further investigations assessing the impact in specific population groups as well as different testing conditions would be beneficial.

  4. Long-Term Renal Function in Living Kidney Donors who had Histological Abnormalities at Donation

    PubMed Central

    Fahmy, Lara M.; Massie, Allan B.; Muzaale, Abimereki D.; Bagnasco, Serena M.; Orandi, Babak J.; Alejo, Jennifer L.; Boyarsky, Brian J.; Anjum, Saad K.; Montgomery, Robert A.; Dagher, Nabil N.; Segev, Dorry L.

    2016-01-01

    Background Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. Methods We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Results Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5–8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73m2 decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (p<0.01). Conclusions In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, while no other subclinical histological abnormalities provided additional information. PMID:27152920

  5. Clinical trial to assess the effect of physical exercise on endothelial function and insulin resistance in pregnant women

    PubMed Central

    2009-01-01

    Background Preeclampsia (PE) is a common maternal disease that complicates 5 to 10% of pregnancies and remains as the major cause of maternal and neonatal mortality. Cost-effective interventions aimed at preventing the development of preeclampsia are urgently needed. However, the pathogenesis of PE is not well known. Multiple mechanisms such as oxidative stress, endothelial dysfunction and insulin resistance may contribute to its development. Regular aerobic exercise recovers endothelial function; improves insulin resistance and decreases oxidative stress. Therefore the purpose of this clinical trial is to determine the effect of regular aerobic exercise on endothelial function, on insulin resistance and on pregnancy outcome. Methods and design 64 pregnant women will be included in a blind, randomized clinical trial, and parallel assignment. The exercise group will do regular aerobic physical exercise: walking (10 minutes), aerobic exercise (30 minutes), stretching (10 minutes) and relaxation exercise (10 minutes) in three sessions per week. Control group will do the activities of daily living (bathing, dressing, eating, and walking) without counselling from a physical therapist. Trial registration NCT00741312. PMID:19919718

  6. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation.

    PubMed

    Kappus, Rebecca M; Bunsawat, Kanokwan; Rosenberg, Alexander J; Fernhall, Bo

    2017-03-01

    This study investigated the effects of acute antioxidant supplementation on endothelial function, exercise blood flow and oxidative stress biomarkers in 9 young African American compared to 10 Caucasian males (25.7±1.2 years). We hypothesized that African American males would have lower exercise blood flow and endothelial responsiveness compared to Caucasian males, and these responses would be improved following antioxidant supplementation. Ultrasonography was used to measure blood flow during handgrip exercise. Endothelial function was assessed using flow-mediated dilation, and lipid peroxidation was assessed by measuring levels of malondialdehyde-thiobarbituric acid reactive substances. African American males exhibited lower endothelial function than Caucasians at baseline (8.3±1.7 vs. 12.2±1.7%) and the difference was ameliorated with antioxidant supplementation (10.7±1.9% vs. 10.8±1.8%), but the interaction was not significant (p=0.10). There were no significant changes in malondialdehyde-thiobarbituric acid reactive substances following antioxidant supplementation. There was a significant increase in brachial blood flow and forearm vascular conductance with exercise but no differences with antioxidant supplementation. There were no group differences in exercise responses and no differences with antioxidant supplementation, suggesting a lack of influence of oxidative stress during exercise in this cohort. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Functional Characterization of S100A8 and S100A9 in Altering Monolayer Permeability of Human Umbilical Endothelial Cells

    PubMed Central

    Wang, Liqun; Luo, Haihua; Chen, Xiaohuan; Jiang, Yong; Huang, Qiaobing

    2014-01-01

    S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP) proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs). The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration. PMID:24595267

  8. Microvascular and Macrovascular Abnormalities and Cognitive and Physical Function in Older Adults: Cardiovascular Health Study.

    PubMed

    Kim, Dae Hyun; Grodstein, Francine; Newman, Anne B; Chaves, Paulo H M; Odden, Michelle C; Klein, Ronald; Sarnak, Mark J; Lipsitz, Lewis A

    2015-09-01

    To evaluate and compare the associations between microvascular and macrovascular abnormalities and cognitive and physical function Cross-sectional analysis of the Cardiovascular Health Study (1998-1999). Community. Individuals with available data on three or more of five microvascular abnormalities (brain, retina, kidney) and three or more of six macrovascular abnormalities (brain, carotid artery, heart, peripheral artery) (N = 2,452; mean age 79.5). Standardized composite scores derived from three cognitive tests (Modified Mini-Mental State Examination, Digit-Symbol Substitution Test, Trail-Making Test (TMT)) and three physical tests (gait speed, grip strength, 5-time sit to stand) Participants with high microvascular and macrovascular burden had worse cognitive (mean score difference = -0.30, 95% confidence interval (CI) = -0.37 to -0.24) and physical (mean score difference = -0.32, 95% CI = -0.38 to -0.26) function than those with low microvascular and macrovascular burden. Individuals with high microvascular burden alone had similarly lower scores than those with high macrovascular burden alone (cognitive function: -0.16, 95% CI = -0.24 to -0.08 vs -0.13, 95% CI = -0.20 to -0.06; physical function: -0.15, 95% CI = -0.22 to -0.08 vs -0.12, 95% CI = -0.18 to -0.06). Psychomotor speed and working memory, assessed using the TMT, were only impaired in the presence of high microvascular burden. Of the 11 vascular abnormalities considered, white matter hyperintensity, cystatin C-based glomerular filtration rate, large brain infarct, and ankle-arm index were independently associated with cognitive and physical function. Microvascular and macrovascular abnormalities assessed using noninvasive tests of the brain, kidney, and peripheral artery were independently associated with poor cognitive and physical function in older adults. Future research should evaluate the usefulness of these tests in prognostication. © 2015, Copyright the Authors Journal compilation © 2015

  9. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    PubMed

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure.

    PubMed

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin

    2004-01-27

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.

  11. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  12. Abnormal pulmonary function in adults with sickle cell anemia.

    PubMed

    Klings, Elizabeth S; Wyszynski, Diego F; Nolan, Vikki G; Steinberg, Martin H

    2006-06-01

    Pulmonary complications of sickle cell anemia (Hb-SS) commonly cause morbidity, yet few large studies of pulmonary function tests (PFTs) in this population have been reported. PFTs (spirometry, lung volumes, and diffusion capacity for carbon monoxide [DLCO]) from 310 adults with Hb-SS were analyzed to determine the pattern of pulmonary dysfunction and their association with other systemic complications of sickle cell disease. Raw PFT data were compared with predicted values. Each subject was subclassified into one of five groups: obstructive physiology, restrictive physiology, mixed obstructive/restrictive physiology, isolated low DLCO, or normal. The association between laboratory data of patients with decreased DLCO or restrictive physiology and those of normal subjects was assessed by multivariate linear regression. Normal PFTs were present in only 31 of 310 (10%) patients. Overall, adults with Hb-SS were characterized by decreased total lung capacities (70.2 +/- 14.7% predicted) and DLCO (64.5 +/- 19.9%). The most common PFT patterns were restrictive physiology (74%) and isolated low DLCO (13%). Decreased DLCO was associated with thrombocytosis (p = 0.05), with hepatic dysfunction (elevated alanine aminotransferase; p = 0.07), and a trend toward renal dysfunction (elevated blood urea nitrogen and creatinine; p = 0.05 and 0.07, respectively). Pulmonary function is abnormal in 90% of adult patients with Hb-SS. Common abnormalities include restrictive physiology and decreased DLCO. Decreased DLCO may indicate more severe sickle vasculopathy characterized by impaired hepatic and renal function.

  13. Endothelial transplantation rejuvenates aged hematopoietic stem cell function

    PubMed Central

    Poulos, Michael G.; Gutkin, Michael C.; Llanos, Pierre; Gilleran, Katherine; Rabbany, Sina Y.; Butler, Jason M.

    2017-01-01

    Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens. PMID:29035282

  14. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Abdul-Zani, Izma; Wheatcroft, Stephen B.; Tomlinson, Darren C.; Harrison, Michael A.

    2017-01-01

    ABSTRACT Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. PMID:28798148

  15. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    PubMed

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. SFAs do not impair endothelial function and arterial stiffness123

    PubMed Central

    Sanders, Thomas AB; Lewis, Fiona J; Goff, Louise M; Chowienczyk, Philip J

    2013-01-01

    Background: It is uncertain whether saturated fatty acids (SFAs) impair endothelial function and contribute to arterial stiffening. Objective: We tested the effects of replacing SFAs with monounsaturated fatty acids (MUFAs) or carbohydrates on endothelial function and arterial stiffness. Design: With the use of a parallel-designed randomized controlled trial in 121 insulin-resistant men and women, we measured vascular function after 1 mo of consumption of a high-SFA (HS) diet and after 24 wk after random assignment to the HS diet or diets that contained <10% SFAs and were high in either MUFAs or carbohydrates. The primary outcome was a change in flow-mediated dilation (FMD), and secondary outcomes were changes in carotid to femoral pulse wave velocity (PWV) and plasma 8-isoprostane F2α-III concentrations. Results: For 112 participants with data available for analysis on the specified outcomes, no significant differences were shown. FMD with the HS reference diet was 6.7 ± 2.2%, and changes (95% CIs) after 6 mo of intervention were +0.3 (−0.4, 1.1), −0.2 (−0.8, 0.5), and −0.1 (−0.6, 0.7) with HS, high-MUFA (HM), and high-carbohydrate (HC) diets, respectively. After consumption of the HS reference diet, the geometric mean (±SD) PWV was 7.67 ± 1.62 m/s, and mean percentages of changes (95% CIs) were −1.0 (−6.2, 4.3) with the HS diet, 2.7 (−1.4, 6.9) with the HM diet, and −1.0 (−5.5, 3.4) with the HC diet. With the HS reference diet, the geometric mean (±SD) plasma 8-isoprostane F2α-III concentration was 176 ± 85 pmol/L, and mean percentage of changes (95% CIs) were 1 (−12, 14) with the HS diet, 6 (−5, 16) with the HM diet, and 4 (−7, 16) with the HC diet. Conclusion: The replacement of SFAs with MUFAs or carbohydrates in healthy subjects does not affect vascular function. This trial was registered at Current Controlled Trials (http://www.controlled-trials.com/ISRCTN) as ISRCTN 29111298. PMID:23964054

  17. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  19. Association of parental blood pressure with retinal microcirculatory abnormalities indicative of endothelial dysfunction in children.

    PubMed

    Islam, Muhammad; Jafar, Tazeen H; Bux, Rasool; Hashmi, Shiraz; Chaturvedi, Nish; Hughes, Alun D

    2014-03-01

    Microcirculatory abnormalities precede the onset of hypertension and may explain its familial nature. We examined the relationship between parental blood pressure (BP) and offspring retinal microvasculature in Pakistani trios [father, mother, and child (aged 9-14 years)]. This is a substudy of a population-based trial of BP reduction. Data were available on 358 normotensive, and 410 offspring of at least one hypertensive parent. Retinal vessel characteristics were measured from digital images. Multivariable linear regression models were built to assess the associations between maternal and paternal BP and offspring retinal microvasculature. Optimality deviation was greatest in offspring of two hypertensive parents, compared with those with one or no hypertensive parent (P=0.030 for trend). Paternal SBP and DBP were each significantly associated with optimality deviation in offspring (P=0.023 and P=0.006, respectively). This relationship persisted after accounting for offspring cardiovascular risk factors [increase in optimality deviation (95% confidence interval, CI) 0.0053 (0.0001-0.0106, P=0.047) and 0.0109 (0.0025-0.0193, P=0.011), for each 10 mmHg increase in paternal SBP and DBP, respectively]. Maternal DBP was inversely associated with offspring arteriovenous ratio -0.0102 (-0.0198 to -0.0007, P=0.035). Microvascular endothelial dysfunction in children is associated with increasing levels of parental hypertension. The association with paternal BP is independent of other cardiovascular risk factors, including the child's BP. Higher maternal DBP is associated with evidence of arteriolar narrowing in offspring. These early microcirculatory changes may help explain familial predisposition to hypertension in people of Pakistani origin at an early age. :

  20. Normal endothelial function after meals rich in olive or safflower oil previously used for deep frying.

    PubMed

    Williams, M J; Sutherland, W H; McCormick, M P; Yeoman, D; de Jong, S A; Walker, R J

    2001-06-01

    Polyunsaturated fats are more susceptible to oxidation during heating than monounsaturated fats but their effects on endothelial function when heated are unknown. The aim of this study was to compare the effect of meals rich in heat-modified safflower and olive oils on postprandial flow-mediated endothelium-dependent dilation (EDD) in healthy men. Flow-mediated EDD and glyceryltrinitrate-induced endothelium-independent dilation of the brachial artery were investigated in 14 subjects before and 4 hours after meals rich in olive oil and safflower oil used hourly for deep-frying for 8 hours in a double-blind crossover study design. There were high levels of lipid oxidation products (peroxides and carbonyls) in both heated oils. Plasma triglycerides were markedly increased at 4 hours after heated olive oil (1.26 +/- 0.43 vs 2.06 +/- 0.97 mmol/L) and heated safflower oil (1.44 +/- 0.63 vs 1.99 +/- 0.88 mmol/L). There was no change in EDD between fasting and postprandial studies and the response during the postprandial period was not significantly (p = 0.51) different between the meals (heated olive oil: 4.9 +/- 2.2% vs 4.9 +/- 2.5%; heated safflower oil: 5.1 +/- 3.1% vs 5.6 +/- 3.4%). Meals rich in olive and safflower oils previously used for deep frying and containing high levels of lipid oxidation products increase postprandial serum triglycerides without affecting endothelial function. These findings suggest that relatively short-term use of these vegetable oils for frying may not adversely affect postprandial endothelial function when foods containing the heat-modified oils are consumed.

  1. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome.

    PubMed

    Vootla, Vamshidhar R; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  2. The interpretation and management of abnormal liver function tests.

    PubMed

    Simpson, M A; Freshwater, D A

    2015-01-01

    Liver function tests (LFTs) are frequently requested as part of routine health assessments on serving members of the Royal Navy (RN). In common with many investigations there are a number of abnormal results in healthy individuals (0.5 - 9% depending on test and study population). There are established patterns of LFT derangement such as cholestatic derangement, hepatocellular derangement, and failure of synthetic function. There can be indicators to the cause of the derangement by assessing the ratios of elevated assays in relation to one another. This article aims to address the definition, potential causes and further investigation of common patterns of LFT derangement found in primary care in the RN.

  3. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo.

    PubMed

    Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying

    2012-10-15

    Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis.

    PubMed

    Luo, Xiaoping; Guo, Linghong; Dai, Xi-Jian; Wang, Qinglai; Zhu, Wenzhong; Miao, Xinjun; Gong, Honghan

    2017-01-01

    To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features. Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years) and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years) were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ) were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs. Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6), right hippocampus (BA 35, 36), and left orbitofrontal cortex (BA 11) and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18), and left precuneus (BA 7, 19). SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus ( R 2 =0.296, P =0.006). The specific abnormal intrinsic functional hubs appear to be disrupted by alcohol intoxication, which implicates at least three principal neural systems: including cerebellar, executive control, and visual cortex, which may further affect the normal motor behavior such as an explicit type of impaired driving behavior. These findings expand our understanding of the functional characteristics of alcohol dependence and may provide a new insight into the understanding of the dysfunction and pathophysiology of alcohol dependence.

  5. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice

    PubMed Central

    Nielsen, Corinne M.; Cuervo, Henar; Ding, Vivianne W.; Kong, Yupeng; Huang, Eric J.; Wang, Rong A.

    2014-01-01

    Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis. PMID:25209249

  6. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    PubMed Central

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.

    2018-01-01

    Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427

  7. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    PubMed

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  8. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients. © 2013.

  9. Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: The FAITH randomized clinical trial

    PubMed Central

    Larijani, Vahid Nabavi; Ahmadi, Naser; Zeb, Irfan; Khan, Faraz; Flores, Ferdinand; Budoff, Matthew

    2014-01-01

    Objective Aged garlic extract (AGE) is associated with a significant decrease in atherosclerotic plaque progression and endothelial function improvement. Similarly, coenzyme Q10 (CoQ10) has significant beneficial effects on endothelial function. A stressful lifestyle is a well-known risk factor for the presence and progression of atherosclerosis. This study investigated the effect of AGE plus CoQ10 on vascular elasticity measured by pulse-wave velocity (PWV) and endothelial function measured by digital thermal monitoring (DTM) in firefighters. Methods Sixty-five Los-Angeles County firefighters who met the eligibility criteria were enrolled in this placebo-controlled, double-blinded randomized trial. The firefighters were randomized to four tablets of AGE (300 mg/tablet) plus CoQ10 (30 mg/tablet) or placebo. The participants underwent quarterly visits and 1-year follow-up. PWV and DTM were measured at baseline and at the 1-year follow-up. Results There were no significant differences in age, cardiovascular risk factors, PWV, and DTM between the AGE/CoQ10 and placebo groups at baseline (P > 0.5). At 1-y, PWV and DTM significantly improved in the AGE/CoQ10 compared with the placebo group (P < 0.05). After an adjustment for cardiovascular risk factors and statin therapy, the mean decrease in vascular stiffness (PWV) was 1.21 m/s in the AGE/CoQ10 compared with the placebo group (P = 0.005). Similarly, the mean increase in the area under the temperature curve, the DTM index of endothelial function, was 31.3 in the AGE/CoQ10 compared with the placebo group (P = 0.01). Conclusion The combination of AGE and CoQ10 was independently associated with significant beneficial effects on vascular elasticity and endothelial function in firefighters with high occupational stress, highlighting the important role of AGE and CoQ10 in atherosclerotic prevention of such individuals. PMID:22858191

  10. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio

    2012-09-01

    Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (P<0.05). After white chocolate ingestion, flow-mediated dilation was reduced after OGTT from 7.88±0.68 to 6.07±0.76 (P=0.027), 6.74±0.51 (P=0.046) at 1 and 2 h after the glucose load, respectively. Similarly, after white chocolate but not after dark chocolate, wave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.

  11. Cancer Cells Regulate Biomechanical Properties of Human Microvascular Endothelial Cells*

    PubMed Central

    Mierke, Claudia Tanja

    2011-01-01

    Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1high cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account

  12. The angiopoietin1-Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8.

    PubMed

    Liu, Xinchun; Zhou, Xiaoshu; Yuan, Wei

    2014-10-15

    In mammalian central nervous system (CNS), the integrity of the blood-spinal cord barrier (BSCB), formed by tight junctions (TJs) between adjacent microvascular endothelial cells near the basement membrane of capillaries and the accessory structures, is important for relatively independent activities of the cellular constituents inside the spinal cord. The barrier function of the BSCB are tightly regulated and coordinated by a variety of physiological or pathological factors, similar with but not quite the same as its counterpart, the blood-brain barrier (BBB). Herein, angiopoietin 1 (Ang1), an identified ligand of the endothelium-specific tyrosine kinase receptor Tie-2, was verified to regulate barrier functions, including permeability, junction protein interactions and F-actin organization, in cultured spinal cord microvascular endothelial cells (SCMEC) of rat through the activity of Akt. Besides, these roles of Ang1 in the BSCB in vitro were found to be accompanied with an increasing expression of epidermal growth factor receptor pathway substrate 8 (Eps8), an F-actin bundling protein. Furthermore, the silencing of Eps8 by lentiviral shRNA resulted in an antagonistic effect vs. Ang1 on the endothelial barrier function of SCMEC. In summary, the Ang1-Akt pathway serves as a regulator in the barrier function modulation of SCMEC via the actin-binding protein Eps8. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effect of Functional Bread Rich in Potassium, γ-Aminobutyric Acid and Angiotensin-Converting Enzyme Inhibitors on Blood Pressure, Glucose Metabolism and Endothelial Function

    PubMed Central

    Becerra-Tomás, Nerea; Guasch-Ferré, Marta; Quilez, Joan; Merino, Jordi; Ferré, Raimon; Díaz-López, Andrés; Bulló, Mònica; Hernández-Alonso, Pablo; Palau-Galindo, Antoni; Salas-Salvadó, Jordi

    2015-01-01

    Abstract Because it has been suggested that food rich in γ-aminobutyric acid (GABA) or angiotensin-converting enzyme inhibitor (ACEI) peptides have beneficial effects on blood pressure (BP) and other cardiovascular risk factors, we tested the effects of low-sodium bread, but rich in potassium, GABA, and ACEI peptides on 24-hour BP, glucose metabolism, and endothelial function. A randomized, double-blind, crossover trial was conducted in 30 patients with pre or mild-to-moderate hypertension, comparing three 4-week nutritional interventions separated by 2-week washout periods. Patients were randomly assigned to consume 120 g/day of 1 of the 3 types of bread for each nutritional intervention: conventional wheat bread (CB), low-sodium wheat bread enriched in potassium (LSB), and low-sodium wheat bread rich in potassium, GABA, and ACEI peptides (LSB + G). For each period, 24-hour BP measurements, in vivo endothelial function, and biochemical samples were obtained. After LSB + G consumption, 24-hour ambulatory BP underwent a nonsignificant greater reduction than after the consumption of CB and LSB (0.26 mm Hg in systolic BP and −0.63 mm Hg in diastolic BP for CB; −0.71 mm Hg in systolic BP and −1.08 mm Hg in diastolic BP for LSB; and −0.75 mm Hg in systolic BP and −2.12 mm Hg in diastolic BP for LSB + G, respectively). Diastolic BP at rest decreased significantly during the LSB + G intervention, although there were no significant differences in changes between interventions. There were no significant differences between interventions in terms of changes in in vivo endothelial function, glucose metabolism, and peripheral inflammatory parameters. Compared with the consumption of CB or LSB, no greater beneficial effects on 24-hour BP, endothelial function, or glucose metabolism were demonstrated after the consumption of LSB + G in a population with pre or mild-to-moderate hypertension. Further studies are warranted to clarify the

  14. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  15. Heavy Alcohol Consumption is Associated with Impaired Endothelial Function: The Circulatory Risk in Communities Study (CIRCS)

    PubMed Central

    Tanaka, Aoi; Cui, Renzhe; Kitamura, Akihiko; Liu, Keyang; Imano, Hironori; Yamagishi, Kazumasa; Kiyama, Masahiko; Okada, Takeo

    2016-01-01

    Aim: Previous studies have reported that moderate alcohol consumption is protective against cardiovascular disease, but heavy alcohol consumption increases its risk. Endothelial dysfunction is hypothesized to contribute to the development of atherosclerosis and cardiovascular disease. However, few population-based studies have examined a potential effect of alcohol consumption on endothelial function. Methods: This study included 404 men aged 30–79 years who were recruited from residents in 2 communities under the Circulatory Risk in Communities Study in 2013 and 2014. We asked the individuals about the frequency and volume of alcohol beverages and converted the data into grams of ethanol per day. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD) measurements during reactive hyperemia. We performed cross-sectional analysis of alcohol consumption and %FMD by logistic regression analysis, adjusting for age, baseline brachial artery diameter, body mass index, systolic blood pressure, low-density lipoprotein cholesterol, HbA1c, smoking, antihypertensive medication use, and community. Results: Individuals who drank ≥ 46 g/day ethanol had a lower age-adjusted mean %FMD than non-drinkers (p<0.01). Compared with non-drinkers, the age-adjusted odds ratios (ORs) (95% confidence interval) of low %FMD (<5.3%) for former, light (<23.0 g/day ethanol), moderate (23.0–45.9 g/day ethanol), and heavy (≥ 46.0 g/day ethanol) drinkers were 1.61 (0.67–3.89), 0.84 (0.43–1.66), 1.09 (0.52–2.25), and 2.99 (1.56–5.70), respectively. The corresponding multivariable-adjusted ORs were 1.76 (0.69–4.50), 0.86 (0.42–1.76), 0.98 (0.45–2.12), and 2.39 (1.15–4.95), respectively. Conclusions: Heavy alcohol consumption may be an independent risk factor of endothelial dysfunction in Japanese men. PMID:27025680

  16. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  17. Effect of soy isoflavone protein and soy lecithin on endothelial function in healthy postmenopausal women.

    PubMed

    Evans, Marian; Njike, Valentine Yanchou; Hoxley, Martha; Pearson, Meghan; Katz, David L

    2007-01-01

    To assess the effects of soy isoflavone protein concentrate and soy lecithin on endothelial function, measured as flow-mediated dilation (FMD) of the brachial artery in healthy postmenopausal women. This was a randomized, double-blind, placebo-controlled crossover trial with 25 participants (mean age, 61 years; body mass index, 25.46 kg/m2). The women underwent endothelial function testing at baseline and after 4 weeks of randomly assigned treatment with intervening 4-week washout periods. Treatment assignments included soy isoflavone protein (25 g/day) and soy lecithin (20 g/day), soy isoflavone protein (25 g/day) and placebo lecithin, placebo protein and soy lecithin (20 g/day), and double placebo. FMD and serum lipid levels were assessed at baseline and the end of each 4-week treatment phase. Twenty-two women completed the trial. No statistically significant (P > 0.05) difference was seen in FMD between treatment groups. A trend was suggested with FMD highest after treatment with soy protein plus lecithin (7.50 +/- 9.85), followed by soy protein (5.51 +/- 10.11), soy lecithin (5.35 +/- 6.13), and lowest after placebo (4.53 +/- 7.84). Soy isoflavone protein and soy lecithin significantly increased the high-density lipoprotein/low-density lipoprotein ratio (soy isoflavone protein plus soy lecithin, 0.64 +/- 0.19, P < 0.0001; soy isoflavone protein plus placebo lecithin, 0.58 +/- 0.17, P = 0.0058; placebo protein plus soy lecithin, 0.65 +/- 0.18, P < 0.0001) relative to the baseline value (0.49 +/- 0.15). In this sample of healthy postmenopausal women, soy isoflavone protein and soy lecithin significantly improved the lipid profile. A favorable influence on endothelial function could not be confirmed.

  18. Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumption.

    PubMed

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille; Neves, Mario Fritsch; Virdis, Agostino; Medeiros, Fernanda

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40-65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = -0.60, P = 0.014), baseline FMD (r = -0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = -0.56, P = 0.008), and central PP (r = -0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk.

  19. Characterisation of Hypertensive Patients with Improved Endothelial Function after Dark Chocolate Consumption

    PubMed Central

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40–65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = −0.60, P = 0.014), baseline FMD (r = −0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = −0.56, P = 0.008), and central PP (r = −0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk. PMID:23533716

  20. Abnormal Pulmonary Function in Adults with Sickle Cell Anemia

    PubMed Central

    Klings, Elizabeth S.; Wyszynski, Diego F.; Nolan, Vikki G.; Steinberg, Martin H.

    2006-01-01

    Rationale: Pulmonary complications of sickle cell anemia (Hb-SS) commonly cause morbidity, yet few large studies of pulmonary function tests (PFTs) in this population have been reported. Objectives: PFTs (spirometry, lung volumes, and diffusion capacity for carbon monoxide [DLCO]) from 310 adults with Hb-SS were analyzed to determine the pattern of pulmonary dysfunction and their association with other systemic complications of sickle cell disease. Methods: Raw PFT data were compared with predicted values. Each subject was subclassified into one of five groups: obstructive physiology, restrictive physiology, mixed obstructive/restrictive physiology, isolated low DLCO, or normal. The association between laboratory data of patients with decreased DLCO or restrictive physiology and those of normal subjects was assessed by multivariate linear regression. Measurements and Main Results: Normal PFTs were present in only 31 of 310 (10%) patients. Overall, adults with Hb-SS were characterized by decreased total lung capacities (70.2 ± 14.7% predicted) and DlCO (64.5 ± 19.9%). The most common PFT patterns were restrictive physiology (74%) and isolated low DlCO (13%). Decreased DLCO was associated with thrombocytosis (p = 0.05), with hepatic dysfunction (elevated alanine aminotransferase; p = 0.07), and a trend toward renal dysfunction (elevated blood urea nitrogen and creatinine; p = 0.05 and 0.07, respectively). Conclusions: Pulmonary function is abnormal in 90% of adult patients with Hb-SS. Common abnormalities include restrictive physiology and decreased DLCO. Decreased DLCO may indicate more severe sickle vasculopathy characterized by impaired hepatic and renal function. PMID:16556694

  1. Flavonoid-Rich Apple Improves Endothelial Function in Individuals at Risk for Cardiovascular Disease: A Randomized Controlled Clinical Trial.

    PubMed

    Bondonno, Nicola P; Bondonno, Catherine P; Blekkenhorst, Lauren C; Considine, Michael J; Maghzal, Ghassan; Stocker, Roland; Woodman, Richard J; Ward, Natalie C; Hodgson, Jonathan M; Croft, Kevin D

    2018-02-01

    The cardioprotective effects of apples are primarily attributed to flavonoids, found predominantly in the skin. This study aimed to determine if acute and/or chronic (4 weeks) ingestion of flavonoid-rich apples improves endothelial function, blood pressure (BP), and arterial stiffness in individuals at risk for cardiovascular diseases (CVD). In this randomized, controlled cross-over trial, acute and 4 week intake of apple with skin (high flavonoid apple, HFA) is compared to intake of apple flesh only (low flavonoid apple, LFA) in 30 participants. The primary outcome is endothelial function assessed using flow-mediated dilation (FMD) of the brachial artery, while main secondary outcomes are 24 h ambulatory BP and arterial stiffness. Other outcomes include fasting serum glucose and lipoprotein profile, plasma heme oxygenase-1 (Hmox-1), F 2 -isoprostanes, flavonoid metabolites, and plasma and salivary nitrate (NO 3 - ) and nitrite (NO 2 - ) concentrations. Compared to LFA control, the HFA results in a significant increase in FMD acutely (0.8%, p < 0.001) and after 4 weeks chronic intake (0.5%, p < 0.001), and in plasma flavonoid metabolites (p < 0.0001). Other outcomes are not altered significantly. A lower risk of CVD with higher apple consumption could be mediated by the beneficial effect of apple skin on endothelial function, both acutely and chronically. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Treatment with sodium nitroprusside improves the endothelial function in aortic rings with endothelial dysfunction.

    PubMed

    Buzinari, Tereza Cristina; Oishi, Jorge Camargo; De Moraes, Thiago Francisco; Vatanabe, Izabela Pereira; Selistre-de-Araújo, Heloisa Sobreiro; Pestana, Cezar Rangel; Rodrigues, Gerson Jhonatan

    2017-07-15

    Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound. Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.1nM; 1nM or 10nM during 30min. Cumulative concentration-effect curves for acetylcholine (Ach) were realized to measure the relaxing capacity. Intracellular NO were measured (by DAF-2DA probe) in HUVEC treated with SNP 0.1nM or DETA/NO 0.1μM. The detection of intracellular superoxide radical (O 2 •- ) was obtained by using DHE probe. Treatment of 2K-1C aortic rings with SNP (0.1; 1.0 and 10nM) improved endothelium dependent relaxation induced by acetylcholine. This improvement induced by SNP was verified at the concentration of 0.1nM, which does not release NO, suggesting that this effect was not induced due to NO release by SNP compound. Besides, we show that the cell treatment with 0.1nM of SNP decreased the fluorescence intensity to DHE in cells stimulated with angiotensin II. These results indicate that SNP decreases the concentration of O 2 •- in HUVEC cells. The SNP at a concentration that does not release NO inside the cells is able to attenuate endothelial dysfunction. Acetylcholine (Ach) (PubChem CID:6060); angiotensin II human (Ang II) (PubChem CID: 16211177); diethylenetriamine/nitric oxide (DETA-NO) (PubChem CID 4518); dihydroethidium (DHE) (PubChem CID: 128682); phenylephrine (Phe) (PubChem CID: 5284443); sodium nitroprusside (SNP) (PubChem CID: 11963579); Thiazolyl Blue Tetrazolium Bromide (MTT) (PubChem CID: 64965); 4,5-diaminofluorescein diacetate (DAF-2DA); 4-hidroxy-Tempo (Tempol) (PubChem CID: 137994), were purchased from Sigma-Aldrich (St. Louis, MO, USA). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    PubMed

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  4. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo

    PubMed Central

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW

    2009-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958

  5. Functional capacity and muscular abnormalities in subclinical hypothyroidism.

    PubMed

    Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario

    2009-10-01

    Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.

  6. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    PubMed Central

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  7. The association between endothelial microparticles and inflammation in patients with systemic sclerosis and Raynaud's phenomenon as detected by functional imaging.

    PubMed

    Jung, Christian; Drummer, Karl; Oelzner, Peter; Figulla, Hans R; Boettcher, Joachim; Franz, Marcus; Betge, Stefan; Foerster, Martin; Wolf, Gunter; Pfeil, Alexander

    2015-01-01

    Systemic sclerosis (SSc) is a systemic, autoimmune connective tissue disease characterized by vasculopathy and microvascular changes. Fluorescence Optical Imaging (FOI) is a technique used to assess inflammation in patients with arthritis; in this study FOI is used to quantify inflammation in the hand. Endothelial Microparticle (EMP) can reflect damage or activation of the endothelium but also actively modulate processes of inflammation, coagulation and vascular function. The aim of the present study was to quantify EMP and FOI, to determine an association between these microparticles and inflammation and to endothelial function. EMP were quantified in plasma samples of 25 patients (24 female, 1 male, age: 41 ± 9 years) with SSc using flow cytometry. EMP was defined as CD31+/CD42- MP, and CD62+ MP. Perivascular inflammation was assessed using fluorescence optical imaging (FOI) of the hand. Macrovascular endothelial function was non-invasively estimated using the Endopat system. Plasma levels of CD31+/CD42- EMP and CD62+ EMP were lower in patients with SSc compared to controls (both p <  0.05). An impaired endothelial function with an increased hyperemia index was observed. A strong association could be demonstrated between CD62+ EMP and perivascular soft tissue inflammation as assessed by the FOI global score (Spearman, p = 0.002, r = 0.61). EMP indicate molecular vascular damage in SSc; in this study a strong association between EMP and perivascular inflammation as quantified by FOI is demonstrated. Consequently EMP, using FOI, may be a potential marker benefitting the diagnosis and therapy monitoring of patients with SSc with associated Raynaud's phenomenon.

  8. Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta-analysis of randomized placebo-controlled trials.

    PubMed

    Li, Shao-Hua; Liu, Xu-Xia; Bai, Yong-Yi; Wang, Xiao-Jian; Sun, Kai; Chen, Jing-Zhou; Hui, Ru-Tai

    2010-02-01

    The effect of isoflavone on endothelial function in postmenopausal women is controversial. The objective of this study was to evaluate the effect of oral isoflavone supplementation on endothelial function, as measured by flow-mediated dilation (FMD), in postmenopausal women. A meta-analysis of randomized placebo-controlled trials was conducted to evaluate the effect of oral isoflavone supplementation on endothelial function in postmenopausal women. Trials were searched in PubMed, Embase, the Cochrane Library database, and reviews and reference lists of relevant articles. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. A total of 9 trials were reviewed in the present meta-analysis. Overall, the results of the 9 trials showed that isoflavone significantly increased FMD (WMD: 1.75%; 95% CI: 0.83%, 2.67%; P = 0.0002). Meta-regression analysis indicated that the age-adjusted baseline FMD was inversely related to effect size. Subgroup analysis showed that oral supplementation of isoflavone had no influence on FMD if the age-adjusted baseline FMD was > or = 5.2% (4 trials; WMD: 0.24%; 95% CI: -0.94%, 1.42%; P = 0.69). This improvement seemed to be significant when the age-adjusted baseline FMD levels were <5.2% (5 trials; WMD: 2.22%; 95% CI: 1.15%, 3.30%; P < 0.0001), although significant heterogeneity was still detected in this low-baseline-FMD subgroup. Oral isoflavone supplementation does not improve endothelial function in postmenopausal women with high baseline FMD levels but leads to significant improvement in women with low baseline FMD levels.

  9. Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction

    PubMed Central

    Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.

    2017-01-01

    Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896

  10. The effect of bioresorbable vascular scaffold implantation on distal coronary endothelial function in dyslipidemic swine with and without diabetes.

    PubMed

    van den Heuvel, Mieke; Sorop, Oana; van Ditzhuijzen, Nienke S; de Vries, René; van Duin, Richard W B; Peters, Ilona; van Loon, Janine E; de Maat, Moniek P; van Beusekom, Heleen M; van der Giessen, Wim J; Jan Danser, A H; Duncker, Dirk J

    2018-02-01

    We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM+HFD). Five DM+HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >5mm proximal and distal to the scaffold and corresponding segments of non-scaffolded coronary arteries, and segments of small arteries within the flow-territory of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Conduit segments proximal and distal of the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p≤0.01), with distal segments being most prominently affected(p≤0.01). Endothelial dysfunction was only observed in DM±HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p<0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM+HFD swine, and did not appear to be either NO- or EDHF-mediated. Six months of BVS implantation in DM+HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients. Copyright © 2017. Published by Elsevier B.V.

  11. [The clinicopathological analysis of 88 patients with abnormal liver function test of unknown etiology].

    PubMed

    Pang, Shu-zhen; Ou, Xiao-juan; Shi, Xiao-yan; Wang, Tai-ling; Duan, Wei-jia; Jia, Ji-dong

    2011-01-01

    To evaluate the clinical and histological features of patients with abnormal liver tests of unknown etiology, and then to investigate the diagnosis and differential diagnosis. Patients with abnormal liver function test hospitalized and had liver biopsies during 2008 - 2009 constituted this retrospective study cohort. After excluding those patients diagnosed with hepatotropic viral hepatitis, space occupying lesions of the liver, alcoholic liver disease and obstruction of bile duct caused by stone or malignancy and AMA/AMA-M(2) positive of primary biliary cirrhosis (PBC), the clinical and histological characteristics were evaluated. Out of the 180 patients who underwent liver biopsy, 88 patients were included in the present analysis. The final diagnosis involved 15 categories of diseases, with drug-induced liver injury (DILI) [34.09% (30/88)], autoimmune liver diseases [22.73% (20/88)], and nonalcoholic fatty liver disease (NAFLD) [12.50% (11/88)] being the most common causes, following by genetic and other rare diseases. DILI, autoimmune liver disease and NAFLD were the most common causes of abnormal liver tests in these non-viral liver diseases. Some rare diseases such as hereditary metabolic liver disease also represent a considerable proportion in patients with abnormal liver function test.

  12. Body composition, nutritional status, and endothelial function in physically active men without metabolic syndrome--a 25 year cohort study.

    PubMed

    Pigłowska, Małgorzata; Kostka, Tomasz; Drygas, Wojciech; Jegier, Anna; Leszczyńska, Joanna; Bill-Bielecka, Mirosława; Kwaśniewska, Magdalena

    2016-04-27

    The purpose of this analysis was to investigate the relationship between body composition, metabolic parameters and endothelial function among physically active healthy middle-aged and older men. Out of 101 asymptomatic men prospectively tracked for traditional cardiovascular risk factors (mean observation period 25.1 years), 55 metabolically healthy individuals who maintained stable leisure time physical activity (LTPA) level throughout the observation and agreed to participate in the body composition assessment were recruited (mean age 60.3 ± 9.9 years). Body composition and raw bioelectrical parameters were measured with bioelectrical impedance analysis (BIA). Microvascular endothelial function was evaluated by means of the reactive hyperemia index (RHI) using Endo-PAT2000 system. Strong correlations were observed between lifetime physical activity (PA), aerobic fitness and most of analyzed body composition parameters. The strongest inverse correlation was found for fat mass (p < 0.01) while positive relationship for fat-free mass (p < 0.01), total body water (p < 0.05 for current aerobic capacity and p < 0.01 for historical PA), body cell mass (p < 0.001), muscle mass (p < 0.001), calcium and potassium (p < 0.01 and p < 0.001 for current aerobic capacity and p < 0.001 and p < 0.01 for historical PA, respectively) and glycogen mass (p < 0.001). Among metabolic parameters, HDL cholesterol (HDL-C) and uric acid were significantly associated with most body composition indicators. Regarding endothelial function, a negative correlation was found for RHI and body mass (p < 0.05) while positive relationship for RHI and body cell mass (p < 0.05), calcium (p < 0.05) and potassium mass (p < 0.05). Impaired endothelial function was observed among 8 subjects. Among bioelectrical parameters, impedance (Z) and resistance (R) normalized for subjects' height were negatively related with body mass, body mass index (BMI) and waist circumference (p < 0.001); while reactance (Xc

  13. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  14. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults.

    PubMed

    Engler, Mary B; Engler, Marguerite M; Chen, Chung Y; Malloy, Mary J; Browne, Amanda; Chiu, Elisa Y; Kwak, Ho-Kyung; Milbury, Paul; Paul, Steven M; Blumberg, Jeffrey; Mietus-Snyder, Michele L

    2004-06-01

    Dark chocolate derived from the plant (Theobroma cacao) is a rich source of flavonoids. Cardioprotective effects including antioxidant properties, inhibition of platelet activity, and activation of endothelial nitric oxide synthase have been ascribed to the cocoa flavonoids. To investigate the effects of flavonoid-rich dark chocolate on endothelial function, measures of oxidative stress, blood lipids, and blood pressure in healthy adult subjects. The study was a randomized, double-blind, placebo-controlled design conducted over a 2 week period in 21 healthy adult subjects. Subjects were randomly assigned to daily intake of high-flavonoid (213 mg procyanidins, 46 mg epicatechin) or low-flavonoid dark chocolate bars (46 g, 1.6 oz). High-flavonoid chocolate consumption improved endothelium-dependent flow-mediated dilation (FMD) of the brachial artery (mean change = 1.3 +/- 0.7%) as compared to low-flavonoid chocolate consumption (mean change = -0.96 +/- 0.5%) (p = 0.024). No significant differences were noted in the resistance to LDL oxidation, total antioxidant capacity, 8-isoprostanes, blood pressure, lipid parameters, body weight or body mass index (BMI) between the two groups. Plasma epicatechin concentrations were markedly increased at 2 weeks in the high-flavonoid group (204.4 +/- 18.5 nmol/L, p < or = 0.001) but not in the low-flavonoid group (17.5 +/- 9 nmol/L, p = 0.99). Flavonoid-rich dark chocolate improves endothelial function and is associated with an increase in plasma epicatechin concentrations in healthy adults. No changes in oxidative stress measures, lipid profiles, blood pressure, body weight or BMI were seen.

  15. Dermal Stem Cells Can Differentiate Down an Endothelial Lineage

    PubMed Central

    Bell, Emma; Richardson, Gavin D.; Jahoda, Colin A.; Gledhill, Karl; Phillips, Helen M.; Henderson, Deborah; Owens, W. Andrew

    2012-01-01

    In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation. We confirmed that these observations were not due to contaminating endothelial cells, by using DP clones. We have also used the WNT1cre/ROSA26R and WNT1cre/YFP lineage-tracing mouse models to identify a population of neural crest-derived cells in DP cultures that express the endothelial marker PECAM (CD31); these cells also form capillary-like structures on Matrigel. Importantly, cells of neural crest origin that express markers of endothelial and mesenchymal lineages exist within the dermal sheath of the vibrissae follicle. PMID:22571645

  16. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  17. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis

    PubMed Central

    Duchene, Johan; Cayla, Cécile; Vessillier, Sandrine; Scotland, Ramona; Yamashiro, Kazuo; Lecomte, Florence; Syed, Irfan; Vo, Phuong; Marrelli, Alessandra; Pitzalis, Costantino; Cipollone, Francesco; Schanstra, Joost; Bascands, Jean-Loup; Hobbs, Adrian J; Perretti, Mauro; Ahluwalia, Amrita

    2009-01-01

    OBJECTIVE The pro-inflammatory phenotype induced by low laminar shear stress (LSS) is implicated in atherogenesis. The kinin B1 receptor (B1R), known to be induced by inflammatory stimuli, exerts many pro-inflammatory effects including vasodilatation and leukocyte recruitment. We investigated whether low LSS is a stimulus for endothelial B1R expression and function. METHODS AND RESULTS Human and mouse atherosclerotic plaques expressed high level of B1R mRNA and protein. In addition, B1R expression was upregulated in the aortic arch (low LSS region) of ApoE-/- mice fed a high fat diet compared to vascular regions of high LSS and animals fed normal chow. Of interest, a greater expression of B1R was noticed in endothelial cells from regions of low LSS in aortic arch of ApoE-/- mice. B1R was also upregulated in human umbilical vein endothelial cells (HUVEC) exposed to low LSS (0-2dyn/cm2) compared to physiological LSS (6-10dyn/cm2): an effect similarly evident in murine vascular tissue perfused ex vivo. Functionally, B1R activation increased prostaglandin and CXCL5 expression in cells exposed to low, but not physiological, LSS. IL-1β and ox-LDL induced B1R expression and function in HUVECs, a response substantially enhanced under low LSS conditions and inhibited by blockade of NFκB activation. CONCLUSION Herein, we show that LSS is a major determinant of functional B1R expression in endothelium. Furthermore, whilst physiological high LSS is a powerful repressor of this inflammatory receptor, low LSS at sites of atheroma are associated with substantial upregulation, identifying this receptor as a potential therapeutic target. CONDENSED ABSTRACT Low laminar shear stress (LSS) underlies the pro-inflammatory processes in atherogenesis. Herein, we demonstrate that whilst physiological LSS represses inflammatory kinin B1 receptor (B1R) expression/function, low atherogenic LSS is associated with profound upregulation of both in atherosclerosis in both humans and animal

  18. Endothelial function in young women with polycystic ovary syndrome (PCOS): Implications of body mass index (BMI) and insulin resistance.

    PubMed

    El-Kannishy, Ghada; Kamal, Shaheer; Mousa, Amany; Saleh, Omayma; Badrawy, Adel El; Farahaty, Reham El; Shokeir, Tarek

    2010-01-01

    Evidence regarding endothelial function in both obese and nonobese women with PCOS is contradictory. It is unknown whether obese women with PCOS carry an increased risk related to body mass index (BMI). To identify endothelial function and investigate its relationship to body mass index and insulin resistance in young women with PCOS. Twenty-two obese women with PCOS (BMI 35.2 ± 3.2) as well as fourteen lean women (BMI 22.8 ± 2.1)with PCOS were included in the study. Fasting serum insulin, blood glucose were estimated and HOMA and Quicki index were calculated. All patients were subjected to ultrasound recording of brachial artery diameter at rest and after reactive hyperemia (FMD) for assessment of endothelial function. Ten age matched healthy females with normal BMI were chosen as a control group. There were higher basal insulin levels with lower Quicki index and higher HOMA index in women with PCOS than normal group, but the differences were significant only between obese PCOS subgroup and control. On the other hand, FMD was significantly and equally decreased in both groups of women with PCOS, compared with control subjects (3.7 ± 3.2% in the nonobese subgroup and 3.5 ± 2.8% in the obese one vs. 10.6 ± 4.1% in control subjects, P, 0.001). FMD was not correlated with BMI nor insulin resistance indices. Endothelial dysfunction is already present in young women with PCOS. In this patient group, it cannot be attributed to insulin resistance or obesity. © 2010 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  19. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    PubMed

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  20. Physical activity on endothelial and erectile dysfunction: a literature review.

    PubMed

    Leoni, Luís Antônio B; Fukushima, André R; Rocha, Leandro Y; Maifrino, Laura B M M; Rodrigues, Bruno

    2014-09-01

    Physical inactivity, diabetes, hypertension, dyslipidemia, smoking and obesity were associated with imbalance in oxidative stress, leading to endothelial dysfunction. Such dysfunction is present in both cardiovascular disease (CVD) and erectile dysfunction (ED). ED is the persistent inability to achieve or sustain an erection sufficient for satisfactory sexual performance and is one of the first manifestations of endothelial damage in men with CVD risk factors. The purpose of this article is to review the results of studies involving physical activity, CVD, endothelial dysfunction and ED in order to verify its applicability for improving the health and quality of life of men with such disorders. There is consistent evidence that endothelial damage is intimately linked to ED, and this manifestation seems to be associated with the appearance CVDs. On the other hand, physical activity has been pointed out as an important clinical strategy in the prevention and treatment of CVDs and ED mainly associated with improvement of endothelial function. However, further experimental and clinical prospective investigations are needed to test the role of physical exercises in the modulation of endothelial function and their implications on erectile function and the appearance of CVDs.

  1. Vascular endothelial cells express isoforms of protein kinase A inhibitor.

    PubMed

    Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D

    2002-01-01

    The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.

  2. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation.

    PubMed

    Banz, Yara; Beldi, Guido; Wu, Yan; Atkinson, Ben; Usheva, Anny; Robson, Simon C

    2008-08-01

    Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.

  3. Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology?

    PubMed Central

    Reuwer, Anne Q; Nowak-Sliwinska, Patrycja; Mans, Laurie A; van der Loos, Chris M; von der Thüsen, Jan H; Twickler, Marcel Th B; Spek, C Arnold; Goffin, Vincent; Griffioen, Arjan W; Borensztajn, Keren S

    2012-01-01

    Prolactin is best known as the polypeptide anterior pituitary hormone, which regulates the development of the mammary gland. However, it became clear over the last decade that prolactin contributes to a broad range of pathologies, including breast cancer. Prolactin is also involved in angiogenesis via the release of pro-angiogenic factors by leukocytes and epithelial cells. However, whether prolactin also influences endothelial cells, and whether there are functional consequences of prolactin-induced signalling in the perspective of angiogenesis, remains so far elusive. In the present study, we show that prolactin induces phosphorylation of ERK1/2 and STAT5 and induces tube formation of endothelial cells on Matrigel. These effects are blocked by a specific prolactin receptor antagonist, del1-9-G129R-hPRL. Moreover, in an in vivo model of the chorioallantoic membrane of the chicken embryo, prolactin enhances vessel density and the tortuosity of the vasculature and pillar formation, which are hallmarks of intussusceptive angiogenesis. Interestingly, while prolactin has only little effect on endothelial cell proliferation, it markedly stimulates endothelial cell migration. Again, migration was reverted by del1-9-G129R-hPRL, indicating a direct effect of prolactin on its receptor. Immunohistochemistry and spectral imaging revealed that the prolactin receptor is present in the microvasculature of human breast carcinoma tissue. Altogether, these results suggest that prolactin may directly stimulate angiogenesis, which could be one of the mechanisms by which prolactin contributes to breast cancer progression, thereby providing a potential tool for intervention. PMID:22128761

  4. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    PubMed Central

    de Oliveira, Lucas Felipe; Almeida, Thalles Ramos; Ribeiro Machado, Marcus Paulo; Cuba, Marilia Beatriz; Alves, Angélica Cristina; da Silva, Marcos Vinícius; Rodrigues Júnior, Virmondes; Dias da Silva, Valdo José

    2015-01-01

    Systemic arterial hypertension (SAH), a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs), which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2) increases their therapeutic effects in spontaneously hypertensive rats (SHRs). Adult female SHRs were administered an intraperitoneal injection of vehicle solution (n = 10), MSCs cultured in conventional medium (DMEM plus 10% FBS, n = 11), or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n = 10). Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days) in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH. PMID:26300922

  5. GPER Mediates Functional Endothelial Aging in Renal Arteries.

    PubMed

    Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias; Prossnitz, Eric R

    2017-01-01

    Aging is associated with impaired renal artery function, which is partly characterized by arterial stiffening and a reduced vasodilatory capacity due to excessive generation of reactive oxygen species by NADPH oxidases (Nox). The abundance and activity of Nox depends on basal activity of the heptahelical transmembrane receptor GPER; however, whether GPER contributes to age-dependent functional changes in renal arteries is unknown. This study investigated the effect of aging and Nox activity on renal artery tone in wild-type and GPER-deficient (Gper-/-) mice (4 and 24 months old). In wild-type mice, aging markedly impaired endothelium-dependent, nitric oxide (NO)-mediated relaxations to acetylcholine, which were largely preserved in renal arteries of aged Gper-/- mice. The Nox inhibitor gp91ds-tat abolished this difference by greatly enhancing relaxations in wild-type mice, while having no effect in Gper-/- mice. Contractions to angiotensin II and phenylephrine in wild-type mice were partly sensitive to gp91ds-tat but unaffected by aging. Again, deletion of GPER abolished effects of Nox inhibition on contractile responses. In conclusion, basal activity of GPER is required for the age-dependent impairment of endothelium-dependent, NO-mediated relaxation in the renal artery. Restoration of relaxation by a Nox inhibitor in aged wild-type but not Gper-/- mice strongly supports a role for Nox-derived reactive oxygen species as the underlying cause. Pharmacological blockers of GPER signaling may thus be suitable to inhibit functional endothelial aging of renal arteries by reducing Nox-derived oxidative stress and, possibly, the associated age-dependent deterioration of kidney function. © 2017 S. Karger AG, Basel.

  6. Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells

    PubMed Central

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.

    2007-01-01

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763

  7. Endothelial Arginine Resynthesis Contributes to the Maintenance of Vasomotor Function in Male Diabetic Mice

    PubMed Central

    Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore

    2014-01-01

    Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204

  8. Study of Abnormal Liver Function Test during Pregnancy in a Tertiary Care Hospital in Chhattisgarh.

    PubMed

    Mishra, Nalini; Mishra, V N; Thakur, Parineeta

    2016-10-01

    Abnormal liver function tests (LFTs) in pregnancy require proper interpretation in order to avoid pitfalls in the diagnosis. The underlying disorder can have a significant effect on the outcome of both mother and foetus. The present study was done with the objective to study the clinical profile, incidence and possible causes of derangements of liver function tests. Eighty pregnant women with abnormal liver dysfunction were studied prospectively. Women with chronic liver disease and drug-induced abnormal liver function test were excluded. All available LFTs including LDH were studied along with some more definitive tests to aid identification of underlying cause. Foetomaternal outcome was noted in all. The incidence of abnormal LFT was 0.9 %. 13/80 (16.75 %) women had liver disorder not specific to pregnancy, whereas 67/80 (83.25 %) women had pregnancy-specific liver dysfunction. Of these, 65(81.25 %) women with liver dysfunction had pre-eclampsia including 11 (13.75 %) with HELLP and six women with eclampsia. 48/65 (60 %) women had pre-eclampsia in the absence of HELLP syndrome or eclampsia. The mean value for bilirubin (mg %) in hypertensive disorders of pregnancy ranged from 1.64 to 3.8, between 5 and 10 for ICP and AFLP and >10 in infective hepatitis. Transaminases were highest in infective hepatitis, whereas alkaline phosphate was highest in ICP. Total 27 (33.75 %) women suffered from adverse outcome with four (5 %) maternal deaths and 23 (28.75 %) major maternal morbidities. 33/80 (41.25 %) women had intrauterine death. 26.25 % babies were small for date. Pregnancy-specific disorders are the leading cause of abnormal liver function test during pregnant state particularly in the third trimester. Pre-eclampsia-related disorder is the commonest. Gestational age of pregnancy and relative values of various liver function tests in different pregnancy-specific and pregnancy nonspecific disorders appear to be the best guide to clinch the diagnosis.

  9. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  10. Association of serum IGF1 with endothelial function: results from the population-based study of health in Pomerania.

    PubMed

    Empen, Klaus; Lorbeer, Roberto; Völzke, Henry; Robinson, Daniel M; Friedrich, Nele; Krebs, Alexander; Nauck, Matthias; Reffelmann, Thorsten; Ewert, Ralf; Felix, Stephan B; Wallaschofski, Henri; Dörr, Marcus

    2010-10-01

    IGF1 mediates multiple physiological and pathophysiological responses in the cardiovascular system. The aim of this study was to analyze the association between serum IGF1 as well as IGF-binding protein 3 (IGFBP3) levels and endothelial function measured by flow-mediated dilation (FMD). Cross-sectional population-based observational study. The study population comprised 1482 subjects (736 women) aged 25-85 years from the Study of Health in Pomerania. Serum IGF1 and IGFBP3 levels were determined by chemiluminescence immunoassays. FMD measurements were performed using standardized ultrasound techniques. FMD values below the sex-specific median were considered low. In males, logistic regression analyses revealed an odds ratio (OR) of 1.27 (95% confidence interval (CI) 1.07-1.51; P=0.008) for decreased FMD for each decrement of IGF1 s.d. after adjustment for major cardiovascular confounders. In females, no significant relationship between serum IGF1 and FMD was found (OR 0.88, CI 0.74-1.05; P=0.147). After exclusion of subjects with the current use of antihypertensive medication, these findings were similar (males: OR 1.40, CI 1.12-1.75; P=0.003; females: OR 0.95, CI 0.77-1.16; P=0.595). There was no association between serum IGFBP3 levels and FMD in both sexes. Low serum IGF1 levels are associated with impaired endothelial function in males. In women, serum IGF1 is not associated with endothelial function.

  11. Endothelial nitric oxide synthase is dynamically expressed during bone marrow stem cell differentiation into endothelial cells.

    PubMed

    Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J

    2007-09-01

    This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.

  12. N,N-diacetyl-L-cystine improves endothelial function in atherosclerotic Watanabe heritable hyperlipidaemic rabbits.

    PubMed

    Pettersson, Knut S; Eliasson, Ulla Brandt; Abrahamsson, Tommy; Wågberg, Maria; Carrier, Martin; Kengatharan, Ken M

    2007-01-01

    N,N-diacetyl-L-cystine (DiNAC), a novel immunomodulator, stimulates contact sensitivity/delayed type hypersensitivity reactions in mice induced by oxazolone and reduces atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL) rabbits. Forty-week-old WHHL rabbits were given DiNAC (3 micromol/kg per day) for 8 weeks, and endothelium-mediated dilatation was investigated in vivo using pulse wave analysis. A significant improvement in endothelial function was found after 3 weeks of treatment, which was further improved after 8 weeks. For experiments on isolated blood vessels, 40-week-old rabbits were treated for 3 weeks. Treatment did not affect plasma lipid levels. At termination, aortic rings from the thoracic and abdominal aorta were contracted with phenylephrine in vitro. Concentration-effect curves to acetylcholine and the calcium ionophore A 23187 were used to measure endothelium-mediated vasodilatation, and nitroprusside to elicit endothelium-independent relaxations. Abdominal aorta relaxations were generally larger than in thoracic aorta. DiNAC improved endothelium-dependent relaxations in the abdominal but not in the thoracic aorta. This effect was independent of the degree of atherosclerosis. It is concluded that DiNAC improved endothelial function in atherosclerotic rabbit arteries in vivo and in vitro, and may represent a new treatment modality for atherosclerosis-related diseases.

  13. Garlic extract favorably modifies markers of endothelial function in obese patients -randomized double blind placebo-controlled nutritional intervention.

    PubMed

    Szulińska, Monika; Kręgielska-Narożna, Matylda; Świątek, Joanna; Styś, Paulina; Kuźnar-Kamińska, Barbara; Jakubowski, Hieronim; Walkowiak, Jarosław; Bogdański, Paweł

    2018-06-01

    Garlic exerts a range of effects relevant to human health. However, its influence on the endothelium in obese individuals remains unknown. We aimed to determine the effects of garlic extract (GE) on arterial stiffness and markers of endothelial function. Ninety-two subjects were enrolled in this study. The participants were randomly assigned to receive 400 mg of GE or placebo daily for 3 months. The arterial stiffness index (SI) and markers of endothelial function such as high-sensitivity C-reactive protein (hsCRP), cholesterol (total, LDL, HDL), triglycerides, and plasminogen activator inhibitor 1 (PAI-1), as well as total antioxidant status (TAS) were quantified at baseline and the end of study. At the end of study SI (p = 0.01), hsCRP (p < 0.001, PAI-1 (p < 0.001), LDL cholesterol (p < 0.001), and TAS (p < 0.01) were reduced in the GE-supplemented group, but not in the placebo group. This randomized, double-blind, placebo-controlled trial demonstrates that supplementation with GE favorably modifies endothelial biomarkers associated with cardiovascular risk and suggests that GE can be used to suppress chronic inflammation in obese individuals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Association of Microvascular Function and Endothelial Biomarkers With Clinical Outcome in Dengue: An Observational Study

    PubMed Central

    Yacoub, Sophie; Lam, Phung Khanh; Vu, Le Hoang Mai; Le, Thi Lien; Ha, Ngo Thanh; Toan, Tran Thi; Van, Nguyen Thu; Quyen, Nguyen Than Ha; Le Duyen, Huynh Thi; Van Kinh, Nguyen; Fox, Annette; Mongkolspaya, Juthathip; Wolbers, Marcel; Simmons, Cameron Paul; Screaton, Gavin Robert; Wertheim, Heiman; Wills, Bridget

    2016-01-01

    Background. The hallmark of severe dengue is increased microvascular permeability, but alterations in the microcirculation and their evolution over the course of dengue are unknown. Methods. We conducted a prospective observational study to evaluate the sublingual microcirculation using side-stream dark-field imaging in patients presenting early (<72 hours after fever onset) and patients hospitalized with warning signs or severe dengue in Vietnam. Clinical findings, microvascular function, global hemodynamics assessed with echocardiography, and serological markers of endothelial activation were determined at 4 time points. Results. A total of 165 patients were enrolled. No difference was found between the microcirculatory parameters comparing dengue with other febrile illnesses. The proportion of perfused vessels (PPV) and the mean flow index (MFI) were lower in patients with dengue with plasma than those without leakage (PPV, 88.1% vs 90.6% [P = .01]; MFI, 2.1 vs 2.4 [P = .007]), most markedly during the critical phase. PPV and MFI were correlated with the endothelial activation markers vascular cell adhesion molecule 1 (P < .001 for both) and angiopoietin 2 (P < .001 for both), negatively correlated. Conclusions. Modest microcirculatory alterations occur in dengue, are associated with plasma leakage, and are correlate with molecules of endothelial activation, angiopoietin 2 and vascular cell adhesion molecule 1. PMID:27230099

  15. Effect of Uric Acid-Lowering Agents on Endothelial Function: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Borgi, Lea; McMullan, Ciaran; Wohlhueter, Ann; Curhan, Gary C; Fisher, Naomi D; Forman, John P

    2017-02-01

    Higher levels of serum uric acid are independently associated with endothelial dysfunction, a mechanism for incident hypertension. Overweight/obese individuals are more prone to endothelial dysfunction than their lean counterparts. However, the effect of lowering serum uric acid on endothelial dysfunction in these individuals has not been examined thoroughly. In this randomized, double-blind, placebo-controlled trial of nonhypertensive, overweight, or obese individuals with higher serum uric acid (body mass index ≥25 kg/m 2 and serum uric acid ≥5.0 mg/dL), we assigned subjects to probenecid (500-1000 mg/d), allopurinol (300-600 mg/d), or matching placebo. The primary outcome was endothelium-dependent vasodilation measured by brachial artery ultrasound at baseline and 8 weeks. By the end of the trial, 47, 49, and 53 participants had been allocated to receive probenecid, allopurinol, and placebo, respectively. Mean serum uric acid levels significantly decreased in the probenecid (from 6.1 to 3.5 mg/dL) and allopurinol groups (from 6.1 to 2.9 mg/dL) but not in the placebo group (6.1 to 5.6 mg/dL). None of the interventions produced any significant change in endothelium-dependent vasodilation (probenecid, 7.4±5.1% at baseline and 8.3±5.1% at 8 weeks; allopurinol, 7.6±6.0% at baseline and 6.2±4.8% at 8 weeks; and placebo, 6.5±3.8% at baseline and 7.1±4.9% at 8 weeks). In this randomized, double-blind, placebo-controlled trial, uric acid lowering did not affect endothelial function in overweight or obese nonhypertensive individuals. These data do not support the hypothesis that uric acid is causally related to endothelial dysfunction, a potential mechanism for development of hypertension. © 2016 American Heart Association, Inc.

  16. Effects of nebivolol on endothelial function and exercise parameters in patients with slow coronary flow.

    PubMed

    Tiryakioglu, Selma; Tiryakioglu, Osman; Ari, Hasan; Basel, Mehmet C; Bozat, Tahsin

    2009-11-03

    Earlier studies have reported that a decrease in exercise capacity might indicate endothelial dysfunction. However, the effects of improvement of endothelial functions on exercise capacity have not been evaluated. The aim of the present study is to investigate the effects of nebivolol on flow-mediated dilatation (FMD), and on the exercise capacities of the patients with slow coronary flow (SCF). The study population included 25 subjects with SCF (Group 1) documented by the thrombolysis in myocardial infarction (TIMI) frame count, and 25 control group (Group 2) subjects with normal coronary angiography, for a total of 50 subjects who underwent coronary angiography due to several indications and had no coronary lesion. The TIMI frame count (TFC) values of the subjects in Group I for left anterior descending artery, right coronary, and circumflex coronary artery were 61.8 +/- 30.6, 37.2 +/- 17.4, and 34.6 +/- 17.4, respectively. All the subjects received nebivolol 5 mg/day. At the end of the first month of FMD, the mean exercise duration (MED) and the Duke Scores of the patients with SCF were significantly higher than the baseline values. However, the values by the sixth month did not differ from that at the first month. Although a numerical improvement compared to the baseline values was observed for the subjects in Group 2 by the measurements at the end of the first and the sixth month, this difference was not statistically significant. Nebivolol treatment increases FMD in the subjects with SCF. The difference in the exercise parameters of these subjects is particularly dramatic, and such an outcome may indirectly indicate long-term improvement in endothelial function.

  17. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  18. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study.

    PubMed

    Sari, Ibrahim; Baltaci, Yasemin; Bagci, Cahit; Davutoglu, Vedat; Erel, Ozcan; Celik, Hakim; Ozer, Orhan; Aksoy, Nur; Aksoy, Mehmet

    2010-04-01

    Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting approximately 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Compared with the Mediterranean diet, the pistachio diet decreased glucose (P<0.001, -8.8+/-8.5%), low-density lipoprotein (P<0.001, -23.2+/-11.9%), total cholesterol (P<0.001, -21.2+/-9.9%), and triacylglycerol (P=0.008, -13.8+/-33.8%) significantly and high-density lipoprotein (P=0.069, -3.1+/-11.7%) non-significantly. Total cholesterol/high-density lipoprotein and low-density lipoprotein/high-density lipoprotein ratios decreased significantly (P<0.001 for both). The pistachio diet significantly improved endothelium-dependent vasodilation (P=0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (P<0.001 for all), whereas there was no significant change in C-reactive protein and tumor necrosis factor-alpha levels. In this trial, we demonstrated that a pistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies. Copyright 2010. Published by Elsevier Inc.

  19. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  20. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    PubMed Central

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  1. Coenzyme Q(10) , endothelial function, and cardiovascular disease.

    PubMed

    Littarru, Gian Paolo; Tiano, Luca; Belardinelli, Romualdo; Watts, Gerald F

    2011-01-01

    Since the time a precise role of coenzyme Q(10) (CoQ(10) ) in myocardial bioenergetics was established, the involvement of CoQ in the pathophysiology of heart failure was hypothesized. This provided the rationale for numerous clinical trials of CoQ(10) as adjunctive treatment for heart failure. A mild hypotensive effect of CoQ was reported in the early years of clinical use of this compound. We review early human and animal studies on the vascular effects of CoQ. We then focus on endothelial dysfunction in type 2 diabetes and the possible impact on this condition of antioxidants and nutritional supplements, and in particular the therapeutic effects of CoQ. The effect of CoQ(10) on endothelial dysfunction in ischemic heart disease is also reviewed together with recent data highlighting that treatment with CoQ(10) increases extracellular SOD activity. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  2. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  3. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.

    PubMed

    Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-09-01

    We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs).

    PubMed

    Li, Zhenyu; Zhong, Qiaoqing; Yang, Tianlun; Xie, Xiumei; Chen, Meifang

    2013-10-04

    Accumulation of advanced glycation end products (AGEs) in the vasculature triggers a series of morphological and functional changes contributing to endothelial hyperpermeability. The reorganisation and redistribution of the cytoskeleton regulated by profilin-1 mediates endothelial cell contraction, which results in vascular hyperpermeability. This study aimed to investigate the pivotal role of profilin-1 in the process of endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells (HUVECs) were incubated with AGEs. The mRNA and protein expression of profilin-1 was determined using real-time PCR and western blotting analyses. The levels of intercellular adhesion molecule-1 (ICAM-1), nitric oxide (NO) and reactive oxygen species (ROS), as well as the activities of nuclear factor-κB (NF-κB) and protein kinase C (PKC), were detected using the appropriate kits. The levels of asymmetric dimethylarginine (ADMA) were determined using HPLC. The distribution of the cytoskeleton was visualised using immunofluorescent staining. Compared with the control, incubation of endothelial cells with AGEs (200 μg/ml) for 4 or 24 h significantly up-regulated the mRNA and protein expression of profilin-1, markedly increased the levels of ICAM-1 and ADMA and decreased the production of NO (P<0.05, P<0.01), which was significantly attenuated by pretreatment with DPI (an antioxidant), GF 109203X (PKC inhibitor) or BAY-117082 (NF-κB inhibitor). DPI (10 μmol/L) markedly decreased the elevated levels of ROS induced by AGEs (200 μg/ml, 24 h); however, GF 109203X (10 μmol/L) and BAY-117082 (5 μmol/L) exhibited no significant effect on the formation of ROS by AGEs. Immunofluorescent staining indicated that AGEs markedly increased the expression of profilin-1 in the cytoplasm and the formation of actin stress fibres, resulting in the rearrangement and redistribution of the cytoskeleton. This effect was significantly ameliorated by DPI, GF 109203X, BAY-117082 or si

  5. Acute effects of beer on endothelial function and haemodynamics: a single-blind, cross-over study in healthy volunteers

    PubMed Central

    Karatzi, Kalliopi; Rontoyanni, Victoria G.; Protogerou, Athanase D.; Georgoulia, Aggeliki; Xenos, Konstantinos; Chrysou, John; Sfikakis, Petros P.; Sidossis, Labros S.

    2015-01-01

    Objective Moderate consumption of beer is associated with lower cardiovascular (CV) risk. To explore the underlying mechanisms we studied the acute effects of the constituents of beer (alcohol and antioxidants), on established predictors of CV risk: endothelial function, aortic stiffness, pressure wave reflections and aortic pressure. Research Methods & Proceedures In a randomized, single – blind, cross - over study 17 healthy, non-smoking, volunteers (28.5±5.2 years and 24.4±2.5 BMI) consumed in 3 separate days, at least one week apart: a) 400 ml of beer & 400 ml water, b) 800 ml of dealcoholized beer (same amount of polyphenols), and c) 67 ml of vodka & 733 ml water (same amount of alcohol). Each time aortic stiffness (pulse wave velocity, pressure wave reflections (Aix), aortic and brachial pressure (Sphygmocor device) and endothelial function (brachial flow mediated dilatation) were assessed at fast and 1 and 2 hours postprandial. Results Aortic stiffness was significantly and similarly reduced by all 3 interventions. However, endothelial function was significantly improved only after beer consumption (average of 1.33%, CI 0.15-2.53). Although wave reflections were significantly reduced by all 3 interventions (average of beer: 9.1%, dealcoholized beer: 2.8%, vodka 8.5%, all CI within limits of significance), the reduction was higher after beer consumption compared todealcoholized beer (p=0.018). Pulse pressure amplification (i.e. brachial/aortic) was increased by all 3 test drinks. Conclusions Beer improves acutely parameters of arterial function and structure, in healthy non-smokers. This benefit seems to be mediated by the additive or synergistic effects of alcohol and anti-oxidants and merits further investigation. PMID:23810643

  6. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.

    PubMed

    Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng

    2016-12-01

    The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level

  7. Effects of six-month supplementation with beta-hydroxy-beta-methylbutyrate, glutamine, and arginine on vascular endothelial function of older adults

    PubMed Central

    Ellis, Amy; Patterson, Morgan; Dudenbostel, Tanja; Calhoun, David; Gower, Barbara

    2015-01-01

    Background Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases (CVD). This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine, and arginine on endothelial-dependent vasodilation of older adults. Subjects/Methods Thirty-one community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3g HMB, 14g glutamine, 14g arginine) for six months while the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Results Paired samples t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (p=0.003) while no change was observed in the placebo group (p=0.651). Repeated-measures ANOVA verified a significant time by group interaction (p=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (p=0.059). Conclusions These results suggest that dietary supplementation of HMB, glutamine, and arginine may favorably impact vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation. PMID:26306566

  8. Effects of 6-month supplementation with β-hydroxy-β-methylbutyrate, glutamine and arginine on vascular endothelial function of older adults.

    PubMed

    Ellis, A C; Patterson, M; Dudenbostel, T; Calhoun, D; Gower, B

    2016-02-01

    Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases. This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine and arginine on endothelial-dependent vasodilation of older adults. A total of 31 community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3 g HMB, 14 g glutamine and 14 g arginine) for 6 months, whereas the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Paired sample t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (P=0.003), whereas no change was observed in the placebo group (P=0.651). Repeated-measures analysis of variance verified a significant time by group interaction (P=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (P=0.059). These results suggest that dietary supplementation of HMB, glutamine and arginine may favorably affect vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation.

  9. Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease.

    PubMed

    Yilmaz, Hale; Sahin, Sinan; Sayar, Nurten; Tangurek, Burak; Yilmaz, Mehmet; Nurkalem, Zekeriya; Onturk, Ebru; Cakmak, Nazmiye; Bolca, Osman

    2007-12-01

    Hyperhomocysteinaemia is related with premature coronary artery disease and adverse cardiac events in patients with coronary artery disease (CAD). It is assumed that hyper-homocysteinaemia causes endothelial dysfunction. In this study, the effect of folic acid and oral N-acetylcysteine (NAC) therapies on plasma homocysteine levels and endothelial function were evaluated in hyperhomocysteinaemic patients with CAD. 60 patients were randomized to either folic acid 5 mg or NAC 600 mg or placebo daily for eight weeks. Brachial artery endothelial functions were studied by using high-resolution ultrasound and assessed by measuring endothelium-dependent dilation (EDD) and endothelium-independent dilation (NEDD). Folic acid and NAC therapies decreased plasma homocysteine (from 21.7 +/- 8.7 micromol/l to 12.5 +/- 2.5 micromol/l, P < 0.001; from 20.9 +/- 7.6 micromol/l to 15.6 +/- 4.3 micromol/l, P = 0.03, respectively), and increased EDD (6.7 +/- 6.1% P = 0.002, 4.4 +/- 2.6% P < 0.001, respectively) compared with placebo. There was no significant difference in improving EDD between the folic acid and the NAC group (6.7 +/- 6.1%, 4.4 +/- 2.6%, P = 0. 168). In the univariate analyses there was an inverse correlation between the post-treatment homocysteine level and the percent change in EDD with folic acid therapy (r= -0.490, P = 0.028), but there was no correlation with the NAC therapy (r = 0.259, P = 0.333) In patients with hyperhomocysteinaemic CAD, folic acid and NAC lowered plasma homocysteine levels and improved endothelial function. The effects of both treatments in improvement of EDD were similar.

  10. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  11. The incidence and influence of abnormal styloid conditions on the etiology of craniomandibular functional disorders.

    PubMed

    Krennmair, G; Piehslinger, E

    1999-10-01

    This study aimed to examine the incidence and influence of craniomandibular functional disorders caused by abnormal styloid-stylohyoid chains. Seven hundred sixty-five patients with temporomandibular joint (TMJ) disorders were divided into two groups (with and without radiographically visible abnormal styloid conditions). In the group with abnormal stylohyoid conditions, the etiology of TMJ disorders was further subdivided into poly-, oligo- and monoetiological factors, and, after this classification, evaluated regarding a clear, possible or unlikely involvement of abnormal stylohyoid conditions in TMJ disorders. One hundred thirty-six out of 765 patients presented abnormal styloid-stylohyoid chains. One hundred five of the patients (77.2%) demonstrated polyetiological causes of TMJ symptoms with an unlikely involvement of the abnormal styloid-stylohyoid chain. Twenty-nine of the patients (21.3%) showed oligoetiological causes with possible involvement of the abnormal styloid-stylohyoid chain. In two patients (1.5%), the abnormal styloid conditions showed up as the only definite cause of TMJ symptoms (monoetiological). Detailed knowledge of variations and possible effects of suprahyoid structures is important for an accurate diagnosis of TMJ disorders. All in all, the incidence of a stylohyoid involvement in TMJ disorders is very low. However, after an initial subdivision into abnormal and normal stylohyoid conditions, the incidence of pathological stylohyoid chains gains significant importance in the etiology of TMJ disorders.

  12. The impact of physical activity on endothelial function in middle-aged and elderly subjects: the Ikaria study.

    PubMed

    Siasos, Gerasimos; Chrysohoou, Christina; Tousoulis, Dimitris; Oikonomou, Evangelos; Panagiotakos, Demosthenes; Zaromitidou, Marina; Zisimos, Konstantinos; Marinos, Georgios; Mazaris, Savvas; Kampaksis, Manolis; Papavassiliou, Athanasios G; Pitsavos, Christos; Stefanadis, Christodoulos

    2013-01-01

    Exercise training and physical activity (PA) have substantial vascular and cardiac health benefits. Ikaria Island has been recognised as having one of the highest longevity rates worldwide and a high percentage of healthy ageing. We examined the relationship between endothelial function and levels of habitual PA to evaluate the factors related to healthy ageing in this population. The study was conducted on a subgroup population of the IKARIA study consisting of 185 middle-aged (40-65 years) and 142 elderly subjects (66-91 years). Endothelial function was evaluated by ultrasound measurement of flow-mediated dilatation (FMD). PA was evaluated using the shortened version of the self-reported International Physical Activity Questionnaire (IPAQ). Subjects in the low PA group (<500 MET/ min/week) were considered as physically inactive and the rest as active. In the overall study population FMD was inversely associated with age (r=-0.24, p<0.001) and middle-aged subjects had higher FMD compared with the elderly (6.26 ± 3.31% vs. 5.21 ± 2.95%, p=0.003). Multiple linear regression analysis revealed that among middle-aged subjects the physically active had higher FMD compared with the physically inactive. Physically active subjects in the middle-aged group showed higher FMD compared with the physically active elderly (p=0.008). However, there was no difference in FMD values between middle-aged inactive subjects and the elderly physically active (p=NS). The present study revealed that increased PA was associated with improved endothelial function in middle-aged subjects and that PA in elderly subjects can ameliorate the devastating effects of ageing on arterial wall properties.

  13. The acute effects of grape polyphenols supplementation on endothelial function in adults: meta-analyses of controlled trials.

    PubMed

    Li, Shao-Hua; Tian, Hong-Bo; Zhao, Hong-Jin; Chen, Liang-Hua; Cui, Lian-Qun

    2013-01-01

    The acute effects of grape polyphenols on endothelial function in adults are inconsistent. Here, we performed meta-analyses to determine these acute effects as measured by flow-mediated dilation (FMD). Trials were searched in PubMed, Embase and the Cochrane Library database. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. The protocol details of our meta-analysis have been submitted to the PROSPERO register and our registration number is CRD42013004157. Nine studies were included in the present meta-analyses. The results showed that the FMD level was significantly increased in the initial 120 min after intake of grape polyphenols as compared with controls. Meta-regression and subgroup analyses were performed and showed that a health status was the main effect modifier of the significant heterogeneity. Subgroups indicated that intake of grape polyphenols could significantly increase FMD in healthy subjects, and the increased FMD appeared to be more obviously in subjects with high cardiovascular risk factors. Moreover, the peak effect of grape polyphenols on FMD in healthy subjects was found 30 min after ingestion, which was different from the effect in subjects with high cardiovascular risk factors, in whom the peak effect was found 60 min after ingestion. Endothelial function can be significantly improved in healthy adults in the initial 2 h after intake of grape polyphenols. The acute effect of grape polyphenols on endothelial function may be more significant but the peak effect is delayed in subjects with a smoking history or coronary heart disease as compared with the healthy subjects.

  14. Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: a randomized dose-response study.

    PubMed

    Bondonno, Nicola P; Bondonno, Catherine P; Rich, Lisa; Mas, Emilie; Shinde, Sujata; Ward, Natalie C; Hodgson, Jonathan M; Croft, Kevin D

    2016-07-01

    Epidemiologic studies have suggested that a flavonoid-rich diet can reduce the risk of developing cardiovascular disease. Certain flavonoids, in particular quercetin, have been shown to ameliorate endothelial dysfunction and reduce blood pressure (BP), possibly by increasing the bioavailability of the potent vasodilator nitric oxide (NO). Several studies have indicated that improvements in measures of cardiovascular health do not occur linearly, but rather, plateau or decrease with an increasing dose of flavonoids. We determined whether the acute administration of increasing doses of a common quercetin glycoside (quercetin-3-O-glucoside) improves endothelial function and reduces BP in a dose-dependent manner. We also explored whether any effects were correlated with changes in plasma NO production. A randomized, controlled, crossover study was performed in 15 healthy volunteers who each completed 5 visits with a minimum washout period of 1 wk between testing days. Participants received each of the following 5 interventions in a random order: 1) 0, 2) 50, 3) 100, 4) 200, or 5) 400 mg quercetin-3-O-glucoside. Endothelial function and BP were assessed before and 60 min after intervention. A blood sample was taken before and 90 min after intervention for the analysis of plasma nitrate and nitrite as markers of NO production as well as of plasma quercetin metabolites. Although we observed a significant correlation between the dose of quercetin-3-O-glucoside and plasma concentrations of total quercetin (R(2) = 0.52, P < 0.001) and isorhamnetin (R(2) = 0.12, P = 0.005), we showed no improvements in endothelial function or BP and no changes in NO production after any dose. From these results, we conclude that there are no acute changes in BP or the NO-mediated endothelium-dependent relaxation of the brachial artery with doses of quercetin ranging from 50 to 400 mg in healthy men and women. This trial was registered at www.anzctr.org.au as ACTRN12615001338550. © 2016

  15. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular

  16. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    PubMed

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  17. Abrogation of Antibody-Induced Arthritis in Mice by a Self-Activating Viridin Prodrug and Association With Impaired Neutrophil and Endothelial Cell Function

    PubMed Central

    Stangenberg, Lars; Ellson, Chris; Cortez-Retamozo, Virna; Ortiz-Lopez, Adriana; Yuan, Hushan; Blois, Joseph; Smith, Ralph A.; Yaffe, Michael B.; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Objective To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis. Methods The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin–selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil–endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay. Results SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor α was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration. Conclusion A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions. PMID:19644878

  18. Circadian variability of fibrinolytic markers and endothelial function in patients with obstructive sleep apnea.

    PubMed

    Bagai, Kanika; Muldowney, James A S; Song, Yanna; Wang, Lily; Bagai, Jayant; Artibee, Kay J; Vaughan, Douglas E; Malow, Beth A

    2014-02-01

    Obstructive sleep apnea (OSA) is strongly associated with cardiovascular disease, including stroke and acute coronary syndromes. Plasminogen activator inhibitor-1 (PAI-1), the principal inhibitor of tissue-type plasminogen activator (t-PA), has a pronounced circadian rhythm and is elevated in both OSA and cardiovascular disease and may be an important link between the two conditions. Endothelial dysfunction is one of the underlying pathophysiological mechanisms of cardiovascular disease, and may be altered in OSA. Our primary aim was to compare circadian variability of PAI-1 and t-PA in patients with OSA and normal controls by determining the amplitude (peak level) and mesor (rhythm adjusted mean) of PAI-1 and t-PA in serial blood samples over a 24-h period. The secondary aim was to measure markers of endothelial function (brachial and radial artery flow) in patients with OSA compared with normal controls. Cross-sectional cohort study. Subjects age 18 y or older, with a body mass index of 25-45 kg/m(2), with or without evidence of untreated OSA. Plasma samples were collected every 2 h, in OSA patients and matched controls, over a 24-h period. PAI-1 and t-PA antigen and activity were measured. The presence or absence of OSA (apnea-hypopnea index of 5 or greater) was confirmed by overnight polysomnography. Endothelial function was measured via brachial artery flow mediated vasodilatation and computerized arterial pulse waveform analysis. The rhythm-adjusted mean levels of PAI-1 antigen levels in the OSA group (21.8 ng/mL, 95% confidence level [CI], 18 to 25.7) were significantly higher as compared to the non-OSA group (16 ng/mL, 95% CI, 12.2 to 19.8; P = 0.03). The rhythm-adjusted mean levels of PAI-1 activity levels in the OSA group (23.9 IU/mL, 95% CI, 21.4 to 26.5) were also significantly higher than in the non-OSA group (17.2 IU/ mL, 95% CI, 14.6 to 19.9; P < 0.001).There were strong correlations between amplitude of PAI-1 activity and severity of OSA as measured

  19. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  20. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    PubMed

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  1. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The VO(2)-on kinetics in constant load exercise sub-anaerobic threshold reflects endothelial function and dysfunction in muscle microcirculation.

    PubMed

    Maione, D; Cicero, A Fg; Bacchelli, S; Cosentino, E R; Degli Esposti, D; Manners, D N; Rinaldi, E R; Rosticci, M; Senaldi, R; Ambrosioni, E; Borghi, C

    2015-01-01

    To propose a test to evaluate endothelial function, based on VO(2) on-transition kinetics in sub-anaerobic threshold (AT) constant load exercise, we tested healthy subjects and patients with ischemic-hypertensive cardiopathy by two cardiopulmonary tests on a cycle ergometer endowed with an electric motor to overcome initial inertia: a pre-test and, after at least 24 h, one 6 min constant load exercise at 90 % AT. We measured net phase 3 VO(2)-on kinetics and, by phase 2 time constant (tau), valued endothelial dysfunction. We found shorter tau in repeated tests, shorter time between first and second test, by persisting endothelium-dependent arteriolar vasodilatation and/or several other mechanisms. Reducing load to 80 % and 90 % AT did not produce significant changes in tau of healthy volunteers, while in heart patients an AT load of 70 %, compared to 80 % AT, shortened tau (delta=4.38+/-1.65 s, p=0.013). In heart patients, no correlation was found between NYHA class, ejection fraction (EF), and the two variables derived from incremental cycle cardio-pulmonary exercise, as well as between EF and tau; while NYHA class groups were well correlated with tau duration (r=0.92, p=0.0001). Doxazosin and tadalafil also significantly reduced tau. In conclusion, the O(2) consumption kinetics during the on-transition of constant load exercise below the anaerobic threshold are highly sensitive to endothelial function in muscular microcirculation, and constitute a marker for the evaluation of endothelial dysfunction.

  3. Endothelial Heparan Sulfate 6-O-Sulfation Levels Regulate Angiogenic Responses of Endothelial Cells to Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor*

    PubMed Central

    Ferreras, Cristina; Rushton, Graham; Cole, Claire L.; Babur, Muhammad; Telfer, Brian A.; van Kuppevelt, Toin H.; Gardiner, John M.; Williams, Kaye J.; Jayson, Gordon C.; Avizienyte, Egle

    2012-01-01

    Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. PMID:22927437

  4. Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function.

    PubMed

    Zuchi, Cinzia; Ambrosio, Giuseppe; Lüscher, Thomas F; Landmesser, Ulf

    2010-08-01

    An "unhealthy" diet is considered as a main cause of increased atherosclerotic cardiovascular disease in the industrialized countries. There is a substantial interest in the potential cardiovascular protective effects of "nutraceuticals," that is food-derived substances that exert beneficial health effects. The correct understanding of cardiovascular effects of these compounds will have important implications for cardiovascular prevention strategies. Endothelial dysfunction is thought to play an important role in development and progression of atherosclerosis, and the characterization of the endothelial effects of several nutraceuticals may provide important insights into their potential role in cardiovascular prevention. At the same time, the analysis of the endothelial effects of nutraceuticals may also provide valuable insights into mechanisms of why certain nutraceuticals may not be effective in cardiovascular prevention, and it may aid in the identification of food-derived substances that may have detrimental cardiovascular effects. These findings further support the notion that nutraceuticals do need support from large clinical outcome trials with respect to their efficacy and safety profile for cardiovascular prevention, before their widespread use can be recommended. In fact, the term nutraceutical was coined to encourage an extensive and profound research activity in this field, and numerous large-scale clinical outcome trials to examine the effects of nutraceuticals on cardiovascular events have now been performed or are still ongoing. Whereas it is possible that single nutraceuticals may be effective in cardiovascular prevention, this field of research provides also valuable insights into which food components may be particularly important for cardiovascular prevention, to further advice the composition of a particularly healthy diet. The present review summarizes recent studies on the endothelial effects of several nutraceuticals, that have been

  5. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  6. Improvement of endothelial function in a murine model of mild cholesterol-induced atherosclerosis by mineralocorticoid antagonism.

    PubMed

    Kratz, Mario T; Schirmer, Stephan H; Baumhäkel, Magnus; Böhm, Michael

    2016-08-01

    The renin-angiotensin-aldosterone-system (RAAS) plays a role in endothelial dysfunction and atherosclerosis. During treatment with RAAS-inhibitors, elevated aldosterone may sustain "aldosterone escape". We investigated the effects of treatment with the mineralocorticoid antagonist eplerenone (Ep) compared with ramipril (Rami) or the combination of both on oxidative stress, plaque formation and endothelial function, in atherosclerotic apolipoprotein E deficient mice (ApoE(-/-)-mice). ApoE(-/-)-mice were fed a cholesterol rich diet (21% fat, 19.5% casein, 1.25% cholesterol) for 8 weeks to produce mild atherosclerosis (i.e. plaque load 20-30%). ApoE(-/-)-mice (control), ApoE(-/-)-mice treated with Ep (25 mg/kg/day), Rami (2.5 mg/kg/day) and their combination were compared. Heart rate (HR) and blood pressure (BP) were measured using the tail-cuff-method. Endothelial function was measured in aortic rings and corpora cavernosal strips (CCs). Atherosclerotic plaque burden, collagen content, oxidative stress (Dihydroethidium (DHE) staining) and macrophages were determined. Treatments had no effects on HR and slightly reduced BP in ApoE(-/-)-mice treated with the combination of eplerenone and ramipril. Endothelium-dependent relaxation of aortic rings and CCs with carbachol was significantly improved in animals treated with Ep, Rami or their combination (p = 0.05 - p = 0.001). DHE-stained penile and aortic sections revealed a significant reduction in superoxide production in all treated groups (p = 0.035 - p = 0.001). In parallel, aortic and penile collagen content in ApoE(-/-)-mice was significantly decreased (p = 0.035 - p < 0.001) in animals treated with Ep, Rami or their combination. In agreement, there was a trend towards a reduction of aortic plaque area by treatment with Ep (-9.0 ± 3.2%) and Rami (-11.9 ± 4%). Only the treatment with the combination induced a significant reduction of the atherosclerotic plaque burden (p = 0.045). Moreover, the

  7. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  8. Effect of repeated sprints on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

    PubMed

    Sedgwick, Matthew J; Morris, John G; Nevill, Mary E; Barrett, Laura A

    2015-01-01

    This study investigated whether repeated, very short duration sprints influenced endothelial function (indicated by flow-mediated dilation) and triacylglycerol concentrations following the ingestion of high-fat meals in adolescent boys. Nine adolescent boys completed two, 2-day main trials (control and exercise), in a counter-balanced, cross-over design. Participants were inactive on day 1 of the control trial but completed 40 × 6 s maximal cycle sprints on day 1 of the exercise trial. On day 2, capillary blood samples were collected and flow-mediated dilation measured prior to, and following, ingestion of a high-fat breakfast and lunch. Fasting flow-mediated dilation and plasma triacylglycerol concentration were similar in the control and exercise trial (P > 0.05). In the control trial, flow-mediated dilation was reduced by 20% and 27% following the high-fat breakfast and lunch; following exercise these reductions were negated (main effect trial, P < 0.05; interaction effect trial × time, P < 0.05). The total area under the plasma triacylglycerol concentration versus time curve was 13% lower on day 2 in the exercise trial compared to the control trial (8.65 (0.97) vs. 9.92 (1.16) mmol · l(-1) · 6.5 h, P < 0.05). These results demonstrate that repeated 6 s maximal cycle sprints can have beneficial effects on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

  9. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  10. Endothelial microparticles (EMP) for the assessment of endothelial function: an in vitro and in vivo study on possible interference of plasma lipids.

    PubMed

    van Ierssel, Sabrina H; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Van Tendeloo, Viggo F; Vrints, Christiaan J; Jorens, Philippe G; Conraads, Viviane M

    2012-01-01

    Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b-) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = -0.707 and -0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = -0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.

  11. Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte–endothelial cell coculture model

    PubMed Central

    Liu, Xin; Sun, Jiao

    2014-01-01

    Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte–endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease. PMID:24648726

  12. 6-Methylsulfinylhexyl isothiocyanate modulates endothelial cell function and suppresses leukocyte adhesion.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Nagai, Masashi; Hayashi, Tatsuya; Suzuki, Koji

    2014-01-01

    6-Methylsulfinylhexyl isothiocyanate (6-MSITC) is an active compound in wasabi (Wasabia japonica Matsum.), which is one of the most popular spices in Japan. 6-MSITC suppresses lipopolysaccharide-induced macrophage activation, arachidonic- or adenosine diphosphate-induced platelet activation, and tumor cell proliferation. These data indicate that 6-MSITC has several biological activities involving anti-inflammatory, anti-coagulant, and anti-apoptosis properties. Endothelial cells (ECs) maintain vascular homeostasis and play crucial roles in crosstalk between blood coagulation and vascular inflammation. In this study, we determined the anti-coagulant and anti-inflammatory effects of 6-MSITC on human umbilical vein endothelial cells (HUVECs). 6-MSITC slightly reduced tissue factor expression, but did not alter von Willebrand factor release in activated HUVECs. 6-MSITC modulated the generation of activated protein C, which is essential for negative regulation of blood coagulation, on normal ECs. In addition, 6-MSITC reduced tumor necrosis factor-α (TNF-α)-induced interleukin-6 and monocyte chemoattractant protein-1 expression. 6-MSITC markedly attenuated TNF-α-induced adhesion of human monoblast U937 cells to HUVECs and reduced vascular cell adhesion molecule-1 and E-selectin mRNA expression in activated ECs. These results showed that 6-MSITC modulates EC function and suppresses cell adhesion. This study provides new insight into the mechanism of the anti-inflammatory effect of 6-MSITC, suggesting that 6-MSITC has therapeutic potential as a treatment for vasculitis and vascular inflammation.

  13. Relationship between biomarkers of inflammation, oxidative stress and endothelial/microcirculatory function in successful aging versus healthy youth: a transversal study.

    PubMed

    Bottino, Daniel Alexandre; Lopes, Flávia Gomes; de Oliveira, Francisco José; Mecenas, Anete de Souza; Clapauch, Ruth; Bouskela, Eliete

    2015-04-08

    There is a functional decline of endothelial- dependent vasodilatation in the aging process. The aims of this study were to investigate if various microcirculatory parameters could correlate to anthropometrical variables, oxidative stress and inflammatory biomarkers in successful aging and compare the results to young healthy controls. Healthy elderly women (HE, 74.0 ± 8.7 years, n = 11) and young controls (YC, 23.1 ± 3.6 years, n = 24) were evaluated through nailfold videocapillaroscopy (NVC), venous occlusion plethysmography (VOP) and laboratorial analysis. Functional capillary density (FCD) and diameters, maximum red blood cell velocity (RBCVmax) during the reactive hyperemia response/RBCVbaseline after 1 min arterial occlusion at the finger base, time to reach RBCVmax were determined by NVC, peak increment of forearm blood flow (FBF) during the reactive hyperemia response (%Hyper) and after 0.4 mg sublingual nitroglycerin (%Nitro) by VOP and lipidogram, fibrinogen, fasting and postload glucose, oxidized LDL-cholesterol (oxLDL), sICAM, sVCAM, sE-Selectin, interleukines 1 and 6 and TNF-α by laboratorial analysis. Correlations and linear multiple regression (LMR) between %Hyper, %Nitro, microcirculatory parameters, oxidative stress and inflammatory biomarkers were investigated. sVCAM, sE-Selectin and oxLDL were higher and RBCVmax/RBCVbaseline and %Hyper lower in HE, while %Nitro and FCD remained unchanged. Fibrinogen, LDL-cholesterol, oxLDL correlated negatively to %Hyper while sVCAM correlated negatively to %Hyper and RBCVmax/RBCVbaseline. Healthy aged women presented dilated capillaries with sustained perfusion and endothelial dysfunction with preserved vascular smooth muscle reactivity. Fibrinogen, LDL-cholesterol, oxidized-LDL and sVCAM correlated negatively to endothelial function but not to microcirculatory parameters. Oxidized-LDL and sVCAM could determine %Hyper through LMR. Oxidized-LDL and sVCAM might be used as endothelial

  14. Predictors of endothelial function in employees with sedentary occupations in a worksite exercise program.

    PubMed

    Lippincott, Margaret F; Desai, Aditi; Zalos, Gloria; Carlow, Andrea; De Jesus, Janet; Blum, Arnon; Smith, Kevin; Rodrigo, Maria; Patibandla, Sushmitha; Chaudhry, Hira; Glaser, Alexander P; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-10-01

    A sedentary workforce may be at increased risk for future cardiovascular disease. Exercise at the work site has been advocated, but effects on endothelium as a biomarker of risk and relation to weight loss, lipid changes, or circulating endothelial progenitor cells (EPCs) have not been reported. Seventy-two office and laboratory employees (58 women; average age 45 years, range 22 to 62; 26 with body mass index values >30 kg/m(2)) completed 3 months of participation in the National Heart, Lung, and Blood Institute's Keep the Beat program, with the determination of vital signs, laboratory data, and peak oxygen consumption (VO(2)) during treadmill exercise. Brachial artery endothelium was tested by flow-mediated dilation (FMD), which at baseline was inversely associated with Framingham risk score (r = -0.3689, p <0.0001). EPCs were quantified by colony assay. With exercise averaging 98 +/- 47 minutes each workweek, there was improvement in FMD (from 7.8 +/- 3.4% to 8.5 +/- 3.0%, p = 0.0096) and peak VO(2) (+1.2 +/- 3.1 ml O(2)/kg/min, p = 0.0028), with reductions in diastolic blood pressure (-2 +/- 8 mm Hg, p = 0.0478), total cholesterol (-8 +/- 25 mg/dl, p = 0.0131), and low-density lipoprotein cholesterol (-7 +/- 19 mg/dl, p = 0.0044) but with a marginal reduction in weight (-0.5 +/- 2.1 kg, p = 0.0565). By multiple regression modeling, lower baseline FMD, greater age, reductions in total and low-density lipoprotein cholesterol and diastolic blood pressure, and increases in EPC colonies and peak VO(2) were jointly statistically significant predictors of change in FMD and accounted for 47% of the variability in FMD improvement with program participation. Results were similar when modeling was performed for women only. In contrast, neither adiposity at baseline nor change in weight was a predictor of improved endothelial function. In conclusion, daily exercise achievable at their work sites by employees with sedentary occupations improves endothelial function, even

  15. Progesterone Therapy, Endothelial Function and Cardiovascular Risk Factors: A 3-Month Randomized, Placebo-Controlled Trial in Healthy Early Postmenopausal Women

    PubMed Central

    Prior, Jerilynn C.; Elliott, Thomas G.; Norman, Eric; Stajic, Vesna; Hitchcock, Christine L.

    2014-01-01

    Background Progesterone is effective treatment for hot flushes/night sweats. The cardiovascular effects of progesterone therapy are unknown but evidence suggests that premenopausal normal estradiol with also normal progesterone levels may provide later cardiovascular protection. We compared the effects of progesterone to placebo on endothelial function, weight, blood pressure, metabolism, lipids, inflammation and coagulation. Methods and Results We conducted a randomized, double-blind, 3-month placebo-controlled trial of progesterone (300 mg daily) among 133 healthy postmenopausal women in Vancouver, Canada from 2003–2009. Endothelial function by venous occlusion plethysmography was a planned primary outcome. Enrolled women were 1–11 y since last menstruation, not using hormones (for >6 months), non-smoking, without diabetes, hypertension, heart disease or their medications. Randomized (1∶1) women (55±4 years, body mass index 25±3) initially had normal blood pressure, fasting lipid, glucose and electrocardiogram results. Endothelial function (% forearm blood flow above saline) was not changed with progesterone (487±189%, n = 18) compared with placebo (408±278%, n = 16) (95% CI diff [−74 to 232], P = 0.30). Progesterone (n = 65) and placebo (n = 47) groups had similar changes in systolic and diastolic blood pressure, resting heart rate, weight, body mass index, waist circumference, total cholesterol, low-density lipoprotein cholesterol and triglyceride levels. High-density lipoprotein was lower (−0.14 mmol/L, P = 0.001) on progesterone compared with placebo. Fasting glucose, hs-C-reactive protein, albumin and D-dimer changes were all comparable to placebo. Framingham General Cardiovascular Risk Profile scores were initially low and remained low with progesterone therapy and not statistically different from placebo. Conclusions Results indicate that progesterone has short-term cardiovascular safety. Endothelial function, weight

  16. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-06-12

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.

  17. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229

  18. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering.

    PubMed

    Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike

    2018-03-01

    The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and

  19. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    PubMed

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  20. The Acute Effects of Grape Polyphenols Supplementation on Endothelial Function in Adults: Meta-Analyses of Controlled Trials

    PubMed Central

    Li, Shao-Hua; Tian, Hong-Bo; Zhao, Hong-Jin; Chen, Liang-Hua; Cui, Lian-Qun

    2013-01-01

    Background The acute effects of grape polyphenols on endothelial function in adults are inconsistent. Here, we performed meta-analyses to determine these acute effects as measured by flow-mediated dilation (FMD). Methods Trials were searched in PubMed, Embase and the Cochrane Library database. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. The protocol details of our meta-analysis have been submitted to the PROSPERO register and our registration number is CRD42013004157. Results Nine studies were included in the present meta-analyses. The results showed that the FMD level was significantly increased in the initial 120 min after intake of grape polyphenols as compared with controls. Meta-regression and subgroup analyses were performed and showed that a health status was the main effect modifier of the significant heterogeneity. Subgroups indicated that intake of grape polyphenols could significantly increase FMD in healthy subjects, and the increased FMD appeared to be more obviously in subjects with high cardiovascular risk factors. Moreover, the peak effect of grape polyphenols on FMD in healthy subjects was found 30 min after ingestion, which was different from the effect in subjects with high cardiovascular risk factors, in whom the peak effect was found 60 min after ingestion. Conclusions Endothelial function can be significantly improved in healthy adults in the initial 2 h after intake of grape polyphenols. The acute effect of grape polyphenols on endothelial function may be more significant but the peak effect is delayed in subjects with a smoking history or coronary heart disease as compared with the healthy subjects. PMID:23894543

  1. Endothelial function in pigs transgenic for human complement regulating factor.

    PubMed

    Warnecke, Gregor; Severson, Sandra R; Ugurlu, Mustafa M; Taner, Cemal B; Logan, John S; Diamond, Lisa E; Miller, Virginia M; McGregor, Christopher G A

    2002-04-15

    Expression of human complement regulating factor (hCRF) in porcine organs prevents hyperacute rejection of these organs after xenotransplantation to nonhuman primates. Experiments were designed to characterize endothelial and smooth muscle function of arteries from pigs transgenic for hCD46. Arterial blood from outbred pigs transgenic for hCD46 expression and nontransgenic animals of the same lineage was analyzed for angiotensin-converting enzyme (ACE), C-type natriuretic peptide (CNP), and nitric oxide. Aortic endothelial cells were prepared for measurement of mRNA or activity for nitric oxide synthase (NOS). Rings cut from femoral and pulmonary arteries were suspended in organ chambers for measurement of isometric tension. CNP was significantly greater, ACE was similar, and nitric oxide was significantly less in plasma from transgenic compared with nontransgenic pigs. Neither mRNA nor activity of NOS differed between the groups. Endothelium-dependent relaxations to bradykinin and acetylcholine but not the calcium ionophore were shifted significantly to the left in femoral and pulmonary arteries from hCD46 transgenic pigs compared with nontransgenic pigs. The ACE-inhibitor captopril augmented relaxations similarly in both groups, but NG-monomethyl-L-arginine (L-NMMA) did not inhibit relaxations in rings from transgenic pigs. Data suggest that expression of hCD46 on endothelium of pigs selectively augments endothelium-dependent relaxations to bradykinin by increased release of endothelium-derived factors other than nitric oxide. There does not seem to be any change in activity of ACE or NOS with expression of the human protein. Increased relaxations to bradykinin may be beneficial in lowering vascular resistance when transgenic organs are used for xenotransplantation.

  2. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  3. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  4. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells.

    PubMed

    Chui, Amy; Gunatillake, Tilini; Brennecke, Shaun P; Ignjatovic, Vera; Monagle, Paul T; Whitelock, John M; van Zanten, Dagmar E; Eijsink, Jasper; Wang, Yao; Deane, James; Borg, Anthony J; Stevenson, Janet; Erwich, Jan Jaap; Said, Joanne M; Murthi, Padma

    2017-06-01

    Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced BGN and the downstream targets of BGN were determined. Furthermore, the expression of targets was validated in primary placental endothelial cells isolated from FGR or control pregnancies. APPROACH AND RESULTS: BGN expression was determined using real-time polymerase chain reaction in placental tissues collected during chorionic villous sampling performed at 10 to 12 weeks' gestation from pregnancies that had known clinical outcomes, including SGA. Short-interference RNA reduced BGN expression in telomerase-immortalized microvascular endothelial cells, and the effect on proliferation, angiogenesis, and thrombin generation was determined. An angiogenesis array identified downstream targets of BGN, and their expression in control and FGR primary placental endothelial cells was validated using real-time polymerase chain reaction. Reduced BGN expression was observed in SGA placental tissues. BGN reduction decreased network formation of telomerase-immortalized microvascular endothelial cells but did not affect thrombin generation or cellular proliferation. The array identified target genes, which were further validated: angiopoetin 4 ( ANGPT4 ), platelet-derived growth factor receptor α ( PDGFRA ), tumor necrosis factor superfamily member 15 ( TNFSF15 ), angiogenin ( ANG ), serpin family C member 1 ( SERPIN1 ), angiopoietin 2 ( ANGPT2 ), and CXC motif chemokine 12 ( CXCL12 ) in telomerase-immortalized microvascular endothelial cells and primary placental endothelial cells obtained from control and FGR pregnancies. This study reports a temporal relationship between altered placental BGN expression and subsequent development of SGA. Reduction of BGN in vascular endothelial cells leads to

  5. Alternative Therapy and Abnormal Liver Function During Adjuvant Chemotherapy in Breast Cancer Patients

    PubMed Central

    Ahn, Jin-Hee; Kim, Sung-Bae; Yun, Mi Ra; Lee, Jung-Shin; Kang, Yoon-Koo

    2004-01-01

    Although hepatotoxicity has been rarely reported during adjuvant chemotherapy in breast cancer patients, we observed a high frequency in our patients who were also taking alternative agents. We therefore sought to determine the association between hepatotoxicity and alternative agents during adjuvant chemotherapy in breast cancer patients. All breast cancer patients were treated with the same chemotherapeutic regimen and had normal baseline liver function test (LFT). LFT was checked repeatedly during each cycle of chemotherapy. Patients showing LFT abnormalities were asked about use of alternative agents, and, after the end of chemotherapy, a questionnaire was administered to each patient on their use of alternative agents. Of 178 patients, 65 (36.5%) admitted using alternative therapy, and significantly more patients in this group developed LFT abnormalities (37/65, 56.9%) than those who denied taking alternative therapy (25/113, 22.1%, p=0.001). Although LFT abnormalities were mild to moderate and normalized in most patients after cessation of alternative agents, it remained a serious problem in one patient. In conclusion, alternative therapy may be one of the etiologies for abnormal LFT in breast cancer patients receiving adjuvant chemotherapy. PMID:15201506

  6. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA.

    PubMed

    Boeckel, Jes-Niels; Jaé, Nicolas; Heumüller, Andreas W; Chen, Wei; Boon, Reinier A; Stellos, Konstantinos; Zeiher, Andreas M; John, David; Uchida, Shizuka; Dimmeler, Stefanie

    2015-10-23

    Circular RNAs (circRNAs) are noncoding RNAs generated by back splicing. Back splicing has been considered a rare event, but recent studies suggest that circRNAs are widely expressed. However, the expression, regulation, and function of circRNAs in vascular cells is still unknown. Here, we characterize the expression, regulation, and function of circRNAs in endothelial cells. Endothelial circRNAs were identified by computational analysis of ribo-minus RNA generated from human umbilical venous endothelial cells cultured under normoxic or hypoxic conditions. Selected circRNAs were biochemically characterized, and we found that the majority of them lacks polyadenylation, is resistant to RNase R digestion and localized to the cytoplasm. We further validated the hypoxia-induced circRNAs cZNF292, cAFF1, and cDENND4C, as well as the downregulated cTHSD1 by reverse transcription polymerase chain reaction in cultured endothelial cells. Cloning of cZNF292 validated the predicted back splicing of exon 4 to a new alternative exon 1A. Silencing of cZNF292 inhibited cZNF292 expression and reduced tube formation and spheroid sprouting of endothelial cells in vitro. The expression of pre-mRNA or mRNA of the host gene was not affected by silencing of cZNF292. No validated microRNA-binding sites for cZNF292 were detected in Argonaute high-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation data sets, suggesting that cZNF292 does not act as a microRNA sponge. We show that the majority of the selected endothelial circRNAs fulfill all criteria of bona fide circRNAs. The circRNA cZNF292 exhibits proangiogenic activities in vitro. These data suggest that endothelial circRNAs are regulated by hypoxia and have biological functions. © 2015 American Heart Association, Inc.

  7. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    PubMed

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  8. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    PubMed

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower

  9. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.

    1984-01-19

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thalliummore » defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.« less

  10. Acute effects of beer on endothelial function and hemodynamics: a single-blind, crossover study in healthy volunteers.

    PubMed

    Karatzi, Kalliopi; Rontoyanni, Victoria G; Protogerou, Athanase D; Georgoulia, Aggeliki; Xenos, Konstantinos; Chrysou, John; Sfikakis, Petros P; Sidossis, Labros S

    2013-09-01

    Moderate consumption of beer is associated with lower cardiovascular (CV) risk. The goal of this study was to determine the effect of beer consumption on CV risk. To explore the underlying mechanisms, we studied the acute effects of the constituents of beer (alcohol and antioxidants), on established predictors of CV risk: endothelial function, aortic stiffness, pressure wave reflections and aortic pressure. In a randomized, single-blind, crossover study, 17 healthy, non-smoking, men (ages 28.5 ± 5.2 y with body mass index 24.4 ± 2.5 kg/m(2)) consumed on three separate occasions, at least 1 wk apart: 1. 400 mL of beer and 400 mL water, 2. 800 mL of dealcoholized beer (same amount of polyphenols as in the 400 mL of beer), and 3. 67 mL of vodka and 733 mL water (same amount of alcohol as in the 400 mL of beer). Each time aortic stiffness (pulse wave velocity), pressure wave reflections (AΙx), aortic and brachial pressure (Sphygmocor device), and endothelial function (brachial flow mediated dilatation) were assessed at fast and 1 and 2 h postprandial. Aortic stiffness was significantly and similarly reduced by all three interventions. However, endothelial function was significantly improved only after beer consumption (average 1.33%, 95% confidence interval [CI] 0.15-2.53). Although wave reflections were significantly reduced by all three interventions (average of beer: 9.1%, dealcoholized beer: 2.8%, vodka 8.5%, all CI within limits of significance), the reduction was higher after beer consumption compared with dealcoholized beer (P = 0.018). Pulse pressure amplification (i.e., brachial/aortic) was increased by all three test drinks. Beer acutely improves parameters of arterial function and structure, in healthy non-smokers. This benefit seems to be mediated by the additive or synergistic effects of alcohol and antioxidants and merits further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    PubMed

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  12. Bioengineered transplantable porcine livers with re-endothelialized vasculature.

    PubMed

    Ko, In Kap; Peng, Li; Peloso, Andrea; Smith, Charesa J; Dhal, Abritee; Deegan, Daniel B; Zimmerman, Cindy; Clouse, Cara; Zhao, Weixin; Shupe, Thomas D; Soker, Shay; Yoo, James J; Atala, Anthony

    2015-02-01

    Donor shortage remains a continued challenge in liver transplantation. Recent advances in tissue engineering have provided the possibility of creating functional liver tissues as an alternative to donor organ transplantation. Small bioengineered liver constructs have been developed, however a major challenge in achieving functional bioengineered liver in vivo is the establishment of a functional vasculature within the scaffolds. Our overall goal is to bioengineer intact livers, suitable for transplantation, using acellular porcine liver scaffolds. We developed an effective method for reestablishing the vascular network within decellularized liver scaffolds by conjugating anti-endothelial cell antibodies to maximize coverage of the vessel walls with endothelial cells. This procedure resulted in uniform endothelial attachment throughout the liver vasculature extending to the capillary bed of the liver scaffold and greatly reduced platelet adhesion upon blood perfusion in vitro. The re-endothelialized livers, when transplanted to recipient pigs, were able to withstand physiological blood flow and maintained for up to 24 h. This study demonstrates, for the first time, that vascularized bioengineered livers, of clinically relevant size, can be transplanted and maintained in vivo, and represents the first step towards generating engineered livers for transplantation to patients with end-stage liver failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluating endothelial function of the common carotid artery: an in vivo human model.

    PubMed

    Mazzucco, S; Bifari, F; Trombetta, M; Guidi, G C; Mazzi, M; Anzola, G P; Rizzuto, N; Bonadonna, R

    2009-03-01

    Flow mediated dilation (FMD) of peripheral conduit arteries is a well-established tool to evaluate endothelial function. The aims of this study are to apply the FMD model to cerebral circulation by using acetazolamide (ACZ)-induced intracranial vasodilation as a stimulus to increase common carotid artery (CCA) diameter in response to a local increase of blood flow velocity (BFV). In 15 healthy subjects, CCA end-diastolic diameter and BFV, middle cerebral artery (MCA) BFV and mean arterial blood pressure (MBP) were measured at basal conditions, after an intravenous bolus of 1g ACZ, and after placebo (saline) sublingual administration at the 15th and 20th minute. In a separate session, the same parameters were evaluated after placebo (saline) infusion instead of ACZ and after 10 microg/m(2) bs and 300 microg of glyceryl trinitrate (GTN), administered sublingually, at the 15th and 20th minute, respectively. After ACZ bolus, there was a 35% maximal MCA mean BFV increment (14th minute), together with a 22% increase of mean CCA end-diastolic BFV and a CCA diameter increment of 3.9% at the 3rd minute (p=0.024). There were no MBP significant variations up to the 15th minute (p=0.35). After GTN administration, there was a significant increment in CCA diameter (p<0.00001). ACZ causes a detectable CCA dilation in healthy individuals concomitantly with an increase in BFV. Upon demonstration that this phenomenon is endothelium dependent, this experimental model might become a valuable tool to assess endothelial function in the carotid artery.

  14. Ionophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells.

    PubMed

    McInerney, Mitchell P; Volitakis, Irene; Bush, Ashley I; Banks, William A; Short, Jennifer L; Nicolazzo, Joseph A

    2018-03-05

    Biometals such as zinc and copper have been shown to affect tight junction expression and subsequently blood-brain barrier (BBB) integrity. Whether these biometals also influence the expression and function of BBB transporters such as P-glycoprotein (P-gp) however is currently unknown. Using the immortalised human cerebral microvascular endothelial (hCMEC/D3) cell line, an in-cell western assay (alongside western blotting) assessed relative P-gp expression after treatment with the metal ionophore clioquinol and biometals zinc and copper. The fluorescent P-gp substrate rhodamine-123 was employed to observe functional modulation, and inductively coupled plasma mass spectrometry (ICP-MS) provided information on biometal trafficking. A 24-h treatment with clioquinol, zinc and copper (0.5, 0.5 and 0.1 μM) induced a significant upregulation of P-gp (1.7-fold) assessed by in-cell western and this was confirmed with western blotting (1.8-fold increase). This same treatment resulted in a 23% decrease in rhodamine-123 accumulation over a 1 h incubation. ICP-MS demonstrated that while t8his combination treatment had no effect on intracellular zinc concentrations, the treatment significantly enhanced bioavailable copper (4.6-fold). Enhanced delivery of copper to human brain microvascular endothelial cells is associated with enhanced expression and function of the important efflux pump P-gp, which may provide therapeutic opportunities for P-gp modulation.

  15. Endothelial function is unaffected by changing between carvedilol and metoprolol in patients with heart failure-a randomized study

    PubMed Central

    2011-01-01

    Background Carvedilol has been shown to be superior to metoprolol tartrate to improve clinical outcomes in patients with heart failure (HF), yet the mechanisms responsible for these differences remain unclear. We examined if there were differences in endothelial function, insulin stimulated endothelial function, 24 hour ambulatory blood pressure and heart rate during treatment with carvedilol, metoprolol tartrate and metoprolol succinate in patients with HF. Methods Twenty-seven patients with mild HF, all initially treated with carvedilol, were randomized to a two-month treatment with carvedilol, metoprolol tartrate or metoprolol succinate. Venous occlusion plethysmography, 24-hour blood pressure and heart rate measurements were done before and after a two-month treatment period. Results Endothelium-dependent vasodilatation was not affected by changing from carvedilol to either metoprolol tartrate or metoprolol succinate. The relative forearm blood flow at the highest dose of serotonin was 2.42 ± 0.33 in the carvedilol group at baseline and 2.14 ± 0.24 after two months continuation of carvedilol (P = 0.34); 2.57 ± 0.33 before metoprolol tartrate treatment and 2.42 ± 0.55 after treatment (p = 0.74) and in the metoprolol succinate group 1.82 ± 0.29 and 2.10 ± 0.37 before and after treatment, respectively (p = 0.27). Diurnal blood pressures as well as heart rate were also unchanged by changing from carvedilol to metoprolol tartrate or metoprolol succinate. Conclusion Endothelial function remained unchanged when switching the beta blocker treatment from carvedilol to either metoprolol tartrate or metoprolol succinate in this study, where blood pressure and heart rate also remained unchanged in patients with mild HF. Trial registration Current Controlled Trials NCT00497003 PMID:21999413

  16. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.

    PubMed

    Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina

    2015-07-15

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.

  17. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells

    PubMed Central

    Solomon, Ioana; O’Reilly, Megan; Ionescu, Lavinia; Alphonse, Rajesh S.; Rajabali, Saima; Zhong, Shumei; Vadivel, Arul; Shelley, W. Chris; Yoder, Mervin C.

    2016-01-01

    Alterations in the development of the placental vasculature can lead to pregnancy complications, such as preeclampsia. Currently, the cause of preeclampsia is unknown, and there are no specific prevention or treatment strategies. Further insight into the placental vasculature may aid in identifying causal factors. Endothelial colony-forming cells (ECFCs) are a subset of endothelial progenitor cells capable of self-renewal and de novo vessel formation in vitro. We hypothesized that ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Human placentas were collected from term pregnancies delivered by cesarean section (n = 16). Placental micro- and macrovasculature was collected from the maternal and fetal side of the placenta, respectively, and ECFCs were isolated and characterized. ECFCs were CD31+, CD105+, CD144+, CD146+, CD14−, and CD45−, took up 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein, and bound Ulex europaeus agglutinin 1. In vitro, macrovascular ECFCs had a greater potential to generate high-proliferative colonies and formed more complex capillary-like networks on Matrigel compared with microvascular ECFCs. In contrast, in vivo assessment demonstrated that microvascular ECFCs had a greater potential to form vessels. Macrovascular ECFCs were of fetal origin, whereas microvascular ECFCs were of maternal origin. ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Although macrovascular ECFCs demonstrated greater vessel and colony-forming potency in vitro, this did not translate in vivo, where microvascular ECFCs exhibited a greater vessel-forming ability. These important findings contribute to the current understanding of normal placental vascular development and may aid in identifying factors involved in preeclampsia and other pregnancy complications. Significance This research confirms that resident endothelial colony

  18. Initial clonogenic potential of human endothelial progenitor cells is predictive of their further properties and establishes a functional hierarchy related to immaturity.

    PubMed

    Ferratge, Ségolène; Ha, Guillaume; Carpentier, Gilles; Arouche, Nassim; Bascetin, Rümeyza; Muller, Laurent; Germain, Stéphane; Uzan, Georges

    2017-05-01

    Endothelial progenitor cells (EPCs) generate in vitro Endothelial Colony Forming Cells (ECFCs) combining features of endothelial and stem/progenitor cells. Their angiogenic properties confer them a therapeutic potential for treating ischemic lesions. They may be isolated from umbilical cord blood (CB-ECFCs) or peripheral adult blood (AB-ECFCs). It is generally accepted that CB-ECFCs are more clonogenic, proliferative and angiogenic than AB-ECFCs. Nevertheless, only a few studies have focused on the functional heterogeneity of CB-ECFCs from different individuals. Moreover, AB-ECFC loss of function is yet to be precisely described. We have focused on these two issues that are critical for clinical perspectives. The detailed clonogenic profile of CB-ECFCs and AB-ECFCs was obtained and revealed a high inter individual heterogeneity and the absence of correlation with age. Most CB-ECFCs yielded initial colonies and had functional properties similar to those of AB-ECFCs. Conversely, a high clonogenicity was associated with an enhanced proliferative and angiogenic potential and stemness gene overexpression, confirming that immaturity, lost by AB-ECFCs, was a prerequisite to functionality. We thus demonstrated the importance of selecting CB-ECFCs according to specific criteria, and we propose using the initial clonogenicity as a relevant marker of their potential efficacy on vascular repair. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan

    2009-08-01

    The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less

  20. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2)more » after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft

  1. An implication of the short physical performance battery (SPPB) as a predictor of abnormal pulmonary function in aging people.

    PubMed

    Choi, Ho-Chun; Son, Ki Young; Cho, Belong; Park, Sang Min; Cho, Sung-Il

    2012-01-01

    If association between the decline in physical performance and the decline in pulmonary function is confirmed, the SPPB could be used as a predictor for pulmonary functional declines in aging people because of its convenient use. This study aimed to elucidate the association of the SPPB with the pulmonary function test (PFT) to determine the usefulness of the SPPB as a predictor of PFT decline. The SPPB and PFT were performed on random sample nested in the Korean Longitudinal Study of Aging (KLoSA) panel, a national representative sample of aging people in Korea. Comparisons of adjusted means of forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory ratio (FER) defined as FEV1/FVC between normal and abnormal SPPB groups were performed using the t-test. The association between PFT and SPPB abnormality was examined using multiple logistic regression analysis. Additionally, the associations of gait speed and chair stand time with FEV1 and FVC were examined using multiple linear regression analysis. Five hundred and eighteen subjects were included in analysis. Approximately 43% (222/518) of the subjects were male and 65% (338/518) were 60 years or older. Adjusted means of FEV1 and FER were significantly or marginally lower when SPPB score was abnormal in both overall and non-smoking men (p=0.009 and 0.053 for overall, p<0.001 and p<0.080 for non-smokers), but FVC was lower only in non-smoking men (p=0.024). Abnormal SPPB score was significantly associated with abnormal PFT regardless of sex. (adjusted odds ratio=OR=3.76, 95%CI=1.96-7.22 for men, adjusted OR=2.11, 95%CI 1.28-3.47 for women). Gait speed was significantly or marginally associated with FEV1 and FVC in participants 60 years or older, regardless of sex. We conclude that abnormal SPPB score was associated with abnormal pulmonary function. Thus, the SPPB has the potential to be used as an early predictor of abnormal pulmonary function in clinical settings and

  2. Impact of N-acetylcysteine on endothelial function, B-type natriuretic peptide and renal function in patients with the cardiorenal syndrome: a pilot cross over randomised controlled trial.

    PubMed

    Camuglia, Anthony C; Maeder, Micha T; Starr, Jennifer; Farrington, Catherine; Kaye, David M

    2013-04-01

    Both heart and renal failure are characterised by increased systemic oxidative stress and endothelial dysfunction and occur in the cardiorenal syndrome (CRS). The aim of the present study was to assess the impact of N-acetylcysteine (NAC), a potent antioxidant, on endothelial function, B-type natriuretic peptide (BNP) and renal function in patients with CRS. In a double blind, placebo controlled manner, we randomised nine stable outpatients with both heart failure (LVEF<40% and NYHA class II or III) and renal failure (Cockroft Gault clearance of 20-60ml/min) to placebo or NAC (500mg orally twice daily) for 28 days followed by a wash out period (>7 days) and crossover to the other treatment. Eight patients completed the study and all data (N=9) was used in the analysis. Mean forearm blood flow improved significantly with NAC with mean ratio of improvement of 1.99 (SEM: ±0.49) for NAC and 0.73 (SEM: ±0.23) for placebo with a p-value of 0.047. There was no significant difference in BNP (p=0.25), renal function (p=0.71) or NYHA class (p=0.5). No deaths occurred during the trial. In this pilot trial of patients with CRS, NAC therapy was associated with improved forearm blood flow. This may represent a general improvement in endothelial function and warrants further investigation of antioxidant therapy in these patients. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  3. Ruthenium Complex Improves the Endothelial Function in Aortic Rings From Hypertensive Rats

    PubMed Central

    Vatanabe, Izabela Pereira; Rodrigues, Carla Nascimento dos Santos; Buzinari, Tereza Cristina; de Moraes, Thiago Francisco; da Silva, Roberto Santana; Rodrigues, Gerson Jhonatan

    2017-01-01

    Background The endothelium is a monolayer of cells that extends on the vascular inner surface, responsible for the modulation of vascular tone. By means of the release of nitric oxide (NO), the endothelium has an important protective function against cardiovascular diseases. Objective Verify if cis- [Ru(bpy)2(NO2)(NO)](PF6)2 (BPY) improves endothelial function and the sensibility of conductance (aorta) and resistance (coronary) to vascular relaxation induced by BPY. Methods Normotensive (2K) and hypertensive (2K-1C) Wistar rats were used. For vascular reactivity study, thoracic aortas were isolated, rings with intact endothelium were incubated with: BPY(0.01 to10 µM) and concentration effect curves to acetylcholine were performed. In addition, cumulative concentration curves were performed to BPY (1.0 nM to 0.1 µM) in aortic and coronary rings, with intact and denuded endothelium. Results In aorta from 2K-1C animals, the treatment with BPY 0.1µM increased the potency of acetylcholine-induced relaxation and it was able to revert the endothelial dysfunction. The presence of the endothelium did not modify the effect of BPY in inducing the relaxation in aortas from 2K and 2K-1C rats. In coronary, the endothelium potentiated the vasodilator effect of BPY in vessels from 2K and 2K-1C rats. Conclusion Our results suggest that 0.1 µM of BPY is able to normalize the relaxation endothelium dependent in hypertensive rats, and the compound BPY induces relaxation in aortic from normotensive and hypertensive rats with the same potency. The endothelium potentiate the relaxation effect induced by BPY in coronary from normotensive and hypertensive rats, with lower effect on coronary from hypertensive rats. PMID:28678930

  4. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  5. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Silvestri, Gabriella; Petrucci, Antonio; Basile, Barbara; Masciullo, Marcella; Makovac, Elena; Torso, Mario; Spanò, Barbara; Mastropasqua, Chiara; Harrison, Neil A; Bianchi, Maria L E; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2014-05-01

    Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy observed in adults, is a genetic multisystem disorder affecting several other organs besides skeletal muscle, including the brain. Cognitive and personality abnormalities have been reported; however, no studies have investigated brain functional networks and their relationship with personality traits/disorders in patients with DM1. To use resting-state functional magnetic resonance imaging to assess the potential relationship between personality traits/disorders and changes to functional connectivity within the default mode network (DMN) in patients with DM1. We enrolled 27 patients with genetically confirmed DM1 and 16 matched healthy control individuals. Patients underwent personality assessment using clinical interview and Minnesota Multiphasic Personality Inventory-2 administration; all participants underwent resting-state functional magnetic resonance imaging. Investigations were conducted at the Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Catholic University of Sacred Heart, and Azienda Ospedaliera San Camillo Forlanini. Resting-state functional magnetic resonance imaging. Measures of personality traits in patients and changes in functional connectivity within the DMN in patients and controls. Changes in functional connectivity and atypical personality traits in patients were correlated. We combined results obtained from the Minnesota Multiphasic Personality Inventory-2 and clinical interview to identify a continuum of atypical personality profiles ranging from schizotypal personality traits to paranoid personality disorder within our DM1 patients. We also demonstrated an increase in functional connectivity in the bilateral posterior cingulate and left parietal DMN nodes in DM1 patients compared with controls. Moreover, patients with DM1 showed strong associations between DMN functional connectivity and schizotypal-paranoid traits. Our findings provide novel

  6. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    PubMed

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Endothelial-dependent flow-mediated dilation in African Americans with masked-hypertension.

    PubMed

    Veerabhadrappa, Praveen; Diaz, Keith M; Feairheller, Deborah L; Sturgeon, Katie M; Williamson, Sheara T; Crabbe, Deborah L; Kashem, Abul M; Brown, Michael D

    2011-10-01

    Office-blood pressure (BP) measurements alone overlook a significant number of individuals with masked-hypertension (office-BP: 120/80-139/89 mm Hg and 24-h ambulatory BP monitoring (ABPM) daytime ≥135/85 mm Hg or night-time ≥120/70 mm Hg). Diminished endothelial function contributes to the pathogenesis of hypertension. To better understand the pathophysiology involved in the increased cardiovascular (CV) disease risk associated with masked-hypertension, we estimated the occurrence, assessed the endothelial function, compared plasma levels of inflammatory markers, white blood cell count (WBC count), tumor necrosis factor-α (TNF-α), and high sensitivity C-reactive protein (hsCRP) and examined the possible relationship between endothelial function and inflammatory markers in apparently healthy prehypertensive (office-BP: 120/80-139/89 mm Hg) African Americans. Fifty African Americans who were sedentary, nondiabetic, nonsmoking, devoid of CV disease were recruited. Office-BP was measured according to JNC-7 guidelines to identify prehypertensives in whom ABPM was then assessed. Fasting plasma samples were assayed for inflammatory markers. Brachial artery flow-mediated dilation (FMD) at rest and during reactive hyperemia was measured in a subset of prehypertensives. Subjects in the masked-hypertension sub-group had a higher hsCRP (P = 0.04) and diminished endothelial function (P = 0.03) compared to the true-prehypertensive sub-group (office-BP: 120/80-139/89 mm Hg and ABPM: daytime <135/85 mm Hg or night-time <120/70 mm Hg). Regression analysis showed that endothelial function was inversely related to hsCRP amongst the masked-hypertensive sub-group (R(2) = 0.160; P = 0.04). Masked-hypertension was identified in 58% of African Americans which suggests that a masking phenomenon may exist in a sub-group of prehypertensives who also seem to have a diminished endothelial function that could be mediated by an elevated subclinical inflammation leading to the increased CV

  8. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity.

    PubMed

    Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S

    2009-01-01

    To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p < 0.001) as well as with immunosuppressive therapy (p < 0.01). Significant differences were found in VEGF (p < 0.001), ET-1 (p < 0.001), sE-selectin (p < 0.01), and sTM (p < 0.001) serum concentrations between SLE patients with a capillaroscopic score > 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.

  9. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements

    PubMed Central

    Stolwijk, Judith A.; Matrougui, Khalid; Renken, Christian W.; Trebak, Mohamed

    2014-01-01

    The past 20 years have seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists, pharmacological and toxicological compounds. Most studies on barrier function use G protein coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance based techniques such as Electric Cell-Substrate Impedance Sensing (ECIS) reside in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine and Sphingosine-1-Phosphate. PMID:25537398

  10. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements.

    PubMed

    Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed

    2015-10-01

    The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.

  11. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions.

    PubMed

    Wallbrecht, Katrin; Drick, Nora; Hund, Anna-Carina; Schön, Michael P

    2011-12-01

    Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders. © 2011 John Wiley & Sons A/S.

  12. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  13. Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography.

    PubMed

    Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian

    2010-07-01

    Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.

  14. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    PubMed

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p < 0.001). FMD was significantly reduced (from 9.6 ± 4.3 to 7.9 ± 3.7%; p < 0.001) and systolic blood pressure was increased (from 129.5 ± 16.5 to 133.6 ± 17.9 mmHg; p = 0.030) by noise. The adverse vascular effects of noise were independent from sleep quality and self-reported noise sensitivity. Nighttime aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  15. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  16. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    PubMed

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology

  17. The impact of tetrahydrobiopterin administration on endothelial function before and after smoking cessation in chronic smokers.

    PubMed

    Taylor, Beth A; Zaleski, Amanda L; Dornelas, Ellen A; Thompson, Paul D

    2016-03-01

    Cardiovascular disease mortality is reduced following smoking cessation but the reversibility of specific atherogenic risk factors such as endothelial dysfunction is less established. We assessed brachial artery flow-mediated dilation (FMD) in 57 chronic smokers and 15 healthy controls, alone and after oral tetrahydrobiopterin (BH4) administration, to assess the extent to which reduced bioactivity of BH4, a cofactor for the endothelial nitric oxide synthase enzyme (eNOS), contributes to smoking-associated reductions in FMD. Thirty-four smokers then ceased cigarette and nicotine use for 1 week, after which FMD (±BH4 administration) was repeated. Brachial artery FMD was calculated as the peak dilatory response observed relative to baseline (%FMD). Endothelium-independent dilation was assessed by measuring the dilatory response to sublingual nitroglycerin (%NTG). Chronic smokers exhibited reduced %FMD relative to controls: (5.6±3.0% vs. 8.1±3.7%; P<0.01) and %NTG was not different between groups (P=0.22). BH4 administration improved FMD in both groups (P=0.03) independent of smoking status (P=0.78) such that FMD was still lower in smokers relative to controls (6.6±3.3% vs. 9.8±3.2%; P<0.01). With smoking cessation, FMD increased significantly (from 5.0±2.9 to 7.8±3.2%;P<0.01); %NTG was not different (P=0.57) and BH4 administration did not further improve FMD (P=0.33). These findings suggest that the blunted FMD observed in chronic smokers, likely due at least in part to reduced BH4 bioactivity and eNOS uncoupling, can be restored with smoking cessation. Post-cessation BH4 administration does not further improve endothelial function in chronic smokers, unlike the effect observed in nonsmokers, indicating a longer-term impact of chronic smoking on vascular function that is not acutely reversible.

  18. Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein.

    PubMed

    Ngo, Doan T M; Stafford, Irene; Kelly, Darren J; Sverdlov, Aaron L; Wuttke, Ronald D; Weedon, Helen; Nightingale, Angus K; Rosenkranz, Anke C; Smith, Malcolm D; Chirkov, Yuliy Y; Kennedy, Jennifer A; Horowitz, John D

    2008-08-20

    Understanding of the pathophysiology of aortic valve stenosis (AVS) and finding potentially effective treatments are impeded by the lack of suitable AVS animal models. A previous study demonstrated the development of AVS in rabbits with vitamin D(2) and cholesterol supplementation without any hemodynamic changes in the cholesterol supplemented group alone. The current study aimed to determine whether AVS develops in an animal model with vitamin D(2) supplementation alone, and to explore pathophysiological mechanisms underlying this process. The effects of 8 weeks' treatment with vitamin D(2) alone (n=8) at 25,000 IU/4 days weekly on aortic valve structure and function were examined in male New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)), transvalvular velocity, and transvalvular pressure gradient were utilized to quantitate changes in valve structure and function. Valvular histology/immunochemistry and function were examined after 8 weeks. Changes in valves were compared with those in endothelial function and in valvular measurement of thioredoxin-interacting protein (TXNIP), a marker/mediator of reactive oxygen species-induced oxidative stress. Vitamin D(2) treated rabbits developed AVS with increased AV(BS) (17.6+/-1.4 dB vs 6.7+/-0.8 dB, P<0.0001), increased transvalvular velocity and transvalvular pressure gradient (both P<0.01 via 2-way ANOVA) compared to the control group. There was associated valve calcification, lipid deposition and macrophage infiltration. Endothelial function was markedly impaired, and intravalvular TXNIP concentration increased. In this model, vitamin D(2) induces the development of AVS with histological features similar to those of early AVS in humans and associated endothelial dysfunction/redox stress. AVS development may result from the loss of nitric oxide suppression of TXNIP expression.

  19. Short-term therapy with relatively low-dose cerivastatin improves endothelial function independently of its lipid-lowering effect: Evaluation of brachial artery vasodilatation using B-mode ultrasound imaging.

    PubMed

    Sakabe, Koichi; Fukuda, Nobuo; Nada, Teru; Onose, Yukiko; Soeki, Takeshi; Shinohara, Hisanori; Tamura, Yoshiyuki

    2002-12-01

    Administration of 0.4 to 0.8 mg of cerivastatin per day for 2 weeks has been reported to have pleiotropic effects and improve endothelial function. Whether low-dose cerivastatin would produce these rapid pleiotropic effects in the clinical setting remains uncertain, however. We investigated the effect of short-term therapy with relatively low-dose cerivastatin (0.15 mg/day) on endothelial function, thrombostatic parameters, and C-reactive protein (CRP) levels in hypercholesterolemic patients. Thirteen patients with LDL-cholesterol>160 mg/dl were treated with daily doses of 0.15 mg of cerivastatin for 2 weeks. Endothelial function, thrombostatic parameters (tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor type 1 [PAI-1], and CRP were estimated at baseline and again after 2 weeks of treatment. Endothelial function was measured as flow-mediated vasodilation. Flow-mediated vasodilatation was assessed by measuring the percent change in the diameter of the brachial artery in response to reactive hyperemia using high-resolution ultrasound. Endothelium-independent vasodilatation was also measured using sublingual nitroglycerin. No major complications developed after the treatment. Total cholesterol decreased significantly, from 258±32 to 211±21 mg/dl, and LDL-cholesterol also decreased from 171±15 to 133±16 mg/dl after the treatment. Flow-mediated vasodilatation increased significantly, from 4.6±1.3 percent to 8.7±3.5 percent after 2 weeks of therapy, although endothelium-independent vasodilatation was not affected (9.5±2.4% vs 8.8±3.1%). No relation was found between percent change in flow-mediated vasodilatation and improvement in levels of LDL-cholesterol after therapy (r=0.07). PAI-1, t-PA, and CRP were not significantly changed by 2 weeks of therapy. (1) Evaluating vasodilation of the brachial artery with B-mode ultrasound imaging was useful in investigating the effect of statin on endothelial function. (2) Although no effect was

  20. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  1. Markers of endothelial dysfunction and severity of hypoxaemia in the Eisenmenger syndrome.

    PubMed

    de P S Soares, Rosangela; Maeda, Nair Y; Bydlowski, Sérgio P; Lopes, Antonio Augusto

    2005-10-01

    Endothelial dysfunction has been reported in hypoxaemic patients with the Eisenmenger syndrome, but a direct correlation between levels of endothelial markers and the severity of hypoxaemia has not been explored. With this in mind, we compared the levels in the plasma of tissue-type plasminogen activator, thrombomodulin, and von Willebrand factor in 25 patients with the Eisenmenger syndrome. They had a median age of 31 years, and were divided into 2 groups according to their recent clinical history. Thus, 18 patients were stable, being in functional class II or III, seen as outpatients, and having peripheral saturations of oxygen of 89 plus or minus 5 percent. In contrast, 7 patients were unstable, showing episodes of symptoms placing them in functional class IV, requiring care in hospital, and manifesting saturations of oxygen of 77 plus or minus 5 percent. We were able to follow 12 patients, 8 who were stable and 4 unstable, for 24 months. At baseline, levels of von Willebrand factor were higher in the unstable patients when compared to those who were stable, at 142 plus or minus 29 and 110 plus or minus 25 units per decilitre, respectively (p equal to 0.013). This correlated positively with oxygen desaturation (p less than 0.020). The structural abnormalities also correlated positively with the magnitude of hypoxaemia (p less than 0.020). Levels remained higher in the unstable patients throughout the period of follow-up (p equal to 0.006). Tissue-type plasminogen activator was also increased, at 14.3 plus or minus 8.4 versus 6.5 plus or minus 2.7 nanograms per millilitre in controls (p less than 0.001), whereas thrombomodulin was decreased, with values of 14.4 versus 34.6 nanograms per millilitre in controls (p for median values of less than 0.001). There was no correlation with saturations of oxygen. We conclude that measurement of von Willebrand factor, as compared with tissue-type plasminogen activator and thrombomodulin, will prove a better marker of

  2. Endothelial dysfunction in dengue virus pathology.

    PubMed

    Vervaeke, Peter; Vermeire, Kurt; Liekens, Sandra

    2015-01-01

    Dengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability. However, recent studies indicate that DENV also replicates in endothelial cells and that DENV-infected endothelial cells may directly contribute to viremia, immune activation, vascular permeability and immune targeting of the endothelium. Also, the viral non-structural protein-1 and antibodies directed against this secreted protein have been reported to be involved in endothelial cell dysfunction. This review provides an extensive overview of the effects of DENV infection on endothelial cell physiology and barrier function. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  4. [Echo-tracking technology for evaluating femoral artery endothelial function in patients with Grave's disease].

    PubMed

    Wei, Wei; Wang, Jingyuan; Zhao, Qiaoling; Yang, Jinru

    2012-10-01

    To assess the value of echo-tracking technology in evaluating endothelial function of the femoral artery in patients with Grave's disease. Thirty-four patients with Grave's disease patients and 30 normal adults as controls were recruited in this study. The intima-media thickness (IMT), arterial stiffness (β), pressure strain elastic modulus (Ep), arterial compliance (AC), pulse wave conducting velocity (PWVβ) and augmentation index (AI) parameters were examined using echo-tracking technology for evaluating the right femoral arterial elasticity. Compared with the control subjects, the patients with Grave's disease showed significantly increased β, Ep, and PWVβ and significantly decreased AC (P<0.05), but the argumentation index were similar between the two groups (P>0.05). In patients with Grave's disease, β and Ep were positively correlated with FT3, FT4, TT3, TT4, and PWVβ was positively correlated with FT3 and FT4. Echo-tracking technology can provide more accurate quantitative evidences for early diagnosis of femoral artery endothelial dysfunction in patients with Grave's disease, but the influence of procedural factors on the measurement accuracy should be considered in the evaluation.

  5. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  6. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    PubMed

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Changes in meal composition and duration affect postprandial endothelial function in healthy humans.

    PubMed

    Thazhath, Sony S; Wu, Tongzhi; Bound, Michelle J; Checklin, Helen L; Jones, Karen L; Willoughby, Scott; Horowitz, Michael; Rayner, Christopher K

    2014-12-15

    Endothelial function, measured by flow-mediated dilatation (FMD), predicts cardiovascular events and is impaired postprandially. The objective of this study was to evaluate the effects of changes in composition or duration of ingestion of a meal, which slows gastric emptying and/or small intestinal nutrient exposure, on postprandial endothelial function. Twelve healthy subjects (6 male, 6 female; 33 ± 6 yr) were each studied on three occasions, in a randomized crossover design. After an overnight fast, subjects consumed a [(13)C]octanoic acid-labeled mashed potato meal ("meal 1"), or meal 1 mixed with 9 g guar ("meal 2") within 10 min, or meal 1 divided into 12 equal portions over 60 min ("meal 3"). Brachial artery FMD was measured every 30 min for 120 min. Blood glucose, serum insulin, and gastric emptying (breath test) were evaluated for 240 min. Data are means ± SE. Compared with meal 1, meal 2 was associated with slower gastric emptying (half-emptying time 285 ± 27 vs. 208 ± 15 min, P < 0.05), lower postprandial blood glucose and insulin (P < 0.001 for both), and a delayed, but more sustained, suppression of FMD (P < 0.001). After meal 3, both glycemic increment and reduction in FMD were less than after meal 2 (P < 0.05 for both). The decrement in FMD was directly related to the increment in blood glucose (r = 0.46, P = 0.02). We conclude that, in health, postprandial FMD is influenced by perturbation of gastric emptying and the duration of meal consumption, which also impact on glycemia. Copyright © 2014 the American Physiological Society.

  8. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    PubMed

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.

    2010-01-01

    INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters

  10. Endothelial-astrocytic interactions in acute liver failure.

    PubMed

    Jayakumar, A R; Norenberg, M D

    2013-06-01

    Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.

  11. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    PubMed

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  13. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    PubMed

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  14. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  15. Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.

    PubMed

    Ackerman, William E; Ahmad, Mahmood

    2008-02-01

    A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.

  16. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  17. Endothelial Microparticles (EMP) for the Assessment of Endothelial Function: An In Vitro and In Vivo Study on Possible Interference of Plasma Lipids

    PubMed Central

    van Ierssel, Sabrina H.; Hoymans, Vicky Y.; Van Craenenbroeck, Emeline M.; Van Tendeloo, Viggo F.; Vrints, Christiaan J.; Jorens, Philippe G.; Conraads, Viviane M.

    2012-01-01

    Background Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. Methods For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b−) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Results Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = −0.707 and −0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = −0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. Conclusion The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP. PMID:22359595

  18. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis.

    PubMed

    Seinost, Gerald; Wimmer, Gernot; Skerget, Martina; Thaller, Erik; Brodmann, Marianne; Gasser, Robert; Bratschko, Rudolf O; Pilger, Ernst

    2005-06-01

    Because epidemiological studies provide evidence that periodontal infections are associated with an increased risk of progression of cardiovascular and cerebrovascular disease, we postulated that endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis, would be present in patients with periodontal disease. We tested endothelial function in 30 patients with severe periodontitis and 31 control subjects using flow-mediated dilation (FMD) of the brachial artery. The groups were matched for age, sex, and cardiovascular risk factors. Three months after periodontal treatment, including both mechanical and pharmacological therapy, endothelial function was reassessed by brachial artery FMD. Markers of systemic inflammation were measured at baseline and at follow up. Flow-mediated dilation was significantly lower in patients with periodontitis than in control subjects (6.1% +/- 4.4% vs 8.5% +/- 3.4%, P = .002). Successful periodontal treatment resulted in a significant improvement in FMD (9.8% +/- 5.7%; P = .003 compared to baseline) accompanied by a significant decrease in C-reactive protein concentrations (1.1 +/- 1.9 vs 0.8 +/- 0.8 at baseline, P = .026). Endothelium-independent nitro-induced vasodilation did not differ between the study groups at baseline or after periodontal therapy. These results indicate that treatment of severe periodontitis reverses endothelial dysfunction. Whether improved endothelial function will translate into a beneficial effect on atherogenesis and cardiovascular events needs further investigation.

  19. The presence of African American race predicts improvement in coronary endothelial function after supplementary L-arginine.

    PubMed

    Houghton, Jan L; Philbin, Edward F; Strogatz, David S; Torosoff, Mikhail T; Fein, Steven A; Kuhner, Patricia A; Smith, Vivienne E; Carr, Albert A

    2002-04-17

    The purpose of our study was to determine if the presence of African American ethnicity modulates improvement in coronary vascular endothelial function after supplementary L-arginine. Endothelial dysfunction is an early stage in the development of coronary atherosclerosis and has been implicated in the pathogenesis of hypertension and cardiomyopathy. Amelioration of endothelial dysfunction has been demonstrated in patients with established coronary atherosclerosis or with risk factors in response to infusion of L-arginine, the precursor of nitric oxide. Racial and gender patterns in L-arginine responsiveness have not, heretofore, been studied. Invasive testing of coronary artery and microvascular reactivity in response to graded intracoronary infusions of acetylcholine (ACh) +/- L-arginine was carried out in 33 matched pairs of African American and white subjects with no angiographic coronary artery disease. Pairs were matched for age, gender, indexed left ventricular mass, body mass index and low-density lipoprotein cholesterol. In addition to the matching parameters, there were no significant differences in peak coronary blood flow (CBF) response to intracoronary adenosine or in the peak CBF response to ACh before L-arginine infusion. However, absolute percentile improvement in CBF response to ACh infusion after L-arginine, as compared with before, was significantly greater among African Americans as a group (45 +/- 10% vs. 4 +/- 6%, p = 0.0016) and after partitioning by gender. The mechanism of this increase was mediated through further reduction in coronary microvascular resistance. L-arginine infusion also resulted in greater epicardial dilator response after ACh among African Americans. We conclude that intracoronary infusion of L-arginine provides significantly greater augmentation of endothelium-dependent vascular relaxation in those of African American ethnicity when compared with matched white subjects drawn from a cohort electively referred for coronary

  20. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947