Sample records for abnormal expression patterns

  1. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-06

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  2. [Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].

    PubMed

    Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan

    2006-08-01

    The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.

  3. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  4. Comparative gene expression analysis of bovine nuclear-transferred embryos with different developmental potential by cDNA microarray and real-time PCR to determine genes that might reflect calf normality.

    PubMed

    Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio

    2007-01-01

    Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.

  5. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    PubMed

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  6. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study

    PubMed Central

    Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David

    2010-01-01

    Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699

  7. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation.

    PubMed

    Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2013-04-26

    The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  10. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    PubMed Central

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638

  11. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    PubMed

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.

  12. Analysis of the pattern of expression of the Fanconi anemia group C (Facc) gene during murine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoshtein, F.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist inmore » interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.« less

  13. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  14. Differential expression of lymphocyte function-associated antigen (LFA-1) on peripheral blood leucocytes from individuals with Down's syndrome.

    PubMed Central

    Barrena, M J; Echaniz, P; Garcia-Serrano, C; Zubillaga, P; Cuadrado, E

    1992-01-01

    We analysed the expression of lymphocyte function-associated antigen LFA-1 on the cell surface of peripheral blood lymphocytes, monocytes and granulocytes from 20 children with Down's syndrome. No differences in LFA-1 expression was found within monocytes or granulocytes from either normal or Down's syndrome children; however, a clear-cut difference was observed on lymphoid cells. Both normal and Down's syndrome lymphocytes displayed a bimodal pattern of LFA-1 staining by flow cytometry, with a predominance of cells with low expression in normal population, and an increased proportion of lymphocytes with high level of LFA-1 expression in Down's syndrome children. This difference correlates well with the abnormal proportion of T cell subsets and inversion of CD4/CD8 observed in a majority of our cases, and therefore, it could merely reflect the increase of certain T cell subsets normally expressing higher number of LFA-1 molecules. Taken together, our results do not support an abnormally increased expression of leucocytes integrins in trisomy 21 cells, and raise some doubt about the suggested role of the abnormal cellular expression of LFA-1 in the pathogensis of secondary immunodeficiency associated to Down's syndrome. PMID:1348667

  15. Abnormalities of keratinocyte maturation and differentiation in keratosis palmoplantaris striata. Immunohistochemical and ultrastructural study before and during etretinate therapy.

    PubMed

    Fartasch, M; Vigneswaran, N; Diepgen, T L; Hornstein, O P

    1990-06-01

    Keratoderma striatum (Brünauer-Fuhs type) with linear keratotic elevations on the palms and small islets (areata form) on the soles is a rare form of palmoplantar keratoderma (PPK). An immunohistochemical and ultrastructural study has been performed to characterize the altered keratinization and maturation patterns in this disease before and during complete clinical remission on therapy with etretinate. Anticytokeratin antibody KL1 showed no significant difference in reaction pattern either between healthy controls and PPK or following therapy. Earlier expression of both filaggrin and involucrin was found in PPK in comparison with the controls. During etretinate therapy the filaggrin pattern returned to normal, whereas the altered involucrin pattern was not influenced. Ultrastructural investigations before treatment revealed tightly packed tonofibrils (TF) and large masses of keratohyalin (KH) granules with abnormal configuration. During therapy the TF and KH granules were reduced in number and size. KH granules now showed frayed borders. Moreover, a transitional cell zone, focal parakeratosis with lipid droplets, and dyskeratotic cells became apparent. The normalization of filaggrin pattern accompanying the clinical remission of these lesions implies a role of this keratinocyte differentiation protein in the pathogenesis of these lesions. Since etretinate is assumed to act at a very late stage of epidermal differentiation, there was no influence on the altered expression of involucrin during etretinate therapy. Despite the clinical remission, fine structural abnormalities persisted, indicating that the deviations from the normal keratinocyte differentiation program in PKK occur very early.

  16. Abnormal patterns of displacement activities: a review and reinterpretation.

    PubMed

    Anselme, Patrick

    2008-09-01

    A series of important theoretical contributions flourished in the years 1950-1970 about displacement activities -- those 'out-of-context' actions expressed by organisms in stressful situations. Nothing really new has appeared thereafter. Although the models address different issues, such as causal factors of displacement, it appears obvious that they do not provide a unified (coherent) approach; they often explain the same phenomena using very different means and turn out to be contradictory on several points. In addition, some problems currently remain unsolved, especially concerning the fact that displacement activities exhibit 'abnormalities' of expression in comparison with the same activities performed in usual context. Each model is here described and criticized in order to evaluate its explanatory power and allow the identification of specific limits. A new, integrative model -- the Anticipatory Dynamics Model (or ADM) -- then attempts to overcome the failures of previous models. The ADM suggests that abnormal patterns of displacement activities result from attentional interference caused by a thwarting experience or conflicting motivations. At least one theoretical prediction of the ADM can be differentiated from that of any other model.

  17. Ectopic expression of hoxb2 after retinoic acid treatment or mRNA injection: disruption of hindbrain and craniofacial morphogenesis in zebrafish embryos.

    PubMed

    Yan, Y L; Jowett, T; Postlethwait, J H

    1998-12-01

    To investigate pattern formation in the vertebrate hindbrain, we isolated a full length hoxb2 cDNA clone from zebrafish. In a gene phylogeny, zebrafish hoxb2 clusters with human HOXB2, and it maps on linkage group 3 along with several other loci whose orthologues are syntenic with human HOXB2. In the hindbrain, hoxb2 is expressed at high levels in rhombomere 3 (r3), lower levels in r4, still lower in r5, and at undetectable levels in r6. In r7, r8, and the rostral spinal cord, hoxb2 is expressed at a lower level than in r5. Lateral cells appearing to emanate from r4 express both hoxb2 and dlx2, suggesting that they are neural crest. Overexpression of hoxb2 by mRNA injections into early cleavage stage embryos resulted in abnormal morphogenesis of the midbrain and rostral hindbrain, abnormal patterning in r4, fusion of cartilage elements arising from pharyngeal arches 1 and 2, and ectopic expression of krx20 and valentino (but not pax2, rtk1, or hoxb1) in the rostral hindbrain, midbrain, and, surprisingly, the eye. Treatments with retinoic acid produced a phenotype similar to that of ectopic hoxb2 expression, including ectopic krx20 (but not valentino) expression in the eye, and fusion of cartilages from pharyngeal arches 1 and 2. The results suggest that hoxb2 plays an important role in the patterning of hindbrain and pharyngeal arches in the zebrafish.

  18. Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats.

    PubMed

    Wenninger, J M; Pan, L G; Klum, L; Leekley, T; Bastastic, J; Hodges, M R; Feroah, T; Davis, S; Forster, H V

    2004-11-01

    In awake rats, >80% bilateral reduction of neurokinin-1 receptor (NK1R)-expressing neurons in the pre-Bötzinger complex (pre-BötzC) resulted in hypoventilation and an "ataxic" breathing pattern (Gray PA, Rekling JC, Bocchiaro CM, Feldman JL, Science 286: 1566-1568, 1999). Accordingly, the present study was designed to gain further insight into the role of the pre-BötzC area NK1R-expressing neurons in the control of breathing during physiological conditions. Microtubules were chronically implanted bilaterally into the medulla of adult goats. After recovery from surgery, the neurotoxin saporin conjugated to substance P, specific for NK1R-expressing neurons, was bilaterally injected (50 pM in 10 microl) into the pre-BötzC area during the awake state (n = 8). In unoperated goats, 34 +/- 0.01% of the pre-BötzC area neurons are immunoreactive for the NK1R, but, in goats after bilateral injection of SP-SAP into the pre-BötzC area, NK1R immunoreactivity was reduced to 22.5 +/- 2.5% (29% decrease, P < 0.01). Ten to fourteen days after the injection, the frequency of abnormal breathing periods was sixfold greater than before injection (107.8 +/- 21.8/h, P < 0.001). Fifty-six percent of these periods were breaths of varying duration and volume with an altered respiratory muscle activation pattern, whereas the remaining were rapid, complete breaths with coordinated inspiratory-expiratory cycles. The rate of occurrence and characteristics of abnormal breathing periods were not altered during a CO2 inhalation-induced hyperpnea. Pathological breathing patterns were eliminated during non-rapid eye movement sleep in seven of eight goats, but they frequently occurred on arousal from non-rapid eye movement sleep. We conclude that a moderate reduction in pre-BötzC NK1R-expressing neurons results in state-dependent transient changes in respiratory rhythm and/or eupneic respiratory muscle activation patterns.

  19. The effect of adriamycin exposure on the notochord of mouse embryos.

    PubMed

    Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula

    2012-04-01

    The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.

  20. Zic3 is required in the migrating primitive streak for node morphogenesis and left–right patterning

    PubMed Central

    Sutherland, Mardi J.; Wang, Shuyun; Quinn, Malgorzata E.; Haaning, Allison; Ware, Stephanie M.

    2013-01-01

    In humans, loss-of-function mutations in ZIC3 cause isolated cardiovascular malformations and X-linked heterotaxy, a disorder with abnormal left–right asymmetry of organs. Zic3 null mice recapitulate the human heterotaxy phenotype but also have early gastrulation defects, axial patterning defects and neural tube defects complicating an assessment of the role of Zic3 in cardiac development. Zic3 is expressed ubiquitously during critical stages of left–right patterning but its later expression in the developing heart remains controversial and the molecular mechanism(s) by which it causes heterotaxy are unknown. To define the temporal and spatial requirements, for Zic3 in left–right patterning, we generated conditional Zic3 mice and Zic3-LacZ-BAC reporter mice. The latter provide compelling evidence that Zic3 is expressed in the mouse node and absent in the heart. Conditional deletion using T-Cre identifies a requirement for Zic3 in the primitive streak and migrating mesoderm for proper left–right patterning and cardiac development. In contrast, Zic3 is not required in heart progenitors or the cardiac compartment. In addition, the data demonstrate abnormal node morphogenesis in Zic3 null mice and identify similar node dysplasia when Zic3 was specifically deleted from the migrating mesoderm and primitive streak. These results define the temporal and spatial requirements for Zic3 in node morphogenesis, left–right patterning and cardiac development and suggest the possibility that a requirement for Zic3 in node ultrastructure underlies its role in heterotaxy and laterality disorders. PMID:23303524

  1. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning

    PubMed Central

    Fakhro, Khalid A.; Choi, Murim; Ware, Stephanie M.; Belmont, John W.; Towbin, Jeffrey A.; Lifton, Richard P.; Khokha, Mustafa K.; Brueckner, Martina

    2011-01-01

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10−4). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10−6). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning. PMID:21282601

  2. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning.

    PubMed

    Fakhro, Khalid A; Choi, Murim; Ware, Stephanie M; Belmont, John W; Towbin, Jeffrey A; Lifton, Richard P; Khokha, Mustafa K; Brueckner, Martina

    2011-02-15

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10(-4)). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10(-6)). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning.

  3. Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin

    PubMed Central

    Fox, Edward A.; Murphy, Michelle C.

    2008-01-01

    Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244

  4. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  5. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

    PubMed

    Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew

    2011-03-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

  6. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.

    PubMed

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  7. Characterization of distinct classes of differential gene expression in osteoblast cultures from non-syndromic craniosynostosis bone.

    PubMed

    Rojas-Peña, Monica L; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention.

  8. Characterization of Distinct Classes of Differential Gene Expression in Osteoblast Cultures from Non-Syndromic Craniosynostosis Bone

    PubMed Central

    Rojas-Peña, Monica L.; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D.; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention. PMID:25184005

  9. Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos.

    PubMed

    van Veenendaal, Nicole R; Ulmer, Bärbel; Boskovski, Marko T; Fang, Xiefan; Khokha, Mustafa K; Wendler, Christopher C; Blum, Martin; Rivkees, Scott A

    2013-02-01

    Antithyroid medications are the preferred therapy for the treatment of Graves' disease during pregnancy. Propylthiouracil (PTU) is favored over methimazole (MMI) due to potential teratogenic concerns with MMI. This study was to determine the teratogenic potential of MMI and PTU using a validated Xenopus tropicalis embryo model. Embryos were exposed to 1 mM PTU (EC(50)=0.88 mM), 1 mM MMI, or vehicle control (water) from stages 2 to 45. Treated embryos were examined for gross morphological defects, ciliary function, and gene expression by in situ hybridization. Exposure to PTU, but not MMI, led to cardiac and gut looping defects and shortening along the anterior-posterior axis. PTU exposure during gastrulation (stage 8-12.5) was identified as the critical period of exposure leading to left-right (LR) patterning defects. Abnormal cilia polarization, abnormal cilia-driven leftward flow at the gastrocoel roof plate (GRP), and aberrant expression of both Coco and Pitx2c were associated with abnormal LR symmetry observed following PTU exposure. PTU is teratogenic during late blastula, gastrulation, and neurulation; whereas MMI is not. PTU alters ciliary-driven flow and disrupts the normal genetic program involved in LR axis determination. These studies have important implications for women taking PTU during early pregnancy.

  10. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder.

    PubMed

    Perlman, Susan B; Almeida, Jorge R C; Kronhaus, Dina M; Versace, Amelia; Labarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-03-01

    Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. Thirty-one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block-design emotion processing task requiring color-labeling of a color flash superimposed on a task-irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top-down) and following (bottom-up) activity between the PFC and the left and right amygdalae. Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted-BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed-BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted-BD and depressed-BD subjects. EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala-PFC circuitry, supporting implicit emotion processing between remitted-BD and depressed-BD subjects, which may underlie changes from remission to depression in BD. © 2012 John Wiley and Sons A/S.

  11. EMODIN EFFICACY ON THE AKT, MAPK, ERK AND DNMT EXPRESSION PATTERN DURING DMBA-INDUCED ORAL CARCINOMA IN GOLDEN SYRIAN HAMSTERS.

    PubMed

    Manimaran, Asokan; Manoharan, Shanmugam; Neelakandan, Mani

    2016-01-01

    The present study has evaluated the Emodin efficacy on the Akt, MAPK, ERK and DNMT expression pattern during 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinoma in golden Syrian hamsters, in order to explore its antitumor potential. Oral tumors were developed in the buccal pouches of golden Syrian hamsters using the carcinogen, DMBA. While the incidence of tumor formation was 100% in hamsters treated with DMBA alone, the tumor formation was not noticed in DMBA+ Emodin treated hamsters. Also, Emodin reduced the severity of precancerous pathological lesions such as dysplasia, in the hamsters treated with DMBA. Emodin administration corrected the abnormalities in the expression pattern of Akt, MAPK, ERK and DNMT in the buccal mucosa of hamsters treated with DMBA. The present study thus suggests that the tumor preventive potential of Emodin is partly related to its modulating effect on the Akt, MAPK, ERK and DNMT expression pattern, as these molecular markers have a pivotal role in the process of cell proliferation, inflammation, invasion, and apoptosis.

  12. E2F4 is required for early eye patterning.

    PubMed

    Ruzhynsky, Vladimir A; Furimsky, Marosh; Park, David S; Wallace, Valerie A; Slack, Ruth S

    2009-01-01

    Increasingly, studies reveal novel functions for cell cycle proteins during development. Here, we investigated the role of E2F4 in eye development. E2F4-deficient mouse embryos exhibit severe early eye patterning defects, which are evident from embryonic day 11.5 and characterized by aberrant shape of the optic cup, coloboma as well as abnormal eye pigmentation. Loss of E2F4 is associated with proximal-distal patterning defects in the optic vesicle. These defects are characterized by the expansion of optic stalk marker gene expression to the optic cup and reduced expression of ventral optic cup markers. These defects are associated with a split of Shh expression domain at the ventral midline of the forebrain and expansion of the Shh activity into the ventral optic cup. Despite these patterning defects, early neuronal differentiation and Shh expression in the retina are not affected by E2F4 deletion. Overall, the results of our studies show a novel role of E2F4 in the early eye development. 2009 S. Karger AG, Basel.

  13. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  14. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage.

    PubMed

    Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng

    2017-09-01

    Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression.

    PubMed

    Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan

    2017-12-15

    Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.

  16. HLA-C expression pattern is spatially different between psoriasis and eczema skin lesions.

    PubMed

    Carlén, Lina; Sakuraba, Kazuko; Ståhle, Mona; Sánchez, Fabio

    2007-02-01

    Interactions between genetic and environmental factors underlie the immune dysregulation and keratinocyte abnormalities that characterize psoriasis. Among known psoriasis susceptibility loci (PSORS), PSORS1 on chromosome 6 has the strongest association to disease. Altered expression of some PSORS1 candidate genes has been reported but little is known about HLA-C expression in psoriasis. This study compared expression of major histocompatibility complex class Ia and HLA-C in psoriasis, allergic contact eczema, and normal skin. Although HLA-C was abundant in protein extracts from both eczema and psoriasis, a consistent and intriguing difference in the expression pattern was observed; strong immunoreactivity in the basal cell layer, polarized towards the basement membrane in psoriasis, whereas in eczema lesions HLA-C immunostaining was present mostly in suprabasal cells. Inflammatory cells in the dermis were strongly stained in both diseases. Normal skin epithelium showed less intense but similar HLA-C staining as eczema lesions. HLA class Ia expression overall resembled that of HLA-C in all samples. The distinct HLA-C expression patterns in psoriasis and eczema suggest a functional role in the specific psoriasis immune response and not only a general feature of inflammation.

  17. A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency.

    PubMed

    Shaheen, Ranad; Ansari, Shinu; Alshammari, Muneera J; Alkhalidi, Hisham; Alrukban, Hadeel; Eyaid, Wafaa; Alkuraya, Fowzan S

    2013-07-01

    Numerous syndromic forms of intellectual disability have been described including those with abnormal sweating pattern. To describe the clinical and molecular analysis of a large multiplex consanguineous Saudi family with an unusual constellation of severe intellectual disability, hypohidrosis, abnormal teeth, and acquired microcephaly. Clinical evaluation, autozygosity mapping, exome sequencing, and expression analysis. Autozygosity mapping revealed a single critical locus corresponding to chr13:39 338 062-40 857 430. Exome sequencing uncovered a deep intronic (NM_020751.2:c.1167-24A>G) variant in COG6 that largely replaces the consensus acceptor site, resulting in pronounced reduction of the normal transcript and consequent deficiency of COG6 protein. Patient cells also exhibited pronounced deficiency of STX6, consistent with the established stabilising effect of COG6 on STX6. Four additional patients representing two families of the same tribal origin as the original family were found to have the same mutation, confirming a founder effect. Remarkably, none of the patients displayed any detectable abnormality in the glycosylation pattern of transferrin, which contradicts a previously published report of a patient whose abnormal glycosylation pattern was presumed to be caused by a missense variant in COG6. Our data implicate COG6 in the pathogenesis of a novel hypohidrotic disorder in humans that is distinct from congenital disorders of glycosylation.

  18. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    PubMed

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  19. Differences in MYB expression and gene abnormalities further confirm that salivary cribriform basal cell tumors and adenoid cystic carcinoma are two distinct tumor entities.

    PubMed

    Tian, Zhen; Li, Lei; Zhang, Chun-Ye; Gu, Ting; Li, Jiang

    2016-10-01

    In practices, some cases of salivary basal cell tumors that consist mainly of cribriform growth pattern are difficult to differentiate from adenoid cystic carcinoma (AdCC). Identification of reliable molecular biomarkers for the differential diagnosis between them is required. Twenty-two cases of cribriform salivary basal cell tumors (at least 10% cribriform pattern present in each tumor) comprising 18 cases of basal cell adenoma (BCA) and four cases of basal cell adenocarcinoma (BcAC) were collected between 1985 and 2008. Twenty cases of cribriform AdCC were retrieved from our archives. MYB protein expression and gene abnormalities were detected in all cases by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) analyses, respectively. Neither MYB protein nor split genes were detected in any of the cases of cribriform basal cell tumors, while 55% (11/20) of cases of cribriform AdCC had MYB protein expression. High MYB expression was detected in 81.8% (9/11) cases, while low expression was found in the remaining cases. FISH analysis indicated that nine AdCC tumors with high MYB protein expression were split gene-positive, while MYB gene splitting was not detected in the 11 cases with low or absent MYB protein expression. The molecular changes in AdCC differ from those associated with cribriform basal cell tumors, which further confirms that cribriform basal cell tumors and AdCC are two distinct tumor entities. Simultaneous detection of MYB protein expression and the associated molecular changes could be beneficial in differentiating salivary cribriform basal cell tumors from AdCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    PubMed

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  1. Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos.

    PubMed

    Yamada, Shigehiro; Hotta, Kohji; Yamamoto, Takamasa S; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki

    2009-04-01

    The midline organ the notochord and its overlying dorsal neural tube are the most prominent features of the chordate body plan. Although the molecular mechanisms involved in the formation of the central nervous system (CNS) have been studied extensively in vertebrate embryos, none of the genes that are expressed exclusively in notochord cells has been shown to function in this process. Here, we report a gene in the urochordate Ciona intestinalis encoding a fibrinogen-like protein that plays a pivotal role in the notochord-dependent positioning of neuronal cells. While this gene (Ci-fibrn) is expressed exclusively in notochord cells, its protein product is not confined to these cells but is distributed underneath the CNS as fibril-like protrusions. We demonstrated that Ci-fibrn interacts physically and functionally with Ci-Notch that is expressed in the central nervous system, and that the correct distribution of Ci-fibrn protein is dependent on Notch signaling. Disturbance of the Ci-fibrn distribution caused an abnormal positioning of neuronal cells and an abnormal track of axon extension. Therefore, it is highly likely that the interaction between the notochord-based fibrinogen-like protein and the neural tube-based Notch signaling plays an essential role in the proper patterning of CNS.

  2. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.

  3. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Chung, Jen

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic andmore » thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.« less

  4. Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns.

    PubMed

    Xiong, Xian-rong; Lan, Dao-liang; Li, Jian; Wang, Yong; Zhong, Jin-cheng

    2015-02-01

    Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.

  5. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  6. Decreased triadin and increased calstabin2 expression in Great Danes with dilated cardiomyopathy.

    PubMed

    Oyama, M A; Chittur, S V; Reynolds, C A

    2009-01-01

    Dilated cardiomyopathy (DCM) is a common cardiac disease of Great Dane dogs, yet very little is known about the underlying molecular abnormalities that contribute to disease. Discover a set of genes that are differentially expressed in Great Dane dogs with DCM as a way to identify candidate genes for further study as well as to better understand the molecular abnormalities that underlie the disease. Three Great Dane dogs with end-stage DCM and 3 large breed control dogs. Prospective study. Transcriptional activity of 42,869 canine DNA sequences was determined with a canine-specific oligonucleotide microarray. Genome expression patterns of left ventricular tissue samples from affected Great Dane dogs were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with expression from large breed dogs with noncardiac disease. Three hundred and twenty-three transcripts were differentially expressed (> or = 2-fold change). The transcript with the greatest degree of upregulation (+61.3-fold) was calstabin2 (FKBP12.6), whereas the transcript with the greatest degree of downregulation (-9.07-fold) was triadin. Calstabin2 and triadin are both regulatory components of the cardiac ryanodine receptor (RyR2) and are critical to normal intracellular Ca2+ release and excitation-contraction coupling. Great Dane dogs with DCM demonstrate abnormal calstabin2 and triadin expression. These changes likely affect Ca2+ flux within cardiac cells and may contribute to the pathophysiology of disease. Microarray-based analysis identifies calstabin2, triadin, and RyR2 function as targets of future study.

  7. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  8. Deregulation of the Protocadherin Gene FAT1 Alters Muscle Shapes: Implications for the Pathogenesis of Facioscapulohumeral Dystrophy

    PubMed Central

    Caruso, Nathalie; Herberth, Balàzs; Bartoli, Marc; Puppo, Francesca; Dumonceaux, Julie; Zimmermann, Angela; Denadai, Simon; Lebossé, Marie; Roche, Stephane; Geng, Linda; Magdinier, Frederique; Attarian, Shahram; Bernard, Rafaelle; Maina, Flavio; Levy, Nicolas; Helmbacher, Françoise

    2013-01-01

    Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD. PMID:23785297

  9. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  10. Pathophysiology of keratinization

    PubMed Central

    Deo, Priya Nimish; Deshmukh, Revati

    2018-01-01

    Cytoskeleton of a cell is made up of microfilaments, microtubules and intermediate filaments. Keratins are diverse proteins. These intermediate filaments maintain the structural integrity of the keratinocytes. The word keratin covers these intermediate filament-forming proteins within the keratinocytes. They are expressed in a specific pattern and according to the stage of cellular differentiation. They always occur in pairs. Mutations in the genes which regulate the expression of keratin proteins are associated with a number of disorders which show defects in both skin and mucosa. In addition, there are a number of disorders which are seen because of abnormal keratinization. These keratins and keratin-associated proteins have become important markers in diagnostic pathology. This review article discusses the classification, structure, functions, the stains used for the demonstration of keratin and associated pathology. The review describes the physiology of keratinization, pathology behind abnormal keratin formation and various keratin disorders. PMID:29731562

  11. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaak, Roel GW; Hoadley, Katherine A; Purdom, Elizabeth

    The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefitmore » in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.« less

  12. Is screening for abnormal ECG patterns justified in long-term follow-up of childhood cancer survivors treated with anthracyclines?

    PubMed

    Pourier, Milanthy S; Mavinkurve-Groothuis, Annelies M C; Loonen, Jacqueline; Bökkerink, Jos P M; Roeleveld, Nel; Beer, Gil; Bellersen, Louise; Kapusta, Livia

    2017-03-01

    ECG and echocardiography are noninvasive screening tools to detect subclinical cardiotoxicity in childhood cancer survivors (CCSs). Our aims were as follows: (1) assess the prevalence of abnormal ECG patterns, (2) determine the agreement between abnormal ECG patterns and echocardiographic abnormalities; and (3) determine whether ECG screening for subclinical cardiotoxicity in CCSs is justified. We retrospectively studied ECG and echocardiography in asymptomatic CCSs more than 5 years after anthracycline treatment. Exclusion criteria were abnormal ECG and/or echocardiogram at the start of therapy, incomplete follow-up data, clinical heart failure, cardiac medication, and congenital heart disease. ECG abnormalities were classified using the Minnesota Code. Level of agreement between ECG and echocardiography was calculated with Cohen kappa. We included 340 survivors with a mean follow-up of 14.5 years (range 5-32). ECG was abnormal in 73 survivors (21.5%), with ventricular conduction disorders, sinus bradycardia, and high-amplitude R waves being most common. Prolonged QTc (>0.45 msec) was found in two survivors, both with a cumulative anthracycline dose of 300 mg/m 2 or higher. Echocardiography showed abnormalities in 44 survivors (12.9%), mostly mild valvular abnormalities. The level of agreement between ECG and echocardiography was low (kappa 0.09). Male survivors more often had an abnormal ECG (corrected odds ratio: 3.00, 95% confidence interval: 1.68-5.37). Abnormal ECG patterns were present in 21% of asymptomatic long-term CCSs. Lack of agreement between abnormal ECG patterns and echocardiographic abnormalities may suggest that ECG is valuable in long-term follow-up of CCSs. However, it is not clear whether these abnormal ECG patterns will be clinically relevant. © 2016 Wiley Periodicals, Inc.

  13. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  14. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos.

    PubMed

    Tussellino, Margherita; Ronca, Raffaele; Carotenuto, Rosa; Pallotta, Maria M; Furia, Maria; Capriglione, Teresa

    2016-10-01

    Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  16. Identification and handling of artifactual gene expression profiles emerging in microarray hybridization experiments

    PubMed Central

    Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena

    2004-01-01

    Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086

  17. Short communication: expression and alternative splicing of POU1F1 pathway genes in preimplantation bovine embryos.

    PubMed

    Laporta, J; Driver, A; Khatib, H

    2011-08-01

    Early embryo loss is a major contributing factor to cow infertility and that 70 to 80% of this loss occurs between d 8 and 16 postfertilization. However, little is known about the molecular mechanisms and the nature of genes involved in normal and abnormal embryonic development. Moreover, information is limited on the contributions of the genomes of dams and of embryos to the development and survival of preimplantation embryos. We hypothesized that proper gene expression level in the developing embryo is essential for embryo survival and pregnancy success. As such, the characterization of expression profiles in early embryos could lead to a better understanding of the mechanisms involved in normal and abnormal embryo development. To test this hypothesis, 2 d-8 embryo populations (degenerate embryos and blastocysts) that differed in morphology and developmental status were investigated. Expression levels of POU1F1 pathway genes were estimated in 4 sets of biological replicate pools of degenerate embryos and blastocysts. The OPN and STAT5A genes were found to be upregulated in degenerate embryos compared with blastocysts, whereas STAT5B showed similar expression levels in both embryo groups. Analysis of splice variants of OPN and STAT5A revealed expression patterns different from the total expression values of these genes. As such, measuring expression of individual transcripts should be considered in gene expression studies. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Clusterin expression in elastofibroma dorsi.

    PubMed

    Aigelsreiter, Ariane; Pichler, Martin; Pixner, Thomas; Janig, Elke; Schuller, Monika; Lackner, Carolin; Scheipl, Susanne; Beham, Alfred; Regauer, Sigrid

    2013-05-01

    Elastofibroma dorsi is a benign soft tissue lesion composed of abnormal elastic fibers. Degenerated elastic fibers in skin and liver are associated with clusterin, an apoprotein that shares functional properties with small heat shock proteins. We evaluated the staining pattern and possible role of clusterin in elastofibroma dorsi. Twenty-one subcutaneous elastofibromas from the scapular region were evaluated with Elastica van Gieson and Orcein stains, immunohistochemically with antibodies to clusterin, smooth muscle actin, S-100, vimentin and CD34 and correlated with clinical data with respect to physical trauma. Clusterin correlated with the staining pattern of Elastica van Gieson and labelled abnormal broad coarse fibrillar and globular elastic fibers in all elastofibromas. Orcein stains additionally identified fine oxytalan fibers which were not stained by clusterin. Clusterin staining was observed only on the outside of the elastin fibers, while the cores of fibers and globules were unstained. 4/21 elastofibromas showed cellular nodules with a myxoid/collagenous stroma. The round to oval cells showed cytoplasmic staining with vimentin and clusterin; CD34 labelled mostly cell membranes. The cells lacked SMA and S-100 expression. The central areas of the nodules were devoid of elastic fibers, but the periphery contained coarse fibers and globules. 9/ 11 patients, for whom clinical data were available, reported trauma to the scapular region. Many investigated ED were associated with trauma, which supports a reactive/degenerative etiology of ED. The abnormal large elastic fibers in all ED were enveloped by clusterin. Clusterin deposition may protect elastic fibers from degradation and thus contribute indirectly to the tumor-like presentation of ED.

  19. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a varietymore » of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.« less

  20. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling

    PubMed Central

    Gonzales, Erin D.; Tanenhaus, Anne K.; Zhang, Jiabin; Chaffee, Ryan P.; Yin, Jerry C.P.

    2016-01-01

    Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention. PMID:26604145

  1. Epibulbar lipodermoids, preauricular appendages and polythelia in four generations: a new hereditary syndrome?

    PubMed

    Goldschmidt, Ernst; Jacobsen, Nina

    2010-06-01

    A new syndrome with abnormalities along the first branchial arch and the milk list is described in a family of four affected generations. The characteristics of the syndrome are epibulbar lipodermoids, preauricular appendages and polythelia. The expressivity varies but all affected have supernumerary nipples and preauricular manifestations while visible epibulbar lipodermoids do not seem obligatory. The syndrome has a typical dominant pattern of heredity.

  2. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy.

    PubMed

    Colussi, Claudia; Gurtner, Aymone; Rosati, Jessica; Illi, Barbara; Ragone, Gianluca; Piaggio, Giulia; Moggio, Maurizio; Lamperti, Costanza; D'Angelo, Grazia; Clementi, Emilio; Minetti, Giulia; Mozzetta, Chiara; Antonini, Annalisa; Capogrossi, Maurizio C; Puri, Pier Lorenzo; Gaetano, Carlo

    2009-07-01

    The present study provides evidence that abnormal patterns of global histone modification are present in the skeletal muscle nuclei of mdx mice and Duchenne muscular dystrophy (DMD) patients. A combination of specific histone H3 modifications, including Ser-10 phosphorylation, acetylation of Lys 9 and 14, and Lys 79 methylation, were found enriched in muscle biopsies from human patients affected by DMD and in late-term fetuses, early postnatal pups, or adult mdx mice. In this context, chromatin immunoprecipitation experiments showed an enrichment of these modifications at the loci of genes involved in proliferation or inflammation, suggesting a regulatory effect on gene expression. Remarkably, the reexpression of dystrophin induced by gentamicin treatment or the administration of nitric oxide (NO) donors reversed the abnormal pattern of H3 histone modifications. These findings suggest an unanticipated link between the dystrophin-activated NO signaling and the remodeling of chromatin. In this context, the regulation of class IIa histone deacetylases (HDACs) 4 and 5 was found altered as a consequence of the reduced NO-dependent protein phosphatase 2A activity, indicating that both NO and class IIa HDACs are important for satellite cell differentiation and gene expression in mdx mice. In conclusion, this work provides the first evidence of a role for NO as an epigenetic regulator in DMD.

  3. Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.

    PubMed

    Hen Chow, Elly Suk; Cheng, Shuk Han

    2003-05-01

    We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.

  4. Identification of abnormal accident patterns at intersections

    DOT National Transportation Integrated Search

    1999-08-01

    This report presents the findings and recommendations based on the Identification of Abnormal Accident Patterns at Intersections. This project used a statistically valid sampling method to determine whether a specific intersection has an abnormally h...

  5. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.

    PubMed

    Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael

    2014-01-18

    Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.

  6. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  7. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma

    PubMed Central

    Furge, Kyle A; Dykema, Karl; Petillo, David; Westphal, Michael; Zhang, Zhongfa; Kort, Eric J; Teh, Bin Tean

    2007-01-01

    Using high-throughput gene-expression profiling technology, we can now gain a better understanding of the complex biology that is taking place in cancer cells. This complexity is largely dictated by the abnormal genetic makeup of the cancer cells. This abnormal genetic makeup can have profound effects on cellular activities such as cell growth, cell survival and other regulatory processes. Based on the pattern of gene expression, or molecular signatures of the tumours, we can distinguish or subclassify different types of cancers according to their cell of origin, behaviour, and the way they respond to therapeutic agents and radiation. These approaches will lead to better molecular subclassification of tumours, the basis of personalized medicine. We have, to date, done whole-genome microarray gene-expression profiling on several hundreds of kidney tumours. We adopt a combined bioinformatic approach, based on an integrative analysis of the gene-expression data. These data are used to identify both cytogenetic abnormalities and molecular pathways that are deregulated in renal cell carcinoma (RCC). For example, we have identified the deregulation of the VHL-hypoxia pathway in clear-cell RCC, as previously known, and the c-Myc pathway in aggressive papillary RCC. Besides the more common clear-cell, papillary and chromophobe RCCs, we are currently characterizing the molecular signatures of rarer forms of renal neoplasia such as carcinoma of the collecting ducts, mixed epithelial and stromal tumours, chromosome Xp11 translocations associated with papillary RCC, renal medullary carcinoma, mucinous tubular and spindle-cell carcinoma, and a group of unclassified tumours. Continued development and improvement in the field of molecular profiling will better characterize cancer and provide more accurate diagnosis, prognosis and prediction of drug response. PMID:18542781

  8. Production of Wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka.

    PubMed

    Inohaya, Keiji; Takano, Yoshiro; Kudo, Akira

    2010-06-01

    The floor plate is a key organizer that controls the specification of neurons in the central nervous system. Here, we show a new role of the floor plate: segmental pattern formation of the vertebral column. Analysis of a spontaneous medaka mutant, fused centrum (fsc), which exhibits fused centra and the absence of the intervertebral ligaments, revealed that fsc encodes wnt4b, which was expressed exclusively in the floor plate. In fsc mutants, we found that wnt4b expression was completely lost in the floor plate and that abnormal conversion of the intervertebral ligament cells into osteoblasts appeared to cause a defect of the intervertebral ligaments. The establishment of the transgenic rescue lines and mosaic analyses allowed the conclusion to be drawn that production of wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column. Our findings provide a novel perspective on the mechanism of vertebrate development.

  9. Acetylated sialic acid residues and blood group antigens localise within the epithelium in microvillous atrophy indicating internal accumulation of the glycocalyx

    PubMed Central

    Phillips, A D; Brown, A; Hicks, S; Schüller, S; Murch, S H; Walker-Smith, J A; Swallow, D M

    2004-01-01

    Background: Microvillous atrophy, a disorder of intractable diarrhoea in infancy, is characterised by the intestinal epithelial cell abnormalities of abnormal accumulation of periodic acid-Schiff (PAS) positive secretory granules within the apical cytoplasm and the presence of microvillous inclusions. The identity of the PAS positive material is not known, and the aim of this paper was to further investigate its composition. Methods: Formaldehyde fixed sections were stained with alcian blue/PAS to identify the acidic or neutral nature of the material, phenylhydrazine blocking was employed to stain specifically for sialic acid, and saponification determined the presence of sialic acid acetylation. The specificity of sialic acid staining was tested by digestion with mild sulphuric acid. Expression of blood group related antigens was tested immunochemically. Results: Alcian blue/PAS staining identified a closely apposed layer of acidic material on the otherwise neutral (PAS positive) brush border in controls. In microvillous atrophy, a triple layer was seen with an outer acidic layer, an unstained brush border region, and accumulation within the epithelium of a neutral glycosubstance that contained acetylated sialic acid. Blood group antigens were detected on the brush border, in mucus, and within goblet cells in controls. In microvillous atrophy they were additionally expressed within the apical cytoplasm of epithelial cells mirroring the PAS abnormality. Immuno electron microscopy localised expression to secretory granules. Conclusions: A neutral, blood group antigen positive, glycosubstance that contains acetylated sialic acid accumulates in the epithelium in microvillous atrophy. Previous studies have demonstrated that the direct and indirect constitutive pathways are intact in this disorder and it is speculated that the abnormal staining pattern reflects accumulation of glycocalyx related material. PMID:15542511

  10. AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes.

    PubMed

    Thrash, Barry R; Menges, Craig W; Pierce, Robert H; McCance, Dennis J

    2006-04-28

    Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.

  11. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  12. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior

    PubMed Central

    Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K.; Matteson, Paul G.; Silverman, Jill; Crawley, Jacqueline N.; Millonig, James H.; DiCicco-Bloom, Emanuel

    2015-01-01

    Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40–75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5–15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders. PMID:26220976

  14. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    NASA Astrophysics Data System (ADS)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  15. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    PubMed

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-14

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  16. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    PubMed Central

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-01-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276

  17. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia

    PubMed Central

    Volpe, MaryAnn Vitoria; Wang, Karen Ting Wai; Nielsen, Heber Carl; Chinoy, Mala Romeshchandra

    2009-01-01

    Background Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 proteins compared to normal lung development. Methods Temporal, spatial and cellular Hoxa5, Hoxb4 and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, 19 fetuses and neonates using western blot and immunohistochemistry. Results Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 isoforms changed with development and further in NT-PH lungs. Compared to normal lungs, Gd19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. Conclusions Unique spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition. PMID:18553509

  18. COLLAPSED ABNORMAL POLLEN1 Gene Encoding the Arabinokinase-Like Protein Is Involved in Pollen Development in Rice1[C][W][OA

    PubMed Central

    Ueda, Kenji; Yoshimura, Fumiaki; Miyao, Akio; Hirochika, Hirohiko; Nonomura, Ken-Ichi; Wabiko, Hiroetsu

    2013-01-01

    We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants. PMID:23629836

  19. Expression variations of connective tissue growth factor in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease

    PubMed Central

    Zhou, Si-jing; Li, Min; Zeng, Da-xiong; Zhu, Zhong-ming; Hu, Xian-Wei; Li, Yong-huai; Wang, Ran; Sun, Geng-yun

    2015-01-01

    Cigarette smoking contributes to the development of pulmonary hypertension (PH) complicated with chronic obstructive pulmonary disease (COPD), and the pulmonary vascular remodeling, the structural basis of PH, could be attributed to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs).In this study, morphometrical analysis showed that the pulmonary vessel wall thickness in smoker group and COPD group was significantly greater than in nonsmokers. In addition, we determined the expression patterns of connective tissue growth factor (CTGF) and cyclin D1 in PASMCs harvested from smokers with normal lung function or mild to moderate COPD, finding that the expression levels of CTGF and cyclin D1 were significantly increased in smoker group and COPD group. In vitro experiment showed that the expression of CTGF, cyclin D1 and E2F were significantly increased in human PASMCs (HPASMCs) treated with 2% cigarette smoke extract (CSE), and two CTGF siRNAs with different mRNA hits successfully attenuated the upregulated cyclin D1 and E2F, and significantly restored the CSE-induced proliferation of HPASMCs by causing cell cycle arrest in G0. These findings suggest that CTGF may contribute to the pathogenesis of abnormal proliferation of HPASMCs by promoting the expression of its downstream effectors in smokers with or without COPD. PMID:25708588

  20. Clustering of Synoptic Pattern over the Korean Peninsula from Meteorological Models

    NASA Astrophysics Data System (ADS)

    Kim, Jinah; Heo, Kiyoung; Choi, Jungwoon; Jung, Sanghoon

    2017-04-01

    Numerical modeling data on meteorological and ocean science is one of example of big geographic data sources. The properties of the data including the volume, variety, and dynamic aspects pose new challenges for geographic visualization, and visual geoanalytics using big data analysis using machine learning method. A combination of algorithmic and visual approaches that make sense of large volumes of various types of spatiotemporal data are required to gain knowledge about complex phenomena. In the East coast of Korea, it is suffering from property damages and human causalities due to abnormal high waves (swell-like high-height waves). It is known to be caused by local meteorological conditions on the East Sea of Korean Peninsula in previous research and they proposed three kinds of pressure patterns that generate abnormal high waves. However, they cannot describe all kinds of pressure patterns that generate abnormal high waves. In our study, we propose unsupervised machine learning method for pattern clustering and applied it to classify a pattern which has occurred abnormal high waves using numerical meteorological model's reanalysis data from 2000 to 2015 and past historical records of accidents by abnormal high waves. About 25,000 patterns of total spatial distribution of sea surface pressure are clustered into 30 patterns and they are classified into seasonal sea level pressure patterns based on meteorological characteristics of Korean peninsula. Moreover, in order to determine the representative patterns which occurs abnormal high waves, we classified it again using historical accidents cases among the winter season pressure patterns. In this work, we clustered synoptic pattern over the Korean Peninsula in meteorological modeling reanalysis data and we could understand a seasonal variation through identifying the occurrence of clustered synoptic pattern. For the future work, we have to identify the relationship of wave modeling data for better understanding of abnormal high waves and we will develop pattern decision system to predict abnormal high waves in advances. This research was a part of the project titled "Development of Korea Operational Oceanographic System (KOOS), Phase 2" and "Investigation of Large Swell Waves and Rip currents and Development of The Disaster Response System," funded by the Ministry of Oceans & Fisheries Korea (Grant PM59691 and PM59240).

  1. Brugada Syndrome

    MedlinePlus

    ... A telltale abnormality — called a type 1 Brugada ECG pattern — is detected by an electrocardiogram (ECG) test. Brugada syndrome is much more common in ... syndrome is an abnormal pattern on an electrocardiogram (ECG) called a type 1 Brugada ECG pattern. You ...

  2. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight.

    PubMed

    Perron, Isaac J; Keenan, Brendan T; Chellappa, Karthikeyani; Lahens, Nicholas F; Yohn, Nicole L; Shockley, Keith R; Pack, Allan I; Veasey, Sigrid C

    2018-01-01

    Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.

  3. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex

    PubMed Central

    Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.

    2016-01-01

    Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093

  4. Abnormal Uterine Bleeding Is Associated With Increased BMP7 Expression in Human Endometrium.

    PubMed

    Richards, Elliott G; El-Nashar, Sherif A; Schoolmeester, John K; Keeney, Gary L; Mariani, Andrea; Hopkins, Matthew R; Dowdy, Sean C; Daftary, Gaurang S; Famuyide, Abimbola O

    2017-05-01

    Abnormal uterine bleeding (AUB), a common health concern of women, is a heterogeneous clinical entity that is traditionally categorized into organic and nonorganic causes. Despite varied pharmacologic treatments, few offer sustained efficacy, as most are empiric, unfocused, and do not directly address underlying dysregulated molecular mechanisms. Characterization of such molecular derangements affords the opportunity to develop and use novel, more successful treatments for AUB. Given its implication in other organ systems, we hypothesized that bone morphogenetic protein (BMP) expression is altered in patients with AUB and hence comprehensively investigated dysregulation of BMP signaling pathways by systematically screening 489 samples from 365 patients for differences in the expression of BMP2, 4, 6, and 7 ligands, BMPR1A and B receptors, and downstream SMAD4, 6, and 7 proteins. Expression analysis was correlated clinically with data abstracted from medical records, including bleeding history, age at procedure, ethnicity, body mass index, hormone treatment, and histological diagnosis of fibroids, polyps, adenomyosis, hyperplasia, and cancer. Expression of BMP7 ligand was significantly increased in patients with AUB (H-score: 18.0 vs 26.7; P < .0001). Patients reporting heavy menstrual bleeding (menorrhagia) as their specific AUB pattern demonstrated significantly higher BMP7 expression. Significantly, no differences in the expression of any other BMP ligands, receptors, or SMAD proteins were observed in this large patient cohort. However, expression of BMPR1A, BMPR1B, and SMAD4 was significantly decreased in cancer compared to benign samples. Our study demonstrates that BMP7 is a promising target for future investigation and pharmacologic treatment of AUB.

  5. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  6. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas.

    PubMed

    Manku, G; Hueso, A; Brimo, F; Chan, P; Gonzalez-Peramato, P; Jabado, N; Gayden, T; Bourgey, M; Riazalhosseini, Y; Culty, M

    2016-01-01

    Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer. © 2015 American Society of Andrology and European Academy of Andrology.

  7. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    PubMed

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia.

    PubMed

    Stock, W; Tsai, T; Golden, C; Rankin, C; Sher, D; Slovak, M L; Pallavicini, M G; Radich, J P; Boldt, D H

    2000-04-01

    To test the hypothesis that cell cycle regulatory gene abnormalities are determinants of clinical outcome in adult acute lymphoblastic leukemia (ALL), we screened lymphoblasts from patients on a Southwest Oncology Group protocol for abnormalities of the genes, retinoblastoma (Rb), p53, p15(INK4B), and p16(INK4A). Aberrant expression occurred in 33 (85%) patients in the following frequencies: Rb, 51%; p16(INK4A), 41%; p53, 26%. Thirteen patients (33%) had abnormalities in 2 or more genes. Outcomes were compared in patients with 0 to 1 abnormality versus patients with multiple abnormalities. The 2 groups did not differ in a large number of clinical and laboratory characteristics. The CR rates for patients with 0 to 1 and multiple abnormalities were similar (69% and 54%, respectively). Patients with 0 to 1 abnormality had a median survival time of 25 months (n = 26; 95% CI, 13-46 months) versus 8 months (n = 13; 95% CI, 4-12 months) for those with multiple abnormalities (P <.01). Stem cells (CD34+lin-) were isolated from adult ALL bone marrows and tested for p16(INK4A) expression by immunocytochemistry. In 3 of 5 patients lymphoblasts and sorted stem cells lacked p16(INK4A) expression. In 2 other patients only 50% of sorted stem cells expressed p16(INK4A). By contrast, p16 expression was present in the CD34+ lin- compartment in 95% (median) of 9 patients whose lymphoblasts expressed p16(INK4A). Therefore, cell cycle regulatory gene abnormalities are frequently present in adult ALL lymphoblasts, and they may be important determinants of disease outcome. The presence of these abnormalities in the stem compartment suggests that they contribute to leukemogenesis. Eradication of the stem cell subset harboring these abnormalities may be important to achieve cure.

  9. Role of p53 in cdk Inhibitor VMY-1-103-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2012-09-01

    trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011 Jan 4;121(1):148- 60...subclassified the tumors based on gene expression patterns and chromosomal abnormalities.4-6 Dysregulation of Hedgehog (Hh) signaling, defined as the c3...Eberhart CG. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 2007; 170:347-55; PMID:17200206; DOI:10.2353/ajpath

  10. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis.

    PubMed Central

    Lee, C. S.; Montebello, J.; Georgiou, T.; Rode, J.

    1994-01-01

    Changes in the basement membrane are present in various neoplastic conditions such as neurofibrosarcoma, cervical carcinoma, colorectal cancers and hepatoblastoma. This study examines the expression of type IV collagen in the basement membrane, using an immunohistochemical method, in the normal pancreas (n = 10), chronic pancreatitis (n = 15) and pancreatic adenocarcinoma (n = 30). The formalin fixed, paraffin embedded tissue was sectioned and pretreated with protease prior to immunostaining for type IV collagen. There was a statistically significant difference in type IV collagen expression between pancreatic carcinoma and chronic pancreatitis (P = 0.0001; chi 2 test with continuity correction). In pancreatic adenocarcinoma, type IV collagen distribution in the basement membrane was discontinuous and irregular or absent around individual or groups of neoplastic cells (n = 30). Most cases of chronic pancreatitis showed continuous pattern of basement membrane type IV collagen around residual ducts (n = 10). In the normal pancreas, only one of the ten cases showed discontinuous basement membrane around pancreatic ducts, while in the rest of the cases, the pattern was continuous. This study suggests that there is abnormal distribution of type IV collagen in the basement membrane in pancreatic carcinoma, which may be related to either abnormal deposition or degradation of the collagen. Immunostaining for type IV collagen may be of some diagnostic use for distinguishing pancreatic adenocarcinoma from problematic cases of chronic pancreatitis. Images Figure 1 Figure 2 Figure 3 PMID:8199008

  11. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  12. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle.

    PubMed

    Dutton, Kirsten; Abbas, Leila; Spencer, Joanne; Brannon, Claire; Mowbray, Catriona; Nikaido, Masataka; Kelsh, Robert N; Whitfield, Tanya T

    2009-01-01

    In humans, mutations in the SOX10 gene are a cause of the auditory-pigmentary disorder Waardenburg syndrome type IV (WS4) and related variants. SOX10 encodes an Sry-related HMG box protein essential for the development of the neural crest; deafness in WS4 and other Waardenburg syndromes is usually attributed to loss of neural-crest-derived melanocytes in the stria vascularis of the cochlea. However, SOX10 is strongly expressed in the developing otic vesicle and so direct roles for SOX10 in the otic epithelium might also be important. Here, we examine the otic phenotype of zebrafish sox10 mutants, a model for WS4. As a cochlea is not present in the fish ear, the severe otic phenotype in these mutants cannot be attributed to effects on this tissue. In zebrafish sox10 mutants, we see abnormalities in all otic placodal derivatives. Gene expression studies indicate deregulated expression of several otic genes, including fgf8, in sox10 mutants. Using a combination of mutant and morphant data, we show that the three sox genes belonging to group E (sox9a, sox9b and sox10) provide a link between otic induction pathways and subsequent otic patterning: they act redundantly to maintain sox10 expression throughout otic tissue and to restrict fgf8 expression to anterior macula regions. Single-cell labelling experiments indicate a small and transient neural crest contribution to the zebrafish ear during normal development, but this is unlikely to account for the strong defects seen in the sox10 mutant. We discuss the implication that the deafness in WS4 patients with SOX10 mutations might reflect a haploinsufficiency for SOX10 in the otic epithelium, resulting in patterning and functional abnormalities in the inner ear.

  13. Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research

    Cancer.gov

    Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a portion of the gene encoding nucleoporin 98 (NUP98)—one of about 50 proteins comprising the nuclear pore complex through which proteins are shuttled into and out of the nucleus—fuses with another gene, has been shown to result in improper histone modifications. These abnormalities alter the gene expression patterns of certain types of hematopoietic, or blood-forming, stem cells, resulting primarily in overexpression of the Hoxa7, Hoxa9,and Hoxa10 genes. NUP98 chromosomal translocations have been associated with many types of leukemia, including acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid leukemia in blast crisis (CML-bc), and myelodysplastic syndrome (MDS).

  14. Blood flow patterns underlie developmental heart defects

    PubMed Central

    Midgett, Madeline; Thornburg, Kent

    2017-01-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. PMID:28062416

  15. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus.

    PubMed

    Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming

    2018-03-01

    Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.

  16. Clausa, a Tomato Mutant with a Wide Range of Phenotypic Perturbations, Displays a Cell Type-Dependent Expression of the Homeobox Gene LeT6/TKn21

    PubMed Central

    Avivi, Yigal; Lev-Yadun, Simcha; Morozova, Nadya; Libs, Laurence; Williams, Leor; Zhao, Jing; Varghese, George; Grafi, Gideon

    2000-01-01

    Class I knox genes play an important role in shoot meristem function and are thus involved in the ordered development of stems, leaves, and reproductive organs. To elucidate the mechanism underlying the expression pattern of these homeobox genes, we studied a spontaneous tomato (Lycopersicon esculentum) mutant that phenotypically resembles, though is more extreme than, transgenic plants misexpressing class I knox genes. This mutant was found to carry a recessive allele, denoted clausa:shootyleaf (clau:shl)—a newly identified allele of clausa. Mutant plants exhibited abnormal leaf and flower morphology, epiphyllus inflorescences, fusion of organs, calyx asymmetry, and navel-like fruits. Analysis by scanning electron microscopy revealed that such fruits carried ectopic ovules, various vegetative primordia, as well as “forests” of stalked glandular trichomes. In situ RNA hybridization showed a peculiar expression pattern of the class I knox gene LeT6/TKn2; expression was restricted to the vascular system and palisade layer of mature leaves and to the inner part of ovules integuments. We conclude that CLAUSA regulates various aspects of tomato plant development, at least partly, by rendering the LeT6/TKn2 gene silent in specific tissues during development. Considering the expression pattern of LeT6/TKn2 in the clausa mutant, we suggest that the control over a given homeobox gene is maintained by several different regulatory mechanisms, in a cell type-dependent manner. PMID:11027705

  17. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  18. Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants

    PubMed Central

    Vitelli, Francesca; Zhang, Zhen; Huynh, Tuong; Sobotka, Angela; Mupo, Annalisa; Baldini, Antonio

    2007-01-01

    Fgf8 and Tbx1 have been shown to interact in patterning the aortic arch, and both genes are required in formation and growth of the outflow tract of the heart. However, the nature of the interaction of the two genes is unclear. We have utilized a novel Tbx1Fgf8 allele which drives Fgf8 expression in Tbx1-positive cells and an inducible Cre-LoxP recombination system to address the role of Fgf8 in Tbx1 positive cells in modulating cardiovascular development. Results support a requirement of Fgf8 in Tbx1 expressing cells to finely control patterning of the aortic arch and great arteries specifically during the pharyngeal arch artery remodeling process and indicate that the endoderm is the most likely site of this interaction. Furthermore, our data suggest that Fgf8 and Tbx1 play independent roles in regulating outflow tract development. This finding is clinically relevant since TBX1 is the candidate for DGS/VCFS, characterized clinically by variable expressivity and reduced penetrance of cardiovascular defects; Fgf8 gene variants may provide molecular clues to this variability. PMID:16696966

  19. Viscous Energy Loss in the Presence of Abnormal Aortic Flow

    PubMed Central

    Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R. O.; Carr, J.; Collins, J.; Malaisrie, C.; Markl, M.

    2014-01-01

    Purpose To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses, and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Methods 4D flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n=12, age=37±10), patients with aortic dilation (n=16, age=52±8), and patients with aortic valve stenosis matched for age and aortic size (n=14, age=46±15), using a relationship between the 3D velocity field and viscous energy dissipation. Results Viscous energy loss was significantly elevated in the thoracic aorta for patients with dilated aorta (3.6±1.3 mW, p=0.024) and patients with aortic stenosis (14.3±8.2 mW, p<0.001) compared to healthy volunteers (2.3±0.9 mW). The same pattern of significant differences were seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2±1.1 mW, p=0.021) and patients with aortic stenosis (10.9±6.8 mW, p<0.001) were elevated compared to healthy volunteers (1.2±0.6 mW). Conclusion This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. PMID:24122967

  20. Adenomyosis and 'endometrial-subendometrial myometrium unit disruption disease' are two different entities.

    PubMed

    Tocci, Angelo; Greco, Ermanno; Ubaldi, Filippo Maria

    2008-08-01

    The diagnosis of adenomyosis is feasible on pathological specimen examination, while it is unreliable on clinical findings, biopsy, hysteroscopy, sonohysterography, and routine ultrasound or magnetic resonance imaging. Several patterns of 'abnormality' described on imaging have been linked to adenomyosis, but the correlation is weak and the diagnostic accuracy is low outside of a research context. Nevertheless, thickening or abnormality of the subendometrial myometrium, the outer part of the 'endometrial-subendometrial myometrium unit' (thought to be important in human fertility) has been repeatedly documented on imaging, called 'adenomyosis' and linked to infertility. This paper discusses the value of the physiological endometrial-subendometrial myometrium unit in human fertility, reviews the current criteria for its imaging, and reports on its relationship to fertility. It is proposed that endometrial-subendometrial myometrium unit disruption disease is considered as a new entity (distinguished from adenomyosis), the diagnosis of which is feasible and straightforward on imaging and expressed mainly by pathological thickening or abnormality of the subendometrial myometrium (myometrial halo or junctional zone). The study also reports on the influence of abnormal thickening or disruption on human fertility and outcome of assisted reproduction techniques, and demonstrates that this new entity is epidemiologically different from adenomyosis.

  1. Intact anger recognition in depression despite aberrant visual facial information usage.

    PubMed

    Clark, Cameron M; Chiu, Carina G; Diaz, Ruth L; Goghari, Vina M

    2014-08-01

    Previous literature has indicated abnormalities in facial emotion recognition abilities, as well as deficits in basic visual processes in major depression. However, the literature is unclear on a number of important factors including whether or not these abnormalities represent deficient or enhanced emotion recognition abilities compared to control populations, and the degree to which basic visual deficits might impact this process. The present study investigated emotion recognition abilities for angry versus neutral facial expressions in a sample of undergraduate students with Beck Depression Inventory-II (BDI-II) scores indicative of moderate depression (i.e., ≥20), compared to matched low-BDI-II score (i.e., ≤2) controls via the Bubbles Facial Emotion Perception Task. Results indicated unimpaired behavioural performance in discriminating angry from neutral expressions in the high depressive symptoms group relative to the minimal depressive symptoms group, despite evidence of an abnormal pattern of visual facial information usage. The generalizability of the current findings is limited by the highly structured nature of the facial emotion recognition task used, as well as the use of an analog sample undergraduates scoring high in self-rated symptoms of depression rather than a clinical sample. Our findings suggest that basic visual processes are involved in emotion recognition abnormalities in depression, demonstrating consistency with the emotion recognition literature in other psychopathologies (e.g., schizophrenia, autism, social anxiety). Future research should seek to replicate these findings in clinical populations with major depression, and assess the association between aberrant face gaze behaviours and symptom severity and social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Tomato Flower Abnormalities Induced by Low Temperatures Are Associated with Changes of Expression of MADS-Box Genes1

    PubMed Central

    Lozano, Rafael; Angosto, Trinidad; Gómez, Pedro; Payán, Carmen; Capel, Juan; Huijser, Peter; Salinas, Julio; Martínez-Zapater, José M.

    1998-01-01

    Flower and fruit development in tomato (Lycopersicon esculentum Mill.) were severely affected when plants were grown at low temperatures, displaying homeotic and meristic transformations and alterations in the fusion pattern of the organs. Most of these homeotic transformations modified the identity of stamens and carpels, giving rise to intermediate organs. Complete homeotic transformations were rarely found and always affected organs of the reproductive whorls. Meristic transformations were also commonly observed in the reproductive whorls, which developed with an excessive number of organs. Scanning electron microscopy revealed that meristic transformations take place very early in the development of the flower and are related to a significant increase in the floral meristem size. However, homeotic transformations should occur later during the development of the organ primordia. Steady-state levels of transcripts corresponding to tomato MADS-box genes TM4, TM5, TM6, and TAG1 were greatly increased by low temperatures and could be related to these flower abnormalities. Moreover, in situ hybridization analyses showed that low temperatures also altered the stage-specific expression of TM4. PMID:9576778

  3. Molecular hierarchy in neurons differentiated from mouse ES cells containing a single human chromosome 21.

    PubMed

    Wang, Chi Chiu; Kadota, Mitsutaka; Nishigaki, Ryuichi; Kazuki, Yasuhiro; Shirayoshi, Yasuaki; Rogers, Michael Scott; Gojobori, Takashi; Ikeo, Kazuho; Oshimura, Mitsuo

    2004-02-06

    Defects in neurogenesis and neuronal differentiation in the fetal brain of Down syndrome (DS) patients lead to the apparent neuropathological abnormalities and contribute to the phenotypic characters of mental retardation, and premature development of Alzheimer's disease, those being the most common phenotype in DS. In order to understand the molecular mechanism underlying the cause of phenotypic abnormalities in the DS brain, we have utilized an in vitro model of TT2F mouse embryonic stem cells containing a single human chromosome 21 (hChr21) to study neuron development and neuronal differentiation by microarray containing 15K developmentally expressed cDNAs. Defective neuronal differentiation in the presence of extra hChr21 manifested primarily the post-transcriptional and translational modification, such as Mrpl10, SNAPC3, Srprb, SF3a60 in the early neuronal stem cell stage, and Mrps18a, Eef1g, and Ubce8 in the late differentiated stage. Hierarchical clustering patterned specific expression of hChr21 gene dosage effects on neuron outgrowth, migration, and differentiation, such as Syngr2, Dncic2, Eif3sf, and Peg3.

  4. Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet.

    PubMed

    Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C

    2015-08-01

    An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Association between feeding difficulties and language delay in preterm infants using Bayley Scales of Infant Development-Third Edition.

    PubMed

    Adams-Chapman, Ira; Bann, Carla M; Vaucher, Yvonne E; Stoll, Barbara J

    2013-09-01

    To evaluate the relationship between abnormal feeding patterns and language performance on the Bayley Scales of Infant Development-Third Edition at 18-22 months adjusted age among a cohort of extremely premature infants. This is a descriptive analysis of 1477 preterm infants born ≤ 26 weeks gestation or enrolled in a clinical trial between January 1, 2006 and March 18, 2008 at a National Institute of Child Health and Human Development Neonatal Research Network center who completed the 18-month neurodevelopmental follow-up assessment. At 18-22 months adjusted age, a comprehensive neurodevelopmental evaluation was performed by certified examiners including the Receptive and Expressive Language Subscales of the Bayley Scales of Infant Development-Third Edition and a standardized adjusted age feeding behaviors and nutritional intake. Data were analyzed using bivariate and multilevel linear and logistic regression modeling. Abnormal feeding behaviors were reported in 193 (13%) of these infants at 18-22 months adjusted age. Abnormal feeding patterns, days of mechanical ventilation, hearing impairment, and Gross Motor Functional Classification System level ≥ 2 each independently predicted lower composite language scores. At 18 months adjusted age, premature infants with a history of feeding difficulties are more likely to have language delay. Neuromotor impairment and days of mechanical ventilation are both important risk factors associated with these outcomes. Copyright © 2013 Mosby, Inc. All rights reserved.

  6. Abolition of lemniscal barrellette patterning in Prrxl1 knockout mice: Effects upon ingestive behavior.

    PubMed

    Bakalar, Dana; Tamaiev, Jonathan; Zeigler, H Philip; Feinstein, Paul

    2015-01-01

    Ingestive behaviors in mice are dependent on orosensory cues transmitted via the trigeminal nerve, as confirmed by transection studies. However, these studies cannot differentiate between deficits caused by the loss of the lemniscal pathway vs. the parallel paralemniscal pathway. The paired-like homeodomain protein Prrxl1 is expressed widely in the brain and spinal cord, including the trigeminal system. A knockout of Prrxl1 abolishes somatotopic barrellette patterning in the lemniscal brainstem nucleus, but not in the parallel paralemniscal nucleus. Null animals are significantly smaller than littermates by postnatal day 5, but reach developmental landmarks at appropriate times, and survive to adulthood on liquid diet. A careful analysis of infant and adult ingestive behavior reveals subtle impairments in suckling, increases in time spent feeding and the duration of feeding bouts, feeding during inappropriate times of the day, and difficulties in the mechanics of feeding. During liquid diet feeding, null mice display abnormal behaviors including extensive use of the paws to move food into the mouth, submerging the snout in the diet, changes in licking, and also have difficulty consuming solid chow pellets. We suggest that our Prrxl1(-/-) animal is a valuable model system for examining the genetic assembly and functional role of trigeminal lemniscal circuits in the normal control of eating in mammals and for understanding feeding abnormalities in humans resulting from the abnormal development of these circuits.

  7. Remote reprogramming of hepatic circadian transcriptome by breast cancer.

    PubMed

    Hojo, Hiroaki; Enya, Sora; Arai, Miki; Suzuki, Yutaka; Nojiri, Takashi; Kangawa, Kenji; Koyama, Shinsuke; Kawaoka, Shinpei

    2017-05-23

    Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.

  8. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  9. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  10. Swing Boat: Inducing and Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer’s Disease

    PubMed Central

    Berlandi, Johannes; Lin, Fang-Ju; Ambrée, Oliver; Rieger, Dirk; Paulus, Werner; Jeibmann, Astrid

    2017-01-01

    Recent studies indicate that physical activity can slow down progression of neurodegeneration in humans. To date, automated ways to induce activity have been predominantly described in rodent models. To study the impact of activity on behavior and survival in adult Drosophila melanogaster, we aimed to develop a rotating tube device “swing boat” which is capable of monitoring activity and sleep patterns as well as survival rates of flies. For the purpose of a first application, we tested our device on a transgenic fly model of Alzheimer’s disease (AD). Activity of flies was recorded in a climate chamber using the Drosophila Activity Monitoring (DAM) System connected to data acquisition software. Locomotor activity was induced by a rotating tube device “swing boat” by repetitively tilting the tubes for 30 min per day. A non-exercising group of flies was used as control and activity and sleep patterns were obtained. The GAL4-/UAS system was used to drive pan-neuronal expression of human Aβ42 in flies. Immunohistochemical stainings for Aβ42 were performed on paraffin sections of adult fly brains. Daily rotation of the fly tubes evoked a pronounced peak of activity during the 30 min exercise period. Pan-neuronal expression of human Aβ42 in flies caused abnormalities in locomotor activity, reduction of life span and elevated sleep fragmentation in comparison to wild type flies. Furthermore, the formation of amyloid accumulations was observed in the adult fly brain. Gently induced activity over 12 days did not evoke prominent effects in wild type flies but resulted in prolongation of median survival time by 7 days (32.6%) in Aβ42-expressing flies. Additionally, restoration of abnormally decreased night time sleep (10%) and reduced sleep fragmentation (28%) were observed compared to non-exercising Aβ42-expressing flies. On a structural level no prominent effects regarding prevalence of amyloid aggregations and Aβ42 RNA expression were detected following activity induction. The rotating tube device successfully induced activity in flies shown by quantitative activity analysis. Our setup enabled quantitative analysis of activity and sleep patterns as well as of survival rates. Induced activity in a Drosophila model of Alzheimer’s disease improved survival and ameliorated sleep phenotypes. PMID:28912696

  11. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression.

    PubMed

    Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P

    2007-09-01

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

  12. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 2. Impacts of optic nerve head parameters

    NASA Astrophysics Data System (ADS)

    Baniasadi, Neda; Wang, Mengyu; Wang, Hui; Jin, Qingying; Elze, Tobias

    2017-12-01

    Clinicians use retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) as an adjunct to glaucoma diagnosis. Ametropia is accompanied by changes to the optic nerve head (ONH), which may affect how OCT machines mark RNFLT measurements as abnormal. These changes in abnormality patterns may bias glaucoma diagnosis. Here, we investigate the relationship between OCT abnormality patterns and the following ONH-related and ametropia-associated parameters on 421 eyes of glaucoma patients: optic disc tilt and torsion, central retinal vessel trunk location (CRVTL), and nasal and temporal retinal curvature adjacent to ONH, quantified as nasal/temporal slopes of the inner limiting membrane. We applied multivariate logistic regression with abnormality marks as regressands to 40,401 locations of the peripapillary region and generated spatial maps of locations of false positive/negative abnormality marks independent of glaucoma severity. Effects of torsion and temporal slope were negligible. The effect of tilt could be explained by covariation with ametropia. For CRVTL/nasal slope, abnormality pattern shifts at 7.2%/23.5% of the peripapillary region were detected, respectively, independent of glaucoma severity and ametropia. Therefore, CRVTL and nasal curvature should be included in OCT RNFLT norms. Our spatial location maps may aid clinicians to improve diagnostic accuracy.

  13. Proteogenomic characterization of human colon and rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Wang, Jing; Wang, Xiaojing

    2014-09-18

    We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less

  14. Lack of genetic interaction between Tbx20 and Tbx3 in early mouse heart development.

    PubMed

    Gavrilov, Svetlana; Harvey, Richard P; Papaioannou, Virginia E

    2013-01-01

    Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay.

  15. Gene expression during skeletal development in three osteopetrotic rat mutations. Evidence for osteoblast abnormalities.

    PubMed

    Shalhoub, V; Jackson, M E; Lian, J B; Stein, G S; Marks, S C

    1991-05-25

    Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.

  16. Incomplete KLK7 Secretion and Upregulated LEKTI Expression Underlie Hyperkeratotic Stratum Corneum in Atopic Dermatitis.

    PubMed

    Igawa, Satomi; Kishibe, Mari; Minami-Hori, Masako; Honma, Masaru; Tsujimura, Hisashi; Ishikawa, Junko; Fujimura, Tsutomu; Murakami, Masamoto; Ishida-Yamamoto, Akemi

    2017-02-01

    Atopic dermatitis (AD) is a common inflammatory skin disorder. Chronic AD lesions present hyperkeratosis, indicating a disturbed desquamation process. KLK7 is a serine protease involved in the proteolysis of extracellular corneodesmosome components, including desmocollin 1 and corneodesmosin, which leads to desquamation. KLK7 is secreted by lamellar granules and upregulated in AD lesional skin. However, despite increased KLK7 protein levels, immunostaining and electron microscopy indicated numerous corneodesmosomes remaining in the uppermost layer of the stratum corneum from AD lesions. We aimed to clarify the discrepancy between KLK7 overexpression and retention of corneodesmosomes on AD corneocytes. Western blot analysis indicated abnormal corneodesmosin degradation patterns in stratum corneum from AD lesions. The KLK activity of tape-stripped corneocytes from AD lesions was not significantly elevated in in situ zymography, which was our new attempt to detect the protease activity more precisely than conventional assays. This ineffective KLK activation was associated with impaired KLK7 secretion from lamellar granules and increased expression of LEKTI in AD. Such imbalances in protease-protease inhibitor interactions could lead to abnormal proteolysis of corneodesmosomes and compact hyperkeratosis. Upregulated expression of LEKTI might be a compensatory mechanism to prevent further barrier dysfunction in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  18. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis.

    PubMed

    Honarpisheh, Mohsen; Köhler, Paulina; von Rauchhaupt, Ekaterina; Lech, Maciej

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.

  19. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis

    PubMed Central

    Köhler, Paulina; von Rauchhaupt, Ekaterina

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN. PMID:29854836

  20. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.

    PubMed

    Léger, Sophie; Brand, Michael

    2002-11-01

    The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning. Copyright 2002 Elsevier Science Ireland Ltd.

  1. The purple cauliflower arises from activation of a MYB transcription factor.

    PubMed

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  2. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    PubMed Central

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  3. Neonatal encephalopathy and the association to asphyxia in labor.

    PubMed

    Jonsson, Maria; Ågren, Johan; Nordén-Lindeberg, Solveig; Ohlin, Andreas; Hanson, Ulf

    2014-12-01

    In cases with moderate and severe neonatal encephalopathy, we aimed to determine the proportion that was attributable to asphyxia during labor and to investigate the association between cardiotocographic (CTG) patterns and neonatal outcome. In a study population of 71,189 births from 2 Swedish university hospitals, 80 cases of neonatal encephalopathy were identified. Cases were categorized by admission CTG patterns (normal or abnormal) and by the presence of asphyxia (cord pH, <7.00; base deficit, ≥12 mmol/L). Cases with normal admission CTG patterns and asphyxia at birth were considered to experience asphyxia related to labor. CTG patterns were assessed for the 2 hours preceding delivery. Admission CTG patterns were normal in 51 cases (64%) and abnormal in 29 cases (36%). The rate of cases attributable to asphyxia (ie, hypoxic ischemic encephalopathy) was 48 of 80 cases (60%), most of which evolved during labor (43/80 cases; 54%). Both severe neonatal encephalopathy and neonatal death were more frequent with an abnormal, rather than with a normal, admission CTG pattern (13 [45%] vs 11 [22%]; P = .03), and 6 [21%] vs 3 [6%]; P = .04), respectively. Comparison of cases with an abnormal and a normal admission CTG pattern also revealed more frequently observed decreased variability (12 [60%] and 8 [22%], respectively) and more late decelerations (8 [40%] and 1 [3%], respectively). Moderate and severe encephalopathy is attributable to asphyxia in 60% of cases, most of which evolve during labor. An abnormal admission CTG pattern indicates a poorer neonatal outcome and more often is associated with pathologic CTG patterns preceding delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggestingmore » that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.« less

  5. The importance of a normal breathing pattern for an effective abdominal-hollowing maneuver in healthy people: an experimental study.

    PubMed

    Ha, Sung-min; Kwon, Oh-yun; Kim, Su-jung; Choung, Sung-dae

    2014-02-01

    A normal breathing pattern while performing the abdominal-hollowing (AH) maneuver or spinal-stabilization exercise is essential for the success of rehabilitation programs and exercises. In previous studies, subjects were given standardized instructions to control the influence of respiration during the AH maneuver. However, the effect of breathing pattern on abdominal-muscle thickness during the AH maneuver has not been investigated. To compare abdominal-muscle thickness in subjects performing the AH maneuver under normal and abnormal breathing-pattern conditions and to investigate the effect of breathing pattern on the preferential contraction ratio (PCR) of the transverse abdominis. Comparative, repeated-measures experimental study. University research laboratory. 16 healthy subjects (8 male, 8 female) from a university population. A real-time ultrasound scanner was used to measure abdominal-muscle thickness during normal and abnormal breathing patterns. A paired t test was used to assess the effect of breathing pattern on abdominal-muscle thickness and PCR. Muscle thickness in the transverse abdominis and internal oblique muscles was significantly greater under the normal breathing pattern than under the abnormal pattern (P < .05). The PCR of the transverse abdominis was significantly higher under the normal breathing pattern compared with the abnormal pattern (P < .05). The results indicate that a normal breathing pattern is essential for performance of an effective AH maneuver. Thus, clinicians should ensure that patients adopt a normal breathing pattern before performing the AH maneuver and monitor transverse abdominis activation during the maneuver.

  6. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  7. Tei index correlates with tissue Doppler parameters and reflects neurohormonal activation in patients with an abnormal transmitral flow pattern.

    PubMed

    Greco, Stefania; Troisi, Federica; Brunetti, Natale Daniele; Di Biase, Matteo

    2009-10-01

    Tei index (TI) is a Doppler parameter which reflects combined systolic and diastolic function. We aimed to study the relationship between TI, both traditional and tissue Doppler imaging (TDI) echocardiographic parameters and neurohormonal profile in outpatients with diastolic dysfunction expressed by an abnormal transmitral flow pattern. A total of 67 consecutive outpatients with diastolic dysfunction (abnormal transmitral flow pattern) were studied; all patients underwent clinical evaluation, blood sampling for B-type natriuretic peptide (BNP) plasma assaying, echocardiography for the determination of left ventricular ejection fraction (LVEF), dP/dt, left atrium (LA) dimensions, longitudinal systolic (S) and diastolic wall velocities (E'and A'), TI measured with Doppler echocardiography, and mitral regurgitation (MR) quantified on a semicontinuous scale. TI values were significantly correlated with BNP levels (r = 0.33; P < 0.01), LVEF (r =-0.56; P < 0.001), dP/dt (r =-0.52; P < 0.01), S (r =-0.45; P < 0.001), E'(r =-0.36; P < 0.01), A'(r =-0.27; P < 0.05), LA volume (r = 0.35; P < 0.01), and MR (P for trend < 0.05). In a multivariate regression analysis, TI was an independent predictor of increased BNP levels (beta= 0.32; P < 0.05), even after correction for potential confounders. ROC analysis showed as values of TI >0.59 identified subjects with combined systolic and diastolic dysfunction with a sensitivity of 73.8% and a specificity of 71.4%. In outpatients with diastolic dysfunction, TI, an easy to perform parameter for global ventricular performance assessment, might be useful in identifying subjects with concomitant systolic impairment and neurohormonal activation.

  8. Mastocytosis: magnetic resonance imaging patterns of marrow disease.

    PubMed

    Avila, N A; Ling, A; Metcalfe, D D; Worobec, A S

    1998-03-01

    To report the bone marrow MRI findings of patients with mastocytosis and correlate them with clinical, pathologic, and radiographic features. Eighteen patients with mastocytosis had T1-weighted spin echo and short tau inversion recovery MRI of the pelvis at 0.5 T. In each patient the MR pattern of marrow disease was classified according to intensity and uniformity and was correlated with the clinical category of mastocytosis, bone marrow biopsy results, and radiographic findings. Two patients had normal MRI scans and normal bone marrow biopsies. One patient had a normal MRI scan and a marrow biopsy consistent with mastocytosis. Fifteen patients had abnormal MRI scans and abnormal marrow biopsies. There were several different MR patterns of marrow involvement; none was specifically associated with any given clinical category of mastocytosis. Fifteen of the 18 patients had radiographs of the pelvis; of those, 13 with abnormal MRI scans and abnormal marrow biopsies had the following radiographic findings: normal (nine); sclerosis (three); diffuse osteopenia (one). While radiographs are very insensitive for the detection of marrow abnormalities in mastocytosis, MRI is very sensitive and may display several different patterns of marrow involvement.

  9. Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations

    PubMed Central

    2011-01-01

    Background Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. Results We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. Conclusions We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent. PMID:21548920

  10. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    PubMed

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  11. DNA methyl transferases are differentially expressed in the human anterior eye segment.

    PubMed

    Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc

    2014-08-01

    DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia.

    PubMed

    Li, Wenliang; Kessler, Patricia; Williams, Bryan R G

    2005-01-13

    Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.

  13. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  14. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical

  16. Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.

    PubMed

    Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-06-01

    Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Converting cancer genes into killer genes.

    PubMed Central

    Da Costa, L T; Jen, J; He, T C; Chan, T A; Kinzler, K W; Vogelstein, B

    1996-01-01

    Over the past decade, it has become clear that tumorigenesis is driven by alterations in genes that control cell growth or cell death. Theoretically, the proteins encoded by these genes provide excellent targets for new therapeutic agents. Here, we describe a gene therapy approach to specifically kill tumor cells expressing such oncoproteins. In outline, the target oncoprotein binds to exogenously introduced gene products, resulting in transcriptional activation of a toxic gene. As an example, we show that this approach can be used to specifically kill cells overexpressing a mutant p53 gene in cell culture. The strategy may be generally applicable to neoplastic diseases in which the underlying patterns of genetic alterations or abnormal gene expression are known. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633039

  18. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping - Wooden Breast myopathies.

    PubMed

    Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta

    2016-12-01

    White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies. © 2016 Poultry Science Association Inc.

  19. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings.

    PubMed

    Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian

    2013-10-16

    Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination. © 2013 Elsevier B.V. All rights reserved.

  20. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon.

    PubMed

    Stenman, Jan; Yu, Ruth T; Evans, Ronald M; Campbell, Kenneth

    2003-03-01

    We have examined the role of Tlx, an orphan nuclear receptor, in dorsal-ventral patterning of the mouse telencephalon. Tlx is expressed broadly in the ventricular zone, with the exception of the dorsomedial and ventromedial regions. The expression spans the pallio-subpallial boundary, which separates the dorsal (i.e. pallium) and ventral (i.e. subpallium) telencephalon. Despite being expressed on both sides of the pallio-subpallial boundary, Tlx homozygous mutants display alterations in the development of this boundary. These alterations include a dorsal shift in the expression limits of certain genes that abut at the pallio-subpallial boundary as well as the abnormal formation of the radial glial palisade that normally marks this boundary. The Tlx mutant phenotype is similar to, but less severe than, that seen in Small eye (i.e. Pax6) mutants. Interestingly, removal of one allele of Pax6 on the homozygous Tlx mutant background significantly worsens the phenotype. Thus Tlx and Pax6 cooperate genetically to regulate the establishment of the pallio-subpallial boundary. The patterning defects in the Tlx mutant telencephalon result in a loss of region-specific gene expression in the ventral-most pallial region. This correlates well with the malformation of the lateral and basolateral amygdala in Tlx mutants, both of which have been suggested to derive from ventral portions of the pallium.

  1. A comparative analysis of gene-expression data of multiple cancer types.

    PubMed

    Xu, Kun; Cui, Juan; Olman, Victor; Yang, Qing; Puett, David; Xu, Ying

    2010-10-27

    A comparative study of public gene-expression data of seven types of cancers (breast, colon, kidney, lung, pancreatic, prostate and stomach cancers) was conducted with the aim of deriving marker genes, along with associated pathways, that are either common to multiple types of cancers or specific to individual cancers. The analysis results indicate that (a) each of the seven cancer types can be distinguished from its corresponding control tissue based on the expression patterns of a small number of genes, e.g., 2, 3 or 4; (b) the expression patterns of some genes can distinguish multiple cancer types from their corresponding control tissues, potentially serving as general markers for all or some groups of cancers; (c) the proteins encoded by some of these genes are predicted to be blood secretory, thus providing potential cancer markers in blood; (d) the numbers of differentially expressed genes across different cancer types in comparison with their control tissues correlate well with the five-year survival rates associated with the individual cancers; and (e) some metabolic and signaling pathways are abnormally activated or deactivated across all cancer types, while other pathways are more specific to certain cancers or groups of cancers. The novel findings of this study offer considerable insight into these seven cancer types and have the potential to provide exciting new directions for diagnostic and therapeutic development.

  2. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris

    PubMed Central

    Lin, Sue; Dong, Heng; Zhang, Fang; Qiu, Lin; Wang, Fangzhan; Cao, Jiashu; Huang, Li

    2014-01-01

    Background and Aims The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. Methods Real-time reverse transcription–PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. Key Results The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. Conclusions The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix. PMID:24489019

  3. Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family.

    PubMed

    Sólia-Nasser, L; de Aquino, S-N; Paranaíba, L-M R; Gomes, A; Dos-Santos-Neto, P; Coletta, R-D; Cardoso, A-F; Frota, A-C; Martelli-Júnior, H

    2016-05-01

    The aim of this study was to describe the pattern of inheritance and the clinical features in a large family with Waardenburg syndrome type I (WS1), detailing the dental abnormalities and screening for PAX3 mutations. To characterize the pattern of inheritance and clinical features, 29 family members were evaluated by dermatologic, ophthalmologic, otorhinolaryngologic and orofacial examination. Molecular analysis of the PAX3 gene was performed. The pedigree of the family,including the last four generations, was constructed and revealed non-consanguineous marriages. Out of 29 descendants, 16 family members showed features of WS1, with 9 members showing two major criteria indicative of WS1. Five patients showed white forelock and iris hypopigmentation, and four showed dystopia canthorum and iris hypopigmentation. Two patients had hearing loss. Dental abnormalities were identified in three family members, including dental agenesis, conical teeth and taurodontism. Sequencing analysis failed to identify mutations in the PAX3 gene. These results confirm that WS1 was transmitted in this family in an autosomal dominant pattern with variable expressivity and high penetrance. The presence of dental manifestations, especially tooth agenesis and conical teeth which resulted in considerable aesthetic impact on affected individuals was a major clinical feature. This article reveals the presence of well-defined dental changes associated with WS1 and tries to establish a possible association between these two entities showing a new spectrum of WS1.

  4. Aberrant patterns of visual facial information usage in schizophrenia.

    PubMed

    Clark, Cameron M; Gosselin, Frédéric; Goghari, Vina M

    2013-05-01

    Deficits in facial emotion perception have been linked to poorer functional outcome in schizophrenia. However, the relationship between abnormal emotion perception and functional outcome remains poorly understood. To better understand the nature of facial emotion perception deficits in schizophrenia, we used the Bubbles Facial Emotion Perception Task to identify differences in usage of visual facial information in schizophrenia patients (n = 20) and controls (n = 20), when differentiating between angry and neutral facial expressions. As hypothesized, schizophrenia patients required more facial information than controls to accurately differentiate between angry and neutral facial expressions, and they relied on different facial features and spatial frequencies to differentiate these facial expressions. Specifically, schizophrenia patients underutilized the eye regions, overutilized the nose and mouth regions, and virtually ignored information presented at the lowest levels of spatial frequency. In addition, a post hoc one-tailed t test revealed a positive relationship of moderate strength between the degree of divergence from "normal" visual facial information usage in the eye region and lower overall social functioning. These findings provide direct support for aberrant patterns of visual facial information usage in schizophrenia in differentiating between socially salient emotional states. © 2013 American Psychological Association

  5. Expression of a bacterial, phenylpropanoid-metabolizing enzyme in tobacco reveals essential roles of phenolic precursors in normal leaf development and growth.

    PubMed

    Merali, Zara; Mayer, Melinda J; Parker, Mary L; Michael, Anthony J; Smith, Andrew C; Waldron, Keith W

    2012-06-01

    Tobacco plants (Nicotiana tabacum cv XHFD 8) were genetically modified to express a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) enzyme which is active with intermediates of the phenylpropanoid pathway. We have previously shown that HCHL expression in tobacco stem resulted in various pleiotropic effects, indicative of a reduction in the carbon flux through the phenylpropanoid pathway, accompanied by an abnormal phenotype. Here, we report that in addition to the reduction in lignin and phenolic biosynthesis, HCHL expression also resulted in several gross morphological changes in poorly lignified tissue, such as abnormal mesophyll and palisade. The effect of HCHL expression was also noted in lignin-free single cells, with suspension cultures displaying an altered shape and different growth patterns. Poorly/non-lignified cell walls also exhibited a greater ease of alkaline extractability of simple phenolics and increased levels of incorporation of vanillin and vanillic acid. However, HCHL expression had no significant effect on the cell wall carbohydrate chemistry of these tissues. Evidence from this study suggests that changes in the transgenic lines result from a reduction in phenolic intermediates which have an essential role in maintaining structural integrity of low-lignin or lignin-deprived cell walls. These results emphasize the importance of the intermediates and products of phenylpropanoid pathway in modulating aspects of normal growth and development of tobacco. Analysis of these transgenic plants also shows the plasticity of the lignification process and reveals the potential to bioengineer plants with reduced phenolics (without deleterious effects) which could enhance the bioconversion of lignocellulose for industrial applications. Copyright © Physiologia Plantarum 2012.

  6. Epigenetic Therapeutics: A New Weapon in the War Against Cancer.

    PubMed

    Ahuja, Nita; Sharma, Anup R; Baylin, Stephen B

    2016-01-01

    The past 15 years have seen an explosion of discoveries related to the cellular regulation of phenotypes through epigenetic mechanisms. This regulation provides a software that packages DNA, without changing the primary base sequence, to establish heritable patterns of gene expression. In cancer, many aspects of the epigenome, controlled by DNA methylation, chromatin, and nucleosome positioning, are altered as one means by which tumor cells maintain abnormal states of self-renewal at the expense of normal maturation. Epigenetic and genetic abnormalities thus collaborate in cancer initiation and progression, as exemplified by frequent mutations in genes encoding proteins that control the epigenome. There is growing emphasis on using epigenetic therapies to reprogram neoplastic cells toward a normal state. Many agents targeting epigenetic regulation are under development and entering clinical trials. This review highlights the promise that epigenetic therapy, often in combination with other therapies, will become a potent tool for cancer management over the next decade.

  7. Berberine exposure triggers developmental effects on planarian regeneration

    PubMed Central

    Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata

    2014-01-01

    The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466

  8. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  9. The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom.

    PubMed

    Picard, Marion Anne-Lise; Cosseau, Céline; Mouahid, Gabriel; Duval, David; Grunau, Christoph; Toulza, Ève; Allienne, Jean-François; Boissier, Jérôme

    2015-07-01

    The Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes have been intensively studied because they represent major transcription factors in the pathways governing sex determination and differentiation. These genes have been identified in animal groups ranging from cnidarians to mammals, and some of the genes functionally studied. Here, we propose to analyze (i) the presence/absence of various Dmrt gene groups in the different taxa across the animal kingdom; (ii) the relative expression levels of the Dmrt genes in each sex; (iii) the specific spatial (by organ) and temporal (by developmental stage) variations in gene expression. This review considers non-mammalian animals at all levels of study (i.e. no particular importance is given to animal models), and using all types of sexual strategy (hermaphroditic or gonochoric) and means of sex determination (i.e. genetic or environmental). To conclude this global comparison, we offer an analysis of the DM domains conserved among the different DMRT proteins, and propose a general sex-specific pattern for each member of the Dmrt gene family. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings.

    PubMed

    Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T

    2015-06-01

    The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    PubMed

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  12. Abnormal Notochord Branching Is Associated with Foregut Malformations in the Adriamycin Treated Mouse Model

    PubMed Central

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities. PMID:22132119

  13. Expression profile of Lgi1 gene in mouse brain during development.

    PubMed

    Ribeiro, Patrícia A O; Sbragia, Lourenço; Gilioli, Rovilson; Langone, Francesco; Conte, Fábio F; Lopes-Cendes, Iscia

    2008-07-01

    Mutations in LGI1 were described in patients with autosomal dominant partial epilepsy with auditory features (ADPEAF), and recent clinical findings have implicated LGI1 in human brain development. However, the precise role of LGI1 in epileptogenesis remains largely unknown. The objective of this study was to determine the expression pattern of Lgi1 in mice brain during development and in adult animals. Real-time polymerase chain reaction (PCR) quantification and Western blot experiments showed a relative low expression during intrauterine stages, increasing until adulthood. In addition, we did not find significant differences between left and right hemispheres. The hippocampus presented higher levels of Lgi1 expression when compared to the neocortex and the cerebellum of adult animals; however, these results did not reach statistical significance. This study was the first to determine a specific profile of Lgi1 gene expression during central nervous system development, which suggests a possible inhibitory function in latter stages of development. In addition, we did not find differences in hemispheric expression that could explain the predominance of left-sided abnormalities in patients with ADPEAF.

  14. Impaired Integration of Emotional Faces and Affective Body Context in a Rare Case of Developmental Visual Agnosia

    PubMed Central

    Aviezer, Hillel; Hassin, Ran. R.; Bentin, Shlomo

    2011-01-01

    In the current study we examined the recognition of facial expressions embedded in emotionally expressive bodies in case LG, an individual with a rare form of developmental visual agnosia who suffers from severe prosopagnosia. Neuropsychological testing demonstrated that LG‘s agnosia is characterized by profoundly impaired visual integration. Unlike individuals with typical developmental prosopagnosia who display specific difficulties with face identity (but typically not expression) recognition, LG was also impaired at recognizing isolated facial expressions. By contrast, he successfully recognized the expressions portrayed by faceless emotional bodies handling affective paraphernalia. When presented with contextualized faces in emotional bodies his ability to detect the emotion expressed by a face did not improve even if it was embedded in an emotionally-congruent body context. Furthermore, in contrast to controls, LG displayed an abnormal pattern of contextual influence from emotionally-incongruent bodies. The results are interpreted in the context of a general integration deficit in developmental visual agnosia, suggesting that impaired integration may extend from the level of the face to the level of the full person. PMID:21482423

  15. Inactivation of Bmp4 from the Tbx1 Expression Domain Causes Abnormal Pharyngeal Arch Artery and Cardiac Outflow Tract Remodeling

    PubMed Central

    Nie, Xuguang; Brown, Christopher B.; Wang, Qin; Jiao, Kai

    2011-01-01

    Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells. PMID:21123999

  16. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.

  17. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  18. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  19. BIOPSY PROVEN MEDULLARY SPONGE KIDNEY: Clinical findings, histopathology, and role of osteogenesis in stone and plaque formation

    PubMed Central

    Evan, Andrew P.; Worcester, Elaine M.; Williams, James C.; Sommer, Andre J.; Lingeman, James E.; Phillips, Carrie L.; Coe, Fredric L.

    2015-01-01

    Medullary sponge kidney (MSK) is associated with recurrent stone formation, but the clinical phenotype is unclear because patients with other disorders may be incorrectly labeled MSK. We studied 12 patients with histologic findings pathognomonic of MSK. All patients had an endoscopically recognizable pattern of papillary malformation, which may be segmental or diffuse. Affected papillae are enlarged and billowy, due to markedly enlarged inner medullary collecting ducts (IMCD), which contain small, mobile ductal stones. Patients had frequent dilation of Bellini ducts, with occasional mineral plugs. Stones may form over white (Randall’s) plaque, but most renal pelvic stones are not attached, and have a similar morphology as ductal stones, which are a mixture of calcium oxalate and apatite. Patients had no abnormalities of urinary acidification or acid excretion; the most frequent metabolic abnormality was idiopathic hypercalciuria. Although both Runx2 and Osterix are expressed in papillae of MSK patients, no mineral deposition was seen at the sites of gene expression, arguing against a role of these genes in this process. Similar studies in idiopathic calcium stone formers showed no expression of these genes at sites of Randall’s plaque. The most likely mechanism for stone formation in MSK appears to be crystallization due to urinary stasis in dilated IMCD with subsequent passage of ductal stones into the renal pelvis where they may serve as nuclei for stone formation. PMID:25615853

  20. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    PubMed

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  1. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies Black-footed cat cloned embryos

    USGS Publications Warehouse

    Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.

    2012-01-01

    Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.

  2. Correlation of pulmonary function and usual interstitial pneumonia computed tomography patterns in idiopathic pulmonary fibrosis.

    PubMed

    Arcadu, Antonella; Byrne, Suzanne C; Pirina, Pietro; Hartman, Thomas E; Bartholmai, Brian J; Moua, Teng

    2017-08-01

    Little is known about presenting 'inconsistent' or 'possible' usual interstitial pneumonia (UIP) computed tomography (CT) patterns advancing to 'consistent' UIP as disease progresses in idiopathic pulmonary fibrosis (IPF). We hypothesized that if 'consistent' UIP represented more advanced disease, such a pattern on presentation should also correlate with more severe pulmonary function test (PFT) abnormalities. Consecutive IPF patients (2005-2013) diagnosed by international criteria with baseline PFT and CT were included. Presenting CTs were assessed by three expert radiologists for consensus UIP pattern ('consistent', 'possible', and 'inconsistent'). Approximation of individual and combined interstitial abnormalities was also performed with correlation of interstitial abnormalities and UIP CT pattern made with PFT findings and survival. Three-hundred and fifty patients (70% male) were included with a mean age of 68.3 years. Mean percent predicted forced vital capacity (FVC%) and diffusion capacity (DLCO%) was 64% and 45.5% respectively. Older age and male gender correlated more with 'consistent' UIP CT pattern. FVC% was not associated with any UIP pattern but did correlate with total volume of radiologist assessed interstitial abnormalities. DLCO% was lower in those with 'consistent' UIP pattern. A 'consistent' UIP CT pattern was also not independently predictive of survival after correction for age, gender, FVC%, and DLCO%. PFT findings appear to correlate with extent of radiologic disease but not specific morphologic patterns. Whether such UIP patterns represent different stages of disease severity or radiologic progression is not supported by coinciding pulmonary function decline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes

    PubMed Central

    Hwang, Hyonson; Bowen, Benjamin P.; Lefort, Natalie; Flynn, Charles R.; De Filippis, Elena A.; Roberts, Christine; Smoke, Christopher C.; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J.

    2010-01-01

    OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance. PMID:19833877

  4. Neuroacanthocytosis associated with a defect of the 4.1R membrane protein

    PubMed Central

    Orlacchio, Antonio; Calabresi, Paolo; Rum, Adriana; Tarzia, Anna; Salvati, Anna Maria; Kawarai, Toshitaka; Stefani, Alessandro; Pisani, Antonio; Bernardi, Giorgio; Cianciulli, Paolo; Caprari, Patrizia

    2007-01-01

    Background Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. Case presentation All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 ± 0.42) than in controls (4.41 ± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. Conclusion A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission. PMID:17298666

  5. d-myo-Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in Arabidopsis and Is Essential for Auxin-Regulated Embryogenesis[W][OA

    PubMed Central

    Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia

    2011-01-01

    In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066

  6. Results of Nailfold Capillaroscopy in Patients with Normal-Tension Glaucoma.

    PubMed

    Kosior-Jarecka, Ewa; Bartosińska, Joanna; Łukasik, Urszula; Wróbel-Dudzińska, Dominika; Krasowska, Dorota; Chodorowska, Grażyna; Żarnowski, Tomasz

    2018-06-01

    The aim of the study was to evaluate the results of nailfold videocapillaroscopic examination in patients with normal-tension glaucoma (NTG) in comparison to age-matched individuals without glaucoma and young healthy volunteers and to assess the relation between the results of this examination with clinical status in NTG group. The studied group consisted of 188 patients: 80 patients with NTG and 2 control groups (58 young healthy and 50 age-matched volunteers). The nailfold videocapillaroscopy (NVC) was performed in all participants. The results of every NVC were qualified as a normal or abnormal pattern. In the NTG group, ophthalmic examination was performed and medical history regarding glaucoma, chronic general disorders, and vascular risk factors was recorded. In the NTG group, an abnormal NVC pattern was more common than in young controls (p = 0.0008). Microbleedings were present more frequently in NTG patients (p = 0.0365). Enlargement of capillaries (p = 0.0006) and branching capillaries (p = 0.0221) were more frequent in the NTG group compared to age-matched controls. Maximal intraocular pressure was higher in NTG patients with abnormal NVC pattern than with normal NVC (p = 0.0000). Disc hemorrhages were more frequently observed in patients with abnormal NVC pattern (p = 0.0313). Presence of paracentral scotoma was associated with abnormal NVC pattern (p = 0.0054). Abnormalities in nailfold capillaroscopy are more frequent in NTG patients. The results of capillaroscopic examination differ in NTG patients according to the profile of ocular and general risk factor.

  7. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  8. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    PubMed

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  9. Kif3a Controls Murine Nephron Number Via GLI3 Repressor, Cell Survival, and Gene Expression in a Lineage-Specific Manner

    PubMed Central

    Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.

    2013-01-01

    The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375

  10. EphA2 and ephrin-A5 are not a receptor-ligand pair in the ocular lens.

    PubMed

    Cheng, Catherine; Fowler, Velia M; Gong, Xiaohua

    2017-09-01

    Eph-ephrin bidirectional signaling is essential for eye lens transparency in humans and mice. Our previous studies in mouse lenses demonstrate that ephrin-A5 is mainly expressed in the anterior epithelium, where it is required for maintaining the anterior epithelial monolayer. In contrast, EphA2 is localized in equatorial epithelial and fiber cells where it is essential for equatorial epithelial and fiber cell organization and hexagonal cell shape. Immunostaining of lens epithelial and fiber cells reveals that EphA2 and ephrin-A5 are also co-expressed in anterior fiber cell tips, equatorial epithelial cells and newly formed lens fibers, although they are not precisely colocalized. Due to this complex expression pattern and the promiscuous interactions between Eph receptors and ephrin ligands, as well as their complex bidirectional signaling pathways, cataracts in ephrin-A5(-/-) or EphA2(-/-) lenses may arise from loss of function or abnormal signaling mechanisms. To test whether abnormal signaling mechanisms may play a role in cataractogenesis in ephrin-A5(-/-) or EphA2(-/-) lenses, we generated EphA2 and ephrin-A5 double knockout (DKO) mice. We compared the phenotypes of EphA2(-/-) and ephrin-A5(-/-) lenses to that of DKO lenses. DKO lenses displayed an additive lens phenotype that was not significantly different from the two single KO lens phenotypes. Similar to ephrin-A5(-/-) lenses, DKO lenses had abnormal anterior epithelial cells leading to a large mass of epithelial cells that invade into the underlying fiber cell layer, directly resulting in anterior cataracts in ephrin-A5(-/-) and DKO lenses. Yet, similar to EphA2(-/-) lenses, DKO lenses also had abnormal packing of equatorial epithelial cells with disorganized meridional rows, lack of a lens fulcrum and disrupted fiber cells. The DKO lens phenotype rules out abnormal signaling by EphA2 in ephrin-A5(-/-) lenses or by ephrin-A5 in EphA2(-/-) lenses as possible cataract mechanisms. Thus, these results indicate that EphA2 and ephrin-A5 do not form a lens receptor-ligand pair, and that EphA2 and ephrin-A5 have other binding partners in the lens to help align differentiating equatorial epithelial cells or maintain the anterior epithelium, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells.

    PubMed

    Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie

    2013-05-01

    Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.

  12. Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis.

    PubMed

    Aaron, Roy K; Racine, Jennifer; Dyke, Jonathan P

    2017-08-01

    This review describes the contributions of abnormal bone circulation to the pathophysiology of osteoarthritis. Combining dynamic imaging with MRI and PET with previous observations reveals that venous stasis and a venous outlet syndrome is most likely the key circulatory pathology associated with the initiation or progression of osteoarthritis. MRI and PET have revealed that venous outflow obstruction results in physicochemical changes in subchondral bone to which osteoblasts are responsive. The osteoblasts express an altered pattern of cytokines, many of which can serve as structural or signaling molecules contributing to both bone remodeling and cartilage degeneration. The patterns of circulatory changes are associated with alterations in the physicochemical environment of subchondral bone, including hypoxia. Osteoblast cytokines can transit the subchondral bone plate and calcified cartilage and communicate with chondrocytes.

  13. Phenotypic variability in Patau syndrome.

    PubMed

    Caba, Lavinia; Rusu, Cristina; Butnariu, Lacramioara; Panzaru, Monica; Braha, Elena; Volosciuc, M; Popescu, Roxana; Gramescu, Mihaela; Bujoran, C; Martiniuc, Violeta; Covic, M; Gorduza, E V

    2013-01-01

    Patau syndrome has an incidence of 1/10.000-20.000, the clinical diagnosis being suggested by the triad cleft lip and palate, microphthalmia/anophthalmia and postaxial polydactyly. Most frequent cytogenetic abnormality is free and homogeneous trisomy 13 (80.0%), rarely being detected trisomy mosaics or Robertsonian translocations. The objective of the study was to identify phenotypic features of trisomy 13. The retrospective study was conducted on a trial group of 14 cases diagnosed cytogenetically with trisomy 13 between January 2000 and December 2012 at lasi Medical Genetics Centre. Of the 14 cases, 3 were evaluated pathologically (two aborted foetuses and one stillborn), 8 cases were detected in the neonatal period, and 3 in infancy. Clinical diagnosis was supported by the identification of a model of abnormal development, mainly characterized by: maxillary cleft (lip and palate--5 cases; lip--1 case), ocular abnormalities (microphthalmia/anophthalmia--7 cases; cyclopia--1 case), postaxial polydactyly (7 cases), scalp defects (6 cases), congenital heart anomalies (10 cases, 6 patients with atrial septal defect), complete holoprosencephaly (4 cases), ear abnormalities (11 cases), broad nasal root (10 cases). An important issue in confirming the phenotypic variability of Patau syndrome is that the classic clinical triad was identified only in one case. Patau syndrome is a disease with variable expression and is characterized by a pattern of abnormal prenatal development characterized by facial dysmorphia, polydactyly and severe birth defects (heart, brain) that generate an increased in utero and perinatal mortality.

  14. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  15. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  16. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  17. Placental sulfatase deficiency: maternal and fetal expression of steroid sulfatase deficiency and X-linked ichthyosis.

    PubMed

    Bradshaw, K D; Carr, B R

    1986-07-01

    PSD-X-linked ichthyosis are manifestations of a similar disorder of an inborn error of metabolism characterized by a deficiency of steroid sulfatase. The decreased enzyme activity is due to the absence of the expression of enzyme (steroid sulfatase) protein. Affected individuals with this disorder are males (X-linked inheritance) with a frequency of 1/2000 to 1/6000 births. Homozygous females from cosanguineous marriages have been reported with this disorder. The diagnosis is suspected and confirmed by: Low estriol excretion; Negative DHEAS loading test Increased DHEAS in amnionic fluid; Normal DHEAS in cord plasma; Possible delayed or abnormal labor patterns; Decreased sulfatase activity in the placenta, fibroblast, erythrocytes, lymphocytes or leukocytes of affected individuals; Development of ichthyosis in male infants at 2 to 3 months of age.

  18. What does brain response to neutral faces tell us about major depression? evidence from machine learning and fMRI.

    PubMed

    Oliveira, Leticia; Ladouceur, Cecile D; Phillips, Mary L; Brammer, Michael; Mourao-Miranda, Janaina

    2013-01-01

    A considerable number of previous studies have shown abnormalities in the processing of emotional faces in major depression. Fewer studies, however, have focused specifically on abnormal processing of neutral faces despite evidence that depressed patients are slow and less accurate at recognizing neutral expressions in comparison with healthy controls. The current study aimed to investigate whether this misclassification described behaviourally for neutral faces also occurred when classifying patterns of brain activation to neutral faces for these patients. TWO INDEPENDENT DEPRESSED SAMPLES: (1) Nineteen medication-free patients with depression and 19 healthy volunteers and (2) Eighteen depressed individuals and 18 age and gender-ratio-matched healthy volunteers viewed emotional faces (sad/neutral; happy/neutral) during an fMRI experiment. We used a new pattern recognition framework: first, we trained the classifier to discriminate between two brain states (e.g. viewing happy faces vs. viewing neutral faces) using data only from healthy controls (HC). Second, we tested the classifier using patterns of brain activation of a patient and a healthy control for the same stimuli. Finally, we tested if the classifier's predictions (predictive probabilities) for emotional and neutral face classification were different for healthy controls and depressed patients. Predictive probabilities to patterns of brain activation to neutral faces in both groups of patients were significantly lower in comparison to the healthy controls. This difference was specific to neutral faces. There were no significant differences in predictive probabilities to patterns of brain activation to sad faces (sample 1) and happy faces (samples 2) between depressed patients and healthy controls. Our results suggest that the pattern of brain activation to neutral faces in depressed patients is not consistent with the pattern observed in healthy controls subject to the same stimuli. This difference in brain activation might underlie the behavioural misinterpretation of the neutral faces content by the depressed patients.

  19. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907

  20. CFTR expression and organ damage in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tizzano, E.; Chitayat, D.; Buchwald, M.

    1994-09-01

    To assist our understanding of the origin of organ damage caused by cystic fibrosis (CF) disease, we have analyzed the pattern of expression of the CF gene (CFTR). mRNA in situ hybridization analysis was carried out in human fetal, newborn, infant and adult tissues and the abundance of the mRNA was correlated with the known pathology at the various stages of human development. Analysis of the pattern of expression indicates a constitutive level of mRNA in gastrointestinal tissues starting during early development and maintained throughout life. Prenatal respiratory tissues show qualitative and quantitative major differences in comparison to postnatal lungmore » samples. Male reproductive tissues show high levels of expression in the head of the epididymis compared with the rest of the male ducts. Female reproductive tissues show a variable pattern of expression at different stages during fetal development and during puberty probably due to changes in hormonal levels. Gastrointestinal and male reproductive tissues have a consistent pathology at birth, whereas no lung abnormalities have been described in newborns affected by CF. Our results show that there is no exact correlations between organ damage present at birth and the degree of CFTR expression. To explain these observations, we hypothesize that the pathogenesis of organ damage in CF depend on at least three factors: the rate of CFTR-mediated fluid secretion, differences in genotype and environmental factors, such as the amount of macromolecules in the lumen of the ducts. This last element predicts that damage will occur in tissues with high protein loads and low flow rates (e.g. pancreas, epididymis), where the absence of CFTR function leads to obstruction and pathology. Organs that express CFTR but with no significant damage (e.g. prenatal lung, female reproductive tissues), will have a low protein load and a high flow rates.« less

  1. Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.

    PubMed

    Park, Chan Kue; Kwon, Hoon; Park, Ji Young

    2017-08-01

    Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.

  2. Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.

    PubMed

    Pugash, D; Hendson, G; Dunham, C P; Dewar, K; Money, D M; Prayer, D

    2012-12-01

    Prenatal development of the brain is characterized by gestational age-specific changes in the laminar structure of the brain parenchyma before 30 gestational weeks. Cerebral lamination patterns of normal fetal brain development have been described histologically, by postmortem in-vitro magnetic resonance imaging (MRI) and by in-vivo fetal MRI. The purpose of this study was to evaluate the sonographic appearance of laminar organization of the cerebral wall in normal and abnormal brain development. This was a retrospective study of ultrasound findings in 92 normal fetuses and 68 fetuses with abnormal cerebral lamination patterns for gestational age, at 17-38 weeks' gestation. We investigated the visibility of the subplate zone relative to the intermediate zone and correlated characteristic sonographic findings of cerebral lamination with gestational age in order to evaluate transient structures. In the normal cohort, the subplate zone-intermediate zone interface was identified as early as 17 weeks, and in all 57 fetuses examined up to 28 weeks. In all of these fetuses, the subplate zone appeared anechoic and the intermediate zone appeared homogeneously more echogenic than did the subplate zone. In the 22 fetuses between 28 and 34 weeks, there was a transition period when lamination disappeared in a variable fashion. The subplate zone-intermediate zone interface was not identified in any fetus after 34 weeks (n=13). There were three patterns of abnormal cerebral lamination: (1) no normal laminar pattern before 28 weeks (n=32), in association with severe ventriculomegaly, diffuse ischemia, microcephaly, teratogen exposure or lissencephaly; (2) focal disruption of lamination before 28 weeks (n=24), associated with hemorrhage, porencephaly, stroke, migrational abnormalities, thanatophoric dysplasia, meningomyelocele or encephalocele; (3) increased prominence and echogenicity of the intermediate zone before 28 weeks and/or persistence of a laminar pattern beyond 33 weeks (n=10), associated with Type 1 lissencephaly or CMV infection. There was a mixed focal/diffuse pattern in two fetuses. In CMV infection, the earliest indication of the infection was focal heterogeneity and increased echogenicity of the intermediate zone, which predated the development of microcephaly, ventriculomegaly and intracranial calcification. The fetal subplate and intermediate zones can be demonstrated reliably on routine sonography before 28 weeks and disappear after 34 weeks. These findings represent normal gestational age-dependent transient laminar patterns of cerebral development and are consistent with histological studies. Abnormal fetal cerebral lamination patterns for gestational age are also visible on sonography, and may indicate abnormal brain development. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  3. A review of hedgehog signaling in cranial bone development

    PubMed Central

    Pan, Angel; Chang, Le; Nguyen, Alan; James, Aaron W.

    2013-01-01

    During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development. PMID:23565096

  4. Sexually Dimorphic Expression of Secreted Frizzled-Related (SFRP) Genes in the Developing Mouse Müllerian Duct

    PubMed Central

    COX, SAM; SMITH, LEE; BOGANI, DEBORA; CHEESEMAN, MICHAEL; SIGGERS, PAM; GREENFIELD, ANDY

    2007-01-01

    In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development. PMID:16700072

  5. New animal models to study the role of tyrosinase in normal retinal development.

    PubMed

    Lavado, Alfonso; Montoliu, Lluis

    2006-01-01

    Albino animals display a hypopigmented phenotype associated with several visual abnormalities, including rod photoreceptor cell deficits, abnormal patterns of connections between the eye and the brain and a general underdevelopment of central retina. Oculocutaneous albinism type I, a common form of albinism, is caused by mutations in the tyrosinase gene. In mice, the albino phenotype can be corrected by functional tyrosinase transgenes. Tyrosinase transgenic animals not only show normal pigmentation but the correction of all visual abnormalities associated with albinism, confirming a role of tyrosinase, a key enzyme in melanin biosynthesis, in normal retinal development. Here, we will discuss recent work carried out with new tyrosinase transgenic mouse models, to further analyse the role of tyrosinase in retinal development. We will first report a transgenic model with inducible tyrosinase expression that has been used to address the regulated activation of this gene and its associated effects on the development of the visual system. Second, we will comment on an interesting yeast artificial chromosome (YAC)-tyrosinase transgene, lacking important regulatory elements, that has highlighted the significance of local interactions between the retinal pigment epithelium (RPE) and developing neural retina.

  6. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  7. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    PubMed Central

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  8. Electrocardiographic features of sudden unexpected death in epilepsy.

    PubMed

    Chyou, Janice Y; Friedman, Daniel; Cerrone, Marina; Slater, William; Guo, Yu; Taupin, Daniel; O'Rourke, Sean; Priori, Silvia G; Devinsky, Orrin

    2016-07-01

    Sudden unexpected death in epilepsy (SUDEP) is the most common cause of epilepsy-related mortality. We hypothesized that electrocardiography (ECG) features may distinguish SUDEP cases from living subjects with epilepsy. Using a matched case-control design, we compared ECG studies of 12 consecutive cases of SUDEP over 10 years and 22 epilepsy controls matched for age, sex, epilepsy type (focal, generalized, or unknown/mixed type), concomitant antiepileptic, and psychotropic drug classes. Conduction intervals and prevalence of abnormal ventricular conduction diagnosis (QRS ≥110 msec), abnormal ventricular conduction pattern (QRS <110 msec, morphology of incomplete right or left bundle branch block or intraventricular conduction delay), early repolarization, and features of inherited cardiac channelopathies were assessed. Abnormal ventricular conduction diagnosis and pattern distinguished SUDEP cases from matched controls. Abnormal ventricular conduction diagnosis was present in two cases and no controls. Abnormal ventricular conduction pattern was more common in cases than controls (58% vs. 18%, p = 0.04). Early repolarization was similarly prevalent in cases and controls, but the overall prevalence exceeded that of published community-based cohorts. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  9. Correlates of conflict, power and authority management, aggression and impulse control in the Jamaican population.

    PubMed

    Walcott, G; Hickling, F W

    2013-01-01

    The object of this study is to establish the correlates of the phenomenology of conflict and power management in the Jamaican population. A total of 1506 adult individuals were sampled from 2150 households using a stratified sampling method and assessed using the 12 questions of the Jamaica Personality Disorder Inventory (JPDI) on the phenomenology of conflict and power management that are grouped into the psychological features of aggressive social behaviour, unlawful behaviour, socially unacceptable behaviour and financial transgressive behaviour. The database of responses to the demographic and JPDI questionnaires was created and analysed using the Statistical Package for the Social Sciences (SPSS) version 17. Of the national population sampled, 69.1% denied having any phenomenological symptoms of abnormal power management relations while 30.9% of the population admitted to having some degree of conflict and power management, ranging from mild (10.3%), to moderate (17.1), or severe (3.5%). There were 46.55% of the population which had problems with aggressive social behaviour, 9.33% had problems with unlawful behaviour, 9.58% had problems with unacceptable social behaviour and 37.74% had problems with financial transgressive behaviour. Significant gender and socio-economic class patterns for conflict and power management were revealed. This pattern of conflict and power management behaviour is critical in understanding the distinction between normal and abnormal expression of these emotions and actions. Nearly one-third of the sample population ` studied reported problems with conflict, abnormal power and authority management, impulse control and serious aggressive and transgressive behaviour.

  10. Cheilitis glandularis: immunohistochemical expression of protein water channels (aquaporins) in minor labial salivary glands.

    PubMed

    Nico, M M S; Melo, J N; Lourenço, S V

    2014-03-01

    Cheilitis glandularis (CG) is a rare condition in which thick saliva is secreted from dilated ostia of swollen minor salivary glands from the lips. Aquaporins (AQPs) are membrane proteins that exhibit channel activity specific for water and small solutes. AQPs are essential for corporal homeostasis, and are widely expressed through human tissues. Most AQPs studies are based on renal and nervous pathophysiology; few involve salivary glands. Some previous investigators hypothesized that minor salivary gland structure and function is normal on CG. To study possible salivary synthesis alterations in CG, we compared the expression of AQPs present in minor salivary glands in specimens with CG and controls by using immunohistochemistry.   Seven cases of CG and three normal controls were studied. Intensity and patterns of expression of AQP 1, 2 and 8 differed in CG compared with controls. AQP 4 and 5 (the most important AQP in salivary function) showed identical patterns in CG and controls. Our findings suggest that the expression and arguably, function of some of the AQPs may be altered in CG; consequently, water flow mechanism abnormalities with possible alteration in salivary composition seem to occur. External factors (mainly UV rays) seem to play an important role in CG; nonetheless, our findings suggest that there might be some degree of alteration on water transportation. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.

  11. Athlete's heart patterns in elite rugby players: effects of training specificities.

    PubMed

    Chevalier, Laurent; Kervio, Gaëlle; Corneloup, Luc; Vincent, Marie-Pierre; Baudot, Christophe; Rebeyrol, Jean-Louis; Merle, Francis; Gencel, Laurent; Carré, François

    2013-02-01

    Athlete's heart patterns have been widely described. However, to our knowledge, few studies have focused on professional rugby players, who train differently according to their field position. To describe electrocardiographic and echocardiographic patterns observed in elite rugby players according to their field position. One hundred and thirty-five professional rugby players at the end of the competitive season were included. According to a modified Pelliccia's classification, 68.1% of electrocardiograms were normal or had minor abnormalities, 27.2% were mildly abnormal and 3.7% were distinctly abnormal. Heart rate was higher in scrum first-row players (P<0.05). Absolute and indexed left ventricular end-diastolic internal diameters (LVIDd; absolute value 59.3±4.7 mm) exceeded 65 mm and 32 mm/m2 in 13% and 1.5% of players, respectively. Indexed LVIDd values were higher in back players (P<0.001). Left ventricular interventricular septum and posterior wall thicknesses (absolute values 9.4±1.7 mm and 9.2±1.6 mm, respectively) exceeded 13 mm in 3.7% of players. Concentric cardiac hypertrophy was noted in 3.7% of players. Except for one Wolff-Parkinson-White pattern, players with significant ECG or echocardiographic abnormalities showed no cardiovascular event or disease during follow-up. Thus, elite rugby players present similar heart patterns to elite athletes in other sports. Major electrocardiographic and echocardiographic abnormalities are quite rare. Eccentric cardiac remodelling is more frequent in back players. Copyright © 2013. Published by Elsevier Masson SAS.

  12. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    PubMed

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  13. Nuclear Ribosome Biogenesis Mediated by the DIM1A rRNA Dimethylase Is Required for Organized Root Growth and Epidermal Patterning in Arabidopsis[C][W

    PubMed Central

    Wieckowski, Yana; Schiefelbein, John

    2012-01-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development. PMID:22829145

  14. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning.

    PubMed

    Liu, Ze; Lin, Sen; Shi, Jianxin; Yu, Jing; Zhu, Lu; Yang, Xiujuan; Zhang, Dabing; Liang, Wanqi

    2017-07-01

    Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. Copyright © 2012 Wiley Periodicals, Inc.

  16. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans

    PubMed Central

    Hulver, Matthew W.; Berggren, Jason R.; Carper, Michael J.; Miyazaki, Makoto; Ntambi, James M.; Hoffman, Eric P.; Thyfault, John P.; Stevens, Robert; Dohm, G. Lynis; Houmard, Joseph A.; Muoio, Deborah M.

    2014-01-01

    Summary Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity. PMID:16213227

  17. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans.

    PubMed

    Hulver, Matthew W; Berggren, Jason R; Carper, Michael J; Miyazaki, Makoto; Ntambi, James M; Hoffman, Eric P; Thyfault, John P; Stevens, Robert; Dohm, G Lynis; Houmard, Joseph A; Muoio, Deborah M

    2005-10-01

    Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity.

  18. Differential expression of cytokeratin mRNA and protein in normal prostate, prostatic intraepithelial neoplasia, and invasive carcinoma.

    PubMed Central

    Yang, Y.; Hao, J.; Liu, X.; Dalkin, B.; Nagle, R. B.

    1997-01-01

    The expression of cytokeratin (CK) mRNA for CK5, -8, -14, -16, and -19 was investigated in normal prostate, prostatic intraepithelial neoplasia (PIN) lesions, and invasive carcinoma using in situ hybridization. Protein localization was carried out in adjacent sections using immunohistochemistry and correlated with mRNA expression. Snap-frozen human prostate samples including 22 examples of normal glands, 20 cases of PIN lesions, and 12 cases of invasive carcinoma were examined. CK5 and -14 mRNA and protein were prominently expressed only in the basal cells of normal glands and PIN lesions. CK14 mRNA was absent in the luminal cells of the most of the PIN lesions but was seen at a low level in some PIN lesions. CK14 protein was not detected in any PIN lesion, suggesting that, if the cell that makes up the PIN lesions is derived from a basal cell, CK14 translation is depressed although a low level of CK14 mRNA may persist. CK8 mRNA and protein were constitutively expressed in all epithelia of normal and abnormal prostate tissues. CK19 mRNA and protein were persistently expressed in both basal and luminal cells of the tubular portion of normal glands as well as PIN lesions, but were expressed heterogeneously in both basal and luminal cells of normal alveoli. CK16 mRNA was expressed in a similar pattern as CK19, but CK16 protein was not detected either in normal or in abnormal prostate tissues. In conclusion, the expression of CK19 in PIN lesions is similar to its tubular expression and would support an origin of PIN lesions from this structure rather than the alveolar portion of the glands. The similar cytokeratin expression between PIN lesions and invasive carcinoma further supports the concept that PIN is a precursor lesion of invasive carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9033282

  19. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.

    1989-06-01

    The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (nmore » = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.« less

  20. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function.

    PubMed

    Lacko, Lauretta A; Hurtado, Romulo; Hinds, Samantha; Poulos, Michael G; Butler, Jason M; Stuhlmann, Heidi

    2017-07-01

    EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7 -/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro , placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1 , Syna and Synb , and in patterning of the extracellular matrix, Mmrn1 , were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality. © 2017. Published by The Company of Biologists Ltd.

  1. Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    PubMed Central

    Xu, Jing; Huang, Wei; Zhong, Chengrong; Luo, Daji; Li, Shuangfei; Zhu, Zuoyan; Hu, Wei

    2011-01-01

    Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish. PMID:21695218

  2. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    PubMed

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  3. Mutations in the Human Laminin β2 (LAMB2) Gene and the Associated Phenotypic Spectrum

    PubMed Central

    Matejas, Verena; Hinkes, Bernward; Alkandari, Faisal; Al-Gazali, Lihadh; Annexstad, Ellen; Aytac, Mehmet B.; Barrow, Margaret; Bláhová, Kvĕta; Bockenhauer, Detlef; Cheong, Hae Il; Maruniak-Chudek, Iwona; Cochat, Pierre; Dötsch, Jörg; Gajjar, Priya; Hennekam, Raoul C.; Janssen, Françoise; Kagan, Mikhail; Kariminejad, Ariana; Kemper, Markus J.; Koenig, Jens; Kogan, Jillene; Kroes, Hester Y.; Kuwertz-Bröking, Eberhard; Lewanda, Amy F.; Medeira, Ana; Muscheites, Jutta; Niaudet, Patrick; Pierson, Michel; Saggar, Anand; Seaver, Laurie; Suri, Mohnish; Tsygin, Alexey; Wühl, Elke; Zurowska, Aleksandra; Uebe, Steffen; Hildebrandt, Friedhelm; Antignac, Corinne; Zenker, Martin

    2010-01-01

    Mutations of LAMB2 typically cause autosomal recessive Pierson syndrome, a disorder characterized by congenital nephrotic syndrome, ocular and neurologic abnormalities, but may occasionally be associated with milder or oligosymptomatic disease variants. LAMB2 encodes the basement membrane protein laminin β2 which is incorporated in specific heterotrimeric laminin isoforms and has an expression pattern corresponding to the pattern of organ manifestations in Pierson syndrome. Herein we review all previously reported and several novel LAMB2 mutations in relation to the associated phenotype in patients from 39 unrelated families. The majority of disease-causing LAMB2 mutations are truncating, consistent with the hypothesis that loss of laminin β2 function is the molecular basis of Pierson syndrome. While truncating mutations are distributed across the entire gene, missense mutations are clearly clustered in the N-terminal LN domain, which is important for intermolecular interactions. There is an association of missense mutations and small in frame deletions with a higher mean age at onset of renal disease and with absence of neurologic abnormalities, thus suggesting that at least some of these may represent hypomorphic alleles. Nevertheless, genotype alone does not appear to explain the full range of clinical variability, and therefore hitherto unidentified modifiers are likely to exist. PMID:20556798

  4. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation.

    PubMed

    Gibbons, R J; McDowell, T L; Raman, S; O'Rourke, D M; Garrick, D; Ayyub, H; Higgs, D R

    2000-04-01

    A goal of molecular genetics is to understand the relationship between basic nuclear processes, epigenetic changes and the numerous proteins that orchestrate these effects. One such protein, ATRX, contains a highly conserved plant homeodomain (PHD)-like domain, present in many chromatin-associated proteins, and a carboxy-terminal domain which identifies it as a member of the SNF2 family of helicase/ATPases. Mutations in ATRX give rise to characteristic developmental abnormalities including severe mental retardation, facial dysmorphism, urogenital abnormalities and alpha-thalassaemia. This circumstantial evidence suggests that ATRX may act as a transcriptional regulator through an effect on chromatin. We have recently shown that ATRX is localized to pericentromeric heterochromatin during interphase and mitosis, suggesting that ATRX might exert other chromatin-mediated effects in the nucleus. Moreover, at metaphase, some ATRX is localized at or close to the ribosomal DNA (rDNA) arrays on the short arms of human acrocentric chromosomes. Here we show that mutations in ATRX give rise to changes in the pattern of methylation of several highly repeated sequences including the rDNA arrays, a Y-specific satellite and subtelomeric repeats. Our findings provide a potential link between the processes of chromatin remodelling, DNA methylation and gene expression in mammalian development.

  5. Perinatal asphyxia exerts lifelong effects on neuronal responsiveness to stress in specific brain regions in the rat.

    PubMed

    Salchner, Peter; Engidawork, Ephrem; Hoeger, Harald; Lubec, Barbara; Singewald, Nicolas

    2003-09-01

    Perinatal asphyxia (PA) causes irreversible damage to the brain of newborns and can produce neurologic and behavioral changes later in life. To identify neuronal substrates underlying the effects of PA, we investigated whether and how neuronal responsiveness to an established stress challenge is affected. We used Fos expression as a marker of neuronal activation and examined the pattern of Fos expression in response to acute swim stress in 24-month-old rats exposed to a 20-minute PA insult. Swim stress produced a similar pattern of Fos expression in control and asphyxiated rats in 34 brain areas. Asphyxiated rats displayed a higher number of stress-induced Fos-positive cells in the nucleus of the solitary tract, parabrachial nucleus, periaqueductal gray, paraventricular hypothalamic nucleus, nucleus accumbens, caudate-putamen, and prelimbic cortex. No differences in the Fos response to stress were observed in other regions, including the locus ceruleus, amygdala, hippocampus, or septum. These data provide functional anatomic evidence that PA has lifelong effects on neuronal communication and leads to an abnormal, augmented neuronal responsiveness to stress in specific brain areas, particularly in the main telencephalic target regions of the mesencephalic dopamine projections, as well as in a functionally related set of brain regions associated with autonomic and neuroendocrine regulation.

  6. Identification of an osteoclast transcription factor that binds to the human T cell leukemia virus type I-long terminal repeat enhancer element.

    PubMed

    Inoue, D; Santiago, P; Horne, W C; Baron, R

    1997-10-03

    Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.

  7. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression.

    PubMed

    Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo

    2007-04-01

    Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.

  8. Abnormal Patterns of Tongue-Palate Contact in the Speech of Individuals with Cleft Palate

    ERIC Educational Resources Information Center

    Gibbon, Fiona

    2004-01-01

    Individuals with cleft palate, even those with adequate velopharyngeal function, are at high risk for disordered lingual articulation. This article attempts to summarize current knowledge of abnormal tongue-palate contact patterns derived from electropalatographic (EPG) data in speakers with cleft palate. These data, which have been reported in 23…

  9. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia.

    PubMed

    Liu, Yali; Hong, Yuezhen; Ji, Linhong

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.

  10. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia

    PubMed Central

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654

  11. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  12. The Interplay between Emotion and Cognition in Autism Spectrum Disorder: Implications for Developmental Theory

    PubMed Central

    Gaigg, Sebastian B.

    2012-01-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world. PMID:23316143

  13. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Hypoxia and fetal heart development.

    PubMed

    Patterson, A J; Zhang, L

    2010-10-01

    Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.

  15. The Interplay between Emotion and Cognition in Autism Spectrum Disorder: Implications for Developmental Theory.

    PubMed

    Gaigg, Sebastian B

    2012-01-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world.

  16. Modulation of Wolframin Expression in Human Placenta during Pregnancy: Comparison among Physiological and Pathological States

    PubMed Central

    Perna, Angelica; Iannaccone, Alessandro; Cobellis, Luigi; De Luca, Antonio

    2014-01-01

    The WFS1 gene, encoding a transmembrane glycoprotein of the endoplasmic reticulum called wolframin, is mutated in Wolfram syndrome, an autosomal recessive disorder defined by the association of diabetes mellitus, optic atrophy, and further organ abnormalities. Disruption of the WFS1 gene in mice causes progressive β-cell loss in the pancreas and impaired stimulus-secretion coupling in insulin secretion. However, little is known about the physiological functions of this protein. We investigated the immunohistochemical expression of wolframin in human placenta throughout pregnancy in normal women and diabetic pregnant women. In normal placenta, there was a modulation of wolframin throughout pregnancy with a strong level of expression during the first trimester and a moderate level in the third trimester of gestation. In diabetic women, wolframin expression was strongly reduced in the third trimester of gestation. The pattern of expression of wolframin in normal placenta suggests that this protein may be required to sustain normal rates of cytotrophoblast cell proliferation during the first trimester of gestation. The decrease in wolframin expression in diabetic placenta suggests that this protein may participate in maintaining the physiologic glucose homeostasis in this organ. PMID:24588001

  17. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis.

    PubMed

    Almond, Kelly M; Trombetta, Louis D

    2017-09-01

    The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.

  18. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

    PubMed Central

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-01-01

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481

  19. Polyethylene wear in Oxford unicompartmental knee replacement: a retrieval study of 47 bearings.

    PubMed

    Kendrick, B J L; Longino, D; Pandit, H; Svard, U; Gill, H S; Dodd, C A F; Murray, D W; Price, A J

    2010-03-01

    The Oxford Unicompartmental Knee replacement (UKR) was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study involving this implant, which reported very low rates of wear in some specimens but abnormal patterns of wear in others. There has been no further investigation of these abnormal patterns. The bearings were retrieved from 47 patients who had received a medial Oxford UKR for anteromedial osteoarthritis of the knee. None had been studied previously. The mean time to revision was 8.4 years (sd 4.1), with 20 having been implanted for over ten years. The macroscopic pattern of polyethylene wear and the linear penetration were recorded for each bearing. The mean rate of linear penetration was 0.07 mm/year. The patterns of wear fell into three categories, each with a different rate of linear penetration; 1) no abnormal macroscopic wear and a normal articular surface, n = 16 (linear penetration rate = 0.01 mm/year); 2) abnormal macroscopic wear and normal articular surfaces with extra-articular impingement, n = 16 (linear penetration rate = 0.05 mm/year); 3) abnormal macroscopic wear and abnormal articular surfaces with intra-articular impingement +/- signs of non-congruous articulation, n = 15 (linear penetration rate = 0.12 mm/year). The differences in linear penetration rate were statistically significant (p < 0.001). These results show that very low rates of polyethylene wear are possible if the device functions normally. However, if the bearing displays suboptimal function (extra-articular, intra-articular impingement or incongruous articulation) the rates of wear increase significantly.

  20. Correlation between CD34 expression and chromosomal abnormalities but not clinical outcome in acute myeloid leukemia.

    PubMed

    Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H

    1996-11-01

    The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P < 0.01). Monosomy 7/7q- or monosomy 5/5q- occurred in 10 patients and 8 of them expressed the CD34 antigen (P < 0.05). All patients with t(8;21) which is considered as a favorable factor in AML had levels of CD34 >/= 20% (P < 0.05). We did not find any association between CD34 expression and attainment of complete remission, overall survival, or disease-free survival. In conclusion, the variations of CD34 expression in AML are correlated with cytogenetic abnormalities associated both with poor and favorable outcome. The evaluation of the correlations between CD34 antigen and clinical outcome in AML should take into account the results of pretreatment karyotype.

  1. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    PubMed

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  2. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto

    PubMed Central

    Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363

  3. The Use of Biologic Therapies in Uveitis.

    PubMed

    Schwartzman, Sergio; Schwartzman, Monica

    2015-12-01

    Therapy for autoimmune ophthalmic disease is currently evolving. The improved understanding of the abnormal immune response in the various forms of uveitis has resulted in targeted therapy. The aberrations of the immune system have been characterized by atypical cell populations, cytokine expression, and cell-cell interactions. Different patterns of cytokine expression have now been delineated in the abnormal uveal tract with exaggerated and/or abnormal expression of TNF, IL-1, IL-2, IL-6, and IL-17. The development of therapies for other conditions in which these cytokines play an important role has resulted in the availability of biological agents that have been adopted for use in the therapy for uveitis. Adalimumab and infliximab have been the best studied anti-TNF agents and indeed have now been recommended by an expert panel as first-line treatment of ocular manifestations of Behçet's disease and second-line treatment for other forms of uveitis (Levy-Clarke et al. (Ophthalmology, 2013). Other anti-TNF agents have been studied as well. Daclizumab, a monoclonal antibody directed against the IL-2 receptor, has also demonstrated utility in treating uveitis as have some of the anti-IL1 agents. Gevokizumab has been granted orphan drug designation for the treatment of resistant forms of uveitis. Therapies affecting IL-6, including tocilizumab are being studied, and available medications that block antigen presenting cell and T cell interaction such as abatacept have been reported to be effective in uveitis. Interferons as well as rituximab have also been evaluated in small studies. Although these biologic therapies have provided a larger armamentarium to treat uveitis, challenges remain. Uveitis is not a single illness; rather, it is a manifestation of many potential systemic diseases that may have very specific individual therapeutic targets. Identifying and characterizing these underlying diseases is not always achieved, and more importantly, the most effective therapies for each entity have not been defined.

  4. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  5. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis

    PubMed Central

    Blank, Marissa C.; Grinberg, Inessa; Aryee, Emmanuel; Laliberte, Christine; Chizhikov, Victor V.; Henkelman, R. Mark; Millen, Kathleen J.

    2011-01-01

    Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1+/−;Zic4+/− background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1−/−;Zic4−/− mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1+/−;Zic4+/−;Shh+/−, we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM. PMID:21307096

  6. Seizure and electroencephalographic changes in the newborn period induced by opiates and corrected by naloxone infusion.

    PubMed

    da Silva, O; Alexandrou, D; Knoppert, D; Young, G B

    1999-03-01

    To describe the association between opioid administration in the newborn period and neurologic abnormalities. Case reports of two infants who presented with seizure activity and abnormal electroencephalograms associated with opiate administration, and reversed by naloxone. The first was a preterm infant who developed a burst-suppression pattern on the electroencephalogram while receiving a continuous infusion of morphine and muscle paralysis. Naloxone injection during the electroencephalogram recording reversed the burst-suppression pattern. The second was a term infant receiving fentanyl infusion for pain control following surgery, who presented with motor seizure that was only partially controlled with barbiturates. An abnormal electroencephalogram recording during the opiate infusion improved with naloxone administration. Our observations indicate a potential for neurologic abnormalities, including induction of seizure activity and electroencephalogram abnormalities, suggesting caution when opiates are used for sedation and/or pain control in the newborn period.

  7. Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns.

    PubMed

    Chew, F S; Hudson, T M

    1982-07-01

    The pathologic specimens of 18 osteosarcomas of long bones were examined to correlate histologic abnormalities with abnormalities seen on preoperative 99mTc pyrophosphate or methylene diphosphonate bone scans. Seven scans accurately represented the extent of the tumor. Eleven scans disclosed increased activity extending beyond the radiographic abnormalities. In eight of these, there was no occult tumor extension and in the other three, the scan activity did not accurately portray the skip metastases that were present. Therefore, these 11 scans demonstrated the falsely extended pattern of uptake beyond the true limits of the tumors. Pathologic slides were available for 10 of the 11 areas of bone that exhibited extended uptake. In two instances, there was no pathologic abnormality. In the other eight cases we found marrow hyperemia, medullary reactive bone, or periosteal new bone. This is the first description of these histologic abnormalities of medullary bone in areas of extended uptake on radionuclide bone scans.

  8. spiel ohne grenzen/pou2 is required during establishment of the zebrafish midbrain-hindbrain boundary organizer.

    PubMed

    Belting, H G; Hauptmann, G; Meyer, D; Abdelilah-Seyfried, S; Chitnis, A; Eschbach, C; Söll, I; Thisse, C; Thisse, B; Artinger, K B; Lunde, K; Driever, W

    2001-11-01

    The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities. Juxtaposition of the Otx2 and Gbx2 expression domains positions the MHB. How the positional information is translated into activation of Pax2, Wnt1 and Fgf8 expression during MHB establishment remains unclear. In zebrafish spiel ohne grenzen (spg) mutants, the MHB is not established, neither isthmus nor cerebellum form, the midbrain is reduced in size and patterning abnormalities develop within the hindbrain. In spg mutants, despite apparently normal expression of otx2, gbx1 and fgf8 during late gastrula stages, the initial expression of pax2.1, wnt1 and eng2, as well as later expression of fgf8 in the MHB primordium are reduced. We show that spg mutants have lesions in pou2, which encodes a POU-domain transcription factor. Maternal pou2 transcripts are distributed evenly in the blastula, and zygotic expression domains include the midbrain and hindbrain primordia during late gastrulation. Microinjection of pou2 mRNA can rescue pax2.1 and wnt1 expression in the MHB of spg/pou2 mutants without inducing ectopic expression. This indicates an essential but permissive role for pou2 during MHB establishment. pou2 is expressed normally in noi/pax2.1 and ace/fgf8 zebrafish mutants, which also form no MHB. Thus, expression of pou2 does not depend on fgf8 and pax2.1. Our data suggest that pou2 is required for the establishment of the normal expression domains of wnt1 and pax2.1 in the MHB primordium.

  9. Anteroposterior Patterning of Gene Expression in the Human Infant Sclera: Chondrogenic Potential and Wnt Signaling.

    PubMed

    Seko, Yuko; Azuma, Noriyuki; Yokoi, Tadashi; Kami, Daisuke; Ishii, Ryuga; Nishina, Sachiko; Toyoda, Masashi; Shimokawa, Hitoyata; Umezawa, Akihiro

    2017-01-01

    Purpose/Aim: We sought to identify the anteroposterior spatial gene expression hierarchy in the human sclera to develop a hypothesis for axial elongation and deformity of the eyeball. We analyzed the global gene expression of human scleral cells derived from distinct parts of the human infant sclera obtained from surgically enucleated eyes with retinoblastoma, using Affymetrix GeneChip oligonucleotide arrays, and compared, in particular, gene expression levels between the anterior and posterior parts of the sclera. The ages of three donors were 10M, 4M, and 1Y9M. K-means clustering analysis of gene expression revealed that expression levels of cartilage-associated genes such as COLXIA and ACAN increased from the anterior to the posterior part of the sclera. Microarray analyses and RT-PCR data showed that the expression levels of MGP, COLXIA, BMP4, and RARB were significantly higher in the posterior than in the anterior sclera of two independent infant eyes. Conversely, expression levels of WNT2, DKK2, GREM1, and HOXB2 were significantly higher in the anterior sclera. Among several Wnt-family genes examined, WNT2B was found to be expressed at a significantly higher level in the posterior sclera, and the reverse order was observed for WNT2. The results of luciferase reporter assays suggested that a GSK-3β inhibitor stimulated Wnt/β-catenin signaling particularly strongly in the posterior sclera. The expression pattern of RARB, a myopia-related gene, was similar in three independent eyes. Chondrogenic potential was higher and Wnt/β-catenin signaling was more potently activated by a GSK-3β inhibitor in the posterior than in the anterior part of the human infant sclera. Although the differences in the gene expression profiles between the anterior and posterior sclera might be involved only in normal growth processes, this anteroposterior hierarchy in the sclera might contribute to disorders involving abnormal elongation and deformity of the eyeball, including myopia.

  10. miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples

    PubMed Central

    Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana

    2017-01-01

    Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition. PMID:28894379

  11. [Expression and antagonist role of endothelin and nitric oxide synthase in atherosclerotic plaque].

    PubMed

    Song, L; Wang, D; Wang, T

    1997-02-01

    To study the pathogenetic mechanism of atherosclerotic plaque, the action of mediation and antagonism of endothelin (ET) and nitric oxide synthase (NOS) was investigated. In situ hybridization, RT-PCR on endothelin and NOS, cytochemistry on NOS were measured using the rabbit atherosclerosis model and cultured vascular smooth muscle cells (VSMC) from normal rabbit. Transcription of endothelin mRNA increased and transcription of NOS mRNA decreased in astherosclerotic plaque: compared with normal aorta, expression of ET gene in plaque was increased by 1.2 times and the expression of NOS gene was decreased by 22.2%; cytochemistry combined with image pattern analysis showed that ET could inhibit NOS protien synthesis in VSMC; type A receptor antagonist of ET could inhibit the role of ET which causes a decrease of NOS protein in VSMC. The imbalance between NOS and ET, namely abnormal increase of ET and/or obvious decrease of NOS, is related to atherosclerotic plaque formation.

  12. Essential role of STX6 in esophageal squamous cell carcinoma growth and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jin; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028; Liu, Xiang

    Abnormalities in endosomes, or dysregulation in their trafficking, play an important role directly in many diseases including oncogenesis. Syntaxin-6 (STX6) is involved in diverse cellular functions in a variety of cell types and has been shown to regulate many intracellular membrane trafficking events such as endocytosis, recycling and anterograde and retrograde trafficking. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of STX6 was up-regulated in ESCC samples, its expression was significantly correlated with tumor size, histological differentiation, lymph node metastasis and depth. On one hand, STX6more » silencing inhibited ESCC cells viability and proliferation in a p53-dependent manner. On the other hand, STX6 effect integrin trafficking and regulate ESCC cells migration. Taken together, our study revealed the oncogenic roles of STX6 in the progression of ESCC, and it might be a valuable target for ESCC therapy.« less

  13. Size-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo

    PubMed Central

    Garcia, Mayra; Nahmad, Marcos; Reeves, Gregory T.; Stathopoulos, Angelike

    2013-01-01

    How natural variation in embryo size affects patterning of the Drosophila embryo dorsal-ventral (DV) axis is not known. Here we examined quantitatively the relationship between nuclear distribution of the Dorsal transcription factor, boundary positions for several target genes, and DV axis length. Data were obtained from embryos of a wild-type background as well as from mutant lines inbred to size select embryos of smaller or larger sizes. Our data show that the width of the nuclear Dorsal gradient correlates with DV axis length. In turn, for some genes expressed along the DV axis, the boundary positions correlate closely with nuclear Dorsal levels and with DV axis length; while the expression pattern of others is relatively constant and independent of the width of the Dorsal gradient. In particular, the patterns of snail (sna) and ventral nervous-system defective (vnd) correlate with nuclear Dorsal levels and exhibit scaling to DV length; while the pattern of intermediate neuroblasts defective (ind) remains relatively constant with respect to changes in Dorsal and DV length. However, in mutants that exhibit an abnormal expansion of the Dorsal gradient which fails to scale to DV length, only sna follows the Dorsal distribution and exhibits overexpansion; in contrast, vnd and ind do not overexpand suggesting some additional mechanism acts to refine the dorsal boundaries of these two genes. Thus, our results argue against the idea that the Dorsal gradient works as a global system of relative coordinates along the DV axis and suggest that individual targets respond to changes in embryo size in a gene-specific manner. PMID:23800450

  14. Karyometry detects subvisual differences in chromatin organization state between cribriform and flat high-grade prostatic intraepithelial neoplasia.

    PubMed

    Montironi, Rodolfo; Thompson, Deborah; Scarpelli, Marina; Mazzucchelli, Roberta; Peketi, Prasanthi; Hamilton, Peter W; Bostwick, David G; Bartels, Peter H

    2004-08-01

    This digital texture analysis-based study evaluates the chromatin organization state in flat and cribriform high-grade prostatic intraepithelial neoplasia (PIN), in the adjacent normal looking secretory epithelium and in the co-occurring adenocarcinoma. Digital texture analysis (karyometry) was carried out on hematoxylin and eosin-stained sections from 24 radical prostatectomy specimens with high-grade PIN (12 with flat and 12 with cribriform architectural pattern, respectively) and cancer. Quantification was also conducted on the normal looking secretory epithelium. Discriminant analysis and the nonsupervised learning algorithm P-index were used to identify suitable subsets of features useful for the discrimination and classification of pathological groups and to explore multivariate data structure in the pathological subgroups. The average nuclear abnormality increases monotonically from the histologically normal appearing secretory epithelium to high-grade PIN and to adenocarcinoma. The nuclei from the so-called perimeter compartment of the flat high-grade PIN lesions show a higher nuclear abnormality compared to the nuclei of the cribriform high-grade PINs. Discriminant analysis shows that flat and cribriform high-grade PINs fall into two populations. Processing by the nonsupervised learning algorithm P-index revealed the existence of three well-defined, distinct subpopulations of nuclei of different chromatin phenotype. In the flat high-grade PIN lesions the proportions of nuclei in the three subpopulations are 16.5% (low abnormality), 25.0% (mid abnormality) and 58.5% (high abnormality), respectively. In the cribriform high-grade PIN lesions, 100% of the nuclei are in the mid-abnormality subpopulation. These differences are also discernible in the co-occurring adenocarcinoma and the histologically normal appearing secretory epithelium. To conclude, karyometry and statistical analysis detect the existence of distinct cell subpopulations of different chromatin packaging and phenotype, with the nuclei from the flat high-grade PIN lesions, adjacent normal looking epithelium and co-occurring adenocarcinoma expressing a greater nuclear abnormality than in the specimens with cribriform high-grade PIN.

  15. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia.

    PubMed

    Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin

    2009-06-01

    Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.

  16. A Genome-Wide Analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) Gene Family in Malus domestica with a Functional Characterization of MdLBD11

    PubMed Central

    Su, Ling; Liu, Xin; Hao, Yujin

    2013-01-01

    The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species. PMID:23468909

  17. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11.

    PubMed

    Wang, Xiaofei; Zhang, Shizhong; Su, Ling; Liu, Xin; Hao, Yujin

    2013-01-01

    The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

  18. Epicardial adipose tissue volume a diagnostic study for independent predicting disorder of circadian rhythm of blood pressure in patients with essential hypertension.

    PubMed

    Zhou, L; Deng, Y; Gong, J; Chen, X; Zhang, Q; Wang, J

    2016-05-30

    The aim of the study was to determine whether epicardial adipose tissue volume (EATV), a new cardiometabolic risk factor, is associated with circadian changes of blood pressure (BP) in patients with newly diagnosed essential hypertension. Ninety patients with newly diagnosed essential hypertension underwent ambulatory blood pressure monitoring for 24 h. EATV was measured using cardiac computed tomography. These patients were categorized into three groups according to their BP patterns (group 1, n=46, dipper hypertension, also called normal pattern; group 2, n=24, non-dipper hypertension; group 3, n=20, anti-dipper hypertension; group 2 and 3 are also called abnormal pattern). Data were collected retrospectively and compared between hypertensive patients with normal pattern and abnormal pattern. The normal pattern hypertensive patient had significant lower mean EATV and BP ((EATV, 91.3±29.4 cm3) than those of abnormal pattern patients including group 2 (EATV, 116.2±31.06cm3, <0.01) and group 3 (EATV, 124.8±28.5cm3, P<0.01). Mean systolic BP over 24 h (BPs24) and mean diastolic BP over 24 h (BPd24) of group 1 (BPs24, 135.7 ± 12.6 mmHg; BPd24, 83.6 ± 10.6 mmHg) were significantly lower than those of group 2 (BPs24, 150.1± 17.6 mmHg, P<0.01; BPd24, 93.2 ± 16.5 mmHg, P<0.01) and group 3 (BPs24, 154.1 ± 16.6mmHg, P<0.01; BPd24, 93.8 ± 17.5 mmHg; P<0.01). Bivariate correlation analysis showed that correlation coefficient of EATV with abnormal blood pressure mode was 0.500 (p<0.001), partial correlation coefficient after adjustment for waist circumference and body mass index was 0.469 (p<0.001). When multivariate backward logistic regression analysis was performed to assess the correlation of BP pattern with EAT volume, it showed that the prevalence of abnormal BP pattern (non-dipper and anti-dipper BP pattern) increased by 1.54 times after adjusting for age and gender per additional 10 cm3 of EAT volume. Receiver operating characteristic curve for EAT alone indicated that the cutoff value of 95.17cm3 had the best performance in predicting abnormal BP pattern with a sensitivity of 75.0% and a specificity of 72.7%. EATV was elevated in newly diagnosed and untreated patients with non-dipper hypertension and anti-dipper hypertension. EATV measured by cardiac computed tomography can be used to indicate the increased risk of circadian rhythm of blood pressure.

  19. Bigorexia: bodybuilding and muscle dysmorphia.

    PubMed

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  20. Influence of Yoruba beliefs about abnormality on the socialization of deaf children: a research note.

    PubMed

    Togonu-Bickersteth, F; Odebiyi, A I

    1985-07-01

    The study examines patterns of communication modes of guidance and discipline and affectional bonds between 176 Yoruba hearing mothers and their deaf children. Results relating to communication support earlier findings about the frustrations inherent in such endeavour. Contrary to other published reports, the Yoruba mothers studied perceived expressive linguistic abilities of deaf children more negatively than receptive abilities. Communication difficulties affected mothers' guidance and discipline, particularly since the culturally preferred modes of discipline rely very heavily on children's age-related language competence. Mothers' verbal claims of affectional bonds were not supported by evidence from other sources close to and including the deaf children.

  1. Visual information processing of faces in body dysmorphic disorder.

    PubMed

    Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan

    2007-12-01

    Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.

  2. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1

    PubMed Central

    Jayewickreme, Chenura D.; Shivdasani, Ramesh A.

    2015-01-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579

  3. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    PubMed

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Expression pattern of aquaporins in patients with primary nephrotic syndrome with edema

    PubMed Central

    WANG, YU; BU, JIMEI; ZHANG, QING; CHEN, KAI; ZHANG, JIHONG; BAO, XIAORONG

    2015-01-01

    The association between the expression of aquaporins (AQPs) in kidney tissues and the occurrence of edema in nephrotic syndrome (NS) remains unclear. The current study aimed to investigate this association. A total of 54 patients with primary glomerular disease, diagnosed by renal biopsy, were divided into three groups: Control, NS without edema and NS with edema. The expression of AQP1, AQP2, AQP3 and AQP4 in kidney tissues from these patients was assessed using immunohistochemistry, and urinary AQP concentrations were quantified by ELISA. Comparison of the three groups was conducted using one way analysis of variance, independent samples t-test or the Chi-square test. AQP1 was strongly expressed in the proximal tubules. The proportion of the AQP1-positive area in kidney tissues from patients with NS with edema was significantly reduced, in comparison with the other two groups. By contrast, the proportion of the AQP2-positive area in the NS with edema group was significantly higher than that of the other two groups; significant differences were also observed between the control and NS without edema groups for this parameter. Urinary AQP2 concentrations in patients with NS (with and without edema) were significantly higher than that of the control group, and exhibited a significant positive correlation with kidney tissue AQP2 concentrations. The present study demonstrated the abnormal expression pattern of AQP1-AQP4 in the kidney tissues of patients with NS, providing a basis for an improved understanding of the role of AQP in the pathogenesis of NS. PMID:26261083

  5. GENOMIC IMPRINTING, DISRUPTED PLACENTAL EXPRESSION, AND SPECIATION

    PubMed Central

    Brekke, Thomas D.; Henry, Lindy A.; Good, Jeffrey M.

    2016-01-01

    The importance of regulatory incompatibilities to the early stages of speciation remains unclear. Hybrid mammals often show extreme parent-of-origin growth effects that are thought to be a consequence of disrupted genetic imprinting (parent-specific epigenetic gene silencing) during early development. Here we test the long-standing hypothesis that abnormal hybrid growth reflects disrupted gene expression due to loss of imprinting (LOI) in hybrid placentas, resulting in dosage imbalances between paternal growth factors and maternal growth repressors. We analyzed placental gene expression in reciprocal dwarf hamster hybrids that show extreme parent-of-origin growth effects relative to their parental species. In massively enlarged hybrid placentas, we observed both extensive transgressive expression of growth-related genes and bi-allelic expression of many genes that were paternally silenced in normal sized hybrids. However, the apparent widespread disruption of paternal silencing was coupled with reduced gene expression levels overall. These patterns are contrary to the predictions of the LOI model and indicate that hybrid misexpression of dosage sensitive genes is caused by other regulatory mechanisms in this system. Collectively, our results support a central role for disrupted gene expression and imprinting in the evolution of mammalian hybrid inviability, but call into question the generality of the widely invoked LOI model. PMID:27714796

  6. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients.

    PubMed

    Giordano, Jessica; Khung, Suonita; Duhamel, Alain; Hossein-Foucher, Claude; Bellèvre, Dimitri; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2017-04-01

    To compare lung perfusion in PAH and pCTEPH on dual-energy CT (DECT) examinations. Thirty-one patients with PAH (group 1; n = 19) and pCTEPH (group 2; n = 12) underwent a dual-energy chest CTA with reconstruction of diagnostic and perfusion images. Perfusion alterations were analysed at a segmental level. V/Q scintigraphy was available in 22 patients (group 1: 13/19; group 2: 9/12). CT perfusion was abnormal in 52.6 % of group 1 patients and in 100 % of group 2 patients (p = 0.0051). The patterns of perfusion alteration significantly differed between the two groups (p < 0.0001): (1) in group 1, 96.6 % of segments with abnormal perfusion showed patchy defects; (2) in group 2, the most frequent abnormalities consisted of patchy (58.5 %) and PE-type (37.5 %) defects. Paired comparison of CT perfusion and scintigraphy showed concordant findings in 76.9 % of group 1 (10/13) and 100 % of group 2 (9/9) patients, with a predominant or an exclusive patchy pattern in group 1 and a mixed pattern of abnormalities in group 2. Lung perfusion alterations at DECT are less frequent and more homogeneous in PAH than in pCTEPH, with a high level of concordant findings with V/Q scintigraphy. • Depiction of chronic pulmonary embolism exclusively located on peripheral arteries is difficult. • The main differential diagnosis of pCTEPH is PAH. • The pattern of DECT perfusion changes can help differentiate PAH and pCETPH. • In PAH, almost all segments with abnormal perfusion showed patchy defects. • In pCTEPH, patchy and PE-type defects were the most frequent abnormalities.

  7. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  8. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  9. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  10. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  11. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    PubMed Central

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.

    2011-01-01

    Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290

  12. Using Electronic Noses to Detect Tumors During Neurosurgery

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.; Kateb, Babak; Chen, Mike

    2008-01-01

    It has been proposed to develop special-purpose electronic noses and algorithms for processing the digitized outputs of the electronic noses for determining whether tissue exposed during neurosurgery is cancerous. At present, visual inspection by a surgeon is the only available intraoperative technique for detecting cancerous tissue. Implementation of the proposal would help to satisfy a desire, expressed by some neurosurgeons, for an intraoperative technique for determining whether all of a brain tumor has been removed. The electronic-nose technique could complement multimodal imaging techniques, which have also been proposed as means of detecting cancerous tissue. There are also other potential applications of the electronic-nose technique in general diagnosis of abnormal tissue. In preliminary experiments performed to assess the viability of the proposal, the problem of distinguishing between different types of cultured cells was substituted for the problem of distinguishing between normal and abnormal specimens of the same type of tissue. The figure presents data from one experiment, illustrating differences between patterns that could be used to distinguish between two types of cultured cancer cells. Further development can be expected to include studies directed toward answering questions concerning not only the possibility of distinguishing among various types of normal and abnormal tissue but also distinguishing between tissues of interest and other odorous substances that may be present in medical settings.

  13. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  14. The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating the patterning of prethalamus and ventral telencephalon.

    PubMed

    Magnani, Dario; Morlé, Laurette; Hasenpusch-Theil, Kerstin; Paschaki, Marie; Jacoby, Monique; Schurmans, Stéphane; Durand, Bénédicte; Theil, Thomas

    2015-05-01

    Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Association Between Retinal Nerve Fiber Layer Thickness and Abnormalities of Vision in People With Human Immunodeficiency Virus Infection

    PubMed Central

    Kalyani, Partho S.; Holland, Gary N.; Fawzi, Amani A.; Arantes, Tiago E.F.; Yu, Fei; Sadun, Alfredo A.

    2014-01-01

    Purpose To investigate relationships between contrast sensitivity (CS), color vision, and retinal nerve fiber layer (RNFL) among people with human immunodeficiency virus (HIV) infection; to evaluate the effect of time since diagnosis of HIV infection on RNFL thickness. Design Noninterventional cross-sectional study. Methods We evaluated 102 eyes of 57 HIV-infected individuals without ocular opportunistic infections. Peripapillary RNFL thickness was determined with spectraldomain optical coherence tomography in 4 quadrants. CS was measured with the Pelli-Robson technique (expressed as logCS); color vision was measured with the Lanthony desaturated 15-hue technique (expressed as color confusion index [C-index], with higher scores indicating worse color vision). Correlations between values were assessed using Spearman correlation coefficients. Results Median RNFL thickness (average of 4 quadrants) was 102.9 μm (range, 75.0–134.7 μm). Median logCS was 1.90 (range, 1.25–1.95). Median C-index was 1.58 (range, 0.96–4.07). Temporal RNFL thickness was correlated with logCS (r = 0.295, P = .003) and C-index (r = −0.338, P = .0005). Time since diagnosis of HIV infection was shorter for those with thick average RNFL than for those with thin average RNFL (P = .18). Conclusions Both worse CS and worse color vision are correlated with thinning of the temporal RNFL, with possible threshold effects. Increased prevalences of abnormal CS and abnormal color vision in this population are therefore likely attributable to neuroretinal compromise. This pattern of structural and functional losses may reflect preferential damage to small-caliber axons in the maculopapillary bundle, possibly associated with mitochondrial dysfunction, providing a potential disease mechanism for HIV-associated “neuroretinal disorder.” PMID:22245459

  16. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  17. Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family

    PubMed Central

    de Aquino, Sibele-Nascimento; Paranaíba, Lívia-Maris-R.; Gomes, Andreia; dos-Santos-Neto, Pedro; Coletta, Ricardo-D.; Cardoso, Aline-Francoise; Frota, Ana-Cláudia; Martelli-Júnior, Hercílio

    2016-01-01

    Background The aim of this study was to describe the pattern of inheritance and the clinical features in a large family with Waardenburg syndrome type I (WS1), detailing the dental abnormalities and screening for PAX3 mutations. Material and Methods To characterize the pattern of inheritance and clinical features, 29 family members were evaluated by dermatologic, ophthalmologic, otorhinolaryngologic and orofacial examination. Molecular analysis of the PAX3 gene was performed. Results The pedigree of the family,including the last four generations, was constructed and revealed non-consanguineous marriages. Out of 29 descendants, 16 family members showed features of WS1, with 9 members showing two major criteria indicative of WS1. Five patients showed white forelock and iris hypopigmentation, and four showed dystopia canthorum and iris hypopigmentation. Two patients had hearing loss. Dental abnormalities were identified in three family members, including dental agenesis, conical teeth and taurodontism. Sequencing analysis failed to identify mutations in the PAX3 gene. Conclusions These results confirm that WS1 was transmitted in this family in an autosomal dominant pattern with variable expressivity and high penetrance. The presence of dental manifestations, especially tooth agenesis and conical teeth which resulted in considerable aesthetic impact on affected individuals was a major clinical feature. Clinical relevance: This article reveals the presence of well-defined dental changes associated with WS1 and tries to establish a possible association between these two entities showing a new spectrum of WS1. Key words:Waardenburg syndrome, hearing loss, oral manifestations, mutation. PMID:27031059

  18. Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    PubMed Central

    Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo

    2011-01-01

    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571

  19. Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns

    PubMed Central

    Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C.; Tang, Shou Jiang

    2014-01-01

    Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician’s time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a “texton histogram” of an image block as features. The histogram captures the distribution of different “textons” representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723

  20. Abnormal regional cerebral blood flow in childhood autism.

    PubMed

    Ohnishi, T; Matsuda, H; Hashimoto, T; Kunihiro, T; Nishikawa, M; Uema, T; Sasaki, M

    2000-09-01

    Neuroimaging studies of autism have shown abnormalities in the limbic system and cerebellar circuits and additional sites. These findings are not, however, specific or consistent enough to build up a coherent theory of the origin and nature of the brain abnormality in autistic patients. Twenty-three children with infantile autism and 26 non-autistic controls matched for IQ and age were examined using brain-perfusion single photon emission computed tomography with technetium-99m ethyl cysteinate dimer. In autistic subjects, we assessed the relationship between regional cerebral blood flow (rCBF) and symptom profiles. Images were anatomically normalized, and voxel-by-voxel analyses were performed. Decreases in rCBF in autistic patients compared with the control group were identified in the bilateral insula, superior temporal gyri and left prefrontal cortices. Analysis of the correlations between syndrome scores and rCBF revealed that each syndrome was associated with a specific pattern of perfusion in the limbic system and the medial prefrontal cortex. The results confirmed the associations of (i) impairments in communication and social interaction that are thought to be related to deficits in the theory of mind (ToM) with altered perfusion in the medial prefrontal cortex and anterior cingulate gyrus, and (ii) the obsessive desire for sameness with altered perfusion in the right medial temporal lobe. The perfusion abnormalities seem to be related to the cognitive dysfunction observed in autism, such as deficits in ToM, abnormal responses to sensory stimuli, and the obsessive desire for sameness. The perfusion patterns suggest possible locations of abnormalities of brain function underlying abnormal behaviour patterns in autistic individuals.

  1. Decreased expression of thymus-specific proteasome subunit β5t in Down syndrome patients.

    PubMed

    Tomaru, Utano; Tsuji, Takahiro; Kiuchi, Shizuka; Ishizu, Akihiro; Suzuki, Akira; Otsuka, Noriyuki; Ito, Tomoki; Ikeda, Hitoshi; Fukasawa, Yuichiro; Kasahara, Masanori

    2015-08-01

    The majority of patients with Down syndrome (DS), trisomy 21, have morphologically abnormal thymuses and present with intrinsic immunological abnormalities affecting mainly the cellular immune response. The aim of this study was to examine whether the expression of functionally important molecules is altered in thymic stromal cells in patients with DS. We analysed thymic tissues from patients with trisomy 13 (n = 4), trisomy 18 (n = 14) and trisomy 21 (n = 13) for histological alterations, and for the expression of functionally important molecules such as β5t, a thymoproteasome subunit, and cathepsins L and S. In patients with trisomy 13 and trisomy 18, the thymus was morphologically normal or showed only mild depletion of cortical thymocytes. In contrast, the thymus showed variable histological changes in patients with trisomy 21; six of 13 cases showed severe depletion of thymocytes accompanied by the disappearance of thymic lobular architecture. In such thymuses, spindle-shaped keratin-positive cells were densely distributed, and expression of β5t, but not of cathepsin L, was markedly decreased. The present study suggests that abnormal thymic architecture and decreased expression of functionally important molecules in thymic stromal cells may be involved in immunological abnormalities in DS patients. © 2015 John Wiley & Sons Ltd.

  2. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.

  3. Comprehensive classification test of scapular dyskinesis: A reliability study.

    PubMed

    Huang, Tsun-Shun; Huang, Han-Yi; Wang, Tyng-Guey; Tsai, Yung-Shen; Lin, Jiu-Jenq

    2015-06-01

    Assessment of scapular dyskinesis (SD) is of clinical interest, as SD is believed to be related to shoulder pathology. However, no clinical assessment with sufficient reliability to identify SD and provide treatment strategies is available. The purpose of this study was to investigate the reliability of the comprehensive SD classification method. Cross-sectional reliability study. Sixty subjects with unilateral shoulder pain were evaluated by two independent physiotherapists with a visual-based palpation method. SD was classified as single abnormal scapular pattern [inferior angle (pattern I), medial border (pattern II), superior border of scapula prominence or abnormal scapulohumeral rhythm (pattern III)], a mixture of the above abnormal scapular patterns, or normal pattern (pattern IV). The assessment of SD was evaluated as subjects performed bilateral arm raising/lowering movements with a weighted load in the scapular plane. Percentage of agreement and kappa coefficients were calculated to determine reliability. Agreement between the 2 independent physiotherapists was 83% (50/60, 6 subjects as pattern III and 44 subjects as pattern IV) in the raising phase and 68% (41/60, 5 subjects as pattern I, 12 subjects as pattern II, 12 subjects as pattern IV, 12 subjects as mixed patterns I and II) in the lowering phase. The kappa coefficients were 0.49-0.64. We concluded that the visual-based palpation classification method for SD had moderate to substantial inter-rater reliability. The appearance of different types of SD was more pronounced in the lowering phase than in the raising phase of arm movements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Histopathological pattern of abnormal uterine bleeding in endometrial biopsies.

    PubMed

    Vaidya, S; Lakhey, M; Vaidya, S; Sharma, P K; Hirachand, S; Lama, S; KC, S

    2013-03-01

    Abnormal uterine bleeding is a common presenting complaint in gyanecology out patient department. Histopathological evaluation of the endometrial samples plays a significant role in the diagnosis of abnormal uterine bleeding. This study was carried out to determine the histopathological pattern of the endometrium in women of various age groups presenting with abnormal uterine bleeding. Endometrial biopsies and curettings of patients presenting with abnormal uterine bleeding was retrospectively studied. A total of 403 endometrial biopsies and curettings were analyzed. The age of the patients ranged from 18 to 70 years. Normal cyclical endometrium was seen in 165 (40.94%) cases, followed by 54 (13.40%) cases of disordered proliferative endometrium and 44 (10.92%) cases of hyperplasia. Malignancy was seen in 10 (2.48%) cases. Hyperplasia and malignancy were more common in the perimenopausal and postmenopausal age groups. Histopathological examination of endometrial biopsies and curettings in patients presenting with abnormal uterine bleeding showed a wide spectrum of changes ranging from normal endometrium to malignancy. Endometrial evaluation is specially recommended in women of perimenopausal and postmenopausal age groups presenting with AUB, to rule out a possibility of any preneoplastic condition or malignancy.

  5. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome.

    PubMed

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-08-06

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Organizing pneumonia pattern in the follow-up CT of Legionella-infected patients.

    PubMed

    Haroon, Attiya; Higa, Futoshi; Hibiya, Kenji; Haranaga, Shusaku; Yara, Satomi; Tateyama, Masao; Fujita, Jiro

    2011-08-01

    The main aim of this study was to describe the appearance of the CT pattern of organizing pneumonia in Legionella-infected patients. Serial CT scans obtained from five sporadic cases of Legionella pneumophila pneumonia were retrospectively reviewed. The mean time of follow-up was 14 days. Chest CT was analyzed with regard to frequency and appearance of CT patterns of pulmonary abnormalities. Consolidation and ground-glass opacities, with or without an air bronchogram, were the most common abnormalities detected in CT scans during follow-up patients with L. pneumophila pneumonia. Two patterns were observed: subpleural and peribronchovascular. The subpleural pattern was seen in four patients and the peribronchovascular pattern in one. Interlobular septal thickening was seen in one patient. Pleural effusion was seen in one patient. The CT pattern of organizing pneumonia, a subpleural pattern, was frequently observed after treatment of L. pneumophila pneumonia.

  7. The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes

    PubMed Central

    Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.

    2014-01-01

    Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196

  8. Stress Cardiac MRI in Women With Myocardial Infarction and Nonobstructive Coronary Artery Disease.

    PubMed

    Mauricio, Rina; Srichai, Monvadi B; Axel, Leon; Hochman, Judith S; Reynolds, Harmony R

    2016-10-01

    In a prospective study, cardiac MRI (CMR) and intravascular ultrasound were performed in women with myocardial infarction (MI) and nonobstructive coronary artery disease (MINOCA). Forty participants underwent adenosine-stress CMR (sCMR). Abnormal perfusion may co-localize with ischemic late gadolinium enhancement (LGE) and T2-weighted signal hyperintensity (T2+), suggesting microvascular dysfunction contributed to MI. Qualitative perfusion analysis was performed by 2 independent readers. Abnormal myocardial perfusion reserve index (MPRI) was defined as global average ≤1.84. Abnormal rest perfusion was present in 10 patients (25%) and stress perfusion abnormalities in 25 (63%). Abnormal stress perfusion was not associated with LGE but tended to occur with T2+. Among patients with abnormal perfusion and LGE, the LGE pattern was ischemic in half. The locations of abnormal perfusion and LGE matched in 75%, T2+ in 100%. Abnormal stress perfusion was not associated with plaque disruption and matched in location in 63%. MPRI was abnormal in 10 patients (25%) and was not associated with LGE, T2+ or plaque disruption. Abnormal perfusion on sCMR is common among women with MINOCA. Abnormal perfusion usually co-localized with LGE and/or T2+ when present. Variability in LGE pattern leads to uncertainty about whether the finding of abnormal perfusion was cause or consequence of the tissue state leading to LGE. Low MPRI, possibly indicating diffuse microvascular disease, was observed with and without LGE and T2+. Multiple mechanisms may lead to abnormal perfusion on sCMR. Microvascular dysfunction may contribute to the pathogenesis of and coexist with other causes of MINOCA. © 2016 Wiley Periodicals, Inc.

  9. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  10. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  11. Gastric emptying abnormal in duodenal ulcer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, S.; Heading, R.C.; Taylor, T.V.

    1986-07-01

    To investigate the possibility that an abnormality of gastric emptying exists in duodenal ulcer and to determine if such an abnormality persists after ulcer healing, scintigraphic gastric emptying measurements were undertaken in 16 duodenal ulcer patients before, during, and after therapy with cimetidine; in 12 patients with pernicious anemia, and in 12 control subjects. No difference was detected in the rate or pattern of gastric emptying in duodenal ulcer patients before and after ulcer healing with cimetidine compared with controls, but emptying of the solid component of the test meal was more rapid during treatment with the drug. Comparison ofmore » emptying patterns obtained in duodenal ulcer subjects during and after cimetidine treatment with those obtained in pernicious anemia patients and controls revealed a similar relationship that was characterized by a tendency for reduction in the normal differentiation between the emptying of solid and liquid from the stomach. The similarity in emptying patterns in these groups of subjects suggests that gastric emptying of solids may be influenced by changes in the volume of gastric secretion. The failure to detect an abnormality of gastric emptying in duodenal ulcer subjects before and after ulcer healing calls into question the widespread belief that abnormally rapid gastric emptying is a feature with pathogenetic significance in duodenal ulcer disease.« less

  12. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation.

    PubMed

    Perkins, R B; Hall, J E; Martin, K A

    1999-06-01

    To characterize the neuroendocrine patterns of abnormal GnRH secretion in hypothalamic amenorrhea (HA), 49 women with primary and secondary HA underwent frequent sampling of LH in a total of 72 baseline studies over 12-24 h. A subset of women participated in more than one study to address 1) the variability of LH pulse patterns over time; and 2) the impact of modulating opioid, dopaminergic, and adrenergic tone on LH secretory patterns. The frequency and amplitude of LH secretion was compared with that seen in the early follicular phase (EFP) of normally cycling women. The spectrum of abnormalities of LH pulses was 8% apulsatile, 27% low frequency/low amplitude, 8% low amplitude/normal frequency, 43% low frequency/normal amplitude, 14% normal frequency/normal amplitude. Of patients studied overnight, 45% demonstrated a pubertal pattern of augmented LH secretion during sleep. Of patients studied repeatedly, 75% demonstrated at least 2 different patterns of LH secretion, and 33% reverted at least once to a normal pattern of secretion. An increase in LH pulse frequency was seen in 12 of 15 subjects in response to naloxone (opioid receptor antagonist). Clonidine (alpha-2 adrenergic agonist) was associated with a decrease in mean LH in 3 of 3 subjects. An increase in LH pulse frequency was seen in 4 of 8 subjects in response to metoclopramide (dopamine receptor antagonist), but the response was not statistically significant. Baseline abnormalities in LH secretion did not appear to influence response to neurotransmitter modulation. 1) HA represents a spectrum of disordered GnRH secretion that can vary over time; 2) LH pulse patterns at baseline do not appear to influence the ability to respond to neurotransmitter modulation; 3) Opioid and adrenergic tone appear to influence the hypothalamic GnRH pulse generator in some individuals with HA.

  13. Assessment of Microvascular Abnormalities by Nailfold Capillaroscopy in Juvenile Dermatomyositis After Medium- to Long-Term Followup.

    PubMed

    Barth, Zoltan; Witczak, Birgit N; Flatø, Berit; Koller, Akos; Sjaastad, Ivar; Sanner, Helga

    2018-05-01

    In juvenile dermatomyositis (DM), microvascular abnormalities, measured by nailfold capillaroscopy (NFC), are common early in the disease course. We aimed to compare the presence of NFC abnormalities in patients with medium- to long-term juvenile DM with that of controls, and to explore associations between NFC abnormalities and disease activity and other disease characteristics. Fifty-eight juvenile DM patients with a median disease duration of 16.8 (range 2-38) years were clinically examined and compared with matched controls. By NFC, we assessed nailfold capillary density (NCD), giant capillaries, scleroderma, and neovascular pattern (defined as scleroderma active or late pattern). NFC was analyzed with researchers blinded to patient/control identity and disease characteristics. We measured disease activity and damage by validated tools, and patients were categorized as having active or inactive disease according to the Paediatric Rheumatology International Trials Organisation criteria. Compared to controls, patients had decreased NCD (mean ± SD 6.4 ± 2.1/mm versus 7.6 ± 0.8/mm; P = 0.001) and showed more abnormality in all other NFC parameters; 36% of patients versus 4% of controls had NCD <6/mm (P < 0.001). Giant capillaries, scleroderma, and neovascular pattern were found in 9%, 84%, and 41% of patients, respectively. Patients with active disease (n = 30) presented more frequently with neovascular pattern than patients with inactive disease (n = 28) (P = 0.041). Decreased NCD and neovascular pattern were associated with higher levels of disease activity and impaired muscle function. After medium- to long-term followup, juvenile DM patients had decreased NCD and, often, neovascular pattern; both were associated with higher levels of disease activity and impaired muscle function. This suggests that NFC can be a biomarker for disease activity in longstanding juvenile DM too. © 2017, American College of Rheumatology.

  14. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan.

    PubMed

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun

    2017-02-01

    Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017. © 2016 Wiley Periodicals, Inc.

  15. Caregiver Expressed Emotion and Psychiatric Symptoms in African-Americans with Schizophrenia: An Attempt to Understand the Paradoxical Relationship.

    PubMed

    Gurak, Kayla; Weisman de Mamani, Amy

    2017-06-01

    Expressed emotion (EE) is a family environmental construct that assesses how much criticism, hostility, and/or emotional over-involvement a family member expresses about a patient (Hooley, Annual Review of Clinical Psychology, 2007, 3, 329). Having high levels of EE within the family environment has generally been associated with poorer patient outcomes for schizophrenia and a range of other disorders. Paradoxically, for African-American patients, high-EE may be associated with a better symptom course (Rosenfarb, Bellack, & Aziz, Journal of Abnormal Psychology, 2006, 115, 112). However, this finding is in need of additional support and, if confirmed, clarification. In line with previous research, using a sample of 30 patients with schizophrenia and their primary caregivers, we hypothesized that having a caregiver classified as low-EE would be associated with greater patient symptom severity. We also aimed to better understand why this pattern may exist by examining the content of interviews taken from the Five-Minute Speech Sample. Results supported study hypotheses. In line with Rosenfarb et al. (2006), having a low-EE caregiver was associated with greater symptom severity in African-American patients. A content analysis uncovered some interesting patterns that may help elucidate this finding. Results of this study suggest that attempts to lower high-EE in African Americans may, in fact, be counterproductive. © 2015 Family Process Institute.

  16. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    PubMed Central

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  17. Effects of a traditional Chinese medicine, Longdanxiegan formula granule, on Toll-like receptor pathway in female guinea pigs with recurrent genital herpes.

    PubMed

    Kuang, Lin; Deng, Yihui; Liu, Xiaodan; Zou, Zhixiang; Mi, Lan

    2016-04-01

    The aim of the present study was to investigate the effects of Longdanxiegan formula granule (LDXGFG), a Chinese traditional medicine on Toll-like receptor (TLR) pathway in recurrent genital herpes. An experimental recurrent genital herpes model was constructed using herpes guinea pig model. The effect of LDXGFG on expression levels of TLR pathway genes were detected using real-time polymerase chain reaction. Furthermore, the dendritic cells and Langerhans cells were isolated and the TLR pathway genes of these cells were assayed after LDXGFG treatment. The result suggested two different expression patterns of TLR pathway genes in genital herpes and recurrent genital herpes, including upregulated genes and downregulated genes. TLR1, TLR4, TLR6, TLR7, TLR8, TLR9, and TLR10 showed a significant decrease while, TLR2, TLR3, and TLR5 increased in genital herpes and recurrent genital herpes guinea pigs. Meanwhile, the downregulated genes in genital herpes and recurrent genital herpes were stimulated by LDXGFG. By contrast, the upregulated genes decreased significantly after LDXGFG treatment. In both dendritic cells and Langerhans cells, the TLR pathway genes exhibited same pattern: the LDXGFG corrected the abnormal expression of TLR pathway genes. The present results suggest that LDXGFG is an alternative, inexpensive, and lasting-effect medicine for herpes simplex virus 2 infection. Copyright © 2016. Published by Elsevier B.V.

  18. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left–right patterning

    PubMed Central

    Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim

    2007-01-01

    The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984

  19. Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis

    PubMed Central

    Tseng, Shih-Chiao

    2010-01-01

    Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199

  20. Linked functional network abnormalities during intrinsic and extrinsic activity in schizophrenia as revealed by a data-fusion approach.

    PubMed

    Hashimoto, Ryu-Ichiro; Itahashi, Takashi; Okada, Rieko; Hasegawa, Sayaka; Tani, Masayuki; Kato, Nobumasa; Mimura, Masaru

    2018-01-01

    Abnormalities in functional brain networks in schizophrenia have been studied by examining intrinsic and extrinsic brain activity under various experimental paradigms. However, the identified patterns of abnormal functional connectivity (FC) vary depending on the adopted paradigms. Thus, it is unclear whether and how these patterns are inter-related. In order to assess relationships between abnormal patterns of FC during intrinsic activity and those during extrinsic activity, we adopted a data-fusion approach and applied partial least square (PLS) analyses to FC datasets from 25 patients with chronic schizophrenia and 25 age- and sex-matched normal controls. For the input to the PLS analyses, we generated a pair of FC maps during the resting state (REST) and the auditory deviance response (ADR) from each participant using the common seed region in the left middle temporal gyrus, which is a focus of activity associated with auditory verbal hallucinations (AVHs). PLS correlation (PLS-C) analysis revealed that patients with schizophrenia have significantly lower loadings of a component containing positive FCs in default-mode network regions during REST and a component containing positive FCs in the auditory and attention-related networks during ADR. Specifically, loadings of the REST component were significantly correlated with the severities of positive symptoms and AVH in patients with schizophrenia. The co-occurrence of such altered FC patterns during REST and ADR was replicated using PLS regression, wherein FC patterns during REST are modeled to predict patterns during ADR. These findings provide an integrative understanding of altered FCs during intrinsic and extrinsic activity underlying core schizophrenia symptoms.

  1. Valence Scaling of Dynamic Facial Expressions Is Altered in High-Functioning Subjects with Autism Spectrum Disorders: An FMRI Study

    ERIC Educational Resources Information Center

    Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa

    2012-01-01

    FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…

  2. Brain region-dependent differential expression of alpha-synuclein.

    PubMed

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  3. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors

    PubMed Central

    Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-01-01

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279

  4. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors.

    PubMed

    Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-07-20

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.

  5. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  6. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana.

    PubMed

    Jun, Ji Hyung; Ha, Chan Man; Nam, Hong Gil

    2002-03-01

    A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.

  7. Different cytokeratin and neuronal cell adhesion molecule staining patterns in focal nodular hyperplasia and hepatic adenoma and their significance

    PubMed Central

    Iyer, Anita; Robert, Marie E.; Bifulco, Carlo B.; Salem, Ronald R.; Jain, Dhanpat

    2013-01-01

    Summary Differentiating focal nodular hyperplasia from hepatic adenoma can be challenging. Cytokeratin 7, neuronal cell adhesion molecule, and cytokeratin 19 are differentially expressed in hepatocytes, biliary epithelium, and possibly hepatic progenitor/stem cells. CD34 is known to have altered expression patterns in the hepatic endothelium in conditions associated with abnormal perfusion and in hepatocellular carcinoma. The purpose of this study was to examine the expression pattern of these markers in focal nodular hyperplasia and hepatic adenoma and assess their diagnostic use. Ten resection specimens each of hepatic adenoma and focal nodular hyperplasia (including a case of telangiectatic focal nodular hyperplasia) were selected for the study. Immunohistochemical analysis was performed using antibodies against cytokeratin 7, cytokeratin 19, neuronal cell adhesion molecule, and CD34 on formalin-fixed, paraffin-embedded sections from each case. The staining patterns and intensity for each marker were analyzed. In hepatic adenoma, the cytokeratin 7 stain revealed strong positivity in hepatocytes in patches, with a gradual decrease in the staining intensity as the cells differentiated towards mature hepatocytes. Although bile ducts were typically absent in hepatic adenoma, occasional ductules could be identified with cytokeratin 7 stain. In focal nodular hyperplasia, cytokeratin 7 showed strong staining of the biliary epithelium within the fibrous septa and staining of the peripheral hepatocytes of most lobules that was focal and weaker than hepatic adenoma. Cytokeratin 19 and neuronal cell adhesion molecule showed patchy and moderate staining in the biliary epithelium of the ductules in focal nodular hyperplasia. While in the hepatic adenoma, cytokeratin 19 showed only rare positivity in occasional cells within ductules, and neuronal cell adhesion molecule marked occasional isolated cells in the lesion. CD34 showed staining of sinusoids in the inflow areas (periportal areas) in both focal nodular hyperplasia and hepatic adenoma. One case of telangiectatic focal nodular hyperplasia revealed both hepatic adenoma–like and focal nodular hyperplasia–like staining patterns. Distinct cytokeratin 7, cytokeratin 19, and neuronal cell adhesion molecule staining patterns are seen in hepatic adenoma and focal nodular hyperplasia possibly suggest activation of different subsets of hepatic progenitor/stem cell and can be diagnostically useful. PMID:18602664

  8. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    PubMed

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  9. Abnormal patterns of pulsatile luteinizing hormone in women with luteal phase deficiency.

    PubMed

    Soules, M R; Steiner, R A; Clifton, D K; Bremner, W J

    1984-05-01

    Luteal phase deficiency is usually a problem of inadequate progesterone production associated with inadequate ovarian follicular development. The hypothesis that luteal phase deficiency results from an abnormal secretion pattern of luteinizing hormone (LH) was tested in these women. To this end, the early follicular LH secretion pattern in four women with luteal phase deficiency was characterized and compared with patterns in normal women. Blood samples were obtained through indwelling catheters every ten minutes for eight hours (10 AM to 6 PM), and plasma levels of LH and FSH were measured. Luteinizing hormone and FSH secretion profiles were analyzed for pulse frequency, amplitude, and mean plasma level. A significantly greater LH pulse frequency in women with luteal phase deficiency was observed when compared with the frequency in normal controls (luteal phase deficiency, 10.5 pulses/eight hours; normal, 5.2 pulses/eight hours; P less than or equal to .05). The mean FSH concentration was less in the women with luteal phase deficiency, but the level was not significant. These data suggest that the abnormal LH secretion pattern observed in women with luteal phase deficiency is responsible for their inadequate luteal phase progesterone secretion and their infertility.

  10. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken

    PubMed Central

    YU, Minli; XU, Yali; YU, Defu; YU, Debing; DU, Wenxing

    2015-01-01

    Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken. PMID:25736178

  11. [Marshmallow for investigating functional disturbances of the esophageal body].

    PubMed

    Keren, S; Argaman, E

    1992-09-01

    Manometric studies using water boluses do not always demonstrate disturbances in esophageal motility. We tested the use of a marshmallow bolus to induce abnormal manometric patterns in patients with dysphagia in whom manometric studies using water boluses were normal or nearly so. The study group included 12 normal volunteers and 22 patients with dysphagia and nearly normal manometric studies. Pressure was recorded along the esophageal body using 10 "wet" swallows followed by 10 "solid" swallows of marshmallow. In normal subjects there were fewer abnormal contractions after solid swallows than after wet swallows. In 15 patients solid swallows induced abnormal motility patterns which were not observed after wet swallows. The probability of inducing abnormal contractions in patients after solid swallows is significantly greater than after wet swallows (p < 0.0001). Solid swallowing is therefore useful in evaluating functional disturbances of the esophagus in patients with dysphagia.

  12. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  13. Unsupervised Pattern Classifier for Abnormality-Scaling of Vibration Features for Helicopter Gearbox Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.

  14. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension

    PubMed Central

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. PMID:27006450

  15. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. © FASEB.

  16. Expression of Mutant Human DISC1 in Mice Supports Abnormalities in Differentiation of Oligodendrocytes

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Abazyan, Bagrat; Davis, Kenneth L; Ross, Christopher; Pletnikov, Mikhail V; Haroutunian, Vahram

    2011-01-01

    Abnormalities in oligodendrocyte (OLG) differentiation and OLG gene expression deficit have been described in schizophrenia (SZ). Recent studies revealed a critical requirement for Disrupted-in-Schizophrenia 1 (DISC1) in neural development. Transgenic mice with forebrain restricted expression of mutant human DISC1 (ΔhDISC1) are characterized by neuroanatomical and behavioral abnormalities reminiscent of some features of SZ. We sought to determine whether the expression of ΔhDISC1 may influence the development of OLGs in this mouse model. OLG- and cell cycle-associated gene and protein expression were characterized in the forebrain of ΔhDISC1 mice during different stages of neurodevelopment (E15 and P1 days) and in adulthood. The results suggest that the expression of ΔhDISC1 exerts a significant influence on oligodendrocyte differentiation and function, evidenced by premature OLG differentiation and increased proliferation of their progenitors. Additional findings showed that neuregulin 1 and its receptors may be contributing factors to the observed upregulation of OLG genes. Thus, OLG function may be perturbed by mutant hDISC1 in a model system that provides new avenues for studying aspects of the pathogenesis of SZ. PMID:21605958

  17. Early Detection of Diabetic Retinopathy.

    PubMed

    Safi, Hamid; Safi, Sare; Hafezi-Moghadam, Ali; Ahmadieh, Hamid

    2018-04-18

    Diabetic retinopathy (DR) is a primary cause of visual impairment worldwide. Diabetes mellitus may be associated with ophthalmoscopically nonvisible neurovascular damage that progresses before the first clinical signs of DR appear. Reduction of the inner neuroretinal layer thickness on macular optical coherence tomography (OCT), reduced contrast sensitivity primarily at low spatial frequencies, abnormal results in color vision and microperimetry tests, and a prolonged implicit time recorded by multifocal electroretinography have been proposed for detection of early functional and nonvisible structural neuroretinal changes. Vascular abnormalities such as changes in the retinal vessels caliber, architectural indices, and blood flow have been investigated to evaluate the early stages of DR. The results of OCT angiography, retinal vessel oxygen saturation patterns, and elevated levels of circulating blood markers and cytokines have been suggested as early signs of DR. Light-based molecular imaging in rodents has been developed to demonstrate changes in protein expressions in the retinal microvessels as diagnostic biomarkers. Future clinical studies will examine the safety and efficacy of this approach in humans. We summarize all studies related to subclinical DR biomarkers. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Recognizing patterns of visual field loss using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Yousefi, Siamak; Goldbaum, Michael H.; Zangwill, Linda M.; Medeiros, Felipe A.; Bowd, Christopher

    2014-03-01

    Glaucoma is a potentially blinding optic neuropathy that results in a decrease in visual sensitivity. Visual field abnormalities (decreased visual sensitivity on psychophysical tests) are the primary means of glaucoma diagnosis. One form of visual field testing is Frequency Doubling Technology (FDT) that tests sensitivity at 52 points within the visual field. Like other psychophysical tests used in clinical practice, FDT results yield specific patterns of defect indicative of the disease. We used Gaussian Mixture Model with Expectation Maximization (GEM), (EM is used to estimate the model parameters) to automatically separate FDT data into clusters of normal and abnormal eyes. Principal component analysis (PCA) was used to decompose each cluster into different axes (patterns). FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal (i.e., glaucomatous) FDT results, recruited from a university-based, longitudinal, multi-center, clinical study on glaucoma. The GEM input was the 52-point FDT threshold sensitivities for all eyes. The optimal GEM model separated the FDT fields into 3 clusters. Cluster 1 contained 94% normal fields (94% specificity) and clusters 2 and 3 combined, contained 77% abnormal fields (77% sensitivity). For clusters 1, 2 and 3 the optimal number of PCA-identified axes were 2, 2 and 5, respectively. GEM with PCA successfully separated FDT fields from healthy and glaucoma eyes and identified familiar glaucomatous patterns of loss.

  19. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome.

    PubMed

    Heise, I; Fisher, S P; Banks, G T; Wells, S; Peirson, S N; Foster, R G; Nolan, P M

    2015-02-01

    Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel-running analysis and video-based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep-like behaviour during the light phase of a 12:12-h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night-time was less effective in inducing sleep-like behaviour in Tc1 animals than in wild-type controls. In wheel-running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep-related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected. © 2015 Medical Research Council. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  20. [FOXP2: from the specific disorder to the molecular biology of language. I. Aetiological, neuroanatomical, neurophysiological and molecular aspects].

    PubMed

    Benítez-Burraco, A

    The task of cloning the genes whose products are involved in the organisation and functioning of the nerve centres that enable language tasks to be executed must necessarily start with the identification and the cognitive, linguistic, neuroanatomical and neurophysiological analysis of individuals with hereditary (specific) language impairment (SLI). The first of these genes to be characterised in this way--a gene called FOXP2--codes for a regulating factor that acts as a transcriptional repressor in the central nervous system. It is expressed in neuronal populations mainly situated in the basal ganglia, but also in the cortex, cerebellum and the thalamus, which are presumably involved in the development and/or functioning of the thalamic-cortical-striatal circuits associated with motor planning and learning. The protein FOXP2 shows several structural patterns that, when altered in other proteins, also give rise to different disorders in the central nervous system. The pattern of expression of the gene is preserved phylogenetically, although this does not happen in the case of the pattern of mRNA maturation. In individuals with a mutated version of FOXP2, morphological and functional anomalies are detected in those areas in which the gene is expressed. These abnormalities can be correlated satisfactorily with the phenotypic characteristics of the disorder, which are at the same time of both a motor and linguistic nature. The fact that other variations of SLI are not linked to the FOXP2 gene raises the need for further research into the genetic bases of the disorder, while also suggesting that it would be advisable to reassess the phenotypic scope of the variant associated to the mutation of this gene.

  1. Molecular cloning, expression pattern, and chemical analysis of heat shock protein 70 (HSP70) in the mudskipper Boleophthalmus pectinirostris: Evidence for its role in regulating spermatogenesis.

    PubMed

    Han, Ying-Li; Yang, Wan-Xi; Long, Ling-Li; Sheng, Zhang; Zhou, Yang; Zhao, Yong-Qiang; Wang, You-Fa; Zhu, Jun-Quan

    2016-01-10

    Heat shock protein 70 (HSP70) is molecular chaperone that is important for reproductive biological processes. In this study, a full length HSP70 from the mudskipper (Boleophthalmus pectinirostris) was characterized. It was found to contain: a 108 bp 5'-untranslated region, a 208 bp 3'-untranslated region, and a 1953 bp open reading frame, which encodes a protein of 650 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.17. RT-PCR analysis revealed that HSP70 was ubiquitously expressed in all major tissues with differential expression levels. This suggests that HSP70 has vital and conserved biological functions. HSP70 was localized mainly in the cytoplasm of germinal cells, indicating an important role of this protein during spermatogenesis. In response to heat stress, the testes presented abnormal morphology in connective tissues, in which HSP70 immunoreactivity was not observed. HSP70 mRNA expression in the gill, liver, and testes was significantly increased, which suggests that HSP70 plays an important role in protection against heat stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Clinical analysis of a large kindred with the pallister ulnar-mammary syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamshad, M.; Root, S.; Carey, J.C.

    1996-11-11

    The ulnar-mammary syndrome (UMS) is an autosomal dominant disorder characterized by posterior limb deficiencies or duplications, apocrine/mammary gland hypoplasia and/or dysfunction, abnormal dentition, delayed puberty in males, and genital anomalies. We present the clinical descriptions of 33 members of a six generation kindred with UMS. The number of affected individuals in this family is more than the sum of all previously reported cases of UMS. The clinical expression of UMS is highly variable. While most patients have limb deficiencies, the range of abnormalities extends from hypoplasia of the terminal phalanx of the 5th digit to complete absence of the ulnamore » and 3rd, 4th, and 5th digits. Moreover, affected individuals may have posterior digital duplications with or without contralateral limb deficiencies. Apocrine gland abnormalities range from diminished axillary perspiration with normal breast development and lactation, to complete absence of the breasts and no axillary perspiration. Dental abnormalities include misplaced or absent teeth. Affected males consistently undergo delayed puberty, and both sexes have diminished to absent axillary hair. Imperforate hymen were seen in some affected women. A gene for UMS was mapped to chromosome area 12q23-q24.1. A mutation in the gene causing UMS can interfere with limb patterning in the proximal/distal, anterior/posterior, and dorsal/ventral axes. This mutation disturbs development of the posterior elements of forearm, wrist, and hand while growth and development of the anterior elements remain normal. 24 refs., 4 figs., 1 tab.« less

  3. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.

    PubMed

    Tay, Su Ann; Sanjay, Srinivasan

    2012-07-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  4. Morphological abnormalities in the cladoceran Ilyocryptus spinifer (Apipucos Reservoir, Pernambuco State, Brazil).

    PubMed

    Elmoor-Loureiro, L M

    2004-02-01

    In a sample taken from Apipucos Reservoir (Recife, PE, Brazil) for taxonomic study, a high percentage (40%) was found of cladoceran Ilyocryptus spinifer individuals with morphological abnormalities on their postabdomen. There was not a fixed pattern of the malformations, which varied in gravity, and could affect the postanal spines or terminal claws. The postabdominal abnormalities are described and compared to the ones described in the literature. The hypothesis of the morphological abnormalities being induced by an occasional environmental toxicant is discussed.

  5. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.

    PubMed

    Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi

    2006-04-17

    Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.

  6. Radiologic Characterization of Ischemic Cholangiopathy in Donation-After-Cardiac-Death Liver Transplants and Correlation With Clinical Outcomes.

    PubMed

    Giesbrandt, Kirk J; Bulatao, Ilynn G; Keaveny, Andrew P; Nguyen, Justin H; Paz-Fumagalli, Ricardo; Taner, C Burcin

    2015-11-01

    The purpose of this study was to define the cholangiographic patterns of ischemic cholangiopathy and clinically silent nonanastomotic biliary strictures in donation-after-cardiac-death (DCD) liver grafts in a large single-institution series. We also examined the correlation of the radiologic findings with laboratory data and clinical outcomes. Data were collected for all DCD liver transplants at one institution from December 1998 to December 2011. Posttransplant cholangiograms were obtained during postoperative weeks 1 and 3 and when clinically indicated. Intrahepatic biliary strictures were classified by anatomic distribution and chronologic development. Radiologic findings were correlated with laboratory data and with 1-, 3-, and 5-year graft and patient survival rates. A total of 231 patients received DCD grafts. Cholangiograms were available for 184 of these patients. Postoperative cholangiographic findings were correlated with clinical data and divided into the following three groups: A, normal cholangiographic findings with normal laboratory values; B, radiologic abnormalities and cholangiopathy according to laboratory values; and C, radiologic abnormalities without laboratory abnormalities. Group B had four distinct abnormal cholangiographic patterns that were predictive of graft survival. Group C had mild nonprogressive multifocal stenoses and decreased graft and patient survival rates, although cholangiopathy was not detected in these patients according to laboratory data. Patterns and severity of nonanastomotic biliary abnormalities in DCD liver transplants can be defined radiologically and correlate with clinical outcomes. Postoperative cholangiography can depict the mild biliary abnormalities that occur in a subclinical manner yet cause a marked decrease in graft and patient survival rates in DCD liver transplants.

  7. Altered gene expression patterns during the initiation and promotion stages of neonatally diethylstilbestrol-induced hyperplasia/dysplasia/neoplasia in the hamster uterus.

    PubMed

    Hendry, William J; Hariri, Hussam Y; Alwis, Imala D; Gunewardena, Sumedha S; Hendry, Isabel R

    2014-12-01

    Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Identification of a distant cis-regulatory element controlling pharyngeal arch-specific expression of zebrafish gdf6a/radar

    PubMed Central

    Reed, Nykolaus P.; Mortlock, Douglas P.

    2011-01-01

    Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in Growth and Differentiation Factor 6 (Gdf6) have numerous skeletal abnormalities including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals. PMID:20201106

  9. Antifungal Activity of Eucalyptus Oil against Rice Blast Fungi and the Possible Mechanism of Gene Expression Pattern.

    PubMed

    Zhou, Li-Jun; Li, Fu-Rong; Huang, Li-Jie; Yang, Zhi-Rong; Yuan, Shu; Bai, Lin-Han

    2016-05-12

    Eucalyptus oil possesses a wide spectrum of biological activity, including anti-microbial, fungicidal, herbicidal, acaricidal and nematicidal properties. We studied anti-fungal activities of the leaf oil extracted from Eucalyptus. grandis × E. urophylla. Eleven plant pathogenic fungi were tested based on the mycelium growth rates with negative control. The results showed that Eucalyptus oil has broad-spectrum inhibitory effects toward these fungi. Remarkable morphological and structural alterations of hypha have been observed for Magnaporthe grisea after the treatment. The mRNA genome array of M. grisea was used to detect genes that were differentially expressed in the test strains treated by the Eucalyptus oil than the normal strains. The results showed 1919 genes were significantly affected, among which 1109 were down-regulated and 810 were up-regulated (p < 0.05, absolute fold change >2). According to gene ontology annotation analysis, these differentially expressed genes may cause abnormal structures and physiological function disorders, which may reduce the fungus growth. These results show the oil has potential for use in the biological control of plant disease as a green biopesticide.

  10. Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats

    PubMed Central

    Mohamad Zaid, Siti Sarah; Kassim, Normadiah M.; Othman, Shatrah

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties. PMID:26788107

  11. B-cell acute lymphoblastic leukemia with mature phenotype and MLL rearrangement: report of five new cases and review of the literature.

    PubMed

    Sajaroff, Elisa Olga; Mansini, Adrian; Rubio, Patricia; Alonso, Cristina Noemí; Gallego, Marta S; Coccé, Mariela C; Eandi-Eberle, Silvia; Bernasconi, Andrea Raquel; Ampatzidou, Maria; Paterakis, George; Papadhimitriou, Stefanos I; Petrikkos, Loizos; Papadakis, Vassilios; Polychronopoulou, Sophia; Rossi, Jorge G; Felice, Maria Sara

    2016-10-01

    The association between mature-B phenotype and MLL abnormalities in acute lymphoblastic leukemia (ALL) is a very unusual finding; only 14 pediatric cases have been reported so far. We describe the clinical and biological characteristics and outcome of five pediatric cases of newly diagnosed B lineage ALL with MLL abnormalities and mature immunophenotype based on light chain restriction and surface Ig expression. Blasts showed variable expression of CD10/CD34/TdT. MLL abnormalities with no MYC involvement were detected in all patients by G-banding, FISH, and/or RT-PCR. Three patients were treated according to Interfant protocol, one to ALLIC-09, and one received B-NHL-BFM-2004. All patients achieved complete remission and three of them relapsed. Despite the small cohort size, it could be postulated that B lineage ALL with MLL abnormalities and mature phenotype is a distinct entity that differs both from the typical Pro B ALL observed in infants and mature B-ALL with high MYC expression.

  12. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  13. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  14. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction

    PubMed Central

    Jin, Yong-Ri; Turcotte, Taryn J.; Crocker, Alison L.; Han, Xiang Hua; Yoon, Jeong Kyo

    2011-01-01

    R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm-mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal-mesenchymal interaction and a novel genetic factor for cleft palate. PMID:21237142

  15. Time-course microarray analysis for identifying candidate genes involved in obesity-associated pathological changes in the mouse colon.

    PubMed

    Bae, Yun Jung; Kim, Sung-Eun; Hong, Seong Yeon; Park, Taesun; Lee, Sang Gyu; Choi, Myung-Sook; Sung, Mi-Kyung

    2016-01-01

    Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log 2 fold change of ≥1 or ≤-1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Our data indicate that Apoa4 , Ppap2b , Cel , and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon.

  16. Abnormal Positioning of Diencephalic Cell Types in Neocortical Tissue in the Dorsal Telencephalon of Mice Lacking Functional Gli3

    PubMed Central

    Fotaki, Vassiliki; Yu, Tian; Zaki, Paulette A.; Mason, John O.; Price, David J.

    2008-01-01

    The transcription factor Gli3 (glioma-associated oncogene homolog) is essential for normal development of the mammalian forebrain. One extreme requirement for Gli3 is at the dorsomedial telencephalon, which does not form in Gli3Xt/Xt mutant mice lacking functional Gli3. In this study, we analyzed expression of Gli3 in the wild-type telencephalon and observed a highdorsal-to-lowventral gradient of Gli3 expression and predominance of the cleaved form of the Gli3 protein dorsally. This graded expression correlates with the severedorsal-to-mildventral telencephalic phenotype observed in Gli3Xt/Xt mice. We characterized the abnormal joining of the telencephalon to the diencephalon and defined the medial limit of the dorsal telencephalon in Gli3Xt/Xt mice early in corticogenesis. Based on this analysis, we concluded that some of the abnormal expression of ventral telencephalic markers previously described as being in the dorsal telencephalon is, in fact, expression in adjacent diencephalic tissue, which expresses many of the same genes that mark the ventral telencephalon. We observed occasional cells with diencephalic character in the Foxg1 (forkhead box)-expressing Gli3Xt/Xt telencephalon at embryonic day 10.5, a day after the anatomical subdivision of the forebrain vesicle. Large clusters of such cells appear in the Gli3Xt/Xt neocortical region at later ages, when the neocortex becomes highly disorganized, forming rosettes comprising mainly neural progenitors. We propose that Gli3 is indispensable for formation of an intact telencephalic-diencephalic boundary and for preventing the abnormal positioning of diencephalic cells in the dorsal telencephalon. PMID:16957084

  17. A Genetic Algorithm for Learning Significant Phrase Patterns in Radiology Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Potok, Thomas E; Beckerman, Barbara G

    2009-01-01

    Radiologists disagree with each other over the characteristics and features of what constitutes a normal mammogram and the terminology to use in the associated radiology report. Recently, the focus has been on classifying abnormal or suspicious reports, but even this process needs further layers of clustering and gradation, so that individual lesions can be more effectively classified. Using a genetic algorithm, the approach described here successfully learns phrase patterns for two distinct classes of radiology reports (normal and abnormal). These patterns can then be used as a basis for automatically analyzing, categorizing, clustering, or retrieving relevant radiology reports for themore » user.« less

  18. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.

    PubMed

    Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G

    1997-08-01

    CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.

  19. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Facultad de Medicina, Universidad Nacional Autonoma de Mexico

    2007-12-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for typemore » 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance.« less

  20. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

    DOE PAGES

    Liu, Chih-Wei; Bramer, Lisa; Webb-Robertson, Bobbie-Jo; ...

    2017-10-07

    We report that blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n = 11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n = 10). To our knowledge, the current study represents the largest (> 2000 proteins measured)more » longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA.« less

  1. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Wei; Bramer, Lisa; Webb-Robertson, Bobbie-Jo

    We report that blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n = 11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n = 10). To our knowledge, the current study represents the largest (> 2000 proteins measured)more » longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA.« less

  2. Expression changes and novel interaction partners of talin 1 in effector cells of autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Hauck, Stefanie M; Treutlein, Gudrun; Amann, Barbara; Fröhlich, Kristina J H; Kremmer, Elisabeth; Merl, Juliane; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A

    2013-12-06

    Autoimmune uveitis is characterized by crossing of blood-retinal barrier (BRB) by autoaggressive immune cells. Equine recurrent uveitis (ERU) is a valuable spontaneous model for autoimmune uveitis and analyses of differentially expressed proteins in ERU unraveled changed protein clusters in target tissues and immune system. Healthy eyes are devoid of leukocytes. In ERU, however, leukocytes enter the inner eye and subsequently destroy it. Molecular mechanisms enabling cell migration through BRB still remain elusive. Previously, we detected decreased talin 1 expression in blood-derived granulocytes of ERU cases, linking the innate immune system to ERU. Because changes in leukocyte protein expression pattern may play a role in pathological abnormalities leading to migration ability, we aimed at identifying interactors of talin 1 in leukocytes with immunoprecipitation, followed by LC-MS/MS for candidate identification. This enabled us to identify CD90 (Thy1) as novel interactor of talin 1 besides several other interactors. In blood-derived granulocytes from healthy individuals, CD90 was highly abundant and significantly reduced in ERU, especially in effector cells. Connection between talin 1 and CD90 and their expression differences in inflammation is an interesting novel finding allowing deeper insight into immune response of innate immune system and granulocyte migration ability in this organ-specific autoimmune disease.

  3. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma

    PubMed Central

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC. PMID:28812986

  4. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma.

    PubMed

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-08-16

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau ( VHL ) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1 , SETD2 and BAP1 , are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.

  5. Language comprehension in nonspeaking children with severe cerebral palsy: Neuroanatomical substrate?

    PubMed

    Geytenbeek, Joke J; Oostrom, Kim J; Harlaar, Laurike; Becher, Jules G; Knol, Dirk L; Barkhof, Frederik; Pinto, Pedro S; Vermeulen, R Jeroen

    2015-09-01

    To identify relations between brain abnormalities and spoken language comprehension, MRI characteristics of 80 nonspeaking children with severe CP were examined. MRI scans were analysed for patterns of brain abnormalities and scored for specific MRI measures: white matter (WM) areas; size of lateral ventricles, WM abnormality/reduction, cysts, subarachnoid space, corpus callosum thinning and grey matter (GM) areas; cortical GM abnormalities, thalamus, putamen, globus pallidus and nucleus caudatus and cerebellar abnormalities. Language comprehension was assessed with a new validated instrument (C-BiLLT). MRI scans of 35 children were classified as a basal ganglia necrosis (BGN) pattern, with damage to central GM areas; in 60% of these children damage to WM areas was also found. MRI scans of 13 children were classified as periventricular leukomalacia (PVL) with little concomitant damage to central GM areas, 13 as malformations and 19 as miscellaneous. Language comprehension was best in children with BGN, followed by malformations and miscellaneous, and was poorest in PVL. Linear regression modelling per pattern group (malformations excluded), with MRI measures as independent variables, revealed that corpus callosum thinning in BGN and parieto-occipital WM reduction in PVL were the most important explanatory factors for poor language comprehension. No MRI measures explained outcomes in language comprehension in the miscellaneous group. Comprehension of spoken language differs between MRI patterns of severe CP. In children with BGN and PVL differences in language comprehension performance is attributed to damage in the WM areas. Language comprehension was most affected in children with WM lesions in the subcortical and then periventricular areas, most characteristic for children with PVL. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Brief report: circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism.

    PubMed

    Nir, I; Meir, D; Zilber, N; Knobler, H; Hadjez, J; Lerner, Y

    1995-12-01

    An abnormal circadian pattern of melatonin was found in a group of young adults with an extreme autism syndrome. Although not out of phase, the serum melatonin levels differed from normal in amplitude and mesor. Marginal changes in diurnal rhythms of serum TSH and possibly prolactin were also recorded. Subjects with seizures tended to have an abnormal pattern of melatonin correlated with EEG changes. In others, a parallel was evidenced between thyroid function and impairment in verbal communication. There appears to be a tendency for various types of neuroendocrinological abnormalities in autistics, and melatonin, as well as possibly TSH and perhaps prolactin, could serve as biochemical variables of the biological parameters of the disease.

  7. CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia

    PubMed Central

    Horani, Amjad; Brody, Steven L.; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Ta-shma, Asaf; Wilson, Kate S.; Bayly, Philip V.; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Background Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. Methods Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. Results A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. Conclusion Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable ultrastructural defects of the ciliary axoneme, emphasizing the role of the nexin-dynein regulatory complex and the limitations of certain methods for PCD diagnosis. PMID:23991085

  8. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less

  9. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment

    PubMed Central

    Zhou, Joanne; Butler, Erin E.; Rose, Jessica

    2017-01-01

    Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP. PMID:28367118

  10. Novel Allelic Variants in the Canine Cyclooxgenase-2 (Cox-2) Promoter Are Associated with Renal Dysplasia in Dogs

    PubMed Central

    Whiteley, Mary H.; Bell, Jerold S.; Rothman, Debby A.

    2011-01-01

    Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs. PMID:21346820

  11. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.

    PubMed

    Hepworth, Shelley R; Klenz, Jennifer E; Haughn, George W

    2006-03-01

    The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear "chimeric" at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.

  12. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize.

    PubMed

    Somaratne, Yamuna; Tian, Youhui; Zhang, Hua; Wang, Mingming; Huo, Yanqing; Cao, Fengge; Zhao, Li; Chen, Huabang

    2017-04-01

    Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    PubMed

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Emotional Processing of Infants Displays in Eating Disorders

    PubMed Central

    Cardi, Valentina; Corfield, Freya; Leppanen, Jenni; Rhind, Charlotte; Deriziotis, Stephanie; Hadjimichalis, Alexandra; Hibbs, Rebecca; Micali, Nadia; Treasure, Janet

    2014-01-01

    Aim The aim of this study is to examine emotional processing of infant displays in people with Eating Disorders (EDs). Background Social and emotional factors are implicated as causal and maintaining factors in EDs. Difficulties in emotional regulation have been mainly studied in relation to adult interactions, with less interest given to interactions with infants. Method A sample of 138 women were recruited, of which 49 suffered from Anorexia Nervosa (AN), 16 from Bulimia Nervosa (BN), and 73 were healthy controls (HCs). Attentional responses to happy and sad infant faces were tested with the visual probe detection task. Emotional identification of, and reactivity to, infant displays were measured using self-report measures. Facial expressions to video clips depicting sad, happy and frustrated infants were also recorded. Results No significant differences between groups were observed in the attentional response to infant photographs. However, there was a trend for patients to disengage from happy faces. People with EDs also reported lower positive ratings of happy infant displays and greater subjective negative reactions to sad infants. Finally, patients showed a significantly lower production of facial expressions, especially in response to the happy infant video clip. Insecure attachment was negatively correlated with positive facial expressions displayed in response to the happy infant and positively correlated with the intensity of negative emotions experienced in response to the sad infant video clip. Conclusion People with EDs do not have marked abnormalities in their attentional processing of infant emotional faces. However, they do have a reduction in facial affect particularly in response to happy infants. Also, they report greater negative reactions to sadness, and rate positive emotions less intensively than HCs. This pattern of emotional responsivity suggests abnormalities in social reward sensitivity and might indicate new treatment targets. PMID:25463051

  15. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect.

    PubMed

    Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang

    2017-06-01

    Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society

  16. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer's disease.

    PubMed

    Wu, Meina; Zhou, Fang; Cao, Xiuli; Yang, Junting; Bai, Yu; Yan, Xudong; Cao, Jimin; Qi, Jinshun

    2018-05-29

    Circadian rhythm disturbance (CRD) is one of the iconic manifestations in Alzheimer's disease (AD), a disease tightly associated with age, but the characteristics and gender difference of CRD occurred in AD have not been well demonstrated. Using 6-month-old triple transgenic AD mouse model (3xTg-AD) without obvious brain pathological changes, we demonstrated the gender difference of CRD at this age. We further showed abnormal Per gene expression in the central clock suprachiasmatic nucleus (SCN) of the 3xTg-AD mice. Specifically, compared with the wide type (WT) mice, the 3xTg-AD mice showed disrupted circadian locomotor rhythms both at LD (light-dark 12 h:12 h) and DD (constant dark) conditions, such as increased activities in the resting phase, decreased and scattered activities in the active phase, decreased overall activity intensities, amplitude, robustness, and increased intradaily variability. We further observed that 3xTg-AD female mice showed obviously less CRD compared with the 3xTg-AD male mice, and female mice of both WT and 3xTg-AD were more active in locomotor activity. Accordingly, 3xTg-AD mice showed a phase delay in the expression of Per1 and Per2 mRNA in the SCN, with the levels of Per1 and Per2 mRNA were significantly lower than that of WT mice at specific time points. We conclude that 3xTg-AD mice exhibit behavioral CRD at the age of six months with male gender preference, and these phenomena are at least partly associated with the alteration of Per1 and Per2 transcription patterns in the SCN. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

    PubMed

    Song, Zhongchen; Liu, Chao; Iwata, Junichi; Gu, Shuping; Suzuki, Akiko; Sun, Cheng; He, Wei; Shu, Rong; Li, Lu; Chai, Yang; Chen, YiPing

    2013-04-12

    Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.

  18. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2.

    PubMed

    Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru

    2013-01-01

    Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.

  19. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii

    PubMed Central

    Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975

  20. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    PubMed

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  1. Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo.

    PubMed

    Zhang, Wei; Mulieri, Philip J; Gaio, Ursula; Bae, Gyu-Un; Krauss, Robert S; Kang, Jong-Sun

    2009-10-01

    Vertebrate eye development requires a series of complex morphogenetic and inductive events to produce a lens vesicle centered within the bilayered optic cup and a posteriorly positioned optic stalk. Multiple congenital eye defects, including microphthalmia and coloboma, result from defects in early eye morphogenesis. Cdo is a multifunctional cell surface immunoglobulin superfamily member that interacts with and mediates signaling by cadherins and netrins to regulate myogenesis. In addition, Cdo plays an essential role in early forebrain development by functioning as coreceptor for sonic hedgehog. It is reported here that Cdo is expressed in a dynamic, but dorsally restricted, fashion during early eye development, and that mice lacking Cdo display multiple eye defects. Anomalies seen in Cdo(-/-) mice include coloboma (failure to close the optic fissure); failure to form a proper boundary between the retinal pigmented epithelium and optic stalk; defective lens formation, including failure to separate from the surface ectoderm; and microphthalmia. Consistent with this wide array of defects, developing eyes of Cdo(-/-) mice show altered expression of several regulators of dorsoventral eye patterning, including Pax6, Pax2, and Tbx5. Taken together, these findings show that Cdo is required for normal eye development and is required for normal expression of patterning genes in both the ventral and dorsal domains. The multiple eye development defects seen in Cdo(-/-) mice suggest that mutations in human Cdo could contribute to congenital eye anomalies, such as Jacobsen syndrome, which is frequently associated with ocular defects, including coloboma and Peters' anomaly.

  2. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  3. Resting ECG findings in elite football players.

    PubMed

    Bohm, Philipp; Ditzel, Roman; Ditzel, Heribert; Urhausen, Axel; Meyer, Tim

    2013-01-01

    The purpose of the study was to evaluate ECG abnormalities in a large sample of elite football players. Data from 566 elite male football players (57 of them of African origin) above 16 years of age were screened retrospectively (age: 20.9 ± 5.3 years; BMI: 22.9 ± 1.7 kg · m(-2), training history: 13.8 ± 4.7 years). The resting ECGs were analysed and classified according to the most current ECG categorisation of the European Society of Cardiology (ESC) (2010) and a classification of Pelliccia et al. (2000) in order to assess the impact of the new ESC-approach. According to the classification of Pelliccia, 52.5% showed mildly abnormal ECG patterns and 12% were classified as distinctly abnormal ECG patterns. According to the classification of the ESC, 33.7% showed 'uncommon ECG patterns'. Short-QT interval was the most frequent ECG pattern in this group (41.9%), followed by a shortened PR-interval (19.9%). When assessed with a QTc cut-off-point of 340 ms (instead of 360 ms), only 22.2% would have had 'uncommon ECG patterns'. Resting ECG changes amongst elite football players are common. Adjustment of the ESC criteria by adapting proposed time limits for the ECG (e.g. QTc, PR) should further reduce the rate of false-positive results.

  4. UPTAKE OF STRONTIUM-85 IN NON-MALIGNANT VERTEBRAL LESIONS IN MAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.C.H.; Scoccianti, P.

    1961-01-01

    By means of external scintillation counting, it was possible to demonstrate abnormally high spinal uptake of intravenously injected Sr/sup 85/ in various diseases of the vertebral column. A total dose of 50 mu c carrier-free Sr/sup 85/ was injected 7 to 14 days before recording spinal radioactivity with a collimated scintillation detector. An abnormal activity pattern was defined as a deviation from the normal pattern of twice the standard deviation of the normal mean value. Abnormal spinal patterns were detected in vertebral fractures, ankylosing spondylitis, tuberculous spondylitis, nonspecific discitis, and in a case with a lytic lesion of unknown origin.more » The value of 14 days was found more reliable than that at 7 days since by this time Sr/sup 85/ levels in soft tissues had fallen to low values. In 1 case, erroneous results were obtained from spinal counting due to a kidney stone which produced high activity in the spinal region. (H.H.D.)« less

  5. Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system.

    PubMed

    Ivanova, Anna; Wuerfel, Jens; Zhang, Juan; Hoffmann, Olaf; Ballmaier, Matthias; Dame, Christof

    2010-07-28

    Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous Mpl deficiency (Mpl-/-) by MRI. Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. Mpl-/- mice showed no gross abnormalities of the brain. Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.

  6. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    PubMed

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  7. Lung functions among patients with pulmonary tuberculosis in Dar es Salaam - a cross-sectional study.

    PubMed

    Manji, Mohamed; Shayo, Grace; Mamuya, Simon; Mpembeni, Rose; Jusabani, Ahmed; Mugusi, Ferdinand

    2016-04-23

    Approximately 40-60 % of patients remain sufferers of sequela of obstructive, restrictive or mixed patterns of lung disease despite treatment for pulmonary tuberculosis (PTB). The prevalence of these abnormalities in Tanzania remains unknown. A descriptive cross-sectional study was carried out among 501 patients with PTB who had completed at least 20 weeks of treatment. These underwent spirometry and their lung functions were classified as normal or abnormal (obstructive, restrictive or mixed). Logistic regression models were used to explore factors associated with abnormal lung functions. Abnormal lung functions were present in 371 (74 %) patients. There were 210 (42 %) patients with obstructive, 65 (13 %) patients with restrictive and 96 (19 %) patients with mixed patterns respectively. Significant factors associated with abnormal lung functions included recurrent PTB (Adj OR 2.8, CI 1.274 - 6.106), Human Immunodeficiency Virus (HIV) negative status (Adj OR 1.7, CI 1.055 - 2.583), age more than 40 years (Adj OR 1.7, CI 1.080 - 2.804) and male sex (Adj OR 1.7, CI 1.123 - 2.614). The prevalence of abnormal lung functions is high and it is associated with male sex, age older than 40 years, recurrent PTB and HIV negative status.

  8. spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation.

    PubMed

    Hauptmann, Giselbert; Belting, Heinz-Georg; Wolke, Uta; Lunde, Karen; Söll, Iris; Abdelilah-Seyfried, Salim; Prince, Victoria; Driever, Wolfgang

    2002-04-01

    Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.

  9. Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy.

    PubMed

    Lamas, Mónica; González-Mariscal, Lorenza; Gutiérrez, Rafael

    2002-08-15

    In the central nervous system, the junctional types that establish and maintain tissue architecture include gap junctions, for cytoplasmic connectivity, and tight junctions, for paracellular and/or cell polarity barriers. Connexins are the integral membrane proteins of gap junctions, whereas occludin and members of the multigene family of claudins form tight junctions. In the brain, there are no transendothelial pathways, as continuous tight junctions are present between the endothelial cells. Thus, they provide a continuous cellular barrier between the blood and the insterstitial fluid. However, several brain pathologies, including epilepsy, are known to alter the permeability of the blood-brain barrier and to cause edema. Therefore, since claudins, as constitutive proteins of tight junctions are likely candidates for modulation under pathological states, we explored their normal pattern of expression in the brain and its modulation by seizures. We found that several members of this family are normally expressed in the hippocampus and cortex. Interestingly, claudin-7 is expressed in the hippocampus but not in the cortex. On the other hand, the expression of claudin-8 is selectively down-regulated in the hippocampus as kindling evolves. These results link for the first time the modulation of expression of a tight junction protein to abnormal neuronal synchronization that could probably be reflected in permeability changes of the blood-brain barrier or edema.

  10. DGEM--a microarray gene expression database for primary human disease tissues.

    PubMed

    Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu

    2007-01-01

    Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.

  11. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.

    PubMed

    Haberman, Yael; Tickle, Timothy L; Dexheimer, Phillip J; Kim, Mi-Ok; Tang, Dora; Karns, Rebekah; Baldassano, Robert N; Noe, Joshua D; Rosh, Joel; Markowitz, James; Heyman, Melvin B; Griffiths, Anne M; Crandall, Wallace V; Mack, David R; Baker, Susan S; Huttenhower, Curtis; Keljo, David J; Hyams, Jeffrey S; Kugathasan, Subra; Walters, Thomas D; Aronow, Bruce; Xavier, Ramnik J; Gevers, Dirk; Denson, Lee A

    2014-08-01

    Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.

  12. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    PubMed Central

    Tay, Su Ann; Sanjay, Srinivasan

    2012-01-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia. PMID:22824610

  13. Microphthalmia, anophthalmia, and coloboma and associated ocular and systemic features: understanding the spectrum.

    PubMed

    Skalicky, Simon E; White, Andrew J R; Grigg, John R; Martin, Frank; Smith, Jeremy; Jones, Michael; Donaldson, Craig; Smith, James E H; Flaherty, Maree; Jamieson, Robyn V

    2013-12-01

    Microphthalmia, anophthalmia, and coloboma form an interrelated spectrum of congenital eye abnormalities. To document the ocular and systemic findings and inheritance patterns in patients with microphthalmia, anophthalmia, and coloboma disease to gain insight into the underlying developmental etiologies. This retrospective consecutive case series was conducted at a tertiary referral center. Included in the study were 141 patients with microphthalmia, anophthalmia, and coloboma disease without a recognized syndromic etiology who attended the Westmead Children's Hospital, Sydney, from 1981-2012. Cases were grouped on the basis of the presence or absence of an optic fissure closure defect (OFCD); those with OFCD were further subdivided into microphthalmic and nonmicrophthalmic cases. Anophthalmic cases were considered as a separate group. Associated ocular and systemic abnormalities and inheritance patterns were assessed. Of 141 cases, 61 (43%) were microphthalmic non-OFCD (NOFCD), 34 (24%) microphthalmic OFCD, 32 (23%) nonmicrophthalmic coloboma (OFCD), 9 (6%) anophthalmic, and 5 (4%) were unclassified. Sixty-three (45%) had bilateral disease. Eighty-four patients (60%) had an associated ocular abnormality; of these, cataract (P < .001) and posterior segment anomalies (P < .001) were most common in the NOFCD group. Forty-eight (34%) had an associated systemic abnormality, most commonly neurological, musculoskeletal and facial, urological and genital, or cardiac. Neurological abnormalities were most common in the anophthalmic group (P = .003), while urological abnormalities were particularly seen in the OFCD groups (P = .009). Familial cases were identified in both the OFCD and NOFCD groups, with a likely autosomal dominant inheritance pattern in 9 of 10 families. This series indicated that the OFCD/NOFCD distinction may be useful in guiding evaluation for ocular and systemic associations, as well as the direction and analysis of genetic investigation.

  14. Nailfold capillary abnormalities in erectile dysfunction of systemic sclerosis: a EUSTAR group analysis.

    PubMed

    Keck, Andrea D; Foocharoen, Chingching; Rosato, Edoardo; Smith, Vanessa; Allanore, Yannick; Distler, Oliver; Stamenkovic, Bojana; Pereira Da Silva, José Antonio; Hadj Khelifa, Sondess; Denisov, Lev N; Hachulla, Eric; García de la Peña Lefebvre, Paloma; Sibilia, Jean; Airò, Paolo; Caramaschi, Paola; Müller-Ladner, Ulf; Wiland, Piotr; Walker, Ulrich A

    2014-04-01

    The objective of this study was to analyse an association between nailfold capillary abnormalities and the presence and severity of erectile dysfunction (ED) in men with SSc. A cross-sectional analysis of the prospective European League Against Rheumatism (EULAR) Scleroderma Trial and Research database was performed. Men with SSc were included if they had undergone nailfold capillaroscopy and simultaneous ED assessment with the 5-item International Index for Erectile Function (IIEF-5). Eighty-six men met the inclusion criteria. Eight men (9.3%) had not had sexual intercourse and could not be assigned an IIEF-5 score. Sixty-nine of the 78 men (88.5%) with an IIEF-5 score had nailfold capillary abnormalities, of whom 54 (78.3%) suffered from ED. Nine men (11.5%) had no nailfold capillary abnormalities, of whom six (66.7%) had ED (P = 0.44). ED was more frequent in older men (P = 0.002) and in men with diffuse disease (P = 0.06). Men with abnormal capillaroscopy had a higher median EULAR disease activity than men without (P = 0.02), a lower diffusing capacity of the lung (P = 0.001) and a higher modified Rodnan skin score (P = 0.04), but mean IIEF-5 scores did not differ [15.7 (S.D. 6.2) vs 15.7 (S.D. 6.3)]. IIEF-5 scores did not differ between men with early (n = 12), active (n = 27) or late (n = 27) patterns (IIEF-5 scores of 17.9, 16.3 and 14.7, respectively). There were no differences in the prevalence of early, active and late capillaroscopy patterns between men with or without ED. Neither the presence or absence of abnormal capillaroscopy findings nor the subdivision into early, active and late patterns is associated with coexistent ED in SSc.

  15. High-Frequency EEG Variations in Children with Autism Spectrum Disorder during Human Faces Visualization

    PubMed Central

    Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard

    2017-01-01

    Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811

  16. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    PubMed

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P < 0.05), but had no relation with the size, the extent of differentiation, the activity of proliferation, or infiltration of the pancreatic cancer (both P > 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P < 0.05), but not with the size, infiltration, metastasis, or one-year survival rate of the pancreatic cancer (both P > 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the unchecked proliferation and differentiation, which may play an important role in the genesis of the pancreatic cancer. The abnormal expression of beta-cat is one of the mechanisms for the spread of pancreatic cancer and an index in the molecular biology to determine the metastasis and prognosis of pancreatic cancer.

  17. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way.

    PubMed

    Xu, Yin; Zhang, Jin; Tian, Chan; Ren, Ke; Yan, Yu-E; Wang, Ke; Wang, Hui; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2014-04-01

    The protein of p62/sequestosome 1 (SQSTM1), a key cargo adaptor protein involved in autophagy-lysosome degradation, exhibits inclusion bodies structure in cytoplasm and plays a protective role in some models of neurodegenerative diseases. Some PrP mutants, such as PrP-CYTO and PrP-PG14, also form cytosolic inclusion bodies and trigger neuronal apoptosis either in cultured cells or in transgenic mice. Here, we demonstrated that the cellular p62/SQSTM1 incorporated into the inclusion bodies formed by expressing the abnormal PrP mutants, PrP-CYTO and PrP-PG14, in human embryonic kidney 293 cells. Overexpression of p62/SQSTM1 efficiently relieved the cytosolic aggregations and cell apoptosis induced by the abnormal PrPs. Autophagy-lysosome inhibitors instead of proteasome inhibitor sufficiently blocked the p62/SQSTM1-mediated degradations of abnormal PrPs. Overexpression of p62/SQSTM1 did not alter the levels of light chain 3 (LC3) in the cells expressing various PrPs. However, more complexes of p62/SQSTM1 with LC3 were detected in the cells expressing the misfolded PrPs. These data imply that p62/SQSTM1 plays an important role in the homeostasis of abnormal PrPs via autophagy-lysosome-dependent way.

  18. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study.

    PubMed

    Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing

    2017-08-02

    As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  19. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation

    USDA-ARS?s Scientific Manuscript database

    Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

  20. Separation of sulfated urinary glycosaminoglycans by high-resolution electrophoresis for isotyping of mucopolysaccharidoses in Malaysia.

    PubMed

    Nor, Azimah; Zabedah, Md Yunus; Norsiah, Md Desa; Ngu, Lock Hock; Suhaila, Abd Rahman

    2010-06-01

    Mucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms. Measurement of GAGs content in urine and separation of GAGs using high-resolution electrophoresis (HRE) are very useful initial screening tests for isotyping of MPS before specific enzyme diagnostics. In this study, we measured total urinary GAGs by a method using dimethylmethylene blue (DMB), and followed by isolation and separation of GAGs using high resolution electrophoresis (HRE) technique. Of 760 urine samples analyzed, 40 have abnormal GAGs HRE patterns. Thirty-five of these 40 cases have elevated urinary GAGs levels as well. These abnormal HRE patterns could be classified into 4 patterns: Pattern A (elevated DS and HS; suggestive of MPS I, II or VII; 16 cases), Pattern B (elevated HS and CS; suggestive of MPS III; 17 cases), and Pattern C (elevated KS and CS; suggestive of MPS IV, 5 cases), and Pattern D (elevated DS; suggestive of MPS VI; 2 cases). Based on the GAGs HRE pattern and a few discriminating clinical signs, we performed selective enzymatic investigation in 16 cases. In all except one case with MPS VII, the enzymatic diagnosis correlated well with the provisional MPS type as suggested by the abnormal HRE pattern. Our results showed that GAGs HRE is a useful, inexpensive and practical first-line screening test when MPS is suspected clinically, and it provides an important guide to further enzymatic studies on a selective basis.

  1. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  2. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base. PMID:25014884

  3. RADIATION-INDUCED GENETIC DAMAGE IN THE MEXICAN TOAD (BUFO VALLICEPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, W.F.

    1960-10-01

    Lines of Mexican toads (Bufo valliceps) bearing x-ray induced genetic damage were established by mating normal females with males that had received gonadal x-ray doses ranging from 300 to 3000 r. Survival in the first generation was inversely proportional to dose,-as was expected. Toads of the 300-r and l000- r lines were inbred, and toads of these lines and of the 700-r line were outcrossed to normal ones. Two crosses were made between toads of the 500-r and 1000-r lines. Developmental abnormalities of various kinds appeared at life history stages rangthg from early embryonic development to post-metamorphic life in bothmore » inbred and outcross generations. These included abnormal gastrulation and neurulation, larval and post-metamorphic edema, abnormally positioned or missing limbs, optical deficiencies, prognathous jaw due to excessive elongation of the lower jaw, and melanin deficiency. The prognathous jaw, in its extreme expression, would probably be lethal in natural populations because of difficulty of feeding. The melanin deficiency, in its extreme expression, is lethal as metamorphosis fails to occur, and in lesser expression, it appears to be lethal or detrimental. The various abnormalities do not appear to be inherited in any simple way, but instead they vary in expression both within and between generations, possibly in relation to genotype and environment. (auth)« less

  4. Joint imaging in polymyalgia rheumatica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Duffy, J.D.; Wahner, H.W.; Hunder, G.G.

    1976-08-01

    Technetium pertechnetate joint scintigrams were abnormal in 24 of 25 patients with polymyalgia rheumatica, in all 16 with rheumatoid arthritis, in 4 of 13 with nonarticular rheumatism, but in none of 26 control patients. Abnormal uptake in polymyalgia patients was commonest in shoulders and was less likely to be symmetric than in patients with rheumatoid arthritis, in whom distal joint abnormalities predominated. The pattern of abnormal uptake in polymyalgia rheumatica was not different in those with biopsy-proved giant cell arteritis. Correlation between symptoms and abnormal scintigrams was 72%, and abnormal uptake was present in 81% of joints of patients havingmore » physical abnormalities. Biopsy showed lymphocytic synovitis in the knee of one patient. After treatment the number of abnormal joints declined. These findings suggest that synovitis is common in polymyalgia rheumatica, and that it may account for some or most of the symptoms in this condition.« less

  5. Brief report: life history and neuropathology of a gifted man with Asperger syndrome.

    PubMed

    Weidenheim, Karen M; Escobar, Alfonso; Rapin, Isabelle

    2012-03-01

    Despite recent interest in the pathogenesis of the autism spectrum disorders (pervasive developmental disorders), neuropathological descriptions of brains of individuals with well documented clinical information and without potentially confounding symptomatology are exceptionally rare. Asperger syndrome differs from classic autism by lack of cognitive impairment or delay in expressive language acquisition. We examined the 1,570 g brain of a 63 year old otherwise healthy mathematician with an Autistic Spectrum Disorder of Asperger subtype. Except for an atypical gyral pattern and megalencephaly, we detected no specific neuropathologic abnormality. Taken together, the behavioral data and pathological findings in this case are compatible with an early neurodevelopmental process affecting multiple neuroanatomic networks, but without a convincing morphologic signature detectable with routine neuropathologic technology.

  6. Sodium phenylbutyrate in Huntington's disease: a dose-finding study.

    PubMed

    Hogarth, Penelope; Lovrecic, Luca; Krainc, Dimitri

    2007-10-15

    Transcriptional dysregulation in Huntington's disease (HD) is mediated in part by aberrant patterns of histone acetylation. We performed a dose-finding study in human HD of sodium phenylbutyrate (SPB), a histone deacetylase inhibitor that ameliorates the HD phenotype in animal models. We used a dose-escalation/de-escalation design, using prespecified toxicity criteria and standard clinical and laboratory safety measures. The maximum tolerated dose was 15 g/day. At higher doses, toxicity included vomiting, lightheadedness, confusion, and gait instability. We saw no significant laboratory or electrocardiographic abnormalities. Gene expression changes in blood suggested an inverse dose-response. In conclusion, SPB at 12 to 15 g/day appears to be safe and well-tolerated in human HD. 2007 Movement Disorder Society

  7. Tinnitus Perception and Distress Is Related to Abnormal Spontaneous Brain Activity as Measured by Magnetoencephalography

    PubMed Central

    Weisz, Nathan; Moratti, Stephan; Meinzer, Marcus; Dohrmann, Katalin; Elbert, Thomas

    2005-01-01

    Background The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. Methods and Findings Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17) is characterised by a marked reduction in alpha (8–12 Hz) power together with an enhancement in delta (1.5–4 Hz) as compared to a normal hearing control group (n = 16). This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. Conclusions Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus. PMID:15971936

  8. Proteomic analysis of the renal effects of simulated occupational jet fuel exposure.

    PubMed

    Witzmann, F A; Bauer, M D; Fieno, A M; Grant, R A; Keough, T W; Lacey, M P; Sun, Y; Witten, M L; Young, R S

    2000-03-01

    We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.

  9. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  10. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment.

    PubMed

    Ito, Koichi; Stannard, Kimberley; Gabutero, Elwyn; Clark, Amanda M; Neo, Shi-Yong; Onturk, Selda; Blanchard, Helen; Ralph, Stephen J

    2012-12-01

    The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.

  11. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    PubMed

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  12. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study.

    PubMed

    Drewry, Anne M; Fuller, Brian M; Bailey, Thomas C; Hotchkiss, Richard S

    2013-09-12

    Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients. Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal. Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20). Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy.

  13. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study

    PubMed Central

    2013-01-01

    Introduction Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients. Methods Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal. Results Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20). Conclusions Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy. PMID:24028682

  14. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less

  15. ECG findings in comparison to cardiovascular MR imaging in viral myocarditis.

    PubMed

    Deluigi, Claudia C; Ong, Peter; Hill, Stephan; Wagner, Anja; Kispert, Eva; Klingel, Karin; Kandolf, Reinhard; Sechtem, Udo; Mahrholdt, Heiko

    2013-04-30

    We sought (1) to assess prevalence and type of ECG abnormalities in patients with biopsy proven myocarditis and signs of myocardial damage indicated by LGE, and (2) to evaluate whether ECG abnormalities are related to the pattern of myocardial damage. Prevalence and type of ECG abnormalities in patients presenting biopsy proven myocarditis, as well as any relation between ECG abnormalities and the in vivo pattern of myocardial damage are unknown. Eighty-four consecutive patients fulfilled the following criteria: (1) newly diagnosed biopsy proven viral myocarditis, and (2) non-ischemic LGE, and (3) standard 12-lead-ECG upon admission. Sixty-five patients with biopsy proven myocarditis had abnormal ECGs upon admission (77%). In this group, ST-abnormalities were detected most frequently (69%), followed by bundle-branch-block in 26%, and Q-waves in 8%. Atrial fibrillation was present in 6%, and AV-Block in two patients. In patients with septal LGE ST-abnormalities were more frequently located in anterolateral leads compared to patients with lateral LGE, in whom ST-abnormalities were most frequently observed in inferolateral leads. Bundle-branch-block occurred more often in patients with septal LGE (11/17). Four of five patients with Q-waves had severe and almost transmural LGE in the lateral wall. ECG abnormalities can be found in most patients with biopsy proven viral myocarditis at initial presentation. However, similar to suspected acute myocardial infarction, a normal ECG does not rule out myocarditis. ECG findings are related to the amount and area of damage as indicated by LGE, which confirms the important clinical role of ECG. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects.

    PubMed

    Takahashi, Tsutomu; Nakamura, Yumiko; Nakamura, Yukako; Aleksic, Branko; Takayanagi, Yoichiro; Furuichi, Atsushi; Kido, Mikio; Nakamura, Mihoko; Sasabayashi, Daiki; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio

    2014-06-03

    An altered sulcogyral pattern in the orbitofrontal cortex (OFC) has been implicated in schizophrenia as a possible marker of abnormal neurodevelopment, while its genetic mechanism remains unknown. This magnetic resonance imaging study investigated the relationship between the polymorphism of YWHAE (rs28365859), a gene encoding 14-3-3epsilon that is a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule associated with neuronal development, and the OFC subtypes of the 'H-shaped' sulcus (Types I, II, and III) in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. The schizophrenia patients had significantly increased Type III (p = 0.004) and decreased Type I (p = 0.013) expression on the right hemisphere compared to the controls. The subjects carrying the protective C allele showed a decrease in Type III (p = 0.005) and an increase in Type I (p = 0.017) compared to the G allele homozygotes, especially for the healthy subjects in the left hemisphere. These results suggest a possible role for the YWHAE genotype in the early development of the OFC sulcogyral pattern, but its effect alone is not likely to explain the altered sulcogyral pattern in schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The role of fructose‑1,6‑bisphosphatase 1 in abnormal development of ovarian follicles caused by high testosterone concentration.

    PubMed

    Liu, Tao; Zhao, Han; Wang, Jianfeng; Shu, Xin; Gao, Yuan; Mu, Xiaoli; Gao, Fei; Liu, Hongbin

    2017-11-01

    The present study aimed to identify the molecular mechanisms underlying the effects of the fructose‑1,6‑bisphosphatase 1 (FBP1) signaling pathway within normal follicle development and in hyperandrogenism‑induced abnormal follicle growth. To achieve this, murine primary follicles, granulosa cells (GCs) and theca‑interstitial cells (TICs) were isolated, cultured in vitro and treated with a high concentration of androgens. A concentration of 1x10‑5 mol/l testosterone was considerable to induce hyperandrogenism by MTT assay. All cells were divided into four groups, as follows: Control group, testosterone group, androgen receptor antagonist‑flutamide group and flutamide + testosterone group. Flutamide was used in the present study as it blocks the effects of the androgen receptor. The mRNA expression levels of FBP1 were detected using reverse transcription‑quantitative polymerase chain reaction. The expression levels and localization of FBP1 were analyzed by western blot analysis and immunofluorescence staining. The experimental results demonstrated that androgen presence stimulated follicle development, whereas excessive testosterone inhibited development. FBP1 was identified as being mainly expressed in follicles; FBP1 protein was significantly expressed in GCs of the 14‑day‑cultured follicle, as well as in the cytoplasm and nuclei of GCs and TICs in vitro. Testosterone increased FBP1 expression during a specific range of testosterone concentrations. Testosterone increased the expression of FBP1 within GCs. Furthermore, FBP1 and phosphoenolpyruvate carboxykinase 1 (PCK1) mRNA expression was increased in GCs treated with testosterone, whereas forkhead box protein O1 (FOXO1) and peroxisome proliferator‑activated receptor γ coactivator‑1α mRNA expression was significantly decreased in the testosterone group. In TICs, testosterone and flutamide inhibited the mRNA expression levels of FOXO1 and glucose‑6‑phosphatase enzyme, and promoted the expression of PCK1. These results suggested that the FBP1 signaling pathway may serve an important role in normal follicle growth and hyperandrogenism‑induced abnormal development, which may be associated with abnormal glucose metabolism induced by high concentrations of testosterone.

  18. Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish.

    PubMed

    Chen, Yau-Hung; Tsai, Huai-Jen

    2002-10-01

    Myf-5 is a stage-dependent transcription factor associated with somitogenesis. To study its biological functions in zebrafish, we injected the Myf5-morpholinos ZMF-MO (antisense nucleotides 28 to 52) and ZMF-OTHER (antisense nucleotides 3 to 27) into zebrafish embryos to establish a myf-5 gene knockdown. No phenotypic abnormalities were observed following injection with 0.2 ng of ZMF-MO, but defects were displayed in 2 of 118 (1.7%) surviving embryos injected with 1 ng ZMF-MO. Morphological defects became more severe with increased dosages: 105 of 270 (38.9%) surviving embryos injected with 4.5 ng of ZMF-MO displayed such abnormalities as the absence of eyes or brains in addition to the following low-dosage defects in 24 hpf embryos: longitudinal yolk sacs, incomplete epiboly coverage, abnormal and suspended tail buds, diffused somite boundaries, and head shrinkage. Similar results were observed in the 4.5 ng ZMF-OTHER injection group. However, when fish were co-injected with 4.5 ng ZMF-MO and 4.5 ng myf-5 mRNA, abnormality rates decreased from 49.6% to 5.5%. Our results show that the brain krox20 gene was down-regulated at rhombomere 3; the pax2.1 gene was completely down-regulated; myoD was expressed normally; myogenin was substantially down-regulated in whole somites; and desmin was partly inhibited in newly forming somites. Our conclusion is that zebrafish Myf-5 may play important roles in brain formation and in the convergence and extension of shield epiblasts and tail buds during early embryogenesis, in addition to its well-understood role as a muscle regulatory factor in somites.

  19. The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.

    PubMed

    Zhan, Yaoyao; Maung, Saw W; Shao, Bing; Myat, Monn Monn

    2010-11-30

    The pair-rule gene, hairy, encodes a basic helix-loop-helix transcription factor and is required for patterning of the early Drosophila embryo and for morphogenesis of the embryonic salivary gland. Although hairy was shown to be expressed in the tracheal primordia and in surrounding mesoderm, whether hairy plays a role in tracheal development is not known. Here, we report that hairy is required for refining the terminal cell fate in the embryonic trachea and that hairy's tracheal function is distinct from its earlier role in embryonic patterning. In hairy mutant embryos where the repressive activity of hairy is lost due to lack of its co-repressor binding site, extra terminal cells are specified in the dorsal branches. We show that hairy functions in the muscle to refine the terminal cell fate to a single cell at the tip of the dorsal branch by limiting the expression domain of branchless (bnl), encoding the FGF ligand, in surrounding muscle cells. Abnormal activation of the Bnl signaling pathway in hairy mutant tracheal cells is exemplified by increased number of dorsal branch cells expressing Bnl receptor, Breathless (Btl) and Pointed, a downstream target of the Bnl/Btl signaling pathway. We also show that hairy genetically interacts with bnl in TC fate restriction and that overexpression of bnl in a subset of the muscle surrounding tracheal cells phenocopied the hairy mutant phenotype. Our studies demonstrate a novel role for Hairy in restriction of the terminal cell fate by limiting the domain of bnl expression in surrounding muscle cells such that only a single dorsal branch cell becomes specified as a terminal cell. These studies provide the first evidence for Hairy in regulation of the FGF signaling pathway during branching morphogenesis.

  20. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis.

    PubMed

    Woolthuis, Carolien M; Mulder, André B; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M; Huls, Gerwin

    2013-10-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis.

  1. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis

    PubMed Central

    Woolthuis, Carolien M.; Mulder, André B.; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M.; Huls, Gerwin

    2013-01-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis. PMID:23716555

  2. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning.

    PubMed

    Maclean, Glenn; Dollé, Pascal; Petkovich, Martin

    2009-03-01

    Cyp26b1 encodes a cytochrome-P450 enzyme that catabolizes retinoic acid (RA), a vitamin A derived signaling molecule. We have examined Cyp26b1(-/-) mice and report that mutants exhibit numerous abnormalities in cranial neural crest cell derived tissues. At embryonic day (E) 18.5 Cyp26b1(-/-) animals exhibit a truncated mandible, abnormal tooth buds, reduced ossification of calvaria, and are missing structures of the maxilla and nasal process. Some of these abnormalities may be due to defects in formation of Meckel's cartilage, which is truncated with an unfused distal region at E14.5 in mutant animals. Despite the severe malformations, we did not detect any abnormalities in rhombomere segmentation, or in patterning and migration of anterior hindbrain derived neural crest cells. Abnormal migration of neural crest cells toward the posterior branchial arches was observed, which may underlie defects in larynx and hyoid development. These data suggest different periods of sensitivity of anterior and posterior hindbrain neural crest derivatives to elevated levels of RA in the absence of CYP26B1. (c) 2009 Wiley-Liss, Inc.

  3. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    PubMed

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  4. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice

    PubMed Central

    Maier, Jennifer A.; Harfe, Brian D.

    2011-01-01

    Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629

  5. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2015-11-09

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma.

    PubMed

    Gu, Yajun; Pan, Yi; Meng, Bin; Guan, Bingxin; Fu, Kai; Sun, Baocun; Zheng, Fang

    2013-06-01

    We aimed to investigate bcl-2, bcl-6, and c-myc rearrangements in patients with lymphoblastic lymphoma (LBL), especially focus on the correlation of protein expression with genetic abnormalities. Moreover, their prognostic significance was further analyzed in LBL. Protein expression and genetic abnormalities of bcl-2, bcl-6, and c-myc were investigated in microarrayed tumors from 33 cases of T cell LBL and eight cases of B cell lineage. Immunohistochemical (IHC) staining was performed to evaluate protein expression, including bcl-2, bcl-6, c-myc, TdT, CD1α, CD34, Ki-67, PAX-5, CD2, CD3, CD4, CD8, and CD20. Genetic abnormalities of bcl-2, bcl-6, and c-myc were detected by dual color fluorescence in situ hybridization (FISH). Bcl-2 protein was positive in 51.2 % (21/41) of the patients, bcl-6 protein in 7.3 % (three out of 41), and c-myc protein in 78.0 % (32/41). Bcl-2 breakpoint was found in two cases by FISH analysis. There was no evidence of bcl-6 or c-myc rearrangement in patients with LBL. However, both gene gain and loss events occurred in bcl-2, bcl-6, and c-myc. A univariate analysis showed that stage III or IV, elevated lactate dehydrogenase (LDH), and positivity for bcl-2 protein were associated with shorter survival (p<0.05). Enhanced protein expression and detectable genetic abnormalities of bcl-2, bcl-6, and c-myc were observed in patients with LBL. No statistical correlation was found between IHC results and cytogenetic findings. Stage III or IV, elevated LDH, and positivity for bcl-2 protein were identified as adverse prognostic factors. The patients with more adverse factors would have increasingly worse prognosis.

  7. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    PubMed

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases.

    PubMed

    Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E

    2012-04-05

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.

  9. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases

    PubMed Central

    Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.

    2012-01-01

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319

  10. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    PubMed

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  11. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    PubMed

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of "Sural Sparing" Pattern (Absent/Abnormal Median and Ulnar with Present Sural SNAP) Compared to Absent/Abnormal Median or Ulnar with Normal Sural SNAP in Acute Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Surpur, Spurthi Sunil; Govindarajan, Raghav

    2017-01-01

    Sural sparing defined as absent/abnormal median sensory nerve action potential (SNAP) amplitude or absent/abnormal ulnar SNAP amplitude with a normal sural SNAP amplitude is thought to be a marker for inflammatory demyelinating polyneuropathies. If sural sparing pattern specifically defined as absent/abnormal median and ulnar SNAP amplitude with normal sural SNAP amplitude (AMUNS) is sensitive and specific when compared with either absent/abnormal median and normal sural (AMNS) or absent/abnormal ulnar and normal sural (AUNS) for acute inflammatory demyelinating polyneuropathy (AIDP), chronic inflammatory demyelinating polyneuropathy (CIDP), select non-diabetic axonopathies (AXPs), and diabetic neuropathies (DNs). Retrospective analysis from 2001 to 2010 on all newly diagnosed AIDP, CIDP, select non-diabetic AXP, and DN. There were 20 AIDP and 23 CIDP. Twenty AXP and 50 DN patients between 2009 and 2010 were included as controls. AMUNS was seen in 65% of AIDP, 39% CIDP compared with 10% of AXP and 6% for DN with sensitivity of 51%, specificity of 92%, whereas the specificity of AMNS/AUNS was 73% and its sensitivity was 58%. If a patient has AMUNS they are >12 times more likely to have AIDP ( p  < 0.001). Sural sparing is highly specific but not sensitive when compared with either AMNS or AUNS in AIDP but does not add to sensitivity or specificity in CIDP.

  13. CSAX: Characterizing Systematic Anomalies in eXpression Data.

    PubMed

    Noto, Keith; Majidi, Saeed; Edlow, Andrea G; Wick, Heather C; Bianchi, Diana W; Slonim, Donna K

    2015-05-01

    Methods for translating gene expression signatures into clinically relevant information have typically relied upon having many samples from patients with similar molecular phenotypes. Here, we address the question of what can be done when it is relatively easy to obtain healthy patient samples, but when abnormalities corresponding to disease states may be rare and one-of-a-kind. The associated computational challenge, anomaly detection, is a well-studied machine-learning problem. However, due to the dimensionality and variability of expression data, existing methods based on feature space analysis or individual anomalously expressed genes are insufficient. We present a novel approach, CSAX, that identifies pathways in an individual sample in which the normal expression relationships are disrupted. To evaluate our approach, we have compiled and released a compendium of public expression data sets, reformulated to create a test bed for anomaly detection. We demonstrate the accuracy of CSAX on the data sets in our compendium, compare it to other leading methods, and show that CSAX aids in both identifying anomalies and explaining their underlying biology. We describe an approach to characterizing the difficulty of specific expression anomaly detection tasks. We then illustrate CSAX's value in two developmental case studies. Confirming prior hypotheses, CSAX highlights disruption of platelet activation pathways in a neonate with retinopathy of prematurity and identifies, for the first time, dysregulated oxidative stress response in second trimester amniotic fluid of fetuses with obese mothers. Our approach provides an important step toward identification of individual disease patterns in the era of precision medicine.

  14. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  15. Histological Pattern Of Endometrial Samples In Postmenopausal Women With Abnormal Uterine Bleeding.

    PubMed

    Deeba, Farhat; Shaista; Khan, Bushra

    2016-01-01

    Abnormal uterine bleeding is one of the most common clinical problems in gynaecological practice and is an indicator of various underlying disorders. An endometrial biopsy should be done in all women over 35 years with AUB to rule out endometrial cancer or pre-malignant lesion and to initiate treatment. However, wide range of histological patterns on endometrial biopsy offer a diagnostic challenge to practicing pathologists. The objective of this study was to determine histological patterns of endometrium in postmenopausal women with abnormal uterine bleeding. This cross-sectional study was conducted in the department of obstetrics and gynaecology, Benazir Bhutto Shaheed women and children teaching hospital, Abbottabad from 15/11/2014 to 14/05/2015. This study involved 110 postmenopausal women presenting with abnormal uterine bleeding. A written informed consent was obtained from every patient. The mean age of the patients was 61.60±6.17 years and the mean duration of AUB was 5.20±2.80 years. Most of the patients were para 6 (28.2%) and para 5 (28.2%) followed by para 4 (18.2%) and para 3 (17.3%) while only 8.2% were para 1. The most common histological pattern observed was complex hyperplasia without atypia (30.9%) followed by atrophic endometrium (24.5%), simple hyperplasia (23.6%), malignancy (12.7%), complex hyperplasia with atypia (4.5%) and benign endometrial polyp (3.6%). When stratified the data, there was no significant difference of histological patterns across various age groups (p=.673), duration of AUB (p=.064) and parity (p=.242). The most common histological pattern observed in postmenopausal women with AUB was complex hyperplasia without atypia (30.9%) followed by atrophic endometrium (24.5%), simple hyperplasia (23.6%), malignancy (12.7%), complex hyperplasia with atypia (4.5%) and benign endometrial polyp (3.6%).

  16. The Ndst Gene Family in Zebrafish: Role of Ndst1b in Pharyngeal Arch Formation

    PubMed Central

    Haitina, Tatjana; Habicher, Judith; Ledin, Johan; Kjellén, Lena

    2015-01-01

    Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout. PMID:25767878

  17. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis

    PubMed Central

    Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    Objective To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Methods Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Results Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Conclusions Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis. PMID:28817677

  18. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis.

    PubMed

    Chen, Ning; Du, Baoying; Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis.

  19. CONSERVED ROLES FOR CYTOSKELETAL COMPONENTS IN DETERMINING LATERALITY

    PubMed Central

    McDowell, Gary S.; Lemire, Joan M.; Paré, Jean-Francois; Cammarata, Garrett; Lowery, Laura Anne; Levin, Michael

    2016-01-01

    SUMMARY Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently “rescued” by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking during neurulation (via ciliary structures absent in many phyla), our data suggest a widely-conserved role for the cytoskeleton in regulating left-right axis formation immediately after fertilization of the egg. The novel mechanisms that rescue organ situs, even after incorrect expression of genes previously considered to be left-side master regulators, suggest LR patterning as a new context in which to explore multi-scale redundancy and integration of patterning from the subcellular structure to the entire bodyplan. PMID:26928161

  20. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  1. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study.

    PubMed

    Inder, Terrie E; Wells, Scott J; Mogridge, Nina B; Spencer, Carole; Volpe, Joseph J

    2003-08-01

    The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities. From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score. The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse white matter atrophy, ventriculomegaly, immature gyral development, and enlarged subarachnoid space was found in 10 of 11 infants with birth gestation <26 weeks. Given the later outcome of these infants, this pattern may have very high risk for later global neurodevelopmental disability. This MRI study confirms a high incidence of cerebral white matter abnormality at term in an unselected population of premature infants, which is predominantly a result of noncystic injury in the extremely immature infant. We confirm that the major perinatal risk factors for white matter abnormality are related to perinatal infection, particularly maternal fever and infant sepsis, and hypotension with inotrope use. We have defined a distinct pattern of diffuse white and gray matter abnormality in the extremely immature infant.

  2. Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

    PubMed

    McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C

    2016-05-12

    Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).

  3. Detection of abnormal living patterns for elderly living alone using support vector data description.

    PubMed

    Shin, Jae Hyuk; Lee, Boreom; Park, Kwang Suk

    2011-05-01

    In this study, we developed an automated behavior analysis system using infrared (IR) motion sensors to assist the independent living of the elderly who live alone and to improve the efficiency of their healthcare. An IR motion-sensor-based activity-monitoring system was installed in the houses of the elderly subjects to collect motion signals and three different feature values, activity level, mobility level, and nonresponse interval (NRI). These factors were calculated from the measured motion signals. The support vector data description (SVDD) method was used to classify normal behavior patterns and to detect abnormal behavioral patterns based on the aforementioned three feature values. The simulation data and real data were used to verify the proposed method in the individual analysis. A robust scheme is presented in this paper for optimally selecting the values of different parameters especially that of the scale parameter of the Gaussian kernel function involving in the training of the SVDD window length, T of the circadian rhythmic approach with the aim of applying the SVDD to the daily behavior patterns calculated over 24 h. Accuracies by positive predictive value (PPV) were 95.8% and 90.5% for the simulation and real data, respectively. The results suggest that the monitoring system utilizing the IR motion sensors and abnormal-behavior-pattern detection with SVDD are effective methods for home healthcare of elderly people living alone.

  4. Hox11 paralogous genes are essential for metanephric kidney induction

    PubMed Central

    Wellik, Deneen M.; Hawkes, Patrick J.; Capecchi, Mario R.

    2002-01-01

    The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis. PMID:12050119

  5. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  6. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    PubMed

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  7. Regulation of Neurovascular Coupling in Autoimmunity to Water and Ion Channels

    PubMed Central

    Jukkola, Peter; Gu, Chen

    2014-01-01

    Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly-rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca2+ and two-pore-domain K+ channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders. PMID:25462580

  8. Hox11 paralogous genes are essential for metanephric kidney induction.

    PubMed

    Wellik, Deneen M; Hawkes, Patrick J; Capecchi, Mario R

    2002-06-01

    The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis.

  9. Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer.

    PubMed

    Nguyen, P L; Niehans, G A; Cherwitz, D L; Kim, Y S; Ho, S B

    1996-01-01

    Abnormalities of mucin-type glycoproteins have been described in lung cancers, but their molecular basis is unknown. In this study, mucin-core-peptide-specific antibodies and cDNA probes were used to determine the relative expression of mucin genes corresponding to one membrane-bound mucin (MUC1), two intestinal mucins (MUC2 and MUC3), and one tracheobronchial mucin (MUC4) in normal (nonneoplastic) lung, and in lung neoplasms. Normal lung tissues exhibited a distinct pattern of mucin gene expression, with high levels of MUC1 and MUC4 mRNA and low to absent levels of MUC2 and MUC3 mucin immunoreactivity and mRNA. In contrast, lung adenocarcinomas, especially well-differentiated cancers, exhibited increased MUC1, MUC3, and MUC4 mRNA levels. Lung squamous-cell, adenosquamous, and large-cell carcinomas were characterized by increased levels of MUC4 mucin only. We conclude that the expression of one membrane-bound and several secretory-type mucins is independently regulated and markedly altered in lung neoplasms. The frequent occurrence of increased MUC4 transcripts in a variety of non-small-cell lung cancers indicates the potential importance of this type of mucin in lung cancer biology.

  10. The pattern of abnormalities on sperm analysis: A study of 1186 infertile male in Yasmin IVF clinic Jakarta

    NASA Astrophysics Data System (ADS)

    Aulia, S. N.; Lestari, S. W.; Pratama, G.; Harzief, A. K.; Sumapraja, K.; Hestiantoro, A.; Wiweko, B.

    2017-08-01

    A declined in semen quality resulted an increase of male infertility has been reported. The pattern of abnormalities differs from one country to another. Conflicting results from different studies may be influenced by many factor. The aims are to evaluate the pattern of semen analysis of male partners of infertile couples and identify the current status of the contribution of male factor towards the infertility in our environment. The study is a descriptive analysis of the semen analysis of male partners in infertile couples, who were present at Yasmin IVF Clinic, infertility clinic of a Tertiary Care University Teaching Hospital between 1st January 2012 and 31st December 2015. A total of 1186 consenting male partners of infertile couple were recruited into the study. According to 2010 WHO normal reference values for semen parameters, 795 (67%) of patients were normozoospermia which had normal semen parameters and 391 (33%) patients had abnormal semen parameters. Oligozospermia was evident in 155 (39.5%) patients, being the most common disorder observed. It is followed by azoospermia (24.4%), oligoasthenozospermia (17.8%), asthenozospermia (5.9%), oligoasthenotera-tozospermia (5,7%), teratozospermia (2.6%), asthenoteratozospermia (2.8%), cryptozoospermia (0.8%), necrozospermia (0.3%), and oligoteratozospermia (0.3%). Abnormal semen quality remains a significant contribution to the overall infertility with oligozospermia being the most common semen quality abnormality. This condition is an indication for the need to focus on the prevention and management of male infertility. In addition, further studies are needed to address possible etiologies and treatment in order to improve fertility rates.

  11. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    PubMed Central

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  12. Thalamus surface shape deformity in obsessive-compulsive disorder and schizophrenia.

    PubMed

    Kang, Do-Hyung; Kim, Sun Hyung; Kim, Chi-Won; Choi, Jung-Seok; Jang, Joon Hwan; Jung, Myung Hun; Lee, Jong-Min; Kim, Sun I; Kwon, Jun Soo

    2008-04-16

    The authors performed a three-dimensional shape deformation analysis to clarify the various patterns of specific thalamic nuclei abnormality using three age-matched and sex-matched groups of 22 patients with obsessive-compulsive disorder (OCD), 22 patients with schizophrenia and 22 control participants. Compared with the healthy volunteers, the anterior, lateral outward surface deformities of the thalamus were significant in OCD patients, whereas the posterior, medial outward deformities of the thalamus were prominent in schizophrenia patients. In terms of thalamic asymmetry, both OCD and schizophrenia patients exhibited the loss of a leftward pattern of asymmetry on the posterior, medial surface of the thalamus. Different patterns of shape abnormality of specific thalamic nuclei may be related to the different phenomenology of OCD and schizophrenia.

  13. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging

    PubMed Central

    Swindell, William R

    2007-01-01

    Background Long-lived strains of dwarf mice carry mutations that suppress growth hormone (GH) and insulin-like growth factor I (IGF-I) signaling. The downstream effects of these endocrine abnormalities, however, are not well understood and it is unclear how these processes interact with aging mechanisms. This study presents a comparative analysis of microarray experiments that have measured hepatic gene expression levels in long-lived strains carrying one of four mutations (Prop1df/df, Pit1dw/dw, Ghrhrlit/lit, GHR-KO) and describes how the effects of these mutations relate to one another at the transcriptional level. Points of overlap with the effects of calorie restriction (CR), CR mimetic compounds, low fat diets, gender dimorphism and aging were also examined. Results All dwarf mutations had larger and more consistent effects on IGF-I expression than dietary treatments. In comparison to dwarf mutations, however, the transcriptional effects of CR (and some CR mimetics) overlapped more strongly with those of aging. Surprisingly, the Ghrhrlit/lit mutation had much larger effects on gene expression than the GHR-KO mutation, even though both mutations affect the same endocrine pathway. Several genes potentially regulated or co-regulated with the IGF-I transcript in liver tissue were identified, including a DNA repair gene (Snm1) that is upregulated in proportion to IGF-I inhibition. A total of 13 genes exhibiting parallel differential expression patterns among all four strains of long-lived dwarf mice were identified, in addition to 30 genes with matching differential expression patterns in multiple long-lived dwarf strains and under CR. Conclusion Comparative analysis of microarray datasets can identify patterns and consistencies not discernable from any one dataset individually. This study implements new analytical approaches to provide a detailed comparison among the effects of life-extending mutations, dietary treatments, gender and aging. This comparison provides insight into a broad range of issues relevant to the study of mammalian aging. In this context, 43 longevity-associated genes are identified and individual genes with the highest level of support among all microarray experiments are highlighted. These results provide promising targets for future experimental investigation as well as potential clues for understanding the functional basis of lifespan extension in mammalian systems. PMID:17915019

  14. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease

    PubMed Central

    Uribe, Mary Luz; Haro, Carmen; Campello, Laura; Cruces, Jesús; Martín-Nieto, José

    2016-01-01

    Purpose The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene’s lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Methods Using reverse transcription (RT)–PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. Results POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Conclusions Our results indicate that POMGnT1 participates not only in the synthesis of O-mannosyl glycans added to α-DG in the Golgi complex but also in the glycosylation of other yet-to-be-identified proteins in the nucleus of mouse photoreceptors. PMID:27375352

  15. Flow cytometry immunophenotyping in integrated diagnostics of patients with newly diagnosed cytopenia: one tube 10-color 14-antibody screening panel and 3-tube extensive panel for detection of MDS-related features.

    PubMed

    Porwit, A; Rajab, A

    2015-05-01

    Acute leukemia, myelodysplastic syndromes (MDS), myeloproliferative neoplasms and lymphomas are the most prevalent diagnoses in adults presenting with new onset cytopenia. Here, we describe two 10-color panels of surface markers (screening and comprehensive panel) applied at the Flow Cytometry Laboratory, University Health Network, Toronto, ON, Canada. A 10-color flow cytometry is applied using the stain-lyse-wash sample preparation method. In patients with <10% blasts and no clear involvement by hematological malignancy based on cytomorphological evaluation of bone marrow (BM) smear, the recently published one-tube 10-color 14-antibody screening panel is applied. This panel allows detection of major B- and T-cell abnormalities, enumeration of cells in blast region (CD45 dim), and gives insight into myeloid BM compartment, including calculation of four-parameter score for MDS-related abnormalities. In patients who present with ≥10 - <20% blasts in blood or BM smears, a comprehensive three-tube panel of surface markers is used up front. The analysis is focused on the detection of abnormal antigen expression patterns not seen in normal/reactive BM, according to the guidelines developed by International/European LeukemiaNet Working Group for Flow Cytometry in MDS. In patients with ≥20% blasts, an additional tube is added to allow the detection of cytoplasmic markers necessary to diagnose mixed phenotype acute leukemia. © 2015 John Wiley & Sons Ltd.

  16. Walking deficits and centrophobism in an α-synuclein fly model of Parkinson's disease1

    PubMed Central

    Chen, A Y; Wilburn, P; Hao, X; Tully, T

    2014-01-01

    Parkinson's disease (PD) is a movement neurodegenerative disorder, characterized by bradykinesia, rigidity and tremor, constituting difficulties in walking and abnormal gait. Previous research shows that Drosophila expressing human α-synuclein A30P (A30P) develop deficits in geotaxis climbing; however, geotaxis climbing is a different movement modality from walking. Whether A30P flies would exhibit abnormal walking in a horizontal plane, a measure more relevant to PD, is not known. In this study, we characterized A30P fly walking using a high-speed camera and an automatic behavior tracking system. We found that old but not young A30P flies exhibited walking abnormalities, specifically decreased total moving distance, distance per movement, velocity, angular velocity and others, compared with old control flies. Those features match the definition of bradykinesia. Multivariate analysis further suggested a synergistic effect of aging and A30P, resulting in a distinct pattern of walking deficits, as seen in aged A30P flies. Psychiatric problems are common in PD patients with anxiety affecting 40–69% of patients. Central avoidance is one assessment of anxiety in various animal models. We found old but not young A30P flies exhibited increased centrophobism, suggesting possible elevated anxiety. Here, we report the first quantitative measures of walking qualities in a PD fly model and propose an alternative behavior paradigm for evaluating motor functions apart from climbing assay. PMID:25113870

  17. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    PubMed

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. SOBP Is Mutated in Syndromic and Nonsyndromic Intellectual Disability and Is Highly Expressed in the Brain Limbic System

    PubMed Central

    Birk, Efrat; Har-Zahav, Adi; Manzini, Chiara M.; Pasmanik-Chor, Metsada; Kornreich, Liora; Walsh, Christopher A.; Noben-Trauth, Konrad; Albin, Adi; Simon, Amos J.; Colleaux, Laurence; Morad, Yair; Rainshtein, Limor; Tischfield, David J.; Wang, Peter; Magal, Nurit; Maya, Idit; Shoshani, Noa; Rechavi, Gideon; Gothelf, Doron; Maydan, Gal; Shohat, Mordechai; Basel-Vanagaite, Lina

    2010-01-01

    Intellectual disability (ID) affects 1%–3% of the general population. We recently reported on a family with autosomal-recessive mental retardation with anterior maxillary protrusion and strabismus (MRAMS) syndrome. One of the reported patients with ID did not have dysmorphic features but did have temporal lobe epilepsy and psychosis. We report on the identification of a truncating mutation in the SOBP that is responsible for causing both syndromic and nonsyndromic ID in the same family. The protein encoded by the SOBP, sine oculis binding protein ortholog, is a nuclear zinc finger protein. In mice, Sobp (also known as Jxc1) is critical for patterning of the organ of Corti; one of our patients has a subclinical cochlear hearing loss but no gross cochlear abnormalities. In situ RNA expression studies in postnatal mouse brain showed strong expression in the limbic system at the time interval of active synaptogenesis. The limbic system regulates learning, memory, and affective behavior, but limbic circuitry expression of other genes mutated in ID is unusual. By comparing the protein content of the +/jc to jc/jc mice brains with the use of proteomics, we detected 24 proteins with greater than 1.5-fold differences in expression, including two interacting proteins, dynamin and pacsin1. This study shows mutated SOBP involvement in syndromic and nonsyndromic ID with psychosis in humans. PMID:21035105

  19. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  20. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Venous sinus occlusive disease: MR findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuh, W.T.C.; Simonson, T.M.; Tali, E.T.

    1994-02-01

    To study MR patterns of venous sinus occlusive disease and to relate them to the underlying pathophysiology by comparing the appearance and pathophysiologic features of venous sinus occlusive disease with those of arterial ischemic disease. The clinical data and MR examinations of 26 patients with venous sinus occlusive disease were retrospectively reviewed with special attention to mass effect, hemorrhage, and T2-weighted image abnormalities as well as to abnormal parenchymal, venous, or arterial enhancement after intravenous gadopentetate dimeglumine administration. Follow-up studies when available were evaluated for atrophy, infraction, chronic mass effect, and hemorrhage. Mass effect was present in 25 of 26more » patients. Eleven of the 26 had mass effect without abnormal signal on T2-weighted images. Fifteen patients had abnormal signal on T2-weighted images, but this was much less extensive than the degree of brain swelling in all cases. No patient showed abnormal parenchymal or arterial enhancement. Abnormal venous enhancement was seen in 10 of 13 patients who had contrast-enhanced studies. Intraparenchymal hemorrhage was seen in nine patients with high signal on T2-weighted images predominantly peripheral to the hematoma in eight. Three overall MR patterns were observed in acute sinus thrombosis: (1) mass effect without associated abnormal signal on T2-weighted images, (2) mass effect with associated abnormal signal on T2-weighted images and/or ventricular dilatation that may be reversible, and (3) intraparenchymal hematoma with surrounding edema. MR findings of venus sinus occlusive disease are different from those of arterial ischemia and may reflect different underlying pathophysiology. In venous sinus occlusive disease, the breakdown of the blood-brain barrier (vasogenic edema and abnormal parenchymal enhancement) does not always occur, and brain swelling can persist up to 2 years with or without abnormal signal on T2-weighted images. 34 refs., 5 figs.« less

  2. Bone stress: a radionuclide imaging perspective. [/sup 99m/Tc-pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schemamore » is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress.« less

  3. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  4. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  5. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  6. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  7. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  8. Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes.

    PubMed

    Gavalas, Anthony; Ruhrberg, Christiana; Livet, Jean; Henderson, Christopher E; Krumlauf, Robb

    2003-12-01

    Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.

  9. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  10. Computerized scheme for detection of diffuse lung diseases on CR chest images

    NASA Astrophysics Data System (ADS)

    Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio

    2008-03-01

    We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.

  11. BcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris

    PubMed Central

    Lyu, Meiling; Yu, Youjian; Jiang, Jingjing; Song, Limin; Liang, Ying; Ma, Zhiming; Xiong, Xingpeng; Cao, Jiashu

    2015-01-01

    Polygalacturonase (PG) is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a) and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a chromosomal segmental duplication. Although structurally similar, their regulatory and intron sequences largely diverged. QRT-PCR analysis showed that the expression level of BcMF26b was higher than that of BcMF26a in almost all the tested organs and tissues in Brassica campestris. Promoter activity analysis showed that, at reproductive development stages, BcMF26b promoter was active in tapetum, pollen grains, and pistils, whereas BcMF26a promoter was only active in pistils. In the subcellular localization experiment, BcMF26a and BcMF26b proteins could be localized to the cell wall. When the two genes were co-inhibited, pollen intine was formed abnormally and pollen tubes could not grow or stretch. Moreover, the knockout mutants of At4g33440 delayed the growth of pollen tubes. Therefore, BcMF26a/b can participate in the construction of pollen wall by modulating intine information and BcMF26b may play a major role in co-inhibiting transformed plants. PMID:26153985

  12. Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?

    PubMed

    Dinning, Phil G

    To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.

  13. [Assessment of blood flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations].

    PubMed

    Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof

    2006-03-01

    Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.

  14. Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; De Cristofaro, Raimondo; Morosetti, Roberta; Gliubizzi, Carla; Ricci, Enzo; Tonali, Pietro A; Mirabella, Massimiliano

    2008-05-01

    Autosomal recessive hereditary inclusion-body myopathy (h-IBM) is caused by mutations of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene, a rate-limiting enzyme in the sialic acid metabolic pathway. Previous studies have demonstrated an abnormal sialylation of glycoproteins in h-IBM. h-IBM muscle shows the abnormal accumulation of proteins including amyloid-beta (Abeta). Neprilysin (NEP), a metallopeptidase that cleaves Abeta, is characterized by the presence of several N-glycosylation sites, and changes in these sugar moieties affect its stability and enzymatic activity. In the present study, we found that NEP is hyposialylated and its expression and enzymatic activity reduced in all h-IBM muscles analyzed. In vitro, the experimental removal of sialic acid by Vibrio Cholerae neuraminidase in cultured myotubes resulted in reduced expression of NEP. This was most likely because of a post-translational modification consisting in an abnormal sialylation of the protein that leads to its reduced stability. Moreover, treatment with Vibrio Cholerae neuraminidase was associated with an increased immunoreactivity for Abeta mainly in the form of distinct cytoplasmic foci within myotubes. We hypothesize that, in h-IBM muscle, hyposialylated NEP has a role in hampering the cellular Abeta clearing system, thus contributing to its abnormal accumulation within vulnerable fibers and possibly promoting muscle degeneration.

  15. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  16. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  17. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  18. Granulocyte, monocyte and blast immunophenotype abnormalities in acute myeloid leukemia with myelodysplasia-related changes.

    PubMed

    Ayar, Sonali P; Ravula, Sreelakshmi; Polski, Jacek M

    2014-01-01

    Little literature exists regarding granulocyte and monocyte immunophenotype abnormalities in Acute Myeloid Leukemia (AML). We hypothesized that granulocyte and monocyte immunophenotype abnormalities are common in AML, and especially in AML with myelodysplasia-related changes (AMLMRC). Bone marrow or peripheral blood specimens from 48 cases of AML and 22 cases of control specimens were analyzed by flow cytometric immunophenotyping. Granulocyte, monocyte, and blast immunophenotype abnormalities were compared between cases of AML versus controls and AMLMRC versus AML without myelodysplasia. The results revealed that granulocyte, monocyte, and blast abnormalities were more common in AMLMRC than in AML without myelodysplasia or control cases. The difference reached statistical significance for abnormalities of granulocytes and abnormalities in all cells of interest. From the numerous individual abnormalities, only CD25 expression in blasts was significantly more prevalent in AMLMRC in this study. We conclude that detection of granulocyte, monocyte, and blast immunophenotype abnormalities can contribute to the diagnosis of AMLMRC.

  19. Multimodal image analysis of clinical influences on preterm brain development

    PubMed Central

    Ball, Gareth; Aljabar, Paul; Nongena, Phumza; Kennea, Nigel; Gonzalez‐Cinca, Nuria; Falconer, Shona; Chew, Andrew T.M.; Harper, Nicholas; Wurie, Julia; Rutherford, Mary A.; Edwards, A. David

    2017-01-01

    Objective Premature birth is associated with numerous complex abnormalities of white and gray matter and a high incidence of long‐term neurocognitive impairment. An integrated understanding of these abnormalities and their association with clinical events is lacking. The aim of this study was to identify specific patterns of abnormal cerebral development and their antenatal and postnatal antecedents. Methods In a prospective cohort of 449 infants (226 male), we performed a multivariate and data‐driven analysis combining multiple imaging modalities. Using canonical correlation analysis, we sought separable multimodal imaging markers associated with specific clinical and environmental factors and correlated to neurodevelopmental outcome at 2 years. Results We found five independent patterns of neuroanatomical variation that related to clinical factors including age, prematurity, sex, intrauterine complications, and postnatal adversity. We also confirmed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes at 2 years. Interpretation This data‐driven approach defined novel and clinically relevant imaging markers of cerebral maldevelopment, which offer new insights into the nature of preterm brain injury. Ann Neurol 2017;82:233–246 PMID:28719076

  20. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe.

    PubMed

    Carlson, Dustin A; Kahrilas, Peter J; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A; Wong, Ian; Pandolfino, John E

    2016-12-01

    Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was <2.8 mm 2 /mm Hg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions. HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, and 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was "normal" in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.

  1. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4 days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense).

    PubMed

    Liu, Li; Venkatesh, Jelli; Jo, Yeong Deuk; Koeda, Sota; Hosokawa, Munetaka; Kang, Jin-Ho; Goritschnig, Sandra; Kang, Byoung-Cheorl

    2016-08-01

    The sy - 2 temperature-sensitive gene from Capsicum chinense was fine mapped to a 138.8-kb region at the distal portion of pepper chromosome 1. Based on expression analyses, two putative F-box genes were identified as sy - 2 candidate genes. Seychelles-2 ('sy-2') is a temperature-sensitive natural mutant of Capsicum chinense, which exhibits an abnormal leaf phenotype when grown at temperatures below 24 °C. We previously showed that the sy-2 phenotype is controlled by a single recessive gene, sy-2, located on pepper chromosome 1. In this study, a high-resolution genetic and physical map for the sy-2 locus was constructed using two individual F2 mapping populations derived from a cross between C. chinense mutant 'sy-2' and wild-type 'No. 3341'. The sy-2 gene was fine mapped to a 138.8-kb region between markers SNP 5-5 and SNP 3-8 at the distal portion of chromosome 1, based on comparative genomic analysis and genomic information from pepper. The sy-2 target region was predicted to contain 27 genes. Expression analysis of these predicted genes showed a differential expression pattern for ORF10 and ORF20 between mutant and wild-type plants; with both having significantly lower expression in 'sy-2' than in wild-type plants. In addition, the coding sequences of both ORF10 and ORF20 contained single nucleotide polymorphisms (SNPs) causing amino acid changes, which may have important functional consequences. ORF10 and ORF20 are predicted to encode F-box proteins, which are components of the SCF complex. Based on the differential expression pattern and the presence of nonsynonymous SNPs, we suggest that these two putative F-box genes are most likely responsible for the temperature-sensitive phenotypes in pepper. Further investigation of these genes may enable a better understanding of the molecular mechanisms of low temperature sensitivity in plants.

  3. Association between abnormal nocturnal blood pressure profile and dementia in Parkinson's disease.

    PubMed

    Tanaka, Ryota; Shimo, Yasushi; Yamashiro, Kazuo; Ogawa, Takashi; Nishioka, Kenya; Oyama, Genko; Umemura, Atsushi; Hattori, Nobutaka

    2018-01-01

    Circadian blood pressure alterations are frequently observed in Parkinson's disease, but the association between these changes and dementia in the condition remains unclear. Here, we assess the relationship between abnormal nocturnal blood pressure profiles and dementia in Parkinson's disease. We enrolled 137 patients with Parkinson's disease, who underwent 24 h ambulatory blood pressure monitoring, following cognitive and clinical assessment. Twenty-seven patients (19.7%) were diagnosed with dementia in this cohort. We observed significant associations of dementia with age, male gender, Hoehn-Yahr (H-Y) stage, diabetes mellitus, history of stroke, presence of cerebrovascular lesions on MRI, and orthostatic hypotension. Univariate logistic regression analysis showed that among the patterns of nocturnal blood pressure profiles, the riser pattern was significantly associated with dementia (OR 11.6, 95%CI: 2.14-215.0, P < 0.01), and this trend was observed after adjusting for all confounding factors except orthostatic hypotension (OR 19.2, 95%CI: 1.12-1960.3, P = 0.04). However, coexistence of a riser pattern and orthostatic hypotension was related to a higher prevalence of dementia (45.2%) than was a riser pattern alone (9.5%). Furthermore, coexistence of a riser pattern and orthostatic hypotension was significantly more associated with dementia than was a riser pattern alone, even after adjusting for confounders (OR 1625.1, 95%CI: 21.9-1343909.5, P < 0.01). Our results suggest a relationship between a riser pattern coexisting with orthostatic hypotension and dementia in Parkinson's disease. Further prospective studies are warranted to investigate whether abnormal nocturnal blood pressure profiles predict dementia in Parkinson's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mucosal Transcriptomics Implicates Under Expression of BRINP3 in the Pathogenesis of Ulcerative Colitis

    PubMed Central

    Smith, Philip J.; Levine, Adam P.; Dunne, Jenny; Guilhamon, Paul; Turmaine, Mark; Sewell, Gavin W.; O'Shea, Nuala R.; Vega, Roser; Paterson, Jennifer C.; Oukrif, Dahmane; Beck, Stephan; Bloom, Stuart L.; Novelli, Marco; Rodriguez-Justo, Manuel; Smith, Andrew M.

    2014-01-01

    Background: Mucosal abnormalities are potentially important in the primary pathogenesis of ulcerative colitis (UC). We investigated the mucosal transcriptomic expression profiles of biopsies from patients with UC and healthy controls, taken from macroscopically noninflamed tissue from the terminal ileum and 3 colonic locations with the objective of identifying abnormal molecules that might be involved in disease development. Methods: Whole-genome transcriptional analysis was performed on intestinal biopsies taken from 24 patients with UC, 26 healthy controls, and 14 patients with Crohn's disease. Differential gene expression analysis was performed at each tissue location separately, and results were then meta-analyzed. Significantly, differentially expressed genes were validated using quantitative polymerase chain reaction. The location of gene expression within the colon was determined using immunohistochemistry, subcellular fractionation, electron and confocal microscopy. DNA methylation was quantified by pyrosequencing. Results: Only 4 probes were abnormally expressed throughout the colon in patients with UC with Bone morphogenetic protein/Retinoic acid Inducible Neural-specific 3 (BRINP3) being the most significantly underexpressed. Attenuated expression of BRINP3 in UC was independent of current inflammation, unrelated to phenotype or treatment, and remained low at rebiopsy an average of 22 months later. BRINP3 is localized to the brush border of the colonic epithelium and expression is influenced by DNA methylation within its promoter. Conclusions: Genome-wide expression analysis of noninflamed mucosal biopsies from patients with UC identified BRINP3 as significantly underexpressed throughout the colon in a large subset of patients with UC. Low levels of this gene could predispose or contribute to the maintenance of the characteristic mucosal inflammation seen in this condition. PMID:25171508

  5. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  6. Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Weiss, Deike; Burghardt, Roland; Infante-Duarte, Carmen; Brockhaus, Simone; Muschler, Marc A; Bleich, Stefan; Lehmkuhl, Ulrike; Frieling, Helge

    2010-10-01

    Proopiomelanocortin (POMC) and its derived peptides, in particular alpha-MSH, have been shown to play a crucial role in the regulation of hunger, satiety and energy homeostasis. Studies in patients with anorexia nervosa (AN) suggest an abnormal expression of appetite-regulating hormones. Hormone expression levels may be modulated by epigenetic mechanisms, which were recently shown to be implicated in the pathophysiology of eating disorders. We hypothesised that POMC promoter specific DNA methylation and gene expression will be affected by malnutrition and therefore differ in AN patients at distinct stages of the disorder. Promoter specific DNA methylation of the POMC gene and expression of POMC mRNA variants were determined in peripheral blood mononuclear cells (PBMC) of 30 healthy control women (HCW), 31 underweight (acAN) and 30 weight-recovered patients with AN (recAN). Malnutrition was characterized by plasma leptin. Expression of the functionally relevant long POMC mRNA transcript was significantly correlated with leptin levels and higher in acAN compared to recAN and HCW. Expression of the truncated form and mean promoter DNA methylation was similar in all three subgroups. Methylation of single CpG residues in the E2F binding site was inversely related to POMC expression. Our preliminary data on pattern of POMC regulation suggests an association with the underweight state rather than with persisting trait markers of AN. In contrast to POMC expression in the central nervous system, peripheral POMC mRNA expression decreased with malnutrition and hypoleptinemia. This may represent a counterregulatory mechanism as part of the crosstalk between the immune and neuroendocrine systems.

  7. Osteoblast role in osteoarthritis pathogenesis.

    PubMed

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  8. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma

    PubMed Central

    Hassan, Hesham M.; Varney, Michelle L.; Jain, Smrati; Weisenburger, Dennis D.; Singh, Rakesh K.; Dave, Bhavana J.

    2015-01-01

    The TP73 gene is located at the chromosome 1p36 locus that is commonly disrupted or deleted in follicular lymphoma (FL) with poor prognosis. Therefore, we analyzed the expression of the pro-apoptotic TAp73 and anti-apoptotic ΔNp73 isoforms in FL cases with normal or abnormal 1p36. We observed a significant increase in ΔNp73 expression and ΔNp73:TAp73 ratio, lower expression of cleaved caspase-3 and a higher frequency of Ki-67 and PCNA positive cells in FL cases with abnormal 1p36. A negative correlation between the ΔNp73:TAp73 ratio and cleaved caspase-3 expression, and a positive correlation between ΔNp73 expression and Ki-67 or PCNA were observed. The expression of TAp73 and its pro-apoptotic transcriptional targets Bim, Puma, and Noxa were significantly lower in FL compared to reactive follicular hyperplasia. Together, our data demonstrates that 1p36 disruption is associated with increased ΔNp73 expression, decreased apoptosis and increased proliferation in FL. PMID:24660851

  9. Modality-Spanning Deficits in Attention-Deficit/Hyperactivity Disorder in Functional Networks, Gray Matter, and White Matter

    PubMed Central

    Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.

    2014-01-01

    Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

  10. Implementation of a data packet generator using pattern matching for wearable ECG monitoring systems.

    PubMed

    Noh, Yun Hong; Jeong, Do Un

    2014-07-15

    In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.

  11. Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.

  12. Patterns of repeated anal cytology results among HIV-positive and HIV-negative men who have sex with men.

    PubMed

    Robbins, Hilary A; Wiley, Dorothy J; Ho, Ken; Plankey, Michael; Reddy, Susheel; Joste, Nancy; Darragh, Teresa M; Breen, Elizabeth C; Young, Stephen; D'Souza, Gypsyamber

    2018-06-01

    Men who have sex with men (MSM) are at increased risk for anal cancer. In cervical cancer screening, patterns of repeated cytology results are used to identify low- and high-risk women, but little is known about these patterns for anal cytology among MSM. We analyzed Multicenter AIDS Cohort Study (MACS) data for MSM who were offered anal cytology testing annually (HIV-positive) or every 2 years (HIV-negative) for 4 years. Following an initial negative (normal) cytology, the frequency of a second negative cytology was lower among HIV-positive MSM with CD4 ≥ 500 (74%) or CD4 < 500 (68%) than HIV-negative MSM (83%) (p < 0.001). After an initial abnormal cytology, the frequency of a second abnormal cytology was highest among HIV-positive MSM with CD4 < 500 (70%) compared to CD4 ≥ 500 (53%) or HIV-negative MSM (46%) (p = 0.003). Among HIV-positive MSM with at least three results, 37% had 3 consecutive negative results; 3 consecutive abnormal results were more frequent among CD4 < 500 (22%) than CD4 ≥ 500 (10%) (p = 0.008). More than one-third of HIV-positive MSM have consistently negative anal cytology over three years. Following abnormal anal cytology, a repeated cytology is commonly negative in HIV-negative or immunocompetent HIV-positive men, while persistent cytological abnormality is more likely among HIV-positive men with CD4 < 500. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Sleep abnormalities in children with Dravet syndrome.

    PubMed

    Dhamija, Radhika; Erickson, Maia K; St Louis, Erik K; Wirrell, Elaine; Kotagal, Suresh

    2014-05-01

    Mutations in the voltage-gated sodium channel SCN1A gene are responsible for the majority of Dravet syndrome cases. There is evidence that the Nav1.1 channel coded by the SCN1A gene is involved in sleep regulation. We evaluated sleep abnormalities in children with Dravet syndrome using nocturnal polysomnography. We identified six children at our institution with genetically confirmed Dravet syndrome who had also undergone formal sleep consultation with nocturnal polysomnography. Indications for polysomnography were parental concern of daytime fatigue or sleepiness, hyperactivity, inattention, disruptive behavior, nighttime awakenings, or nocturnal seizures. Sleep studies were scored according to guidelines of the American Academy of Sleep Medicine and non-rapid eye movement cyclic alternating pattern was visually identified and scored according to established methods. The mean age of the subjects at the time of polysomnography was 6 years. Standard polysomnography did not show any consistent abnormalities in the obstructive or central apnea index, arousal index, sleep efficiency, or architecture. Cyclic alternating pattern analysis on five patients showed an increased mean rate of 50.3% (vs 31% to 34% in neurological normal children) with a mild increase in A1 subtype of 89.4% (vs 84.5%). A2/A3 subtype (5.3% vs 7.3%) and B phase duration (22.4 vs 24.7 seconds) were similar to previously reported findings in neurologically normal children. Despite parental concerns for sleep disturbance in patients with Dravet syndrome, we could not identify abnormalities in sleep macroarchitecture. Non-rapid eye movement sleep microarchitecture was, however, abnormal, with increased A1 subtype, somewhat resembling a tracé alternant pattern of neonates and possibly suggestive of cortical synaptic immaturity in Dravet syndrome. Larger studies are needed to replicate these results. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electroencephalographic features of convulsive epilepsy in Africa: A multicentre study of prevalence, pattern and associated factors

    PubMed Central

    Kariuki, Symon M.; White, Steven; Chengo, Eddie; Wagner, Ryan G.; Ae-Ngibise, Kenneth A.; Kakooza-Mwesige, Angelina; Masanja, Honorati; Ngugi, Anthony K.; Sander, Josemir W.; Neville, Brian G.; Newton, Charles R.

    2016-01-01

    Objective We investigated the prevalence and pattern of electroencephalographic (EEG) features of epilepsy and the associated factors in Africans with active convulsive epilepsy (ACE). Methods We characterized electroencephalographic features and determined associated factors in a sample of people with ACE in five African sites. Mixed-effects modified Poisson regression model was used to determine factors associated with abnormal EEGs. Results Recordings were performed on 1426 people of whom 751 (53%) had abnormal EEGs, being an adjusted prevalence of 2.7 (95% confidence interval (95% CI), 2.5–2.9) per 1000. 52% of the abnormal EEG had focal features (75% with temporal lobe involvement). The frequency and pattern of changes differed with site. Abnormal EEGs were associated with adverse perinatal events (risk ratio (RR) = 1.19 (95% CI, 1.07–1.33)), cognitive impairments (RR = 1.50 (95% CI, 1.30–1.73)), use of anti-epileptic drugs (RR = 1.25 (95% CI, 1.05–1.49)), focal seizures (RR = 1.09 (95% CI, 1.00–1.19)) and seizure frequency (RR = 1.18 (95% CI, 1.10–1.26) for daily seizures; RR = 1.22 (95% CI, 1.10–1.35) for weekly seizures and RR = 1.15 (95% CI, 1.03–1.28) for monthly seizures)). Conclusions EEG abnormalities are common in Africans with epilepsy and are associated with preventable risk factors. Significance EEG is helpful in identifying focal epilepsy in Africa, where timing of focal aetiologies is problematic and there is a lack of neuroimaging services. PMID:26337840

  15. Patterns of glaucomatous visual field loss in sita fields automatically identified using independent component analysis.

    PubMed

    Goldbaum, Michael H; Jang, Gil-Jin; Bowd, Chris; Hao, Jiucang; Zangwill, Linda M; Liebmann, Jeffrey; Girkin, Christopher; Jung, Tzyy-Ping; Weinreb, Robert N; Sample, Pamela A

    2009-12-01

    To determine if the patterns uncovered with variational Bayesian-independent component analysis-mixture model (VIM) applied to a large set of normal and glaucomatous fields obtained with the Swedish Interactive Thresholding Algorithm (SITA) are distinct, recognizable, and useful for modeling the severity of the field loss. SITA fields were obtained with the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Inc, Dublin, California) on 1,146 normal eyes and 939 glaucoma eyes from subjects followed by the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. VIM modifies independent component analysis (ICA) to develop separate sets of ICA axes in the cluster of normal fields and the 2 clusters of abnormal fields. Of 360 models, the model with the best separation of normal and glaucomatous fields was chosen for creating the maximally independent axes. Grayscale displays of fields generated by VIM on each axis were compared. SITA fields most closely associated with each axis and displayed in grayscale were evaluated for consistency of pattern at all severities. The best VIM model had 3 clusters. Cluster 1 (1,193) was mostly normal (1,089, 95% specificity) and had 2 axes. Cluster 2 (596) contained mildly abnormal fields (513) and 2 axes; cluster 3 (323) held mostly moderately to severely abnormal fields (322) and 5 axes. Sensitivity for clusters 2 and 3 combined was 88.9%. The VIM-generated field patterns differed from each other and resembled glaucomatous defects (eg, nasal step, arcuate, temporal wedge). SITA fields assigned to an axis resembled each other and the VIM-generated patterns for that axis. Pattern severity increased in the positive direction of each axis by expansion or deepening of the axis pattern. VIM worked well on SITA fields, separating them into distinctly different yet recognizable patterns of glaucomatous field defects. The axis and pattern properties make VIM a good candidate as a preliminary process for detecting progression.

  16. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype.

    PubMed

    Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K

    2014-02-01

    Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Temporal and quantitative associations of electronic fetal heart rate monitoring patterns and neonatal outcomes†.

    PubMed

    Ogunyemi, Dotun; Jovanovski, Andrew; Friedman, Perry; Sweatman, Brittany; Madan, Ichchha

    2018-04-06

    The objective of this study is to evaluate the associations of electronic fetal heart rate monitoring (EFM) patterns and adverse neonatal outcomes Study design: From 2013 to 2016; 12,067 term, singleton deliveries in labor ≥2 h with abnormal EFM defined as absent accelerations, variable, late or prolonged decelerations, tachycardia, bradycardia, or minimal variability were analyzed as any documentation during labor, in first hour and last hour of labor. Outcomes were composite neonatal adverse outcomes, neonatal intensive care unit (NICU) admission, neonatal hypoxia, neonatal hypoglycemia, umbilical artery pH, and base excess. Independent associations were ascertained using regression analysis. Significant independent associations occurred between any abnormal EFM during the last hour and five adverse neonatal outcomes; between abnormal EFM at any time and one adverse neonatal outcome while there was none with the first hour of labor. In the last hour, accelerations had significant negative associations with three adverse neonatal outcomes, while prolonged decelerations, late decelerations, tachycardia, and bradycardia had significant positive associations with three adverse neonatal outcomes. Throughout labor, increasing accelerations events were significantly negatively correlated with all adverse neonatal outcomes, while increasing frequency of late, variable, and prolonged decelerations were positively associated with five adverse neonatal outcomes. Hierarchical analysis showed that bradycardia/tachycardia contributed only 0.8%, while all EFM periodic changes contributed 1%; the addition of the frequencies of abnormal EFM events contributed 0.6% to the variance in umbilical artery pH and base excess. Terminal EFM patterns are independently associated with neonatal outcomes. Accelerations are protective of adverse neonatal outcomes. Increasing frequency of EFM patterns overtime contributes to neonatal outcome.

  18. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice.

    PubMed

    Radwan, Basma; Dvorak, Dino; Fenton, André A

    2016-04-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). The absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why the absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism.

    PubMed

    Chandana, Sreenivasa R; Behen, Michael E; Juhász, Csaba; Muzik, Otto; Rothermel, Robert D; Mangner, Thomas J; Chakraborty, Pulak K; Chugani, Harry T; Chugani, Diane C

    2005-01-01

    The role of serotonin in prenatal and postnatal brain development is well documented in the animal literature. In earlier studies using positron emission tomography (PET) with the tracer alpha[(11)C]methyl-l-tryptophan (AMT), we reported global and focal abnormalities of serotonin synthesis in children with autism. In the present study, we measured brain serotonin synthesis in a large group of autistic children (n = 117) with AMT PET and related these neuroimaging data to handedness and language function. Cortical AMT uptake abnormalities were objectively derived from small homotopic cortical regions using a predefined cutoff asymmetry threshold (>2 S.D. of normal asymmetry). Autistic children demonstrated several patterns of abnormal cortical involvement, including right cortical, left cortical, and absence of abnormal asymmetry. Global brain values for serotonin synthesis capacity (unidirectional uptake rate constant, K-complex) values were plotted as a function of age. K-complex values of autistic children with asymmetry or no asymmetry in cortical AMT uptake followed different developmental patterns, compared to that of a control group of non-autistic children. The autism groups, defined by presence or absence and side of cortical asymmetry, differed on a measure of language as well as handedness. Autistic children with left cortical AMT decreases showed a higher prevalence of severe language impairment, whereas those with right cortical decreases showed a higher prevalence of left and mixed handedness. Global as well as focal abnormally asymmetric development in the serotonergic system could lead to miswiring of the neural circuits specifying hemispheric specialization.

  20. Refeeding syndrome or refeeding hypophosphatemia: a systematic review of cases.

    PubMed

    Skipper, Annalynn

    2012-02-01

    Nutrition support clinicians refer to the abnormalities in laboratory data and changes in clinical signs and symptoms that follow refeeding of starved or malnourished patients as refeeding syndrome. Theoretical descriptions of refeeding syndrome include a complex and extensive list of changes, such as hypophosphatemia, hypomagnesemia, hypokalemia, hyponatremia, hypocalcemia, hyperglycemia, and vitamin deficiency--all of which are accompanied by clinical signs and symptoms. In practice, clinicians see asymptomatic refeeding hypophosphatemia more often than a full-blown syndrome with multiple laboratory and clinical abnormalities. Confusion results because there is no widely accepted or uniformly applied set of defining characteristics for diagnosing refeeding syndrome. To gain insight into the clinical characteristics of refeeding syndrome described in the literature, a systematic review of reported cases and case series was conducted. Since 2000, 20 authors described 27 cases that contained sufficient data for review. Hypophosphatemia occurred in 26 patients (96%). While 19 patients (71%) experienced at least 1 other laboratory abnormality, only 14 (51%) exhibited a consistent pattern of abnormally low phosphorus and magnesium levels. Seven patients had hypocalcemia (26%), and hyponatremia was reported in 3 patients (11%). There were no reports of hyperglycemia. Mean data reported in case series containing data from 63 patients showed that hypophosphatemia was a consistent finding but that other abnormalities were not consistently identified. Findings suggest that refeeding hypophosphatemia is not accompanied by a consistent pattern of biochemical or clinical abnormalities among case reports or case series of patients reported to have refeeding syndrome.

  1. CSAX: Characterizing Systematic Anomalies in eXpression Data

    PubMed Central

    Noto, Keith; Majidi, Saeed; Edlow, Andrea G.; Wick, Heather C.; Bianchi, Diana W.

    2015-01-01

    Abstract Methods for translating gene expression signatures into clinically relevant information have typically relied upon having many samples from patients with similar molecular phenotypes. Here, we address the question of what can be done when it is relatively easy to obtain healthy patient samples, but when abnormalities corresponding to disease states may be rare and one-of-a-kind. The associated computational challenge, anomaly detection, is a well-studied machine-learning problem. However, due to the dimensionality and variability of expression data, existing methods based on feature space analysis or individual anomalously expressed genes are insufficient. We present a novel approach, CSAX, that identifies pathways in an individual sample in which the normal expression relationships are disrupted. To evaluate our approach, we have compiled and released a compendium of public expression data sets, reformulated to create a test bed for anomaly detection. We demonstrate the accuracy of CSAX on the data sets in our compendium, compare it to other leading methods, and show that CSAX aids in both identifying anomalies and explaining their underlying biology. We describe an approach to characterizing the difficulty of specific expression anomaly detection tasks. We then illustrate CSAX's value in two developmental case studies. Confirming prior hypotheses, CSAX highlights disruption of platelet activation pathways in a neonate with retinopathy of prematurity and identifies, for the first time, dysregulated oxidative stress response in second trimester amniotic fluid of fetuses with obese mothers. Our approach provides an important step toward identification of individual disease patterns in the era of precision medicine. PMID:25651392

  2. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  3. The status of dermatoglyphics as a biomarker of Tel Hashomer camptodactyly syndrome: a review of the literature.

    PubMed

    Wijerathne, Buddhika T B; Meier, Robert J; Agampodi, Suneth B

    2016-09-20

    Tel Hashomer camptodactyly syndrome is a rare disease and only a few cases have been reported. Dermatoglyphics potentially provide relevant phenotypic biomarkers that were initially noted as a vital clinical feature of this disease. Dermatoglyphics possibly can indicate growth disturbances that took place during early fetal development at the time when epidermal ridges were being formed into discernable patterns. Consequently, these intrauterine effects might well have occurred in association with the expression of the Tel Hashomer camptodactyly syndrome. Therefore, this review was undertaken to provide, as far as we know, the first attempt to broadly assess dermatoglyphic features that are connected with the Tel Hashomer camptodactyly syndrome. If a developmental association between dermatoglyphics and Tel Hashomer camptodactyly can be firmly established, this would probably document that Tel Hashomer camptodactyly disease has its origins during the early fetal period. A systematic literature search was conducted using articles from PubMed (Medline), POPLINE, Trip Database, Cochrane Library, and gray literature up to 31 March 2015. The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Fourteen relevant publications were included in the review. There were 23 cases of patients with Tel Hashomer camptodactyly syndrome that were described in these published articles. We reviewed the dermatoglyphics of 21 available cases out of all of the published and electronically available cases of Tel Hashomer camptodactyly. Eight cases reported whorls to be the most common digital pattern with an expected rise of ridge count. Two cases show significantly high frequencies of arch patterns. Further, there were increased numbers of palmar creases, along with abnormal flexion creases or other palmar dermatoglyphic abnormalities reported in all cases. This review highlighted the desirability of thoroughly observing and recording dermatoglyphic features when reporting on future patients with Tel Hashomer camptodactyly syndrome, in conjunction with carrying out modern molecular methods.

  4. Altered Face Scanning and Impaired Recognition of Biological Motion in a 15-Month-Old Infant with Autism

    ERIC Educational Resources Information Center

    Klin, Ami; Jones, Warren

    2008-01-01

    Mounting clinical evidence suggests that abnormalities of social engagement in children with autism are present even during infancy. However, direct experimental documentation of these abnormalities is still limited. In this case report of a 15-month-old infant with autism, we measured visual fixation patterns to both naturalistic and ambiguous…

  5. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.« less

  6. Hybrid incompatibilities in interspecific crosses between tetraploid wheat and its wild diploid relative Aegilops umbellulata.

    PubMed

    Okada, Moeko; Yoshida, Kentaro; Takumi, Shigeo

    2017-12-01

    Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F 1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.

  7. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    PubMed

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  8. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose

    PubMed Central

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476

  9. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  10. DNA methylome of the 20-gigabase Norway spruce genome

    PubMed Central

    Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng

    2016-01-01

    DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846

  11. Optical biosensing strategies for DNA methylation analysis.

    PubMed

    Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-06-15

    DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Diethylstilbestrol affects the expression of GPER in the gubernaculum testis.

    PubMed

    Zhang, Xuan; Ke, Song; Chen, Kai-Hong; Li, Jian-Hong; Ma, Lian; Jiang, Xue-Wu

    2015-01-01

    Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system. EEs are known to cause the abnormalities of testes development and testicular descent. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernacular cells, and its nongenomic effects on gubernaculum testis cells may be mediated by G protein-coupled estrogen receptor (GPER). In this study, we detected the expression of GPER in mouse gubernacular testis and investigated the effects of DES on the expression of GPER in gubernaculum testis cells. RT-PCR analysis revealed that GPER mRNA was expressed in the gubernaculum. GPER protein was detected in the parenchymal cells of the gubernaculum early in development. Furthermore, we demonstrate that GPER inhibitor G15 relieved DES-induced inhibition of GPER expression in gubernaculum testis cell, but ER inhibitor ICI 182780 had the converse effects on DES-induced inhibition of GPER expression in these cells. These data suggest that the effects of DES on mouse gubernaculum testis cells are mediated at least partially by the regulation of GPER expression.

  13. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior

    PubMed Central

    Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio

    2017-01-01

    Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410

  14. Prediction of epigenetically regulated genes in breast cancer cell lines.

    PubMed

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-06-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.

  15. Multifocal visual evoked potentials reveal normal optic nerve projections in human carriers of oculocutaneous albinism type 1a.

    PubMed

    Hoffmann, Michael B; Wolynski, Barbara; Meltendorf, Synke; Behrens-Baumann, Wolfgang; Käsmann-Kellner, Barbara

    2008-06-01

    In albinism, part of the temporal retina projects abnormally to the contralateral hemisphere. A residual misprojection is also evident in feline carriers that are heterozygous for tyrosinase-related albinism. This study was conducted to test whether such residual abnormalities can also be identified in human carriers of oculocutaneous tyrosinase-related albinism (OCA1a). In eight carriers heterozygous for OCA1a and in eight age- and sex-matched control subjects, monocular pattern-reversal and -onset multifocal visual evoked potentials (mfVEPs) were recorded at 60 locations comprising a visual field of 44 degrees diameter (VERIS 5.01; EDI, San Mateo, CA). For each eye and each stimulus location, interhemispheric difference potentials were calculated and correlated with each other, to assess the lateralization of the responses: positive and negative correlations indicate lateralizations on the same or opposite hemispheres, respectively. Misrouted optic nerves are expected to yield negative interocular correlations. The analysis also allowed for the assessment of the sensitivity and specificity of the detection of projection abnormalities. No significant differences were obtained for the distributions of the interocular correlation coefficients of controls and carriers. Consequently, no local representation abnormalities were observed in the group of OCA1a carriers. For pattern-reversal and -onset stimulation, an assessment of the control data yielded similar specificity (97.9% and 94.6%) and sensitivity (74.4% and 74.8%) estimates for the detection of projection abnormalities. The absence of evidence for projection abnormalities in human OCA1a carriers contrasts with the previously reported evidence for abnormalities in cat-carriers of tyrosinase-related albinism. This discrepancy suggests that animal models of albinism may not provide a match to human albinism.

  16. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients.

    PubMed

    Garbade, Sven F; Greenberg, Cheryl R; Demirkol, Mübeccel; Gökçay, Gülden; Ribes, Antonia; Campistol, Jaume; Burlina, Alberto B; Burgard, Peter; Kölker, Stefan

    2014-09-01

    Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.

  17. The interpretation and management of abnormal liver function tests.

    PubMed

    Simpson, M A; Freshwater, D A

    2015-01-01

    Liver function tests (LFTs) are frequently requested as part of routine health assessments on serving members of the Royal Navy (RN). In common with many investigations there are a number of abnormal results in healthy individuals (0.5 - 9% depending on test and study population). There are established patterns of LFT derangement such as cholestatic derangement, hepatocellular derangement, and failure of synthetic function. There can be indicators to the cause of the derangement by assessing the ratios of elevated assays in relation to one another. This article aims to address the definition, potential causes and further investigation of common patterns of LFT derangement found in primary care in the RN.

  18. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  19. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    PubMed Central

    Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.

    2008-01-01

    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095

  20. Nablus mask-like facial syndrome: deletion of chromosome 8q22.1 is necessary but not sufficient to cause the phenotype.

    PubMed

    Allanson, Judith; Smith, Amanda; Hare, Heather; Albrecht, Beate; Bijlsma, Emilia; Dallapiccola, Bruno; Donti, Emilio; Fitzpatrick, David; Isidor, Bertrand; Lachlan, Katherine; Le Caignec, Cedric; Prontera, Paolo; Raas-Rothschild, Annick; Rogaia, Daniela; van Bon, Bregje; Aradhya, Swaroop; Crocker, Susan F; Jarinova, Olga; McGowan-Jordan, Jean; Boycott, Kym; Bulman, Dennis; Fagerberg, Christina Ringmann

    2012-09-01

    Nablus mask-like facial syndrome (NMLFS) has many distinctive phenotypic features, particularly tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. Over the last few years, several individuals with NMLFS have been reported to have a microdeletion of 8q21.3q22.1, demonstrated by microarray analysis. The minimal overlapping region is 93.98-96.22 Mb (hg19). Here we present clinical and microarray data from five singletons and two mother-child pairs who have heterozygous deletions significantly overlapping the region associated with NMLFS. Notably, while one mother and child were said to have mild tightening of facial skin, none of these individuals exhibited reduced facial expression or the classical facial phenotype of NMLFS. These findings indicate that deletion of the 8q21.3q22.1 region is necessary but not sufficient for development of the NMLFS. We discuss possible genetic mechanisms underlying the complex pattern of inheritance for this condition. Copyright © 2012 Wiley Periodicals, Inc.

  1. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.

    PubMed

    Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François

    2009-04-01

    Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.

  2. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways

    PubMed Central

    Gröschel, Stefan; Sanders, Mathijs A.; Hoogenboezem, Remco; Zeilemaker, Annelieke; Havermans, Marije; Erpelinck, Claudia; Bindels, Eric M. J.; Beverloo, H. Berna; Döhner, Hartmut; Löwenberg, Bob; Döhner, Konstanze; Delwel, Ruud

    2015-01-01

    Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group. PMID:25381062

  3. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert

    2016-01-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…

  4. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  5. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation

    PubMed Central

    2014-01-01

    Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1 fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate. PMID:24433583

  6. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  7. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.

    PubMed

    Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M

    2015-11-01

    Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.

  8. Histone H3 Lysine 36 Methyltransferase Whsc1 Promotes the Association of Runx2 and p300 in the Activation of Bone-Related Genes

    PubMed Central

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1 −/− embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  9. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    PubMed

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  10. A Novel Zinc Finger Protein 219-like (ZNF219L) is Involved in the Regulation of Collagen Type 2 Alpha 1a (col2a1a) Gene Expression in Zebrafish Notochord

    PubMed Central

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically. PMID:24155663

  11. Effects of environmental enrichment on the activity of the amygdala in micrencephalic rats exposed to a novel open field.

    PubMed

    Matsuda, Wakoto; Ehara, Ayuka; Nakadate, Kazuhiko; Yoshimoto, Kanji; Ueda, Shuichi

    2018-01-01

    Environmental enrichment (EE) mediates recovery from sensory, motor, and cognitive deficits and emotional abnormalities. In the present study, we examined the effects of EE on locomotor activity and neuronal activity in the amygdala in control and methylazoxymethanol acetate (MAM)-induced micrencephalic rats after challenge in a novel open field. Control rats housed in EE (CR) showed reduced locomotor activity compared to rats housed in a conventional cage (CC), whereas hyperactivity was seen in MAM rats housed in a conventional cage (MC) and in MAM rats housed in EE (MR). Novel open field exposure in both CC and MC resulted in a marked increase in Fos expression in the anterior and posterior parts of the basolateral amygdaloid nucleus, basomedial nucleus, and medial nucleus, whereas these increases in expression were not observed in CR. The effect of EE on Fos expression in the amygdala was different in MR exposed to a novel open field compared to CR. Furthermore, we observed a quite different pattern of Fos expression in the central nucleus of the amygdala between control and MAM rats. The present results suggest that neuronal activity in the amygdala that responds to anxiety is altered in MAM rats, especially when the rats are reared in EE. These alterations may cause behavioral differences between control and MAM rats. © 2017 Japanese Teratology Society.

  12. Identification and characterization of proliferative retinopathy-related long noncoding RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Rong-Mei; Wang, Xiao-Qun; Yao, Jin

    2015-09-25

    Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and vitreoretinal surgery, which can lead to severe vision reduction. Long non-coding RNAs (lncRNAs) play critical roles in many biological processes and disease development. We attempted to determine the role of lncRNAs in the setting of PVR. Microarray analysis revealed that 78 lncRNAs were abnormally expressed in the epiretinal membranes (ERMs) of PVR patients, including 48 up-regulated and 30 down-regulated lncRNA transcripts. We subsequently focus on one lncRNA, MALAT1, and investigated its expression pattern in the biofluid of PVR patients. MALAT1 was significantly up-regulated in the cellular and plasma fractionmore » of peripheral blood in PVR patients. MALAT1 expression was obviously reduced after PVR operation. In vitro experiments revealed the role of MALAT1 in regulating RPE proliferation and migration, which is critical for ERMs formation. This study suggests that lncRNAs are the potential regulators of PVR pathology. MALAT1 is a potential prognostic indicator and a target for the diagnosis and gene therapy for PVR diseases. - Highlights: • 78 lncRNAs are differentially expressed between PVR-ERMs and secondary ERMs. • MALAT1 level is elevated in the ERMs of PVR patients. • Circulating MALAT1 level is up-regulated in PVR patients. • MALAT1 knockdown regulates RPE proliferation and migration.« less

  13. Dopaminergic Modulation of Risky Decision-Making

    PubMed Central

    Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry

    2012-01-01

    Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407

  14. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping.

    PubMed

    Haferlach, C; Dicker, F; Schnittger, S; Kern, W; Haferlach, T

    2007-12-01

    In CLL data from chromosome banding analysis (CBA) have been scarce due to the low proliferative activity of CLL cells in vitro. We improved the cultivation technique using an immunostimulatory CpG-oligonucleotide DSP30 and IL-2. A total of 506 CLL samples were analysed with CBA and interphase FISH using probes for the detection of trisomy 12, IgH rearrangements and deletions of 6q21, 11q22.3 (ATM), 13q14 (D13S25 and D13S319) and 17p13 (TP53). A total of 500 of 506 (98.8%) cases were successfully stimulated for metaphase generation and are subject to this study. Aberrations were detected in 415 of 500 (83.0%) cases by CBA and in 392 of 500 (78.4%) cases by FISH. CBA detected 832 abnormalities and FISH only 502. Therefore, CBA offers important information in addition to FISH. (1) CLL is characterized mainly by genomic imbalances and reciprocal translocations are rare. (2) A subgroup with complex aberrant karyotype (16.4%) is identified which is associated with an unmutated IgV(H) status and CD38 expression (P=0.034 and 0.02, respectively). (3) Additional abnormalities are detectable providing new biological insights into different CLL subclasses revealing a much more heterogeneous pattern of cytogenetic abnormalities as assumed so far based on FISH data only. Therefore, prospective clinical trials should evaluate the prognostic impact of newly available CBA data.

  15. Congenital Proprotein Convertase 1/3 Deficiency Causes Malabsorptive Diarrhea and other Endocrinopathies in a Pediatric Cohort

    PubMed Central

    Martín, Martín G.; Lindberg, Iris; Solorzano-Vargas, R. Sergio; Wang, Jiafang; Avitzur, Yaron; Bandsma, Robert; Sokollik, Christiane; Lawrence, Sarah; Pickett, Lindsay A.; Chen, Zijun; Egritas, Odul; Dalgic, Buket; Albornoz, Valeria; de Ridder, Lissy; Hulst, Jessie; Gok, Faysal; Aydoğan, Ayşen; Al-Hussaini, Abdulrahman; Gok, Deniz Engin; Yourshaw, Michael; Wu, S. Vincent; Cortina, Galen; Stanford, Sara; Georgia, Senta

    2013-01-01

    Background & Aims Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal recessive disorder caused by rare mutations in the PCSK1 gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 have also been associated with obesity in heterozygotes in several population studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. Methods We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. Results We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. Conclusion In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in processing of one or more enteric hormones that are required for nutrient absorption. PMID:23562752

  16. Dopaminergic circuitry and risk/reward decision making: implications for schizophrenia.

    PubMed

    Stopper, Colin M; Floresco, Stan B

    2015-01-01

    Abnormal reinforcement learning and representations of reward value are present in schizophrenia, and these impairments can manifest as deficits in risk/reward decision making. These abnormalities may be due in part to dopaminergic dysfunction within cortico-limbic-striatal circuitry. Evidence from studies with laboratory animal have revealed that normal DA activity within different nodes of these circuits is critical for mediating dissociable processes that can refine decision biases. Moreover, both phasic and tonic dopamine transmission appear to play separate yet complementary roles in these processes. Tonic dopamine release within the prefrontal cortex and nucleus accumbens, serves as a "running rate-meter" of reward and reflects contextual information such as reward uncertainty and overt choice behavior. On the other hand, manipulations of outcome-related phasic dopamine bursts and dips suggest these signals provide rapid feedback to allow for quick adjustments in choice as reward contingencies change. The lateral habenula is a key input to the DA system that phasic signals is necessary for expressing subjective decision biases; as suppression of activity within this nucleus leads to catastrophic impairments in decision making and random patterns of choice behavior. As schizophrenia is characterized by impairments in using positive and negative feedback to appropriately guide decision making, these findings suggest that these deficits in these processes may be mediated, at least in part, by abnormalities in both tonic and phasic dopamine transmission. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Walking deficits and centrophobism in an α-synuclein fly model of Parkinson's disease.

    PubMed

    Chen, A Y; Wilburn, P; Hao, X; Tully, T

    2014-11-01

    Parkinson's disease (PD) is a movement neurodegenerative disorder, characterized by bradykinesia, rigidity and tremor, constituting difficulties in walking and abnormal gait. Previous research shows that Drosophila expressing human α-synuclein A30P (A30P) develop deficits in geotaxis climbing; however, geotaxis climbing is a different movement modality from walking. Whether A30P flies would exhibit abnormal walking in a horizontal plane, a measure more relevant to PD, is not known. In this study, we characterized A30P fly walking using a high-speed camera and an automatic behavior tracking system. We found that old but not young A30P flies exhibited walking abnormalities, specifically decreased total moving distance, distance per movement, velocity, angular velocity and others, compared with old control flies. Those features match the definition of bradykinesia. Multivariate analysis further suggested a synergistic effect of aging and A30P, resulting in a distinct pattern of walking deficits, as seen in aged A30P flies. Psychiatric problems are common in PD patients with anxiety affecting 40-69% of patients. Central avoidance is one assessment of anxiety in various animal models. We found old but not young A30P flies exhibited increased centrophobism, suggesting possible elevated anxiety. Here, we report the first quantitative measures of walking qualities in a PD fly model and propose an alternative behavior paradigm for evaluating motor functions apart from climbing assay. © 2014 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  18. Developmental effects of mercury on Etheostoma caeruleum and E. spectabile: Predictable biomarkers of stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, J.R.

    1995-12-31

    Etheostoma caeruleum and E. spectabile are sympatric teleostean species of the Family Percidae. The ova diameters and incubation times are different: E. caeruleum (1.9mm and 12-d), E. spectabile (1.2mm and 8-d). For both species, cleavage stage (4--8 cell), mid-blastula, mid-neurula, and early-eye stage embryos were exposed to + {minus}1 a 24-h static-renewal test of 0, 10, 20, 40, 60, 80, 100 {micro}gHg {sup ++}L{sup {minus}1} to assess the effects of stage-specific initial mercury exposure on the embryo-larval responses. In addition, cleavage stage embryos were exposed to a 1-d, 2-d, and 4-d static-renewal toxicity test to determine the influence that exposuremore » duration to mercury has on embryolarval responses. Five replicates of 10 embryos each were incubated at 18 C for each concentration and exposure variation. Embryos were allowed to develop until all had hatched or died. Four embryonic responses were assessed for each species and exposure protocol: 96-h LC50, AB50, SH50 and VH50. The typical nonstressor specific terata were noted for each species with an increase in percent of embryos expressing abnormal developmental patterns with increase mercury concentrations and severity of exposure. These included dwarfism, cephalic complications, ophthalmic abnormalities, cardiovascular abnormalities, various edema, and haemorrhagia. Hatching success and viability of hatch were likewise reduced with increasing severity of exposure and mercury concentration. Previously undetected terata that were observed in the first hatch included scoliosis, lordosis, kyphosis, synarthrodic jaws, and grossly enlarged yolk sacs.« less

  19. Patterns in the knee flexion-extension moment profile during stair ascent and descent in patients with total knee arthroplasty.

    PubMed

    McClelland, Jodie A; Feller, Julian A; Menz, Hylton B; Webster, Kate E

    2014-06-03

    The aim of this study was to investigate the prevalence of abnormal knee biomechanical patterns in 40 patients with a modern TKA prosthesis, compared to 40 matched control participants when ascending and descending stairs. Fewer patients were able to ascend (65%) or descend stairs (53%) unassisted than controls (83%). Of the participants who could ascend and descend, cluster analysis classified most patients (up to 77%) as demonstrating a similar knee moment pattern as all controls. A small subgroup of patients who completed the tasks did so with distinctly abnormal biomechanics compared to other patients and controls. These findings suggest that recovery of normal stair climbing is possible. However, rehabilitation might be more effective if it were tailored to account for these differences between patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani

    2017-03-01

    Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.

Top