Sample records for abnormal fluid pressures

  1. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  2. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  3. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  4. Pore fluid pressure and the seismic cycle

    NASA Astrophysics Data System (ADS)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes

  5. Extreme pressure fluid sample transfer pump

    DOEpatents

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  6. Constant-Differential-Pressure Two-Fluid Accumulator

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin; Dalton, Luke T.

    2010-01-01

    A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.

  7. Abnormal pressure study in the Malay and Penyu Basins: A regional understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kader, M.S.; Leslie, W.

    1994-07-01

    A majority of wells drilled in the Malay and Penyu basins were terminated due to abnormal pressure. Blowouts and the subsequent loss of technical data have always been a concern during drilling operations. This study employs data from 94 exploratory wells spread throughout the Malay and Penyu basins. The postdrill abnormal pressure predictive method used is pressure vs. depth plots of data obtained from Repeat Formation tester (RFT) readings. The study results indicate that abnormal pressure occurs in a progressively older stratigraphic unit toward the basin margins. The margins of the Malay and the entire Penyu basins tend to bemore » normally pressured. The onset of abnormal pressure appears to be abrupt in the northern portion and more gradual in the southern part of the Malay Basin. Abnormal pressure in the Malay Basin is found to be neither depth dependent nor age related. Many factors can cause the abnormal formation pressures. In some areas, a combination of factors prevails. Rapid deposition of the middle to late Miocene siliciclastic sediments appears to be a dominant cause particularly in the center of the Malay Basin. A low sand:shale ratio coupled with a high geothermal gradient is also found to be a local cause near the axis of the basin. This phenomenon is crucial to the understanding of hydrocarbon migration and will enable the planning of safe and efficient drilling campaigns.« less

  8. Combined Effect of Fluid and Pressure on Middle Ear Function

    PubMed Central

    Dai, Chenkai; Wood, Mark W.; Gan, Rong Z.

    2008-01-01

    In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid-pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. PMID:18162348

  9. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  10. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  11. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  12. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  13. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow

  14. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure

  15. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used to...

  16. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  17. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  18. Control of intrauterine fluid pressure during operative hysteroscopy.

    PubMed

    Shirk, G J; Gimpelson, R J

    1994-05-01

    To evaluate the safety of a commonly used piston pump that controls the infusion pressure of low-viscosity fluids in a continuous-flow hysteroscopic system during operative hysteroscopy. Consecutive patients requiring operative hysteroscopy. Three hospital facilities in the Midwest. Sequential sample of 250 women who underwent operative hysteroscopy. Endometrial ablations, resection of submucosal or pedunculated uterine leiomyomata with or without endometrial ablation, polyp resections, metroplasty, and lysis of synechiae. The most serious complication of operative hysteroscopy is fluid overload due to intravasation into the patient's vascular system. Low-viscosity fluids were infused by the Zimmer Controlled Distention Irrigation System. The instrument uses a closed-feedback loop to monitor cavity pressure and automatically regulates the flow to maintain the set point pressure. It is designed to operate in a pressure range of 0 to 80 mm Hg and at flows in excess of 450 ml/minute. In 250 operative hysteroscopies no fluid complications occurred when intrauterine pressure was maintained below 80 mm Hg. No clinically significant differences in intravasation were seen in any type of operative hysteroscopy. This controlled mechanical pump system with exact intrauterine pressure measurement reduced many technical difficulties associated with low-viscosity media, and created a safe environment for the media's use in operative hysteroscopy.

  19. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds or...

  20. Osmotic generation of 'anomalous' fluid pressures in geological environments

    USGS Publications Warehouse

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  1. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    NASA Astrophysics Data System (ADS)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (<<1 Myr) [1-2]. HP/LT metamorphism must be associated with processes that allow large volumes of rock to remain unaffected over long periods of time, but then suddenly undergo localized metamorphism. Existing models for HP/LT metamorphism have focussed on the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development

  2. [Arterial pressure curve and fluid status].

    PubMed

    Pestel, G; Fukui, K

    2009-04-01

    Fluid optimization is a major contributor to improved outcome in patients. Unfortunately, anesthesiologists are often in doubt whether an additional fluid bolus will improve the hemodynamics of the patient or not as excess fluid may even jeopardize the condition. This article discusses physiological concepts of liberal versus restrictive fluid management followed by a discussion on the respective capabilities of various monitors to predict fluid responsiveness. The parameter difference in pulse pressure (dPP), derived from heart-lung interaction in mechanically ventilated patients is discussed in detail. The dPP cutoff value of 13% to predict fluid responsiveness is presented together with several assessment techniques of dPP. Finally, confounding variables on dPP measurements, such as ventilation parameters, pneumoperitoneum and use of norepinephrine are also mentioned.

  3. Fluid injection device for high-pressure systems

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Ward, J. B.

    1970-01-01

    Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.

  4. Computational fluid dynamics simulation of pressure and velocity distribution inside Meniere’s diseased vestibular system

    NASA Astrophysics Data System (ADS)

    Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.

    2017-09-01

    Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.

  5. A fault constitutive relation accounting for thermal pressurization of pore fluid

    USGS Publications Warehouse

    Andrews, D.J.

    2002-01-01

    The heat generated in a slip zone during an earthquake can raise fluid pressure and thereby reduce frictional resistance to slip. The amount of fluid pressure rise depends on the associated fluid flow. The heat generated at a given time produces fluid pressure that decreases inversely with the square root of hydraulic diffusivity times the elapsed time. If the slip velocity function is crack-like, there is a prompt fluid pressure rise at the onset of slip, followed by a slower increase. The stress drop associated with the prompt fluid pressure rise increases with rupture propagation distance. The threshold propagation distance at which thermally induced stress drop starts to dominate over frictionally induced stress drop is proportional to hydraulic diffusivity. If hydraulic diffusivity is 0.02 m2/s, estimated from borehole samples of fault zone material, the threshold propagation distance is 300 m. The stress wave in an earthquake will induce an unknown amount of dilatancy and will increase hydraulic diffusivity, both of which will lessen the fluid pressure effect. Nevertheless, if hydraulic diffusivity is no more than two orders of magnitude larger than the laboratory value, then stress drop is complete in large earthquakes.

  6. One-dimensional pore pressure diffusion of different grain-fluid mixtures

    NASA Astrophysics Data System (ADS)

    von der Thannen, Magdalena; Kaitna, Roland

    2015-04-01

    During the release and the flow of fully saturated debris, non-hydrostatic fluid pressure can build up and probably dissipate during the event. This excess fluid pressure has a strong influence on the flow and deposition behaviour of debris flows. Therefore, we investigate the influence of mixture composition on the dissipation of non-hydrostatic fluid pressures. For this we use a cylindrical pipe of acrylic glass with installed pore water pressure sensors in different heights and measure the evolution of the pore water pressure over time. Several mixtures with variable content of fine sediment (silt and clay) and variable content of coarse sediment (with fixed relative fractions of grains between 2 and 32 mm) are tested. For the fines two types of clay (smectite and kaolinite) and loam (Stoober Lehm) are used. The analysis is based on the one-dimensional consolidation theory which uses a diffusion coefficient D to model the decay of excess fluid pressure over time. Starting from artificially induced super-hydrostatic fluid pressures, we find dissipation coefficients ranging from 10-5 m²/s for liquid mixtures to 10-8 m²/s for viscous mixtures. The results for kaolinite and smectite are quite similar. For our limited number of mixtures the effect of fines content is more pronounced than the effect of different amounts of coarse particles.

  7. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    PubMed

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP

  8. Second-trimester IL-15 and IL-18 levels in the amniotic fluid of fetuses with normal karyotypes and with chromosome abnormalities.

    PubMed

    Klimkiewicz-Blok, Dominika; Florjański, Jerzy; Zalewski, Jerzy; Blok, Radosław

    2012-01-01

    Little is known about the behavior of interleukin 15 (IL-15) and 18 (IL-18) in the amniotic fluid in the second trimester of gestations complicated by chromosomal defects in the fetus. Likewise, it has not yet been established whether a fetus with chromosome abnormalities creates its immunity mechanisms in the same way as a fetus with a normal karyotype. The aim of this work was to assess the concentration of IL-15 and IL-18 in the amniotic fluid in the second trimester of gestation in fetuses with normal karyotypes and with chromosome abnormalities. The material consisted of 51 samples of amniotic fluid obtained from genetic amniocenteses carried out between the 15th and the 19th weeks of gestation. On the basis of cytogenetic screening, two groups were singled out: Group I--45 fetuses with normal karyotypes, and Group II--6 fetuses with abnormal karyotypes. The concentrations of IL-15 and IL-18 in the amniotic fluid were assessed with ready-made assays and analyzed, and the results from both groups were compared. The differences between the IL-15 levels in the amniotic fluid from Groups I and II proved to be statistically insignificant (p = 0.054). However, the average IL-18 levels in the amniotic fluid of the fetuses with normal karyotypes were significantly higher than in the amniotic fluid of the fetuses with chromosome abnormalities (p = 0.032). Some defense mechanisms in the second trimester of gestation in fetuses with chromosome abnormalities may develop in a different way than in fetuses with normal karyotypes.

  9. Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.

    2018-01-01

    The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.

  10. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  11. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    NASA Astrophysics Data System (ADS)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  12. Episodic fluid expulsion and fluid pathways during high-pressure dehydration of serpentinite

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, J.; Garrido, C. J.; López Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M.; Tommasi, A.; Marchesi, C.

    2011-12-01

    Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. The study of metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Chl-harzburgites show two textures interspersed in decameter-sized domains: granoblastic and spinifex-like. Both were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C)). We ascribe the change in texture to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture

  13. Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?

    PubMed

    Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S

    2018-01-01

    To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.

  14. The influence of low and high pressure levels during negative-pressure wound therapy on wound contraction and fluid evacuation.

    PubMed

    Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin

    2011-02-01

    Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.

  15. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have

  16. Pressure-Responsive, Surfactant-Free CO2-Based Nanostructured Fluids

    PubMed Central

    2017-01-01

    Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. “Water-rich” nanodomains embedded into a “water-depleted” matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the “water-rich” nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering. PMID:28846386

  17. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  18. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas

    2012-07-01

    We analyzed 118 well-constrained focal mechanisms to estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland. This technique, termed focal mechanism tomography (FMT), uses the orientations of slip planes within the prevailing regional stress field as an indicator of the fluid pressure along the plane at the time of slip. The maximum value and temporal change of excess pore fluid pressures are consistent with the known history of the wellhead pressure applied at the borehole. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, which are consistent with the spatiotemporal evolution of the induced microseismicity. Our results demonstrate that FMT is a robust approach, being validated at the meso-scale of the Basel stimulation experiment. We found average earthquake triggering excess pore fluid pressures of about 10 MPa above hydrostatic. Overpressured fluids induced many small events (M < 3) along faults unfavorably oriented relative to the tectonic stress pattern, while the larger events tended to occur along optimally oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, and shows that the system is highly permeable along flow paths that allow fast pressure diffusion to the boundaries of the stimulated region.

  19. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study.

    PubMed

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I

    2013-04-01

    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  20. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  1. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  2. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Miller, S. A.; Deichmann, N.

    2011-12-01

    We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.

  3. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  4. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  5. Limited evidence of abnormal intra-colonic pressure profiles in diverticular disease - a systematic review.

    PubMed

    Jaung, R; Robertson, J; O'Grady, G; Milne, T; Rowbotham, D; Bissett, I P

    2017-06-01

    Abnormal colonic pressure profiles and high intraluminal pressures are postulated to contribute to the formation of sigmoid colon diverticulosis and the pathophysiology of diverticular disease. This study aimed to review evidence for abnormal colonic pressure profiles in diverticulosis. All published studies investigating colonic pressure in patients with diverticulosis were searched in three databases (Medline, Embase, Scopus). No language restrictions were applied. Any manometry studies in which patients with diverticulosis were compared with controls were included. The Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control studies was used as a measure of risk of bias. A cut-off of five or more points on the NOS (fair quality in terms of risk of bias) was chosen for inclusion in the meta-analysis. Ten studies (published 1962-2005) met the inclusion criteria. The studies followed a wide variety of protocols and all used low-resolution manometry (sensor spacing range 7.5-15 cm). Six studies compared intra-sigmoid pressure, with five of six showing higher pressure in diverticulosis vs controls, but only two reached statistical significance. A meta-analysis was not performed as only two studies were above the cut-off and these did not have comparable outcomes. This systematic review of manometry data shows that evidence for abnormal pressure in the sigmoid colon in patients with diverticulosis is weak. Existing studies utilized inconsistent methodology, showed heterogeneous results and are of limited quality. Higher quality studies using modern manometric techniques and standardized reporting methods are needed to clarify the role of colonic pressure in diverticulosis. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  6. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    PubMed Central

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  7. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.

    PubMed

    Lin, Xiaoyou; Seet, Boon-Chong

    2017-04-01

    This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.

  8. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers.

    PubMed

    van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter

    2017-12-27

    Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Amniotic fluid-AFP in Down syndrome and other chromosome abnormalities.

    PubMed

    Crandall, B F; Matsumoto, M; Perdue, S

    1988-05-01

    80.2 Per cent of 111 Down syndrome pregnancies had anmiotic fluid (AF) alpha fetoprotein (AFP) levels on or below the median and 10.8 per cent at or below 0.5 MoM compared with 41.9 and 1.4 per cent of controls. These differences were even more striking when the gestational age was less than 18 weeks compared with greater than or equal to 18 weeks. No such association was seen for other chromosome abnormalities including trisomy 18,45,X and mosaics, 47,XXY,47,XXX, and other structural abnormalities and triploidy, even when high levels due to defects such as omphalocele and cystic hygroma were excluded. All cases of trisomy 13 and 80 per cent with 47,XYY had AF-AFP levels above the median. Selection of cases for karyotyping by a low level of AF-AFP would clearly fail to detect aneuploidies other than Down syndrome and is not recommended. A possible weak association between low maternal serum (MS) and AF-AFPs in Down syndrome was most evident at less than 18 weeks, suggesting that MS screening between 16 and 18 weeks may be the most informative time.

  10. Novel cavitation fluid jet polishing process based on negative pressure effects.

    PubMed

    Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua

    2018-04-01

    Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon.

    PubMed

    Hiltebrand, L B; Pestel, G; Hager, H; Ratnaraj, J; Sigurdsson, G H; Kurz, A

    2007-11-01

    Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.

  12. Elevated cerebrospinal fluid pressure in patients with Alzheimer's disease

    PubMed Central

    Silverberg, Gerald; Mayo, Martha; Saul, Thomas; Fellmann, Jere; McGuire, Dawn

    2006-01-01

    Background Abnormalities in cerebrospinal fluid (CSF) production and turnover, seen in normal pressure hydrocephalus (NPH) and in Alzheimer's disease (AD), may be an important cause of amyloid retention in the brain and may relate the two diseases. There is a high incidence of AD pathology in patients being shunted for NPH, the AD-NPH syndrome. We now report elevated CSF pressure (CSFP), consistent with very early hydrocephalus, in a subset of AD patients enrolled in a clinical trial of chronic low-flow CSF drainage. Our objective was to determine the frequency of elevated CSFP in subjects meeting National Institutes of Neurological and Communicative Diseases and Stroke – Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for AD, excluding those with signs of concomitant NPH. Methods AD subjects by NINCDS-ADRDA criteria (n = 222), were screened by history, neurological examination, and radiographic imaging to exclude those with clinical or radiographic signs of NPH. As part of this exclusion process, opening CSFP was measured supine under general anesthesia during device implantation surgery at a controlled pCO2 of 40 Torr (40 mmHg). Results Of the 222 AD subjects 181 had pressure measurements recorded. Seven subjects (3.9%) enrolled in the study had CSFP of 220 mmH20 or greater, mean 249 ± 20 mmH20 which was significantly higher than 103 ± 47 mmH2O for the AD-only group. AD-NPH patients were significantly younger and significantly less demented on the Mattis Dementia Rating Scale (MDRS). Conclusion Of the AD subjects who were carefully screened to exclude those with clinical NPH, 4% had elevated CSFP. These subjects were presumed to have the AD-NPH syndrome and were withdrawn from the remainder of the study. PMID:16737542

  13. Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G

    NASA Technical Reports Server (NTRS)

    Parker, D. E.

    1977-01-01

    This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.

  14. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  15. Deterministic estimate of hypocentral pore fluid pressure of the M5.8 Pawnee, Oklahoma earthquake: Lower pre-injection pressure requires lower resultant pressure for slip

    NASA Astrophysics Data System (ADS)

    Levandowski, W. B.; Walsh, F. R. R.; Yeck, W.

    2016-12-01

    Quantifying the increase in pore-fluid pressure necessary to cause slip on specific fault planes can provide actionable information for stakeholders to potentially mitigate hazard. Although the M5.8 Pawnee earthquake occurred on a previously unmapped fault, we can retrospectively estimate the pore-pressure perturbation responsible for this event. We first estimate the normalized local stress tensor by inverting focal mechanisms surrounding the Pawnee Fault. Faults are generally well oriented for slip, with instabilities averaging 96% of maximum. Next, with an estimate of the weight of local overburden we solve for the pore pressure needed at the hypocenters. Specific to the Pawnee fault, we find that hypocentral pressure 43-104% of hydrostatic (accounting for uncertainties in all relevant parameters) would have been sufficient to cause slip. The dominant source of uncertainty is the pressure on the fault prior to fluid injection. Importantly, we find that lower pre-injection pressure requires lower resultant pressure to cause slip, decreasing from a regional average of 30% above hydrostatic pressure if the hypocenters begin at hydrostatic pressure to 6% above hydrostatic pressure with no pre-injection fluid. This finding suggests that underpressured regions such as northern Oklahoma are predisposed to injection-induced earthquakes. Although retrospective and forensic, similar analyses of other potentially induced events and comparisons to natural earthquakes will provide insight into the relative importance of fault orientation, the magnitude of the local stress field, and fluid-pressure migration in intraplate seismicity.

  16. An earthquake instability model based on faults containing high fluid-pressure compartments

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present

  17. Clinically severe Epstein-Barr virus encephalitis with mild cerebrospinal fluid abnormalities in an immunocompetent adolescent: a case report.

    PubMed

    Engelmann, Ilka; Nasser, Hala; Belmiloudi, Soufien; Le Guern, Rémi; Dewilde, Anny; Vallée, Louis; Hober, Didier

    2013-06-01

    A 15-year-old boy developed Epstein-Barr virus (EBV) encephalitis, a rare complication of infectious mononucleosis. The severe clinical picture and the marked neuroimaging changes were in contrast with mild cerebrospinal fluid abnormalities: leukocyte count was normal and protein level was only slightly elevated. EBV DNA was detected in cerebrospinal fluid by polymerase chain reaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  19. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  20. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude didmore » not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.« less

  1. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  2. Effects of irregular cerebrospinal fluid production rate in human brain ventricular system

    NASA Astrophysics Data System (ADS)

    Hadzri, Edi Azali; Shamsudin, Amir Hamzah; Osman, Kahar; Abdul Kadir, Mohammed Rafiq; Aziz, Azian Abd

    2012-06-01

    Hydrocephalus is an abnormal accumulation of fluid in the ventricles and cavities in the brain. It occurs when the cerebrospinal fluid (CSF) flow or absorption is blocked or when excessive CSF is secreted. The excessive accumulation of CSF results in an abnormal widening of the ventricles. This widening creates potentially harmful pressure on the tissues of the brain. In this study, flow analysis of CSF was conducted on a three-dimensional model of the third ventricle and aqueduct of Sylvius, derived from MRI scans. CSF was modeled as Newtonian Fluid and its flow through the region of interest (ROI) was done using EFD. Lab software. Different steady flow rates through the Foramen of Monro, classified by normal and hydrocephalus cases, were modeled to investigate its effects. The results show that, for normal and hydrocephalus cases, the pressure drop of CSF flow across the third ventricle was observed to be linearly proportionally to the production rate increment. In conclusion, flow rates that cause pressure drop of 5 Pa was found to be the threshold for the initial sign of hydrocephalus.

  3. In-line pressure within a HOTLINE® Fluid Warmer, under various flow conditions.

    PubMed

    Higashi, Midoriko; Yamaura, Ken; Matsubara, Yukie; Fukudome, Takuya; Hoka, Sumio

    2015-04-01

    Roller pump infusion devices are widely used for rapid infusion, and may be combined with separate warming devices. There may be instances however, where the pressures generated by the roller pump may not be compatible with the warming device. We assessed a commonly used roller pump in combination with a HOTLINE® Fluid Warmer, and found that it could generate pressures exceeding the HOTLINE® manufacturers specifications. This was of concern because the HOTLINE® manufacturer guideline states that not for use with pressure devices generating over 300 mmHg. Pressure greater than 300 mmHg may compromise the integrity of the HOTLINE® Fluid Warming Set. The aim of this study was to compare in-line pressure within a HOTLINE® Fluid Warmer at different infusion rates of a roller pump using various sizes of intravenous cannulae. The rapid infusion system comprised a 500 mL-normal saline bag, roller pump type infusion device, HOTLINE® Fluid Warmer (blood and fluid warmer system), and six different sizes of intravenous cannulae. In-line pressure was measured proximal to the HOTLINE® (pre-warmer) and proximal to the cannula (post-warmer), at flow rate of 50-160 mL/min. The in-line pressures increased significantly with increasing flow rate. The pre-warmer pressures exceeded 300 mmHg when the flow rate was ≥120 mL/min with 20-gauge, 48 mm length cannula, 130 with 20-gauge, 25 mm cannula, and 160 mL/min with 18-gauge, 48 mm cannula. However, they were <300 mmHg at any flow rates with 18-gauge, 30 mm cannula and 16-gauge cannulae. The post-warmer pressures exceeded 300 mmHg at the flow rate of 140 mL/min with 20-gauge, 48 mm cannula, and 160 mL/min with 20-gauge, 25 mm cannula, while they were <300 mmHg at any flow rates with 18 and 16-gauge cannulae. The in-line pressure within a HOTLINE® could exceed 300 mmHg, depending on the flow rate and size and length of cannula. It is important to pay attention to the size and length of cannulae and flow rate to keep the maximum

  4. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  5. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  6. Adjustable steam producing flexible orifice independent of fluid pressure

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1992-01-01

    A self-adjusting choke for a fluids nozzle includes a membrane constructed of a single piece of flexible or elastic material. This flexible material is shaped to fit into the outlet of a nozzle. The body of the membrane has at least two flow channels, from one face to the other, which directs two streams of water to cross at the opening of the nozzle or at some point beyond. The elasticity and thickness of the membrane is selected to match the range of expected pressures and fluid velocities. The choke may have more than two flow channels, as long as they are aligned adjacent to one another and directed towards each other at the exit face. In a three orifice embodiment, one is directed upward, one is directed downward, and the one in the middle is directed forward. In this embodiment all three fluid streams intersect at some point past the nozzle opening. Under increased pressure the membrane will deform causing the orifices to realign in a more forward direction, causing the streams to intersect at a smaller angle. This reduces the force with which the separate streams impact each other, still allowing the separate streams to unify into a single stable spiralling stream in spite of the increased pressure.

  7. Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.

    1985-01-01

    The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.

  8. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure

    USGS Publications Warehouse

    Byerlee, J.

    1992-01-01

    Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.

  9. Witness of fluid-flow organization during high-pressure antigorite dehydration

    NASA Astrophysics Data System (ADS)

    López Sánchez-Vizcaíno, Vicente; Padrón-Navarta, José Alberto; Garrido, Carlos J.; Gómez-Pugnaire, María. Teresa

    2010-05-01

    The link between devolatilization reactions and fluid flow is crucial to unravel important geodynamic processes in subduction zones as deformation and element transfer is extremely controlled by the presence of water. At high confining pressure, significant fluid pressure gradients are expected in a reacting rock being dehydrated, because of its rather limited permeability [1]. Compactation-driven fluid flow seems to be an intrinsic mechanism occurring at devolatilization of viscolastic rocks. Nevertheless, and despite the important implications of this coupled deformation/fluid-migration mechanism for fluid transport, a conclusive confirmation of these processes by petrological and textural evidences in metamorphic terrains has been hampered by the scarcity of devolatilization fronts in the geological record. Evidences of high-pressure antigorite dehydration found at Cerro del Almirez (Betic Cordillera, Spain) [2] represent a noteworthy exception. Here, the transition between the hydrous protolith (antigorite serpentinite) and the prograde product assemblage (olivine + orthopyroxene + chlorite, chlorite harzburgite) is extremely well preserved and can be surveyed in detail. The maximum stability of the antigorite has been experimentally determined at ~680°C at 1.6-1.9 GPa [3]. Antigorite dehydration is accompanied by release of high amounts of high-pressure water-rich fluids (~ 9 wt.% fluid). Distinctive layers (up to 1 m thick) of transitional lithologies occur in between atg-serpentinite and chl-harburgite all along the devolatilization front, consisting of (1) chlorite-antigorite olivine-serpentinite, which gradually changes to (2) chlorite-antigorite-olivine-orthopyroxene serpentinite. These transitional lithologies are more massive and darker in color than atg-serpentinite and largely consist of coarse sized grains of antigorite and chlorite (250-500 μm). Antigorite in these assemblages is characterized by microstructural disorder features, which are

  10. Abnormal Eu behavior at formation of H2O- and Cl-bearing fluids during degassing of granite magmas

    NASA Astrophysics Data System (ADS)

    Lukanin, Oleg

    2010-05-01

    One of the important features of REE behavior in the process of decompression degassing of granite melts is the presence of europium anomalies in REE spectrum of forming fluid phase. Negative Eu anomaly in REE spectrum of fluids enriched by chlorine that were formed under high pressures at early stages of degassing relative to REE spectrum of granite melts may take place. Negative Eu anomaly in fluid is replaced by positive one with pressure decrease and decline of Cl concentration in fluid [1, 2]. Observable unique features of europium redistribution between fluid and melt find an explanation in such a fact that Eu in contrast to the other REE under oxidation-reduction conditions, being typical for magmatic process, is present in acidic silica-alumina melts in two valency forms Eu3+ and Eu2+ whereas the dominant form for the other REE in such a melts is (REE)3+ [3, 4]. From the analysis of melt-fluid exchange reactions with participation of two valency forms of europium Eu3+ and Eu2+ follows that the total distribution coefficient of Eu between fluid and melt D(Eu)f-m is equal as a first approximation to [5, 6]: D(Eu)f-m = a1α [C(Cl)f]3 + a2 (1 - α)[C(Cl)f]2, where C(Cl)f - the concentration of Cl in fluid, α = Eu3+/(Eu3+ + Eu2+), i.e. fraction of Eu3+ from the general amount of europium in the melt, and, a1anda2- constants that can be approximately estimated from empirical data upon Eu fluid/melt distribution. The equation given allows to estimate the influence of oxidizing condition of europium on sign and size of Eu anomaly, which is expressed by Eu/Eu# ratio, where Eu is real concentration of europium in fluid being in equilibrium with melt with constant Eu3+/(Eu3+ + Eu2+) ratio, and Eu# is possible "virtual" concentration of europium that could be in the same fluid provided that all europium as other REE as well were exclusively present in trivalent form. The sign and size of Eu anomaly in fluid depends upon Cl concentration in fluid and Eu3+/Eu2+ ratio in

  11. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Moreno, Marcos; Haberland, Christian; Oncken, Onno; Rietbrock, Andreas; Angiboust, Samuel; Heidbach, Oliver

    2014-04-01

    Constraints on the potential size and recurrence time of strong subduction-zone earthquakes come from the degree of locking between the down-going and overriding plates, in the period between large earthquakes. In many cases, this interseismic locking degree correlates with slip during large earthquakes or is attributed to variations in fluid content at the plate interface. Here we use geodetic and seismological data to explore the links between pore-fluid pressure and locking patterns at the subduction interface ruptured during the magnitude 8.8 Chile earthquake in 2010. High-resolution three-dimensional seismic tomography reveals variations in the ratio of seismic P- to S-wave velocities (Vp/Vs) along the length of the subduction-zone interface. High Vp/Vs domains, interpreted as zones of elevated pore-fluid pressure, correlate spatially with parts of the plate interface that are poorly locked and slip aseismically. In contrast, low Vp/Vs domains, interpreted as zones of lower pore-fluid pressure, correlate with locked parts of the plate interface, where unstable slip and earthquakes occur. Variations in pore-fluid pressure are caused by the subduction and dehydration of a hydrothermally altered oceanic fracture zone. We conclude that variations in pore-fluid pressure at the plate interface control the degree of interseismic locking and therefore the slip distribution of large earthquake ruptures.

  12. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  13. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Justin R; Rother, Gernot; Browning, Jim

    2012-01-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300 473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can bemore » used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.« less

  14. Effect of tilting on blood pressure and interstitial fluid pressures of bluefish and smooth dogfish.

    PubMed

    Ogilvy, C S; DuBois, A B

    1982-01-01

    Tolerance of the circulatory system of fish for gravitational stress has not been measured previously. We examined this in bluefish (Pomatomus saltatrix) and smooth dogfish (Mustelus canis) by placing them horizontally on a V-board in air while their gills were perfused with aerated seawater, then tilting them head up for 0.5 h, and finally returning them to horizontal. Meanwhile, we recorded the blood pressure, pulse pressure, and heart rate in the ventral aorta, and interstitial fluid pressure in the head and tail. All four bluefish tolerated a 30 degrees tilt or even a 60 degrees tilt with little change in blood pressure or interstitial pressure in the anterior and posterior regions. All recovered afterward. However, in the seven dogfish examined, the posterior interstitial fluid pressure increased from 2.8 +/- 1.0 cmH2O before tilting to 11.8 +/- 3.3 cmH2O toward the end of a 30 degrees tilt lasting 30 min. The blood pressure decreased as the pulse pressure approached zero, showing that circulatory insufficiency had developed due to insufficient venous return to the heart. Most of the dogfish died within a few hours after the experiment. These findings are in keeping with the conclusion that the vasculature of bluefish has more rigidity, less permeability, and perhaps more compensatory tone than that of smooth dogfish. We speculate that bluefish may have evolved their circulatory tolerance for gravity as a cross-adaptation to the stresses imposed on the circulation by forward acceleration and by regional differences of transcutaneous pressure occurring during fast carangiform swimming.

  15. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.

    PubMed

    Dabiri, Yaghoub; Li, LePing

    2015-06-01

    A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Association between abnormal nocturnal blood pressure profile and dementia in Parkinson's disease.

    PubMed

    Tanaka, Ryota; Shimo, Yasushi; Yamashiro, Kazuo; Ogawa, Takashi; Nishioka, Kenya; Oyama, Genko; Umemura, Atsushi; Hattori, Nobutaka

    2018-01-01

    Circadian blood pressure alterations are frequently observed in Parkinson's disease, but the association between these changes and dementia in the condition remains unclear. Here, we assess the relationship between abnormal nocturnal blood pressure profiles and dementia in Parkinson's disease. We enrolled 137 patients with Parkinson's disease, who underwent 24 h ambulatory blood pressure monitoring, following cognitive and clinical assessment. Twenty-seven patients (19.7%) were diagnosed with dementia in this cohort. We observed significant associations of dementia with age, male gender, Hoehn-Yahr (H-Y) stage, diabetes mellitus, history of stroke, presence of cerebrovascular lesions on MRI, and orthostatic hypotension. Univariate logistic regression analysis showed that among the patterns of nocturnal blood pressure profiles, the riser pattern was significantly associated with dementia (OR 11.6, 95%CI: 2.14-215.0, P < 0.01), and this trend was observed after adjusting for all confounding factors except orthostatic hypotension (OR 19.2, 95%CI: 1.12-1960.3, P = 0.04). However, coexistence of a riser pattern and orthostatic hypotension was related to a higher prevalence of dementia (45.2%) than was a riser pattern alone (9.5%). Furthermore, coexistence of a riser pattern and orthostatic hypotension was significantly more associated with dementia than was a riser pattern alone, even after adjusting for confounders (OR 1625.1, 95%CI: 21.9-1343909.5, P < 0.01). Our results suggest a relationship between a riser pattern coexisting with orthostatic hypotension and dementia in Parkinson's disease. Further prospective studies are warranted to investigate whether abnormal nocturnal blood pressure profiles predict dementia in Parkinson's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  18. Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Scuderi, M. M.; Marone, C.

    2017-12-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  19. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate

    NASA Astrophysics Data System (ADS)

    Aplin, Andrew C.; Larter, Steve R.; Bigge, M. Ashley; MacLeod, Gordon; Swarbrick, Richard E.; Grunberger, Daniel

    2000-11-01

    We present two examples of how fluid inclusion data can be used to determine geologic pressure histories and to quantify the compositional evolution of petroleum in oil reservoirs. Volumetric liquid: vapor ratios generated with a confocal laser scanning microscope are used along with pressure-vapor-temperature (P-V-T) modeling software to estimate the composition, P-T phase envelope, and isochore of single petroleum inclusions in the North Sea's Judy and Alwyn fields. In both cases, the gas condensates currently in the reservoirs formed by the emplacement of gas into preexisting oil accumulations. Pressure histories of individual units in each field are also revealed, providing the kind of data needed to determine the permeability and fluid flow histories of sedimentary basins.

  20. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  1. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  2. Theoretical Insights for Practical Handling of Pressurized Fluids

    ERIC Educational Resources Information Center

    Aranda, Alfonso; Rodriguez, Maria del Prado

    2006-01-01

    The practical scenarios discussed in a chemistry or chemical engineering course that use solid or liquid reactants are presented. Important ideas to be considered when handling pressurized fluids are provided and three typical examples are described to enable students develop secondary skills such as the selective search of data, identification of…

  3. Asymmetric fluid criticality. I. Scaling with pressure mixing.

    PubMed

    Kim, Young C; Fisher, Michael E; Orkoulas, G

    2003-06-01

    The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed within a general "complete" scaling theory incorporating pressure mixing in the nonlinear scaling fields as well as corrections to scaling. This theory allows for a Yang-Yang anomaly in which mu(")(sigma)(T), the second temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when T-->T(c); it also generates a leading singular term, /t/(2beta), in the coexistence curve diameter, where t[triple bond](T-T(c))/T(c). The behavior of various special loci, such as the critical isochore, the critical isotherm, the k-inflection loci, on which chi((k))[triple bond]chi(rho,T)/rho(k) (with chi=rho(2)k(B)TK(T)) and C((k))(V)[triple bond]C(V)(rho,T)/rho(k) are maximal at fixed T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular, nonuniversal values of k specify loci that approach the critical density most rapidly and reflect the pressure-mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte. For comparison, a discussion of the classical (or Landau) theory is presented briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals fluid.

  4. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOEpatents

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  5. Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Mavko, G.

    2006-12-01

    A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize

  6. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  7. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  8. Tissue fluid pressures - From basic research tools to clinical applications

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Akeson, Wayne H.; Mubarak, Scott J.; Owen, Charles A.; Gershuni, David H.

    1989-01-01

    This paper describes clinical applications of two basic research tools developed and refined in the past 20 years: the wick catheter (for measuring tissue fluid pressure) and the colloid osmometer (for measuring osmotic pressure). Applications of the osmometer include estimations of the reduced osmotic pressure of sickle-cell hemoglobin with deoxygenation, and of reduced swelling pressure of human nucleus pulposus with hydration or upon action of certain enzymes. Clinical uses of the wick-catheter technique include an improvement of diagnosis and treatment of acute and chronic compartment syndromes, the elucidation of the tissue pressure thresholds for neuromuscular dysfunction, and the development of a better tourniquet for orthopedics.

  9. Low-g fluid mixing - Further results from the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.

    1993-01-01

    The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.

  10. Simulations of the origin of fluid pressure, fracture gen­ eration, and the movement of fluids in the Uinta Basin, Utah

    USGS Publications Warehouse

    Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.

    1994-01-01

    The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.

  11. High pressure stopped-flow apparatus for the rapid mixing and subsequent study of two fluids under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Karan, Daniel M.; Macey, Robert I.

    1980-08-01

    A stopped-flow apparatus is described for the rapid mixing and subsequent study of two dissimilar fluids under pressures up to 1200 bar. The device consists of two identical pressure chambers which contain the two fluids, a third pressure chamber which contains gas to maintain the pressure in the system, an optical port for photometric observation, and various connections. The device has been used to measure reaction times on the order of a hundred milliseconds to tens of seconds, using a maximum of 2 ml of each reagent per experimental determination. The dead time is found to be 5-25 ms with minium average flow velocities of 2.0 m/s. The construction and operation of the device are described and examples of water transport data in red blood cells and the bromophenolblue indicated chemical reaction of NaHCO3 and HCl under pressure are presented.

  12. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    NASA Astrophysics Data System (ADS)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  13. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea.

    PubMed

    Clement, Colin I; Parker, Douglas G A; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics.

  14. Fast fluid-flow events within a subduction-related vein system in oceanic eclogite: implications for pore fluid pressure at the plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2017-04-01

    A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had

  15. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fluid pressure and shear zone development over the locked to slow slip region in Cascadia.

    PubMed

    Audet, Pascal; Schaeffer, Andrew J

    2018-03-01

    At subduction zones, the deep seismogenic transition from a frictionally locked to steady sliding interface is thought to primarily reflect changes in rheology and fluid pressure and is generally located offshore. The development of fluid pressures within a seismic low-velocity layer (LVL) remains poorly constrained due to the scarcity of dense, continuous onshore-offshore broadband seismic arrays. We image the subducting Juan de Fuca oceanic plate in northern Cascadia using onshore-offshore teleseismic data and find that the signature of the LVL does not extend into the locked zone. Thickening of the LVL down dip where viscous creep dominates suggests that it represents the development of an increasingly thick and fluid-rich shear zone, enabled by fluid production in subducting oceanic crust. Further down dip, episodic tremor, and slip events occur in a region inferred to have locally increased fluid pressures, in agreement with electrical resistivity structure and numerical models of fault slip.

  17. Fluid pressure and shear zone development over the locked to slow slip region in Cascadia

    PubMed Central

    Audet, Pascal; Schaeffer, Andrew J.

    2018-01-01

    At subduction zones, the deep seismogenic transition from a frictionally locked to steady sliding interface is thought to primarily reflect changes in rheology and fluid pressure and is generally located offshore. The development of fluid pressures within a seismic low-velocity layer (LVL) remains poorly constrained due to the scarcity of dense, continuous onshore-offshore broadband seismic arrays. We image the subducting Juan de Fuca oceanic plate in northern Cascadia using onshore-offshore teleseismic data and find that the signature of the LVL does not extend into the locked zone. Thickening of the LVL down dip where viscous creep dominates suggests that it represents the development of an increasingly thick and fluid-rich shear zone, enabled by fluid production in subducting oceanic crust. Further down dip, episodic tremor, and slip events occur in a region inferred to have locally increased fluid pressures, in agreement with electrical resistivity structure and numerical models of fault slip. PMID:29536046

  18. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    PubMed

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p < 0.001). For the identification of responders, invasive Δ500mlPP was associated with an area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  19. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    PubMed

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  20. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.

    PubMed

    Jamali, Tayeb; Naji, Ali

    2018-06-13

    We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.

  1. An improved apparatus for pressure-injecting fluid into trees

    Treesearch

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  2. Pulse pressure variation-guided fluid therapy after cardiac surgery: a pilot before-and-after trial.

    PubMed

    Suzuki, Satoshi; Woinarski, Nicholas C Z; Lipcsey, Miklos; Candal, Cristina Lluch; Schneider, Antoine G; Glassford, Neil J; Eastwood, Glenn M; Bellomo, Rinaldo

    2014-12-01

    The aim of this study is to study the feasibility, safety, and physiological effects of pulse pressure variation (PPV)-guided fluid therapy in patients after cardiac surgery. We conducted a pilot prospective before-and-after study during mandatory ventilation after cardiac surgery in a tertiary intensive care unit. We introduced a protocol to deliver a fluid bolus for a PPV≥13% for at least >10 minutes during the intervention period. We studied 45 control patients and 53 intervention patients. During the intervention period, clinicians administered a fluid bolus on 79% of the defined PPV trigger episodes. Median total fluid intake was similar between 2 groups during mandatory ventilation (1297 mL [interquartile range 549-1968] vs 1481 mL [807-2563]; P=.17) and the first 24 hours (3046 mL [interquartile range 2317-3982] vs 3017 mL [2192-4028]; P=.73). After adjusting for several baseline factors, PPV-guided fluid management significantly increased fluid intake during mandatory ventilation (P=.004) but not during the first 24 hours (P=.47). Pulse pressure variation-guided fluid therapy, however, did not significantly affect hemodynamic, renal, and metabolic variables. No serious adverse events were noted. Pulse pressure variation-guided fluid management was feasible and safe during mandatory ventilation after cardiac surgery. However, its advantages may be clinically small. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Different seismic signatures of fractures slip and their correlations with fluid pressures in in-situ rupture experiments

    NASA Astrophysics Data System (ADS)

    Derode, B.; Cappa, F.; Guglielmi, Y.

    2012-04-01

    The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.

  4. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  5. Rotational viscometer for high-pressure high-temperature fluids

    DOEpatents

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  6. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    NASA Astrophysics Data System (ADS)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  7. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. Copyright © 2014, American Association for the Advancement of Science.

  8. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  9. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.

    PubMed

    Berkouk, K; Carpenter, P W; Lucey, A D

    2003-12-01

    Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.

  10. The effect of intraocular gas and fluid volumes on intraocular pressure.

    PubMed

    Simone, J N; Whitacre, M M

    1990-02-01

    Large increases in the intraocular pressure (IOP) of postoperative gas-containing eyes may require the removal of gas or fluid to reduce the IOP to the normal range. Application of the ideal gas law to Friedenwald's equation provides a mathematical model of the relationship between IOP, intraocular gas and fluid volumes, and the coefficient of scleral rigidity. This mathematic model shows that removal of a given volume of gas or fluid produces an identical decrease in IOP and that the more gas an eye contains, the greater the volume reduction necessary to reduce the pressure. Application of the model shows that the effective coefficient of scleral rigidity is low (mean K, 0.0021) in eyes with elevated IOP that have undergone vitrectomy and retinal cryopexy and very low (mean K, 0.0013) in eyes with elevated IOP that have undergone placement of a scleral buckle and band. By using the appropriate mean coefficient of rigidity, the volume of material to be aspirated to produce a given decrease in IOP can be predicted with clinically useful accuracy.

  11. Effect of non-linear fluid pressure diffusion on modeling induced seismicity during reservoir stimulation

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.

    2012-04-01

    Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure

  12. Cr(III) solubility in aqueous fluids at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Watenphul, Anke; Schmidt, Christian; Jahn, Sandro

    2014-02-01

    Trivalent chromium is generally considered relatively insoluble in aqueous fluids and melts. However, numerous counterexamples in nature indicate Cr(III) mobilization by aqueous fluids during metamorphism or hydrothermal alteration of chromite-bearing rocks, or by pegmatite melts. So far, very little is known about the chromium concentrations and speciation in such fluids. In this study, the solubility of eskolaite (Cr2O3) in 1.6-4.2 m aqueous HCl solutions was determined in situ at elevated pressures up to 1 GPa and temperatures ranging between 400 and 700 °C using synchrotron micro-X-ray fluorescence spectroscopy (μ-XRF). Determined concentrations of dissolved Cr ranged between about 900-18,000 ppm, with the highest concentrations found at 500 °C and 861 MPa. The Cr(III) solubility in aqueous HCl fluids is retrograde in the studied temperature range and increases with pressure. In addition, Cr(III) complexation in these fluids was explored by Raman spectroscopy on a 12.3 mass% HCl fluid in equilibrium with eskolaite at 400 and 600 °C, 0.3-1.6 GPa. All spectra show two prominent Cr-Cl stretching bands at about 275 and 325 cm-1, which display some fine structure, and in some spectra weak bands in the region between 380 and 500 cm-1. The sum of the integrated intensities of the two dominant bands reveals qualitatively the same changes with temperature along an isochore, with pressure at constant temperature, and with the time required for equilibration as the Cr(III) concentrations in the fluid determined by μ-XRF. Complementary ab initio molecular dynamics simulations of a 4 m HCl solution at two different densities (0.8 and 0.97 g/cm3) and temperatures (427 and 727 °C) were performed to investigate the vibrational properties of various(O)y3-x and (O)y(OH)z3-x-z complexes with 3⩽x+z⩽4 and 0⩽y⩽2. Quasi-normal mode analysis reveals that both the tetrahedral symmetric and antisymmetric Cr-Cl stretching vibrations of CrCl4(H2O)0-2- have characteristic

  13. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2018-02-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the

  14. Obesity is the major determinant of the abnormalities in blood pressure found in young women with the polycystic ovary syndrome.

    PubMed

    Luque-Ramírez, Manuel; Alvarez-Blasco, Francisco; Mendieta-Azcona, Covadonga; Botella-Carretero, José I; Escobar-Morreale, Héctor F

    2007-06-01

    Obesity and insulin resistance predispose patients with the polycystic ovary syndrome (PCOS) to abnormalities in blood pressure regulation. Our objective was to evaluate the impact of obesity on the blood pressure profiles of PCOS patients. PATIENTS, SETTING, AND DESIGN: Thirty-six PCOS patients and 20 healthy women participated in a case-control study at an academic hospital. We conducted ambulatory blood pressure monitoring and office blood pressure determinations. Hypertension (defined as increased office blood pressure confirmed by ambulatory blood pressure monitoring or by masked hypertension) was present in 12 PCOS patients and eight controls (P = 0.618). No differences between patients and controls were found in office and ambulatory blood pressure monitoring values and heart rate, yet the nocturnal decrease in mean blood pressure was smaller in patients (P = 0.038). Obese women (13 patients and eight controls) had increased frequencies of office hypertension (29% compared with 3% in lean plus overweight women, P = 0.005), increased diastolic (P = 0.009) and mean (P = 0.015) office blood pressure values, and increased heart rate values during the daytime (P = 0.038), nighttime (P = 0.002), and 24-h (P = 0.009) periods, independently of having PCOS or not. The frequency of a nocturnal nondipper pattern was 62% in obese PCOS patients, compared with 26% in lean plus overweight PCOS patients (P = 0.036) and 25% in obese and in lean plus overweight controls. Abnormalities in the regulation of blood pressure are common in young women with PCOS, yet, with the exception of the nondipper pattern, these abnormalities result from the frequent association of this syndrome with obesity.

  15. The role of cerebrospinal fluid pressure in glaucoma and other ophthalmic diseases: A review

    PubMed Central

    Fleischman, David; Allingham, R. Rand

    2013-01-01

    Glaucoma is one of the most common causes of blindness in the world. Well-known risk factors include age, race, a positive family history and elevated intraocular pressures. A newly proposed risk factor is decreased cerebrospinal fluid pressure (CSFP). This concept is based on the notion that a pressure differential exists across the lamina cribrosa, which separates the intraocular space from the subarachnoid fluid space. In this construct, an increased translaminar pressure difference will occur with a relative increase in elevated intraocular pressure or a reduction in CSFP. This net change in pressure is proposed to act on the tissues within the optic nerve head, potentially contributing to glaucomatous optic neuropathy. Similarly, patients with ocular hypertension who have elevated CSFPs, would enjoy a relatively protective effect from glaucomatous damage. This review will focus on the current literature pertaining to the role of CSFP in glaucoma. Additionally, the authors examine the relationship between glaucoma and other known CSFP-related ophthalmic disorders. PMID:24227969

  16. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes.

    PubMed

    Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa

    2012-07-01

    To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.

  18. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  19. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    PubMed

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rotational viscometer for high-pressure, high-temperature fluids

    DOEpatents

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  1. Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D.

    2003-12-01

    The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the

  2. MRI contrast agent concentration and tumor interstitial fluid pressure.

    PubMed

    Liu, L J; Schlesinger, M

    2016-10-07

    The present work describes the relationship between tumor interstitial fluid pressure (TIFP) and the concentration of contrast agent for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We predict the spatial distribution of TIFP based on that of contrast agent concentration. We also discuss the cases for estimating tumor interstitial volume fraction (void fraction or porosity of porous medium), ve, and contrast volume transfer constant, K(trans), by measuring the ratio of contrast agent concentration in tissue to that in plasma. A linear fluid velocity distribution may reflect a quadratic function of TIFP distribution and lead to a practical method for TIFP estimation. To calculate TIFP, the parameters or variables should preferably be measured along the direction of the linear fluid velocity (this is in the same direction as the gray value distribution of the image, which is also linear). This method may simplify the calculation for estimating TIFP. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    NASA Astrophysics Data System (ADS)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  4. Importance of Calibration Method in Central Blood Pressure for Cardiac Structural Abnormalities.

    PubMed

    Negishi, Kazuaki; Yang, Hong; Wang, Ying; Nolan, Mark T; Negishi, Tomoko; Pathan, Faraz; Marwick, Thomas H; Sharman, James E

    2016-09-01

    Central blood pressure (CBP) independently predicts cardiovascular risk, but calibration methods may affect accuracy of central systolic blood pressure (CSBP). Standard central systolic blood pressure (Stan-CSBP) from peripheral waveforms is usually derived with calibration using brachial SBP and diastolic BP (DBP). However, calibration using oscillometric mean arterial pressure (MAP) and DBP (MAP-CSBP) is purported to provide more accurate representation of true invasive CSBP. This study sought to determine which derived CSBP could more accurately discriminate cardiac structural abnormalities. A total of 349 community-based patients with risk factors (71±5years, 161 males) had CSBP measured by brachial oscillometry (Mobil-O-Graph, IEM GmbH, Stolberg, Germany) using 2 calibration methods: MAP-CSBP and Stan-CSBP. Left ventricular hypertrophy (LVH) and left atrial dilatation (LAD) were measured based on standard guidelines. MAP-CSBP was higher than Stan-CSBP (149±20 vs. 128±15mm Hg, P < 0.0001). Although they were modestly correlated (rho = 0.74, P < 0.001), the Bland-Altman plot demonstrated a large bias (21mm Hg) and limits of agreement (24mm Hg). In receiver operating characteristic (ROC) curve analyses, MAP-CSBP significantly better discriminated LVH compared with Stan-CSBP (area under the curve (AUC) 0.66 vs. 0.59, P = 0.0063) and brachial SBP (0.62, P = 0.027). Continuous net reclassification improvement (NRI) (P < 0.001) and integrated discrimination improvement (IDI) (P < 0.001) corroborated superior discrimination of LVH by MAP-CSBP. Similarly, MAP-CSBP better distinguished LAD than Stan-CSBP (AUC 0.63 vs. 0.56, P = 0.005) and conventional brachial SBP (0.58, P = 0.006), whereas Stan-CSBP provided no better discrimination than conventional brachial BP (P = 0.09). CSBP is calibration dependent and when oscillometric MAP and DBP are used, the derived CSBP is a better discriminator for cardiac structural abnormalities. © American Journal of Hypertension

  5. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic

  6. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  8. Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal

    NASA Astrophysics Data System (ADS)

    Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian

    2015-11-01

    Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.

  9. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered spinal fluid pressure monitor. 880.2460 Section 880.2460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Monitoring Devices § 880.2460...

  10. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  11. Pressure and compressibility factor of bidisperse magnetic fluids

    NASA Astrophysics Data System (ADS)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  12. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat.

    PubMed

    Sultanian, R; Deng, Y; Kaufman, S

    2001-05-15

    The spleen is an important site of atrial natriuretic factor (ANF)-induced fluid extravasation into the systemic lymphatic system. The mechanism underlying this process was studied in a blood-perfused (1 ml min(-1)) rat spleen using the double occlusion technique. To ensure that our observations were spleen specific, a similar protocol was repeated in the hindquarters. Rat ANF(1-28), infused into the splenic artery of anaesthetized male rats, caused a dose-dependent (0.3-59 pmol min(-1)) increase in microvascular pressure from 11.3 +/- 0.7 to 14.9 +/- 0.5 mmHg and in post-capillary resistance from 7.2 +/- 0.6 to 10.1 +/- 1.1 mmHg ml(-1). ANF elicited no change in splenic pre-capillary resistance or in hindquarter haemodynamics. Intrasplenic ANF (6.5 pmol min(-1)) caused a sustained increase in intrasplenic fluid efflux from 0.1 +/- 0.1 to 0.3 +/- 0.1 ml min(-1), and in capillary filtration coefficient (Kf) from 1.2 +/- 0.5 to 2.4 +/- 0.6 ml mmHg-1 min-1 (100 g tissue)-1. Mechanical elevation of splenic intravascular pressure (from 11.3 +/- 0.7 to 22.4 +/- 0.2 mmHg) significantly increased intrasplenic fluid extravasation (from 0.4 +/- 0.3 to 1.4 +/- 0.3 ml min(-1)). The natriuretic peptide receptor-C (NPRC)-specific agonist C-ANF(4-23) (12.5 and 125 pmol min(-1)) did not alter splenic intravascular pressure or pre-/post-capillary resistance. The ANF antagonist A71915 (8.3 and 83 pmol min-1), which blocks ANF-stimulated cGMP production via natriuretic peptide receptor-A (NPRA), inhibited the ANF-induced changes in splenic microvascular pressure and post-capillary resistance. It is concluded that ANF enhances the extravasation of isoncotic fluid from the splenic vasculature both by raising intrasplenic microvascular pressure (increased post-capillary resistance) and by increasing filtration area. The constrictive activity of ANF on the splenic vasculature is mediated through NPRA.

  13. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    PubMed

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.; Jiang, P. X.; Liu, B.

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experimentsmore » using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)« less

  15. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  17. Pressure Distribution in a Squeeze Film Spherical Bearing with Rough Surfaces Lubricated by an Ellis Fluid

    NASA Astrophysics Data System (ADS)

    Jurczak, P.; Falicki, J.

    2016-08-01

    In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen's stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.

  18. Non-Ideal Compressible-Fluid Dynamics of Fast-Response Pressure Probes for Unsteady Flow Measurements in Turbomachinery

    NASA Astrophysics Data System (ADS)

    Gori, G.; Molesini, P.; Persico, G.; Guardone, A.

    2017-03-01

    The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.

  19. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  20. Thermal and fluid-dynamics behavior of circulating systems in the case of pressure relief

    NASA Astrophysics Data System (ADS)

    Moeller, L.

    Aspects of safety in the case of large-scale installations with operational high-pressure conditions must be an important consideration already during the design of such installations, taking into account all conceivable disturbances. Within an analysis of such disturbances, studies related to pressure relief processes will have to occupy a central position. For such studies, it is convenient to combine experiments involving small-scale models of the actual installation with suitable computational programs. The experiments can be carried out at lower pressures and temperatures if the actual fluid is replaced by another medium, such as, for instance, a refrigerant. This approach has been used in the present investigation. The obtained experimental data are employed as a basis for a verification of the results provided by the computational model 'Frelap-UK' which has been expressly developed for the analysis of system behavior in the case of pressure relief. It is found that the computer fluid-dynamics characteristics agree with the experimental results.

  1. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  2. Idiopathic normal pressure hydrocephalus, quantitative EEG findings, and the cerebrospinal fluid tap test: a pilot study.

    PubMed

    Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won

    2014-12-01

    In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.

  3. An improved technique for studying pleural fluid pressure and composition in rabbits.

    PubMed

    Del Fabbro, M

    1998-07-01

    Knowledge of pleural liquid pressure (Pliq) and composition is crucial for studies concerning intrapleural fluid dynamics, and pleural fluid turnover. We measured Pliq at intercostal and costal levels in anaesthetized spontaneously breathing rabbits using a minimally invasive method that assures a long-lasting hydraulic continuity between the pleural liquid and the recording system. Polyethylene tubes were glued either to the exposed endothoracic fascia or inserted into a rib to provide a scaled connection to the recording system. After inducing a pneumothorax with nitrous oxide (N2O) via an intrapleural cannula, a hole (approximately 0.7 mm2) was pierced in the parietal pleura through the tube lumen. The tubes were then connected to pressure transducers and the whole system was filled with heparinized saline to the level of the parietal pleura; finally the pneumo-thorax was removed after N2O washout and Pliq recordings were performed. A different kind of tube was used to obtain microsamples of pleural fluid (2.5-3 microliters) during spontaneous breathing; colloid osmotic pressure of the microsamples (pi liq) was measured with an osmometer, and averaged 9.3 +/- 1.5 cm H2o (n = 70 samples). When pooled and plotted against lung height end-expiratory intercostal and costal Pliq data scattered along a single regression line with a slope of -0.83 and -0.90 cm H2O cm(-1) in supine and prone animals, respectively. End-inspiratory costal Pliq was significantly more subatmospheric than intercostal in the ventral region of the chest (P < 0.05), and less subatmospheric in the dorsal region, regardless of posture. The techniques presented here could be helpful in gaining a greater insight into the physiology and pathophysiology of the pleural space in terms of pleural fluid dynamics and turnover.

  4. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the

  5. Cerebrospinal fluid pressures resulting from experimental traumatic spinal cord injuries in a pig model.

    PubMed

    Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A

    2013-10-01

    Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its

  6. Natural occurrence and significance of fluids indicating high pressure and temperature

    USGS Publications Warehouse

    Roedder, E.

    1981-01-01

    Most natural minerals have formed from a fluid phase such as a silicate melt or a saline aqueous solution. Fluid inclusions are tiny volumes of such fluids that were trapped within the growing crystals. These inclusions can provide valuable but sometimes ambiguous data on the temperature, pressure, and composition of these fluids, many of which are not available from any other source. They also provide "visual autoclaves" in which it is possible to watch, through the microscope, the actual phase changes take place as the inclusions are heated. This paper reviews the methods of study and the results obtained, mainly on inclusions formed from highly concentrated solutions, at temperatures ???500??C. Many such fluids have formed as a result of immiscibility with silicate melt in igneous or high-temperature metamorphic rocks. These include fluids consisting of CO2, H2O, or hydrosaline melts that were <50% H2O. From the fluid inclusion evidence it is clear that a boiling, very hot, very saline fluid was present during the formation of most of the porphyry copper deposits in the world. Similarly, from the inclusion evidence it is clear that early (common) pegmatites formed from essentially silicate melts and that the late, rare-element-bearing and chamber-type pegmatites formed from a hydrosaline melt or a more dilute water solution. The evidence on whether this change in composition from early to late solutions was generally continuous or involved immiscibility is not as clear. ?? 1981.

  7. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary

  8. Pressure Distribution in a Porous Squeeze Film Bearing Lubricated with a Herschel-Bulkley Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.

    2016-12-01

    The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations on the flow of the viscoplastic fluid (lubricant) in a bearing clearance and in a porous layer the modified Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel disks) is discussed in detail.

  9. Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.

  10. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy

    PubMed Central

    Kwon, Hae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153

  11. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury.

    PubMed

    Vender, John; Waller, Jennifer; Dhandapani, Krishnan; McDonnell, Dennis

    2011-08-01

    Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.

  12. The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados

    NASA Astrophysics Data System (ADS)

    Yeh, En-Chao; Suppe, John

    2014-05-01

    Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.

  13. Relationship of hypertension, blood pressure, and blood pressure control with white matter abnormalities in the Women's Health Initiative Memory Study (WHIMS)-MRI trial.

    PubMed

    Kuller, Lewis H; Margolis, Karen L; Gaussoin, Sarah A; Bryan, Nick R; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G

    2010-03-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women's Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study-Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP > or = 140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP > or = 140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia.

  14. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  15. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  16. Effect of lower-body positive pressure on postural fluid shifts in men

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.

    1988-01-01

    The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.

  17. Inertial migration of elastic particles in a pressure-driven power-law fluid

    NASA Astrophysics Data System (ADS)

    Bowie, Samuel; Alexeev, Alexander

    2016-11-01

    Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.

  18. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  19. Paleostress and fluid-pressure regimes inferred from the orientations of Hishikari low sulfidation epithermal gold veins in southern Japan

    NASA Astrophysics Data System (ADS)

    Faye, Guillaume D.; Yamaji, Atsushi; Yonezu, Kotaro; Tindell, Thomas; Watanabe, Koichiro

    2018-05-01

    The orientation distribution of dilational fractures is affected by the state of stress around the fractures and by the pressure of the fluid that opened the fractures. Thus, the distribution can be inverted to determine not only the stress but also the pressure condition at the time of vein formation. However, epithermal ore veins that we observe today are the results of a great number of intermittent upwelling of overpressured fluids with different pressures. Here, we define driving pressure index (DPI) as the representative non-dimensionalized fluid pressure for the fluids. We collected the orientations of ∼1000 ore veins in the Hishikari gold mine, which were deposited at around 1 Ma, in southern Kyushu, Japan. It was found that the majority of the veins were deposited under an extensional stress with a NW-SE-trending σ3-axis and a northeasterly-inclined σ1-axis with relatively high stress ratio. The representative driving pressure ratio was ∼0.2. Data sets obtained at different depths in the mine indicated a positive correlation of representative driving pressure ratios with the depths. The correlation suggests repeated formation and break of pressure seals during the mineralization. Our compilation of the Pliocene-Quaternary stress regimes in southern Kyushu, including the result of the present study, suggests that epithermal gold mineralization was associated with distributed extensional deformations in southern Kyushu, and strain localization into an intra-arc rift seems to have terminated the mineralization.

  20. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  1. Miniaturized pressurization system

    DOEpatents

    Whitehead, John C.; Swink, Don G.

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  2. Baseline neuropsychological profile and cognitive response to cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus.

    PubMed

    Thomas, George; McGirt, Matthew J; Woodworth, Graeme; Heidler, Jennifer; Rigamonti, Daniele; Hillis, Argye E; Williams, Michael A

    2005-01-01

    To evaluate neurocognitive changes and predict neurocognitive outcome after ventriculoperitoneal shunting for idiopathic normal pressure hydrocephalus (INPH). Reports of neurocognitive response to shunting have been variable and studies that predict cognitive outcomes after shunting are limited. We reviewed our experience with cognitive outcomes for INPH patients who were selected for shunting based on abnormal cerebrospinal fluid (CSF) pressure monitoring and positive response in any of the NPH symptoms following large volume CSF drainage. Forty-two INPH patients underwent neurocognitive testing and Folstein Mini-Mental State Examination (MMSE) prior to shunting. Neurocognitive testing or MMSEwere performed at least 3 months after shunt insertion. Significant improvement in a neurocognitive subtest was defined as improvement by one standard deviation (1 SD) for the patient's age, sex and education level. Significant improvement in overall neurocognitive outcome was defined as a 4-point improvement in MMSE or improvement by 1 SD in 50% of the administered neurocognitive subtests. Nonparametric tests were used to assess changes. Predictors of outcome were assessed via logistic regression analysis. Twenty-two patients (52.3%) showed overall neurocognitive improvement, and significant improvement was seen in tests of verbal memory and psychomotor speed. Predictive analysis showed that patients scoring more than 1 SD below mean at baseline on verbal memory immediate recall were fourfold less likely to show overall cognitive improvement, and sixfold less likely if also associated with visuoconstructional deficit or executive dysfunction. Verbal memory scores at baseline were higher in patients who showed overall cognitive improvement. Shunting INPH patients on the basis of CSF pressure monitoring and drainage response shows a significant rate of cognitive improvement, and baseline neurocognitive test scores may distinguish patients likely to respond to shunt surgery

  3. Effects of perilymphatic pressure, sodium nitroprusside, and bupivacaine on cochlear fluid pH of guinea pigs.

    PubMed

    Suzuki, Masaaki; Kotani, Ryosuke

    2015-01-01

    Hydrostatic positive pressure and vasoconstrictor acidified the cochlear fluids, whereas the vasodilator made the fluids alkaline. CBF might play a role in regulating cochlea fluid pH. Cochlea fluid pH is highly dependent on the HCO3(-)/CO2 buffer system. Cochlear blood flow (CBF) supplies O2 and removes CO2. It is speculated that cochlear blood flow changes might affect the balance of the HCO3(-)/CO2 buffer system in the cochlea. It is known that the elevation of inner ear pressure decreases the CBF, and local application of vasodilating or vasoconstricting agents directly to the cochlea changes the CBF. The purpose of this study was to elucidate the effect of positive hydrostatic inner ear pressure and application of a vasodilator and vasoconstrictor of cochlear vessels on the pH of the endolymph and perilymph. The authors performed animal physiological experiments on 30 guinea pigs. Hydrostatic positive pressure was infused through a glass capillary tube inserted into the scala tympani of the basal turn. The vasodilator, nitric oxide donor (sodium nitroprusside; SNP), and the vasoconstrictor, bupivacaine, were placed topically onto the round window of the guinea pig cochlea. Endolymph pH (pHe) and endocochlear potential (EP) were monitored by double-barreled ion-selective microelectrodes in the second turn of the guinea pig cochlea. During the topical application study, scala vestibuli perilymph pH (pHv) was also measured simultaneously in the second turn. The application of hydrostatic positive pressure caused a decrease in pHe and EP. Positive perilymphatic pressure caused the endolymph to become acidic pressure-dependently. Application of 3.0% SNP evoked an increase in both the pHe and pHv, following by a gradual recovery to baseline levels. On the other hand, 0.5% bupivacaine caused a decrease in both the pHe and pHv. The EP during topical application showed slight, non-significant changes.

  4. Effects of pressure distribution on parallel circular porous plates with combined effect of piezo-viscous dependency and non-Newtonian couple stress fluid

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kesavan, Sundarammal

    2018-04-01

    Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.

  5. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    PubMed

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  6. Fluid to fluid contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Clark, W. E.

    1986-01-01

    Heat transfer and pressure drop test results for a fluid to fluid contact heat exchanger are reported. The heat exchanger, fabricated and tested to demonstrate one method of transferring heat between structures in space, had a total contact area of 0.18 sq m. It utilized contact surfaces which were flexible and conformed to the mating contact surfaces upon pressurization of the fluid circulating within the heat exchanger. During proof-of-concept performance tests, the heat exchanger was operated in a typical earth environment. It demonstrated a contact conductance of 3.8 kW/sq m C at contact pressures in the 15 to 70 kPa range.

  7. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.

    PubMed

    Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R

    2013-03-01

    The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.

  8. Fluid relief and check valve

    DOEpatents

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  9. Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.

    2016-12-01

    River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary

  10. Instability of a shear layer between multicomponent fluids at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  11. Comparison of Cerebrospinal Fluid Opening Pressure in Children With Demyelinating Disease to Children With Primary Intracranial Hypertension.

    PubMed

    Morgan-Followell, Bethanie; Aylward, Shawn C

    2017-03-01

    The authors aimed to compare the opening pressures of children with demyelinating disease to children with primary intracranial hypertension. Medical records were reviewed for a primary diagnosis of demyelinating disease, or primary intracranial hypertension. Diagnosis of demyelinating disease was made according to either the 2007 or 2012 International Pediatric Multiple Sclerosis Study Group criteria. Primary intracranial hypertension diagnosis was confirmed by presence of elevated opening pressure, normal cerebrospinal fluid composition and neuroimaging. The authors compared 14 children with demyelinating disease to children with primary intracranial hypertension in 1:1 and 1:2 fashions. There was a statistically significant higher BMI in the primary intracranial hypertension group compared to the demyelinating group ( P = .0203). The mean cerebrospinal fluid white blood cell count was higher in the demyelinating disease group compared to primary intracranial hypertension ( P = .0002). Among both comparisons, the cerebrospinal fluid opening pressure, glucose, protein and red blood cell counts in children with demyelinating disease were comparable to age- and sex-matched controls with primary intracranial hypertension.

  12. Intraoperative assessment of intraocular pressure in vitrectomized air-filled and fluid-filled eyes.

    PubMed

    Moon, Chan Hee; Choi, Kyung Seek; Rhee, Mi Ri; Lee, Sung Jin

    2013-11-01

    To ascertain the difference of intraocular pressure (IOP) measurement between vitrectomized air-filled and fluid-filled eyes. Thirty-one eyes of 31 consecutive patients who underwent conventional vitrectomy and intraocular gas tamponade were assessed. After vitrectomy, IOP of the fluid-filled eyes was measured by Tono-Pen. Thereafter, fluid-air exchange was performed, and IOP of the air-filled eyes was measured again. The IOP within each fluid- and air-filled eye was varied by selecting settings on the vitrectomy system, from 10 to 50 mmHg with 5-mmHg increments. Postoperatively, IOP was assessed by both Tono-Pen and Goldmann applanation tonometry (GAT). Linear and nonlinear regression analyses were conducted between intraoperatively measured Tono-Pen readings and actual IOPs. Bland-Altman plot was used to assess the agreements between postoperatively measured Tono-Pen readings and GAT readings. The discrepancy between Tono-Pen readings and actual IOP in fluid-filled eyes was not significant, except for the profound high pressures over 45 mmHg. However, Tono-Pen readings in air-filled eyes were significantly lower than actual IOPs in all ranges, and Tono-Pen increasingly underestimates IOP at higher levels. Intraoperative Tono-Pen readings were correlated significantly with actual IOP and a quadratic equation evidenced the best fit (R(2) = 0.996). Postoperatively, difference of the measurements between Tono-Pen and GAT was not significant. Tono-Pen and GAT significantly underestimate actual IOP in air-filled eyes. It should be considered that actual IOP would be greater than the measured IOP in gas-filled eyes, even though the IOP is measured as normal. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1989-01-01

    The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

  14. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  15. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images.

    PubMed

    Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Yatsushiro, Satoshi; Kuroda, Kagayaki

    2017-10-18

    Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also measures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantitatively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic normal pressure hydrocephalus (iNPH) or Alzheimer's disease (AD) presenting with ventricular enlargement. Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct were quantified and compared between the three groups using Kolmogorov-Smirnov and Mann-Whitney U tests. There was no statistically significant difference in velocity among the three groups. The pressure gradient was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similarities in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individuals, and that iNPH patients and AD patients display similar CSF motion profiles.

  16. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  17. Relationship of Hypertension, Blood Pressure, and Blood Pressure Control With White Matter Abnormalities in the Women’s Health Initiative Memory Study (WHIMS)—MRI Trial

    PubMed Central

    Kuller, Lewis H.; Margolis, Karen L.; Gaussoin, Sarah A.; Bryan, Nick R.; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G.

    2010-01-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women’s Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study—Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP ≥140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP ≥140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia. PMID:20433539

  18. Pleural fluid Gram stain

    MedlinePlus

    Gram stain of pleural fluid ... mixing it with a violet stain (called a Gram stain). A laboratory specialist uses a microscope to ... reveals an abnormal collection of pleural fluid. The Gram stain can help identify the bacteria that might ...

  19. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance.

    PubMed

    Lowe, Kevin; Alvarez, Diego F; King, Judy A; Stevens, Troy

    2010-06-01

    Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Prospective, randomized, controlled study. Research laboratory. One hundred twenty male CD40 rats. To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Static and dynamic lung mechanics and hemodynamics were measured continuously. Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.

  20. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2015-01-01

    Investigations have revealed several instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with transient Darcian flow caused by strain at rates of ~ 10−17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 annum or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies provide constraints on formation-scale flow properties, flow history, and local geological forcing in the last 106 annum and in particular indicate zones of low permeability (10−19–10−22 m2) that could be useful for isolation of nuclear waste.

  1. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  2. Fluid responsiveness predicted by transcutaneous partial pressure of oxygen in patients with circulatory failure: a prospective study.

    PubMed

    Xu, Jingyuan; Peng, Xiao; Pan, Chun; Cai, Shixia; Zhang, Xiwen; Xue, Ming; Yang, Yi; Qiu, Haibo

    2017-12-01

    Significant effort has been devoted to defining parameters for predicting fluid responsiveness. Our goal was to study the feasibility of predicting fluid responsiveness by transcutaneous partial pressure of oxygen (PtcO 2 ) in the critically ill patients. This was a single-center prospective study conducted in the intensive care unit of a tertiary care teaching hospital. Shock patients who presented with at least one clinical sign of inadequate tissue perfusion, defined as systolic blood pressure <90 mmHg or a decrease >40 mmHg in previously hypertensive patients or the need for vasopressive drugs; urine output <0.5 ml/kg/h for 2 h; tachycardia; lactate >4 mmol/l, for less than 24 h in the absence of a contraindication for fluids were eligible to participate in the study. PtcO 2 was continuously recorded before and during a passive leg raising (PLR) test, and then before and after a 250 ml rapid saline infusion in 10 min. Fluid responsiveness is defined as a change in the stroke volume ≥10% after 250 ml of volume infusion. Thirty-four patients were included, and 14 responded to volume expansion. In the responders, the mean arterial pressure, central venous pressure, cardiac output, stroke volume and PtcO 2 increased significantly, while the heart rate decreased significantly by both PLR and volume expansion. Changes in the stroke volume induced either by PLR or volume expansion were significantly greater in responders than in non-responders. The correlation between the changes in PtcO 2 and stroke volume induced by volume expansion was significant. Volume expansion induced an increase in the PtcO 2 of 14% and PLR induced an increase in PtcO 2 of 13% predicted fluid responsiveness. This study suggested the changes in PtcO 2 induced by volume expansion and a PLR test predicted fluid responsiveness in critically ill patients. Trial registration NCT02083757.

  3. Experimental Studies of Dynamic Fault Weakening Due to Thermal Pressurization of Pore Fluids

    NASA Astrophysics Data System (ADS)

    Goldsby, David; Tullis, Terry; Platt, John; Okazaki, Keishi

    2016-04-01

    High-velocity friction experiments and geophysical observations suggest that mature faults weaken dramatically during seismic slip. However, while many coseismic weakening mechanisms have been proposed, it is still unclear which mechanisms are most important or how the efficiency of weakening varies within the seismogenic zone. Thermal pressurization is one possible coseismic weakening mechanism driven by the thermal expansion of native pore fluids, which leads to elevated pore pressures and significant coseismic weakening. While thermal pressurization has been studied theoretically for many decades, and invoked in recent earthquake simulations, its activation in laboratory experiments has remained elusive. Several high-speed friction studies have yielded indirect evidence for thermal pressurization, yet none has directly linked with existing theoretical models or the relevant physical parameters, such as permeability, slip, and slip rate, that control the weakening rate. To fill this gap, we are conducting thermal pressurization experiments on fluid-saturated, low-permeability rocks (Frederick diabase) at slip rates up to ~5 mm/s, at constant confining pressures in the range 21-149 MPa and initial imposed pore pressures in the range 10-25 MPa. The impractically low permeability of the as-is diabase, ~10-23 m2, is increased prior to the test by thermal cracking, yielding measured permeabilities in the range 1.3*10-18 to 6.1*10-19 m2. These values of permeability are high enough to allow sample saturation over one to several days, but low enough to confine the elevated pore pressures generated by frictional heating during rapid sliding. Our experiments reveal a rapid decay of shear stress following a step-change in velocity from 10 μm/s to 4.8 mm/s. In one test, the decrease in shear stress of ~25% over the first 28 mm of slip at 4.8 mm/s agrees closely with the theoretical solution for slip on a plane (Rice [2006]), with an inferred slip-weakening distance of ~500

  4. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems

    USGS Publications Warehouse

    Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.

    1998-01-01

    Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal

  5. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less

  6. 2D Simulations of Earthquake Cycles at a Subduction Zone Based on a Rate and State Friction Law -Effects of Pore Fluid Pressure Changes-

    NASA Astrophysics Data System (ADS)

    Mitsui, Y.; Hirahara, K.

    2006-12-01

    There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of

  7. Cerebrospinal Fluid Pressure Decreases with Older Age

    PubMed Central

    Fleischman, David; Berdahl, John P.; Zaydlarova, Jana; Stinnett, Sandra; Fautsch, Michael P.; Allingham, R. Rand

    2012-01-01

    Purpose Clinical studies implicate low cerebrospinal fluid pressure (CSFP) or a high translaminar pressure difference in the pathogenesis of primary open angle glaucoma (POAG) and normal tension glaucoma (NTG). This study was performed to examine the effect of age, sex, race and body mass index (BMI) on CSFP. Methods Electronic medical records from all patients who had a lumbar puncture (LP) performed at the Mayo Clinic from 1996–2009 were reviewed. Information including age, sex, race, height and weight, ocular and medical diagnoses, intraocular pressure (IOP) and LP opening pressure was obtained. Patients using medications or with medical diagnoses known to affect CSFP, and those who underwent neurosurgical procedures or where more than one LP was performed were excluded from analysis. Results Electronic medical records of 33,922 patients with a history of having an LP during a 13-year period (1996–2009) were extracted. Of these, 12,118 patients met all entry criteria. Relative to mean CSFP at age group 20–49 (mean 11.5±2.8 mmHg), mean CSFP declined steadily after age 50, with percent reduction of 2.5% for the 50–54 age group (mean 11.2±2.7 mmHg, p<0.002) to 26.9% for the 90–95 group (mean 8.4±2.4 mmHg, p<0.001). Females had lower CSFP than males throughout all age groups. BMI was positively and independently associated with CSFP within all age groups. Conclusion There is a sustained and significant reduction of CSFP with age that begins in the 6th decade. CSFP is consistently lower in females. BMI is positively and independently associated with CSFP in all age groups. The age where CSFP begins to decline coincides with the age where the prevalence of POAG increases. These data support the hypothesis that reduced CSFP may be a risk factor for POAG and may provide an explanation for the mechanism that underlies the age-related increase in the prevalence of POAG and NTG. PMID:23300737

  8. Fluid pressure and fault strength: insights from load-controlled experiments on carbonate-bearing rocks

    NASA Astrophysics Data System (ADS)

    Spagnuolo, E.; Violay, M.; Nielsen, S. B.; Di Toro, G.

    2013-12-01

    Fluid pressure Pf has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). The Terzaghi's principle states that the effective normal stress σeff= σn (1- α Pf ), with α the Biot coefficient and σn the normal stress, is reduced in proportion to Pf. A value of α=1 is often used by default; however, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on carbonate-bearing rock samples (Carrara marble) in room humidity conditions and in the presence of pore fluids (drained conditions), where a pre-cut fault is loaded by shear stress τ in a rotary apparatus (SHIVA) under constant σn=15 MPa. Two types of tests were performed with fluids: (1) the fluid pressure was kept constant at Pf=5 MPa (close to hydrostatic conditions at a depth of 0.5 km) and the fault was driven to failure instability by gradually increasing τ; (2) the fluid pressure was kept at Pf=5 MPa and τ was increased until close to instability (τ = 7 MPa): at this point Pf was raised of 0.5 MPa every 10 s up to Pf =10 MPa to induce a main (failure) instability. Assuming α=1 and an effective peak strength (τp)eff=μp σeff at failure, the experiments reveal that: 1) (τp)eff is sensitive to the shear loading rate: fast loading rates (0.5 MPa every 20 s) induce higher peak shear-stress values than slow loading rates (0.5 MPa every 40 s). Such effect is not observed (minor or inexistent) in the absence of pore fluids. 2) Under fast loading rates the (τp)eff may surpass that measured in the absence of pore fluids under identical effective normal stress σeff. 3) An increase of Pf does not necessarily induce the main instability (within the time intervals studied here, i.e. up to ~10 s) even if the effective strength threshold is largely surpassed (e.g., (τp)eff=1.3 μp σeff). We interpret these

  9. Dynamic hydraulic fluid stimulation regulated intramedullary pressure.

    PubMed

    Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian

    2013-11-01

    Physical signals within the bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within the bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where they peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in the bone, which serves critically in bone adaptation. These results clearly implied DHS's potential as an effective, non-invasive intervention for

  10. The Influence of Body Position on Cerebrospinal Fluid Pressure Gradient and Movement in Cats with Normal and Impaired Craniospinal Communication

    PubMed Central

    Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana

    2014-01-01

    Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension. PMID:24748150

  11. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication.

    PubMed

    Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko

    2014-01-01

    Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

  12. FLUID PRESSURE AND CAM OPERATED VACUUM VALVE

    DOEpatents

    Batzer, T.H.

    1963-11-26

    An ultra-high vacuum valve that is bakable, reusable, and capable of being quickly opened and closed is described. A translationally movable valve gate having an annular ridge is adapted to contact an annular soft metal gasket disposed at the valve seat such that the soft metal gasket extends beyond the annular ridge on all sides. The valve gate is closed, by first laterally aligning the valve gate with the valve seat and then bringing the valve gate and valve seat into seating contact by the translational movement of a ramp-like wedging means that engages similar ramp-like stractures at the base of the valve gate to force the valve gate into essentially pressureless contact with the annular soft metal gasket. This gasket is then pressurized from beneath by a fluid thereby effecting a vacuura tight seal between the gasket and the ridge. (AEC)

  13. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach.

    PubMed

    Biais, Matthieu; Ehrmann, Stephan; Mari, Arnaud; Conte, Benjamin; Mahjoub, Yazine; Desebbe, Olivier; Pottecher, Julien; Lakhal, Karim; Benzekri-Lefevre, Dalila; Molinari, Nicolas; Boulain, Thierry; Lefrant, Jean-Yves; Muller, Laurent

    2014-11-04

    Pulse pressure variation (PPV) has been shown to predict fluid responsiveness in ventilated intensive care unit (ICU) patients. The present study was aimed at assessing the diagnostic accuracy of PPV for prediction of fluid responsiveness by using the grey zone approach in a large population. The study pooled data of 556 patients from nine French ICUs. Hemodynamic (PPV, central venous pressure (CVP) and cardiac output) and ventilator variables were recorded. Responders were defined as patients increasing their stroke volume more than or equal to 15% after fluid challenge. The receiver operating characteristic (ROC) curve and grey zone were defined for PPV. The grey zone was evaluated according to the risk of fluid infusion in hypoxemic patients. Fluid challenge led to increased stroke volume more than or equal to 15% in 267 patients (48%). The areas under the ROC curve of PPV and CVP were 0.73 (95% confidence interval (CI): 0.68 to 0.77) and 0.64 (95% CI 0.59 to 0.70), respectively (P<0.001). A grey zone of 4 to 17% (62% of patients) was found for PPV. A tidal volume more than or equal to 8 ml.kg(-1) and a driving pressure (plateau pressure - PEEP) more than 20 cmH2O significantly improved the area under the ROC curve for PPV. When taking into account the risk of fluid infusion, the grey zone for PPV was 2 to 13%. In ventilated ICU patients, PPV values between 4 and 17%, encountered in 62% patients exhibiting validity prerequisites, did not predict fluid responsiveness.

  14. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  15. Syndrome of normal pressure hydrocephalus: possible relation to hypertensive and arteriosclerotic vasculopathy.

    PubMed Central

    Koto, A; Rosenberg, G; Zingesser, L H; Horoupian, D; Katzman, R

    1977-01-01

    A patient with clinical features of idiopathic normal pressure hydrocephalus, who responded dramatically to shunting, was found a necropsy to have a severe hypertensive and arteriosclerotic vasculopathy with multiple lacunar infarcts. There was no pathological evidence of thickened leptomeninges, fibrosis of the arachnoid villi, or Alzheimer's disease. An abnormal absorption mechanism was demonstrated with cisternography and by an increase in the concentration of homovanillic acid in the cerebrospinal fluid. It is suggested that vascular changes may play an important role in the pathophysiology in some cases of normal pressure hydrocephalus. Images PMID:845610

  16. Regional pore-fluid pressures in the active western Taiwan thrust belt: A test of the classic Hubbert-Rubey fault-weakening hypothesis

    NASA Astrophysics Data System (ADS)

    Yue, Li-Fan; Suppe, John

    2014-12-01

    We document regional pore-fluid pressures in the active Taiwan thrust belt using 55 deep boreholes to test the classic Hubbert-Rubey hypothesis that high static fluid pressures (depth normalized as λ = Pf/ρrgz) account for the extreme weakness of thrust faults, since effective friction μf∗ =μf(1 - λ) . Taiwan fluid pressures are dominated by disequilibrium compaction, showing fully compacted sediments with hydrostatic fluid pressures at shallow depths until the fluid-retention depth zFRD ≈ 3 km, below which sediments are increasingly undercompacted and overpressured. The Hubbert-Rubey fault weakening coefficient is a simple function of depth (1 - λ) ≈ 0.6zFRD/z. We map present-day and pre-erosion fluid pressures and weakening (1 - λ) regionally and show that active thrusts are too shallow relative to zFRD for the classic Hubbert-Rubey mechanism to be important, which requires z ≥ ˜4zFRD ≈ 12 km to have the required order-of-magnitude Hubbert-Rubey fault weakening of (1 - λ) ≤ ˜0.15. The best-characterized thrust is the Chelungpu fault that slipped in the 1999 (Mw = 7.6) Chi-Chi earthquake, which has a low effective friction μf∗ ≈ 0.08- 0.12 , yet lies near the base of the hydrostatic zone at depths of 1-5 km with a modest Hubbert-Rubey weakening of (1 - λ) ≈ 0.4-0.6. Overpressured Miocene and Oligocene detachments at 5-7 km depth have (1 - λ) ≈ 0.3. Therefore, other mechanisms of fault weakening are required, such as the dynamical mechanisms documented for the Chi-Chi earthquake.

  17. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  18. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    DOT National Transportation Integrated Search

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  19. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    PubMed

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  20. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging.

    PubMed

    Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P

    2006-08-01

    The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.

  1. Pressure driven laminar flow of a power-law fluid in a T-channel

    NASA Astrophysics Data System (ADS)

    Dyakova, O. A.; Frolov, O. Yu

    2017-10-01

    Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.

  2. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  3. A pilot study evaluating protein abundance in pressure ulcer fluid from people with and without spinal cord injury

    PubMed Central

    Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela

    2015-01-01

    Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005

  4. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  5. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Mcgannon, W. J. (Inventor)

    1980-01-01

    A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.

  6. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  7. Separation of Solid Stress From Interstitial Fluid Pressure in Pancreas Cancer Correlates With Collagen Area Fraction.

    PubMed

    Nieskoski, Michael D; Marra, Kayla; Gunn, Jason R; Kanick, Stephen C; Doyley, Marvin M; Hasan, Tayyaba; Pereira, Stephen P; Stuart Trembly, B; Pogue, Brian W

    2017-06-01

    Elevated total tissue pressure (TTP) in pancreatic adenocarcinoma is often associated with stress applied by cellular proliferation and hydrated hyaluronic acid osmotic swelling; however, the causal roles of collagen in total tissue pressure have yet to be clearly measured. This study illustrates one direct correlation between total tissue pressure and increased deposition of collagen within the tissue matrix. This observation comes from a new modification to a conventional piezoelectric pressure catheter, used to independently separate and quantify total tissue pressure, solid stress (SS), and interstitial fluid pressure (IFP) within the same tumor location, thereby clarifying the relationship between these parameters. Additionally, total tissue pressure shows a direct correlation with verteporfin uptake, demonstrating the impediment of systemically delivered molecules with increased tissue hypertension.

  8. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  9. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  10. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    PubMed

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  11. Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2007-04-01

    The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.

  12. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.

    PubMed

    Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio

    2016-08-01

    We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.

  13. Experiments and Simulations of Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.

    2018-02-01

    In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.

  14. Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes

    NASA Astrophysics Data System (ADS)

    1991-10-01

    ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.

  15. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.

    2014-12-01

    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on

  16. Abnormalities in ambulatory blood pressure monitoring in hypertensive patients with diabetes.

    PubMed

    Gorostidi, Manuel; de la Sierra, Alejandro; González-Albarrán, Olga; Segura, Julián; de la Cruz, Juan J; Vinyoles, Ernest; Llisterri, José L; Aranda, Pedro; Ruilope, Luis M; Banegas, José R

    2011-11-01

    Our aim was to assess the ambulatory blood pressure monitoring (ABPM) characteristics or patterns in hypertensive patients with diabetes compared with non-diabetic hypertensives. We performed a cross-sectional analysis of a 68,045 patient database from the Spanish Society of Hypertension ABPM Registry, a nation-wide network of >1200 primary-care physicians performing ABPM under standardized conditions in daily practice. We identified 12,600 (18.5%) hypertensive patients with diabetes. When compared with patients without diabetes, diabetic hypertensives exhibited higher systolic blood pressure (BP) levels in every ABPM period (daytime 135.4 vs. 131.8, and nighttime 126.0 vs. 121.0 mm Hg, P<0.001 for both) despite they were receiving more antihypertensive drugs (mean number 1.71 vs. 1.23, P<0.001). Consequently, diabetic patients suffered from lack of control of BP more frequently than non-diabetic subjects particularly during the night (65.5% vs. 57.4%, P<0.001). Prevalence of a non-dipping BP profile (64.2% vs. 51.6%, P<0.001) was higher in diabetic patients. In the other hand, prevalence of 'white-coat' hypertension in diabetic patients was 33.0%. We conclude that there was a remarkably high prevalence of alterations in ABPM in patients with diabetes. Abnormalities in systolic BP, particularly during the night, and in circadian BP pattern could be linked with the excess of BP-related cardiovascular risk of diabetes. A wider use of ABPM in diabetic patients should be considered.

  17. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  18. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  19. Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension.

    PubMed

    Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2016-05-01

    As ocular hypertension refers to a condition in which the intraocular pressure is consistently elevated but without development of glaucoma, study of it may provide important clues to factors that may play a protective role in glaucoma. β-amyloid, one of the key histopathological findings in Alzheimer's disease, has been reported to increase by chronic elevation of intraocular pressure in animals with experimentally induced ocular hypertension and to cause retinal ganglion cell death, pointing to similarities in molecular cell death mechanisms between glaucoma and Alzheimer's disease. On the other hand, recent studies have reported that intracranial pressure is higher in patients with ocular hypertension compared with controls, giving rise to the idea that elevated intracranial pressure may provide a protective effect for the optic nerve by decreasing the trans-lamina cribrosa pressure difference. The speculation that the higher intracranial pressure reported in ocular hypertension patients may protect against glaucoma mainly through a lower trans-lamina cribrosa pressure difference remains at least questionable. Here, we present an alternative viewpoint, according to which the protective effect of higher intracranial pressure could be due, at least in part, to a pressure-independent mechanism, namely faster cerebrospinal fluid production leading to increased cerebrospinal fluid turnover with enhanced removal of potentially neurotoxic waste products that accumulate in the optic nerve. This suggests a new hypothesis for glaucoma, which, just like Alzheimer's disease, may be considered then as an imbalance between production and clearance of neurotoxins, including β-amyloid. If confirmed, then strategies to improve cerebrospinal fluid flow are reasonable and could provide a new therapeutic approach for stopping the neurotoxic β-amyloid pathway in glaucoma. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  20. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    PubMed

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  1. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis

    USGS Publications Warehouse

    Price, L.C.; Wenger, L.M.

    1992-01-01

    Because fluid pressures are transient in sedimentary basins over geologic time, the effect of increasing fluid pressure on organic-matter metamorphism is difficult to determine, and conflicting opinions exist concerning its influence. Properly-performed aqueous-pyrolysis experiments can closely simulate hydrocarbon generation and maturation in nature, and thus offer an excellent way to study the influence of pressure. Such experiments, carried out on the Retort Phosphatic Shale Member of the Lower Permian Phosphoria Formation (type II-S organic matter) at different constant temperatures, demonstrated that increasing pressure significantly retards all aspects of organic matter metamorphism, including hydrocarbon generation, maturation and thermal destruction. This conclusion results from detailed quantitative and qualitative analyses of all products from hydrocarbon generation, from the C1 to C4 hydrocarbon gases to the asphaltenes, and also from analyses of the reacted rocks. We have documented that our aqueous-pyrolysis experiments closely simulated natural hydrocarbon generation and maturation. Thus the data taken as a function of pressure have relevance to the influence of normal and abnormal fluid pressures as related to: 1) depths and temperatures of mainstage hydrocarbon generation; 2) the thermal destruction of deposits of gas or light oil, or their preservation to unexpectedly high maturation ranks; and 3) the persistence of measurable to moderate concentrations of C15+ hydrocarbons in fine-grained rocks even to ultra-high maturation ranks. ?? 1992.

  2. Magnetic power piston fluid compressor

    NASA Technical Reports Server (NTRS)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  3. Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies

    NASA Astrophysics Data System (ADS)

    Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur

    2012-06-01

    The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.

  4. The role of ICP monitoring in patients with persistent cerebrospinal fluid leak following spinal surgery: a case series.

    PubMed

    Craven, Claudia; Toma, Ahmed K; Khan, Akbar A; Watkins, Laurence D

    2016-09-01

    Cerebrospinal fluid (CSF) leak following spinal surgery is a relatively common surgical complication. A disturbance in the underlying CSF dynamics could be the causative factor in a small group of patients with refractory CSF leaks that require multiple surgical repairs and prolonged hospital admission. A retrospective case series of patients with persistent post spinal surgery CSF leak referred to the hydrocephalus service for continuous intracranial pressure (ICP) monitoring. Patients' notes were reviewed for medical history, ICP data, radiological data, and subsequent management and outcome. Five patients (two males/three females, mean age, 35.4 years) were referred for ICP monitoring over a 12-month period. These patients had prolonged CSF leak despite multiple repair attempts 252 ± 454 days (mean ± SD). On ICP monitoring, all five patients had abnormal results, with the mean ICP 8.95 ± 4.41 mmHg. Four had abnormal pulse amplitudes, mean 6.15 mmHg ± 1.22 mmHg. All five patients underwent an intervention. Three patients underwent insertion of ventriculoperitoneal (VP) shunts. One patient had venous sinus stent insertion and one patient underwent medical management with acetazolamide. All five of the patients' CSF leak resolved post intervention. The mean time to resolution of CSF leak post intervention was 10.8  ± 12.9 days. Abnormal cerebrospinal fluid dynamics could be the underlying factor in patients with a persistent and treatment-refractory CSF leak post spinal surgery. Treatments aimed at lowering ICP may be beneficial in this group of patients. Whether abnormal pressure and dynamics represent a pre-existing abnormality or is induced by spinal surgery should be a subject of further study.

  5. Does fluid resuscitation with balanced solutions induce electrolyte and metabolic abnormalities? An in vitro assessment.

    PubMed

    Krzych, Łukasz J; Czempik, Piotr F

    2017-01-01

    Popular intravenous fluids in clinical use may have an impact on electrolyte concentration and metabolic balance and should be considered as powerful pharmacological agents. There is a growing body of evidence that fluid therapy should be more individualised and preferably based on balanced solutions. We sought to investigate the impact of three commonly used balanced fluids on electrolytes and metabolic equilibrium in an in vitro setting. Study group comprised 32 healthy male volunteers (without history of any acute/chronic disorder or known metabolic abnormality), aged 21-35 (29 ± 4) years, weight 59-103 (81.2 ± 9.8) kg, from whom blood samples were withdrawn. The whole blood was diluted in 4:1 ratio with the study solutions to make an end-concentration of 20 vol.% of each solution. The test solutions included balanced crystalloid (Plasmalyte®, Baxter, Poland [PL]), succinylated gelatin (Geloplasma®, Fresenius Kabi, Poland [GEL]) and 6% HES 130/0.4 (Volulyte®, Fresenius Kabi, Poland [HES]). All fluids caused comparable degree of haemodilution. PL and GEL decreased (104 mmol/L, interquartile range [IQR] 103-105; and 106 mmol/L, IQR 105-107.5, respectively), whereas HES increased the concentration of Cl- to 109 (IQR 108-110) mmol/L. PL and HES decreased (136, IQR 136-137 mmol/L; and 138 mmol/L, IQR 137-139, respectively), whereas GEL increased the Na+ level to 140.5 (IQR 140-141) mmol/L. PL and HES decreased osmolality (277.2 mOsm/kg, IQR 275.7-278.4; and 280.9 mOsm/kg, IQR 279.3-282.0, respectively). GEL increased it to 285.7 (IQR 283.7-286.8) mOsm/kg. All test solutions caused a similar statistically significant (p < 0.05) drop in base excess and bicarbonate concentration, and these fell outside the reference values. Due to its composition, GEL caused a significant increase in lactate concentration. HES and GEL caused a statistically significant drop in strong ion difference value. Due to high lactate level, the effect of GEL was most pronounced. Balanced

  6. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  7. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  8. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  9. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  10. Probe systems for measuring static pressure and turbulence intensity in fluid streams

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.

  11. FLUID: A numerical interpolation procedure for obtaining thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1977-01-01

    A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN

  12. Hydro-mechanical pressure response to fluid injection into finite aquifers highlights the non-local behavior of storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesus

    2017-04-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equals elastic storage to medium compressibility, which is a constant-in-time and locally-defined parameter. This allows simplifying the flow equation into a linear diffusion equation that is relatively easy to solve. However, the hydraulic gradients, generated by fluid injection or pumping, act as forces that push the medium in the direction of flow causing it to deform, even in regions where pressure has not changed. Actual deformation depends on the elastic properties of the medium, but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Therefore the storage results to be non-local (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer) and the proper evaluation of transient pressure requires acknowledging the hydro-mechanical (HM) coupling, which is generally disregarded by conventional hydrogeology. Here we discuss whether HM coupling effects are relevant, which is of special interest for the activities of enhanced geothermics, waste disposal, CO2 storage or shale gas extraction. We propose analytic solutions to the HM problem of fluid injection (or extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that the deviation respect to traditional purely hydraulic solutions is significant when the aquifer has limited capacity to deform. The most relevant implications are that the response time is faster and the pressure variation greater than expected, which may be relevant for aquifer characterization and for the evaluation of pressure build-up due to fluid injection.

  13. Along fault friction and fluid pressure effects on the spatial distribution of fault-related fractures

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa

    2018-03-01

    Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.

  14. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  15. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.

    PubMed

    Hou, Jiapeng; Veeregowda, Deepak H; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C

    2017-10-20

    The viscoelasticity of a biofilm's EPS (extracellular-polymeric-substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the response of a biofilm of an EPS producing (ATCC 12600) and non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal-Laser-Scanning-Microscopy confirmed absence of calcofluorwhite-stainable EPS in biofilms of S. aureus 5298. ATR-FTIR spectroscopy combined with tribometry indicated that the polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low shear and this increased EPS production extended to entire biofilms, as indicated by tribometrically measured coefficients of friction (CoF). CoFs of biofilms grown under high fluid shear were higher than when grown under low shear, likely due to wash-off of polysaccharides. Measurement of a biofilm's CoF implies application of mechanical pressure that yielded an immediate increase in polysaccharide band area of S. aureus ATCC 12600 biofilms due to their compression that decreased after relieving pressure to the level observed prior to mechanical pressure. For biofilms grown under high shear, this coincided with a higher %whiteness in Optical-Coherence-Tomography-images indicative of water outflow, returning back into the biofilm during stress relaxation. Biofilms grown under low shear however, were stimulated during tribometry to produce EPS, also after stress relieve. Knowledge of factors that govern EPS production and water flow in biofilms will allow better control of biofilms under mechanical challenge and understanding of the barrier properties of biofilms toward antimicrobial penetration. IMPORTANCE Adaptive responses of biofilm inhabitants in nature to environmental challenges such as fluid shear and mechanical pressure, often involve EPS production with the aim of protecting

  16. Brachial cuff measurements of blood pressure during passive leg raising for fluid responsiveness prediction.

    PubMed

    Lakhal, K; Ehrmann, S; Benzekri-Lefèvre, D; Runge, I; Legras, A; Dequin, P-F; Mercier, E; Wolff, M; Régnier, B; Boulain, T

    2012-05-01

    The passive leg raising maneuver (PLR) for fluid responsiveness testing relies on cardiac output (CO) measurements or invasive measurements of arterial pressure (AP) whereas the initial hemodynamic management during shock is often based solely on brachial cuff measurements. We assessed PLR-induced changes in noninvasive oscillometric readings to predict fluid responsiveness. Multicentre interventional study. In ICU sedated patients with circulatory failure, AP (invasive and noninvasive readings) and CO measurements were performed before, during PLR (trunk supine, not modified) and after 500-mL volume expansion. Areas under the ROC curves (AUC) were determined for fluid responsiveness (>10% volume expansion-induced increase in CO) prediction. In 112 patients (19% with arrhythmia), changes in noninvasive systolic AP during PLR (noninvasiveΔ(PLR)SAP) only predicted fluid responsiveness (cutoff 17%, n=21, positive likelihood ratio [LR] of 26 [18-38]), not unresponsiveness. If PLR-induced change in central venous pressure (CVP) was at least of 2 mm Hg (n=60), suggesting that PLR succeeded in altering cardiac preload, noninvasiveΔ(PLR)SAP performance was good: AUC of 0.94 [0.85-0.98], positive and negative LRs of 5.7 [4.6-6.8] and 0.07 [0.009-0.5], respectively, for a cutoff of 9%. Of note, invasive AP-derived indices did not outperform noninvasiveΔ(PLR)SAP. Regardless of CVP (i.e., during "blind PLR"), noninvasiveΔ(PLR)SAP more than 17% reliably identified fluid responders. During "CVP-guided PLR", in case of sufficient change in CVP, noninvasiveΔ(PLR)SAP performed better (cutoff of 9%). These findings, in sedated patients who had already undergone volume expansion and/or catecholamines, have to be verified during the early phase of circulatory failure (before an arterial line and/or a CO measuring device is placed). Copyright © 2012 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  17. Physiology and pathophysiology of pleural fluid turnover.

    PubMed

    Zocchi, L

    2002-12-01

    case of a primary abnormality of one ore more of the mechanisms of pleural liquid turnover, a pleural effusion ensues. The factors responsible for pleural effusion may be subdivided into three main categories: those changing transpleural pressure balance, those impairing lymphatic drainage, and those producing increases in mesothelial and capillary endothelial permeability. Except in the first case, pleural fluid protein concentration increases above normal: this feature underlies the classification of pleural effusions into transudative and exudative.

  18. Pump for delivering heated fluids

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E. (Inventor)

    1973-01-01

    A thermomechanical pump particularly suited for use in pumping a warming fluid obtained from an RTG (Radioisotope Thermal Generator) through science and flight instrumentation aboard operative spacecraft is described. The invention is characterized by a pair of operatively related cylinders, each including a reciprocating piston head dividing the cylinder into a pressure chamber confining therein a vaporizable fluid, and a pumping chamber for propelling the warming fluid, and a fluid delivery circuit for alternately delivering the warming fluid from the RTG through the pressure chamber of one cylinder to the pumping chamber of the other cylinder, whereby the vaporizable fluid within the pair of pressure chambers alternately is vaporized and condensed for driving the associated pistons in pumping and intake strokes.

  19. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  20. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure.

    PubMed

    Zhang, Chuanwu; Mao, Guangyun; He, Suxia; Yang, Zuopeng; Yang, Wei; Zhang, Xiaojing; Qiu, Wenting; Ta, Na; Cao, Li; Yang, Hui; Guo, Xiaojuan

    2013-11-15

    Arsenic increases the risk and incidence of cardiovascular disease. To explore the impact of long-term exposure to low-level arsenic in drinking water on blood pressure including pulse pressure (PP) and mean arterial blood pressure (MAP), a cross-sectional study was conducted in 2010 in which the blood pressure of 405 villagers was measured, who had been drinking water with an inorganic arsenic content <50 μg/L. A multivariate logistic regression model was used to estimate odds ratios and 95% confidence intervals. After adjusting for age, gender, Body Mass Index (BMI), alcohol consumption and smoking, the odds ratios showed a 1.45-fold (95%CI: 0.63-3.35) increase in the group with >30-50 years of arsenic exposure and a 2.95-fold (95%CI: 1.31-6.67) increase in the group with >50 years exposure. Furthermore, the odds ratio for prevalence of abnormal PP and MAP were 1.06 (95%CI: 0.24-4.66) and 0.87 (95%CI: 0.36-2.14) in the group with >30-50 years of exposure, and were 2.46 (95%CI: 0.87-6.97) and 3.75 (95%CI: 1.61-8.71) for the group with >50 years exposure, compared to the group with arsenic exposure ≤ 30 years respectively. Significant trends for Hypertension (p<0.0001), PP (p<0.0001) and MAP (p=0.0016) were found. The prevalence of hypertension and abnormal PP as well as MAP is marked among a low-level arsenic exposure population, and significantly increases with the duration of arsenic exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Characterization of fluids and fluid-fluid interaction by fiber optic refractive index sensor measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.

    2009-04-01

    A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.

  2. Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Fischer, T.; Dahm, T.

    2012-10-01

    Two recent major swarms in Western Bohemia occurred in the years 2000 and 2008 within almost the same portion of a fault close to Novy Kostel. Previous analysis of the year 2000 earthquake swarm revealed that fluid intrusion seemed to initiate the activity whereas stress redistribution by the individual swarm earthquakes played a major role in the further swarm evolution. Here we analyse the new swarm, which occurred in the year 2008, with regard to its correlation to the previous swarm as well its spatiotemporal migration patterns. We find that (i) the main part of the year 2008 activity ruptured fault patches adjacent to the main activity of the swarm 2000, but that also (ii) a significant overlap exists where earthquakes occurred in patches in which stress had been already released by precursory events; (iii) the activity shows a clear migration which can be described by a 1-D (in up-dip direction) diffusion process; (iv) the migration pattern can be equally well explained by a hydrofracture growth, which additionally explains the faster migration in up-dip compared to the down-dip direction as well as the maximum up-dip extension of the activity. We use these observations to estimate the underlying fluid pressure change in two different ways: First, we calculate the stress changes induced by precursory events at the location of each swarm earthquake assuming that observed stress deficits had to be compensated by pore pressure increases; and secondly, we estimate the fluid overpressure by fitting a hydrofracture model to the asymmetric seismicity patterns. Both independent methods indicate that the fluid pressure increase was initially up to 30 MPa.

  3. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  4. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Girault, F.; Pili, E.

    2017-12-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  5. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

    PubMed Central

    Hua, Yi; Voorhees, Andrew P.; Sigal, Ian A.

    2018-01-01

    Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally. PMID:29332130

  6. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in

  7. Effect of intraoperative transesophageal Doppler-guided fluid therapy versus central venous pressure-guided fluid therapy on renal allograft outcome in patients undergoing living donor renal transplant surgery: a comparative study.

    PubMed

    Srivastava, Divya; Sahu, Sandeep; Chandra, Abhilash; Tiwari, Tanmay; Kumar, Sanjay; Singh, P K

    2015-12-01

    Transesophageal Doppler (TED)-guided intraoperative fluid therapy has shown to noninvasively optimize intravascular volume and reduce postoperative morbidity. The aim of this study was to compare the effects of Doppler-guided intraoperative fluid administration and central venous pressure (CVP)-guided fluid therapy on renal allograft outcome and postoperative complications. A prospective nonrandomized active controlled study was conducted on end-stage renal disease patients scheduled for living donor renal transplant surgery. 110 patients received intraoperative fluid guided by corrected flow time (FTc) and variation in stroke volume values obtained by continuous TED monitoring. Data of 104 patients in whom intraoperative fluid administration was guided by CVP values were retrospectively obtained for a control. The amount of intraoperative fluid given in the study group (12.20 ± 4.24 ml/kg/h) was significantly lower than in the controls (22.21 ± 4.67 ml/kg/h). The amount of colloid used was also significantly less and fewer recipients were seen to require colloid (69 vs 85%). The mean arterial pressures were comparable throughout. CVP reached was 7.18 ± 3.17 mmHg in the study group. It was significantly higher in the controls (13.42 ± 3.12 mmHg). The postoperative graft function and rate of dysfunction were comparable. Side-effects like postoperative dyspnoea (4.8 vs 0%) and tissue edema (9.6 vs 2.7%) were higher in the controls. FTc-guided intraoperative fluid therapy achieved the same rate of immediate graft function as CVP-guided fluid therapy but used a significantly less amount of fluid. The incidence of postoperative complications related to fluid overload was also reduced. The use of TED may replace invasive central line insertions in the future.

  8. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  9. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  11. Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Canik, J. M.; Chang, C. S.; Hager, R.; Leonard, A. W.; Maingi, R.; Nazikian, R.; Stotler, D. P.

    2017-04-01

    Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding- center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number  ˜ 0.5), skewed ion distributions near the sheath entrance leading to subsonic flow there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.

  12. Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2017-03-10

    Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding-center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number similar to 0.5), skewed ion distributions near the sheath entrance leading to subsonic flowmore » there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.« less

  13. Fluid Shifts Before, During, and After Prolonged Space Flight and their Association with Intracranial Pressure and Visual Impairment

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Lee, S.; Platts, S.; Macias, B.; Lui, J.; Ebert, D.; Sargsyan, A.; Dulchavsky, S.; Alferova, I.; Yarmanova, E.; hide

    2013-01-01

    With the conclusion of the Space Shuttle program, NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed in Space Shuttle crewmembers after their short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound changes in vision, some with objective structural and functional findings such as papilledema and choroidal folds on ophthalmologic examination. Globe flattening, optic nerve sheath dilatation, optic nerve tortuosity, and other findings have been noted in imaging studies. This pattern is referred to as visual impairment and intracranial pressure (VIIP) syndrome. The VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) is associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been systematically tested. The purpose of this study is to objectively characterize the fluid distribution and compartmentalization associated with long-duration space flight, and to correlate the findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, can be predicted by crewmember baseline data and responses to acute hemodynamic manipulations (such as head-down tilt tests) obtained before flight. Lastly, we will evaluate the patterns of fluid distribution in astronaut subjects on the ISS during the use of lower body negative pressure (LBNP) and respiratory maneuvers to characterize and explain general and individual responses during space flight.

  14. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very

  15. Hydrocarbon fluid, ejector refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less

  16. Impact on a Compressible Fluid

    NASA Technical Reports Server (NTRS)

    Egorov, L. T.

    1958-01-01

    Upon impact of a solid body on the plane surface of a fluid, there occurs on the vetted surface of the body an abrupt pressure rise which propagates into both media with the speed of sound. Below, we assume the case where the speed of propagation of sound in the body which falls on the surface of the fluid may be regarded as infinitely large in comparison with the speed of propagation of sound in the fluid; that is, we shall assume that the falling body is absolutely rigid. IN this case, the entire relative speed of the motion which takes place at the beginning of the impact is absorbed by the fluid. The hydrodynamic pressures arising thereby are propagated from the contact surface within the fluid with the speed of sound in the form of compression and expansion waves and are gradually damped. After this, they are dispersed like impact pressures, reach ever larger regions of the fluid remote fran the body and became equal to zero; in the fluid there remain hydrodynamic pressures corresponding to the motion of the body after the impact. Neglecting the forces of viscosity and taking into account, furthermore, that the motion of the fluid begins from a state of rest, according to Thomson's theorem, we may consider the motion of an ideal compressible fluid in the process of impact to be potential. We examine the case of impact upon the surface of a ccmpressible fluid of a flat plate of infinite extent or of a body, the immersed part of the surface of which may be called approximately flat. In this report we discuss the first phase of the impact pressure on the surface of a fluid, prior to the appearance of a cavity, since at this stage the hydrodynamic pressures reach their maximum values. Observations, after the fall of the bodies on the surface of the fluid, show that the free surface of the fluid at this stage is almost completely at rest if one does not take into account the small rise in the neighborhood of the boundaries of the impact surface.

  17. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the

  18. Characterization of esophageal pressure-flow abnormalities in patients with non-obstructive dysphagia and normal manometry findings.

    PubMed

    Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Hsu, Ching-Sheng; Omari, Taher I

    2013-06-01

    Patients with non-obstructive dysphagia (NOD) report symptoms of impaired esophageal bolus transit without evidence of bolus stasis. In such patients, manometric investigation may diagnose esophageal motility disorders; however, many have normal motor patterns. We hypothesized that patients with NOD would demonstrate evidence of high flow-resistance during bolus passage which in turn would relate to the reporting of bolus hold up perception. Esophageal pressure-impedance recordings of 5 mL liquid and viscous swallows from 18 NOD patients (11 male; 19-71 years) and 17 control subjects (9 male; 25-60 years) were analyzed. The relationship between intrabolus pressure and bolus flow timing in the esophagus was assessed using the pressure flow index (PFI). Bolus perception was assessed swallow by swallow using standardized descriptors. NOD patients were characterized by a higher PFI than controls. The PFI defined a pressure-flow abnormality in all patients who appeared normal based on the assessment esophageal motor patterns and bolus clearance. The PFI was higher for individual swallows during which subjects reported perception of bolus passage. Bolus flow-resistance is higher in NOD patients compared with controls as well as higher in relation to perception of bolus transit, suggesting the presence of an esophageal motility disorder despite normal findings on conventional analysis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  19. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  20. Performance of journal bearings with semi-compressible fluids

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.

  1. Stability of fault submitted to fluid injections

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  2. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  3. Fluid jet electric discharge source

    DOEpatents

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  4. Predictive models for pressure-driven fluid infusions into brain parenchyma

    NASA Astrophysics Data System (ADS)

    Raghavan, Raghu; Brady, Martin

    2011-10-01

    Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model—absent from previous ones, but requirements for any useful simulation—are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.

  5. Geochemistry of tectonically expelled fluids from the northern Coast ranges, Rumsey Hills, California, USA

    USGS Publications Warehouse

    Davisson, M.L.; Presser, T.S.; Criss, R.E.

    1994-01-01

    Tectonic compression has created abnormally high pressure on deep basinal fluids causing their expulsion from areally exposed Upper Cretaceous rock along the eastern margin of the California Coast ranges. The fluids emerge as near-neutral, perennial sodium chloride springs at high elevations with flow rates as high as 10 L per min. Higher spring discharges are more common around the exposure of a west-vergent fault propagation fold axis. Spring waters range from ~1000 to 27,000 mg/L TDS. The least saline water (??18O = -7.5???) closely represents local meteoric water that mixes with saline fluid (??18O = +5.3???) and forms a slope of ~3.5 on a ??D vs. ??18O plot. A Na (125 to 8000 mg/L) vs. Cl (150 to 17,000 mg/L) plot shows a linear dilution trend that extends close to, but below, the values for modern seawater. Calcium (75-3000 mg/L) is considerably enriched relative to seawater and forms a nonlinear trend with chloride. In detail, the "Na deficit," defined by the difference between the measured Na content and the Na concentration on a hypothetical seawater dilution line, is approximately balanced by the Ca excess, similarly defined by the seawater dilution line. This relationship strongly suggests that the fluid is diluted seawater that is being modified by active albitization of plagioclase at different depths. Simultaneous B and 18O enrichment of the fluids, accompanied by deuterium depletion, further suggest that the seawater modification is influenced by clay diagenesis. Bicarbonate and SiO2 concentrations show an inverse correlation with Cl, with most waters being saturated or slightly oversaturated with calcite and quartz at the discharge temperatures. Some freshwater springs with near-meteoric stable isotope values may represent mixing of young groundwater from perched aquifers, but in many cases, the freshwater springs emerge along the same structures and have the same perennial nature as the saline fluids, and expulsion of an older fresh groundwater

  6. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  7. Aluminum speciation in aqueous fluids at deep crustal pressure and temperature

    NASA Astrophysics Data System (ADS)

    Mookherjee, Mainak; Keppler, Hans; Manning, Craig E.

    2014-05-01

    We investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 °C. We have studied aluminum species in (a) pure H2O, (b) 5.3 m KOH solution, and (c) 1 m KOH solution. In order to better understand the spectral features of the aqueous fluids, we used ab initio simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with 5.3 m and 1 m KOH solution in equilibrium with Al2O3 show a sharp band at ˜620 cm-1 which could be attributed to the [ species. The band grows in intensity with temperature along an isochore. A shoulder on the high-frequency side of this band may be due to a hydrated, charge neutral Al(OH)3·H2O species. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [ species to dimers [(OH)2-Al-(OH)2-Al(OH)2] or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. Upon cooling of Al-bearing solutions to room temperatures, Raman bands indicating the precipitation of diaspore (AlOOH) were observed in some experiments. The Raman spectra of the KOH solutions (with or without dissolved alumina) showed a sharp OH stretching band at ˜3614 cm-1 and an in-plane OH bending vibration at ˜1068 cm-1, likely related to an OH- ion with the oxygen atom attached to a water molecule by hydrogen bonding. A weak feature at ˜935 cm-1 may be related to the out-of-plane bending vibration of the same species or to an OH species with a different environment.

  8. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  9. Oxygen Isotope and Microtextural Evidence for Fluctuations in Fluid Pressure During Contact Metamorphism, Alta Aureole, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bowman, J. R.; Valley, J. W.; Kita, N.

    2006-12-01

    Thin section-scale textures record a detailed history of prograde and retrograde reactions in the periclase (Per) zone of the Alta Stock aureole. New ion microprobe (SIMS) measurements (10 micron spot, ±0.2 permil, 1sd) of the oxygen isotope compositions of the carbonates preserving these textures provide evidence for at least two cycles of oscillation of fluid pressure (Pfl) between lithostatic (PL) and hydrostatic (Phyd) conditions during evolution of the inner aureole. Infiltration of water-rich fluids during prograde metamorphism converted dolomite (Dol) to Per + calcite (Cal) marble and caused significant 18O/16O depletion in the Dol protolith (Initial δ18O (Cal) > +25 permil), producing Cal with δ18O values of +11 permil. The SIMS values approximate oxygen isotope exchange equilibrium with the Alta stock, indicating that infiltrating fluids were likely magmatic. Exsolution of fluid from the crystallizing magma, coupled with geothermometry from the periclase zone marbles, requires Pfl> PL. Horizontally-oriented expansion cracks filled with brucite (Br) extend from Br pseudomorphs after periclase, and cut retrograde Dol that partially to completely rims the Br pseudomorphs. This earlier retrograde Dol is significantly depleted in 18O/16O relative to matrix Cal, with δ18O of +5 to +7.1 permil. These lower δ18O values indicate that meteoric water infiltrated into the Per marbles during cooling and resulting partial back reaction of Per + Cal to Dol, prior to the hydration of the remaining Per to Br. Influx of meteoric water requires sufficient increase in permeability to permit surface- derived meteoric water to penetrate to the estimated 4.5 km depth of this structural level of the Alta aureole, and suggests a resulting decrease in Pfl to hydrostatic pressure conditions. The horizontally-oriented expansion cracks associated with the Br pseudomorphs indicate that sub-vertical expansion accompanied hydration of Per to Br, requiring that Pfl increase again to

  10. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  11. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis.

    PubMed

    Anzarut, Alexander; Olson, Jarret; Singh, Prabhjyot; Rowe, Brian H; Tredget, Edward E

    2009-01-01

    This study had three objectives. First, to conduct a systematic review to identify the available evidence for the use of pressure garment therapy (PGT); second, to assess the quality of the available evidence; and third, to conduct a meta-analysis to quantify the effectiveness of PGT for the prevention of abnormal scarring after burn injury. Standard care for the prevention of abnormal scarring after burn injury includes pressure garment therapy (PGT); however, it is associated with potential patient morbidity and high costs. We hypothesise that an assessment of the available evidence supporting the use of pressure garment therapy will aid in directing clinical care and future research. Randomised control trials were identified from CINHAL, EMBASE, MEDLINE, CENTRAL, the 'grey literature' and hand searching of the Proceedings of the American Burn Association. Primary authors and pressure garment manufacturers were contacted to identify eligible trials. Bibliographies from included studies and reviews were searched. Study results were pooled to yield weighted mean differences or standardised mean difference and reported using 95% confidence intervals. The review incorporated six unique trials involving 316 patients. Original data from one unpublished trial were included. Overall, studies were considered to be of high methodological quality. The meta-analysis was unable to demonstrate a difference between global assessments of PGT-treated scars and control scars [weighted mean differences (WMD): -0.46; 95% confidence interval (CI): -1.07 to 0.16]. The meta-analysis for scar height showed a small, but statistically significant, decrease in height for the PGT-treated group standardised mean differences (SMD): -0.31; 95% CI: -0.63, 0.00. Results of meta-analyses of secondary outcome measures of scar vascularity, pliability and colour failed to demonstrate a difference between groups. PGT does not appear to alter global scar scores. It does appear to improve scar height

  12. Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst; Trautwein, Ute; Legarth, Björn; Zimmermann, Günter

    2006-10-01

    The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.

  13. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  14. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  15. Irrigation dynamics associated with positive pressure, apical negative pressure and passive ultrasonic irrigations: a computational fluid dynamics analysis.

    PubMed

    Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil

    2014-08-01

    Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  16. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  17. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts.

    PubMed

    Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L

    2014-06-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm 2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

  18. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts

    PubMed Central

    Gardinier, Joseph D.; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L.

    2014-01-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis. PMID:24910719

  19. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: The hydraulic hypothesis.

    PubMed

    Rossitti, Sandro

    2013-01-01

    Brain arteriovenous malformations (AVMs) produce circulatory and functional disturbances in adjacent as well as in remote areas of the brain, but their physiological effect on the cerebrospinal fluid (CSF) pressure is not well known. The hypothesis of an intrinsic disease mechanism leading to increased CSF pressure in all patients with brain AVM is outlined, based on a theory of hemodynamic control of intracranial pressure that asserts that CSF pressure is a fraction of the systemic arterial pressure as predicted by a two-resistor series circuit hydraulic model. The resistors are the arteriolar resistance (that is regulated by vasomotor tonus), and the venous resistance (which is mechanically passive as a Starling resistor). This theory is discussed and compared with the knowledge accumulated by now on intravasal pressures and CSF pressure measured in patients with brain AVM. The theory provides a basis for understanding the occurrence of pseudotumor cerebri syndrome in patients with nonhemorrhagic brain AVMs, for the occurrence of local mass effect and brain edema bordering unruptured AVMs, and for the development of hydrocephalus in patients with unruptured AVMs. The theory also contributes to a better appreciation of the pathophysiology of dural arteriovenous fistulas, of vein of Galen aneurismal malformation, and of autoregulation-related disorders in AVM patients. The hydraulic hypothesis provides a comprehensive frame to understand brain AVM hemodynamics and its effect on the CSF dynamics.

  20. Impact of Magnetic Field on Pressures of Programmable Cerebrospinal Fluid Shunts: An Experimental Study.

    PubMed

    Altun, Idiris; Yuksel, Kasim Zafer; Mert, Tufan

    2017-01-01

    To investigate whether programmable cerebrospinal fluid (CSF) shunts are influenced by exposure to the magnetic field and to compare the effects of magnetic field in 4 different brands of programmable CSF shunts. This experimental study was performed in the laboratory using a novel design of magnetic field. Four types of programmable CSF shunts (Miethke®, Medtronic®, Sophysa® and Codman®Hakim®) were exposed to the magnetic field generated by an apparatus consisting of Helmholtz coil for 5 minutes. In every CSF shunt, initial pressures were adjusted to 110 mm H2O and pressures after exposure to magnetic field were noted. These measurements were implemented at frequencies of 5 Hz, 20 Hz, 30 Hz, 40 Hz, 60 Hz and 80 Hz. In each type, three shunts were utilized and evaluations were made twice for every shunt. At 5, 30, 40 and 60 Hz, Groups 1, 2 and 3 had significantly higher average pressures than Group 4. At 20 and 80 Hz, Groups 1 and 2 had notably different pressure values than Groups 3 and 4. Group 3 displayed the highest pressure, while Group 4 demonstrated the lowest pressure. Exposure to magnetic fields may affect the pressures of programmable CSF shunts. However, further controlled, clinical trials are warranted to elucidate the in-vivo effects of magnetic field exposure.

  1. Experimental Analysis of the Role of Fluid Transport Properties in Fluid-Induced Fracture Initiation and Propagation

    NASA Astrophysics Data System (ADS)

    Boutt, D.; McPherson, B. J.; Cook, B. K.; Goodwin, L. B.; Williams, J. R.; Lee, M. Y.; Patteson, R.

    2003-12-01

    It is well known that pore fluid pressure fundamentally influences a rock's mechanical response to stress. However, most measures of the mechanical behavior of rock (e.g. shear strength, Young's modulus) do not incorporate, either explicitly or implicitly, pore fluid pressure or transport properties of rock. Current empirical and theoretical criteria that define the amount of stress a given body of rock can support before fracturing also lack a direct connection between fluid transport and mechanical properties. Our research goal is to use laboratory experimental results to elucidate correlations between rock transport properties and fracture behavior under idealized loading conditions. In strongly coupled fluid-solid systems the evolution of the solid framework is influenced by the fluid and vice versa. These couplings often result in changes of the bulk material properties (i.e. permeability and failure strength) with respect to the fluid's ability to move through the solid and the solids ability to transmit momentum. Feedbacks between fluid and solid framework ultimately play key roles in understanding the spatial and temporal evolution of the coupled fluid-solid system. Discretely coupled models of fluid and solid mechanics were developed a priori to design an experimental approach for testing the role of fluid transport parameters in rock fracture. The experimental approach consists of first loading a fluid saturated cylindrical rock specimen under hydrostatic conditions and then applying a differential stress such that the maximum stress is perpendicular to the cylinder long axis. At the beginning of the test the minimum stress and the fluid pressure are dropped at the same time such that the resulting difference in the initial fluid pressure and the final fluid pressure is greater than the final minimum stress. These loading conditions should produce a fluid driven tensile fracture that is perpendicular to the cylinder long axis. Initial analyses using

  2. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.

    PubMed

    Beker, Levent; Benet, Arnau; Meybodi, Ali Tayebi; Eovino, Ben; Pisano, Albert P; Lin, Liwei

    2017-06-01

    In this paper, a novel method to generate electrical energy by converting available mechanical energy from pressure fluctuations of the cerebrospinal fluid within lateral ventricles of the brain is presented. The generated electrical power can be supplied to the neural implants and either eliminate their battery need or extend the battery lifespan. A diaphragm type harvester comprised of piezoelectric material is utilized to convert the pressure fluctuations to electrical energy. The pressure fluctuations cause the diaphragm to bend, and the strained piezoelectric materials generate electricity. In the framework of this study, an energy harvesting structure having a diameter of 2.5 mm was designed and fabricated using microfabrication techniques. A 1:1 model of lateral ventricles was 3D-printed from raw MRI images to characterize the harvester. Experimental results show that a maximum power of 0.62 nW can be generated from the harvester under similar physical conditions in lateral ventricles which corresponds to energy density of 12.6 nW/cm 2 . Considering the available area within the lateral ventricles and the size of harvesters that can be built using microfabrication techniques it is possible to amplify to power up to 26 nW. As such, the idea of generating electrical energy by making use of pressure fluctuations within brain is demonstrated in this work via the 3D-printed model system.

  3. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within

  4. Practical development of continuous supercritical fluid process using high pressure and high temperature micromixer

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2015-12-01

    In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.

  5. Fluid extravasation during hip arthroscopy.

    PubMed

    Stafford, Giles H; Malviya, Ajay; Villar, Richard N

    2011-01-01

    The amount of fluid that may be lost into the soft tissues during hip arthroscopic surgery is unknown. We measured the volumes of irrigation fluid infused, operating time, fluid pressures and volumes of fluid recovered in 36 therapeutic hip arthroscopies. We excluded those where fluid was lost to the floor, leaving 28 patients. The majority were undergoing surgery for the treatment of femoroacetabular impingement. In 5 patients an intra-articular contrast medium was instilled, in order to establish the likely location of any extravasated fluid. The mean operating time was 68 minutes (31 to 120), and the mean infusion pressure was 46 mm Hg (30 to 70). The mean volume of infused fluid was 9677 ml (95% confidence interval (CI) 7715 to 11638) and the mean volume of fluid recovered was 8544 ml (95% CI 6715 to 10373). The mean fluid extravasation loss into the peri-articular tissues was 1132 ml (95% CI 808 ml to 1456 ml). There was a significant correlation between the volume of extravasated fluid and both the length of operation and the volume of infused fluid used. We had no adverse events in our series. During arthroscopic hip surgery more than a litre of irrigation fluid may be extravasated into the soft tissues. In order to reduce problems related to this we attempt to keep operating times low, and maintain intra-operative fluid pressures as low as possible.

  6. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  7. Speciation of High-Pressure Carbon-Saturated COH Fluids at Buffered fO2 Conditions: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.

    2014-12-01

    The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The

  8. Abnormal cerebrospinal fluid protein indices in schizophrenia.

    PubMed

    Kirch, D G; Kaufmann, C A; Papadopoulos, N M; Martin, B; Weinberger, D R

    1985-10-01

    Determinations of albumin and immunoglobulin G (IgG) were performed in paired cerebrospinal fluid (CSF) and serum samples from 24 subjects with schizophrenia. These determinations allowed calculation of two indices, one that is an indicator of integrity of the blood-brain barrier and the other a measure of selective IgG production within the central nervous system (CNS). In comparison with previously determined reference values, 7 of 24 (29%) subjects showed increased blood-brain barrier permeability, and 8 of 24 (33%) demonstrated elevated endogenous CNS IgG production. One of these eight also demonstrated oligoclonal banding on high-resolution protein electrophoresis of the CSF.

  9. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  10. Using regional pore-fluid pressure response following the 3 Sep 2016 M­­w5.8 Pawnee, Oklahoma earthquake to constrain far-field seismicity rate forecasts

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Murray, K. E.; Cochran, E. S.

    2016-12-01

    The 3 Sep 2016 M­­w5.8 Pawnee, Oklahoma earthquake was the largest event to occur in recorded history of the state. Widespread shaking from the event was felt in seven central U.S. states and caused damage as far away as Oklahoma City ( 115 km SSW). The Pawnee earthquake occurred soon after the deployment of a subsurface pore-fluid pressure monitoring network in Aug 2016. Eight pressure transducers were installed downhole in inactive saltwater disposal wells that were completed in the basal sedimentary zone (the Arbuckle Group). The transducers are located in Alfalfa, Grant, and Payne Counties at distances of 48 to 140 km from the Pawnee earthquake. We observed coseismic fluid pressure changes in all monitoring wells, indicating a large-scale poroelastic response in the Arbuckle. Two wells in Payne County lie in a zone of volumetric compression 48-52 km SSE of the rupture and experienced a co-seismic rise in fluid pressures that we conclude was related to poroelastic rebound of the Arbuckle reservoir. We compare measurements of the pore-fluid pressure change to estimated values given by the product of the volumetric strain, a Skempton's coefficient of 0.33, and a Bulk modulus of 25 GPa for fractured granitic basement rocks. We explore the possibility that the small increase in pore-fluid pressure may increase the rate of seismicity in regions outside of the mainshock region. We test this hypothesis by supplementing the Oklahoma Geological Survey earthquake catalog by semi-automated detection smaller magnitude (<2.6 M) earthquakes on seismic stations that are located in the vicinity of the wells. Using the events that occur in the week before the mainshock (27 Aug to 3 Sep 2016) as the background seismicity rate and the estimated pore-fluid pressure increase, we use a rate-state model to predict the seismicity rate change in the week following the event. We then compare the model predictions to the observed seismicity in the week following the Pawnee earthquake

  11. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  12. Pretest predictions of surface strain and fluid pressures in mercury targets undergoing thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.

    The authors provide a perspective overview of pretest modeling and analysis work related to thermal shock effects in spallation neutron source targets that were designed for conducting thermal shock experiments at the Los Alamos Neutron Science Center (LANSCE). Data to be derived are to be used for benchmarking computational tools as well as to assess the efficacy of optical gauges for monitoring dynamic fluid pressures and phenomena such as the onset of cavitation.

  13. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  14. A dynamic pressure calibration standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1985-01-01

    A dynamic pressure calibration standard has been developed for calibrating flush diaphragm mounted pressure transducers. Pressures up to 20 kPa (3 psi) have been accurately generated over a frequency range of 50 to 1800 hz. The uncertainty of the standard is +/-5 pct to 5kPa (.75 psi) and +/-10 pct from 5 kPa (.75 psi) to 20 kPa (3 psi). The system consists of two conically shaped, aluminum columns, one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with a viscous fluid. A column is mounted on the armature of a vibration exciter which imparts a sinusoidally varying acceleration to the fluid column. Two pressure transducers mounted at the base of the column sense the sinusoidally varying pressure. This pressure is determined from measurements of the density of the fluid, the height of the fluid, and the acceleration of the column. A section of the taller column is filled with steel balls to control the damping of the fluid to extend its useful frequency range.

  15. Abnormal placentation.

    PubMed

    Bauer, Samuel T; Bonanno, Clarissa

    2009-04-01

    Abnormal placentation poses a diagnostic and treatment challenge for all providers caring for pregnant women. As one of the leading causes of postpartum hemorrhage, abnormal placentation involves the attachment of placental villi directly to the myometrium with potentially deeper invasion into the uterine wall or surrounding organs. Surgical procedures that disrupt the integrity of uterus, including cesarean section, dilatation and curettage, and myomectomy, have been implicated as key risk factors for placenta accreta. The diagnosis is typically made by gray-scale ultrasound and confirmed with magnetic resonance imaging, which may better delineate the extent of placental invasion. It is critical to make the diagnosis before delivery because preoperative planning can significantly decrease blood loss and avoid substantial morbidity associated with placenta accreta. Aggressive management of hemorrhage through the use of uterotonics, fluid resuscitation, blood products, planned hysterectomy, and surgical hemostatic agents can be life-saving for these patients. Conservative management, including the use of uterine and placental preservation and subsequent methotrexate therapy or pelvic artery embolization, may be considered when a focal accreta is suspected; however, surgical management remains the current standard of care.

  16. Introducing bio- and micro-technology into undergraduate thermal-fluids courses: investigating pipe pressure loss via atomic force microscopy.

    PubMed

    Müller, Marcus; Traum, Matthew J

    2012-01-01

    To introduce bio- and micro-technologies into general undergraduate thermal-fluids classes, a hands-on interdisciplinary in-class demonstration is described that juxtaposes classical pressure loss pipe flow experiments against a modern micro-characterization technique, AFM profilometry. Both approaches measure surface roughness and can segue into classroom discussions related to material selection and design of bio-medical devices to handle biological fluids such as blood. Appealing to the range of engineering students populating a general thermal-fluids course, a variety of pipe/hose/tube materials representing a spectrum of disciplines can be tested using both techniques. This in-class demonstration relies on technical content already available in standard thermal-fluids textbooks, provides experimental juxtaposition between classical and micro-technology-enabled approaches to the same experiment, and can be taught by personnel with no specialized micro- or bio-technology expertise.

  17. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  18. Fundamentals of fluid sealing

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.

  19. Fluid property measurements study

    NASA Technical Reports Server (NTRS)

    Devaney, W. E.

    1976-01-01

    Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.

  20. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: The hydraulic hypothesis

    PubMed Central

    Rossitti, Sandro

    2013-01-01

    Background: Brain arteriovenous malformations (AVMs) produce circulatory and functional disturbances in adjacent as well as in remote areas of the brain, but their physiological effect on the cerebrospinal fluid (CSF) pressure is not well known. Methods: The hypothesis of an intrinsic disease mechanism leading to increased CSF pressure in all patients with brain AVM is outlined, based on a theory of hemodynamic control of intracranial pressure that asserts that CSF pressure is a fraction of the systemic arterial pressure as predicted by a two-resistor series circuit hydraulic model. The resistors are the arteriolar resistance (that is regulated by vasomotor tonus), and the venous resistance (which is mechanically passive as a Starling resistor). This theory is discussed and compared with the knowledge accumulated by now on intravasal pressures and CSF pressure measured in patients with brain AVM. Results: The theory provides a basis for understanding the occurrence of pseudotumor cerebri syndrome in patients with nonhemorrhagic brain AVMs, for the occurrence of local mass effect and brain edema bordering unruptured AVMs, and for the development of hydrocephalus in patients with unruptured AVMs. The theory also contributes to a better appreciation of the pathophysiology of dural arteriovenous fistulas, of vein of Galen aneurismal malformation, and of autoregulation-related disorders in AVM patients. Conclusions: The hydraulic hypothesis provides a comprehensive frame to understand brain AVM hemodynamics and its effect on the CSF dynamics. PMID:23607064

  1. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  2. FRACTURING FLUID CHARACTERIZATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids andmore » slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.« less

  3. An evaluation of fluid immersion therapy for the prevention of pressure ulcers.

    PubMed

    Worsley, P R; Parsons, B; Bader, D L

    2016-12-01

    Individuals with impaired mobility can spend prolonged periods on support surfaces, increasing their risk of developing pressure ulcers. Manufacturers have developed mattresses to maximise contact area. The present study evaluated both the biomechanical and physiological responses to lying postures on a Fluid Immersion Simulation mattress. Seventeen healthy participants were recruited to evaluate the mattress during three prescribed settings of immersion (high, medium and low). Parameters reflecting biomechanical and physiological responses, and the microclimate were monitored during three postures (supine, lateral and high-sitting) over a 90minute test session. Transcutaneous oxygen and carbon dioxide gas responses were categorised according to three criteria and data were compared between each condition. Results indicated that interface pressures remained consistent, with peak sacral values ranging from 21 to 27mmHg across all immersion settings and postures. The majority of participants (82%) exhibited minimal changes in gas tensions at the sacrum during all test conditions. By contrast, three participants exhibited decreased oxygen with increased carbon dioxide tensions for all three immersion settings. Supine and high sitting sacral microclimate values ranged between 30.1-30.6°C and 42.3-44.5% for temperature and relative humidity respectively. During lateral tilt there was a reduction of 1.7-2.5°C and 3.3-5.3% in these values. The majority of participants reported high comfort scores, although a few experienced bottoming out during the high-sitting posture at the high immersion setting. Fluid Immersion Simulation provides an intelligent approach to increase the support area. Further research is required to provide evidence based guidance on the use of personalised support surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Subharmonic-Aided Pressure Estimation for Monitoring Interstitial Fluid Pressure in Tumors: Calibration and Treatment with Paclitaxel in Breast Cancer Xenografts.

    PubMed

    Halldorsdottir, Valgerdur G; Dave, Jaydev K; Marshall, Andrew; Forsberg, Anya I; Fox, Traci B; Eisenbrey, John R; Machado, Priscilla; Liu, Ji-Bin; Merton, Daniel A; Forsberg, Flemming

    2017-07-01

    Interstitial fluid pressure (IFP) in rats with breast cancer xenografts was non-invasively estimated using subharmonic-aided pressure estimation (SHAPE) versus an invasive pressure monitor. Moreover, monitoring of IFP changes after chemotherapy was assessed. Eighty-nine rats (calibration n = 25, treatment n = 64) were injected with 5 × 10 6 breast cancer cells (MDA-MB-231). Radiofrequency signals were acquired (39 rats successfully imaged) with a Sonix RP scanner (BK Ultrasound, Richmond, BC, Canada) using a linear array (L9-4, transmit/receive: 8/4 MHz) after administration of Definity (Lantheus Medical Imaging, North Billerica, MA, USA; 180 μL/kg) and compared with readings from an invasive pressure monitor (Stryker, Berkshire, UK). An inverse linear relationship was established between tumor IFP and SHAPE (y = -1.06x + 28.27, r = -0.69, p = 0.01) in the calibration group. Use of this relationship in the treatment group resulted in r = 0.74 (p < 0.05) between measured (pressure monitor) and SHAPE-estimated IFP (average error: 6.24 mmHg). No significant before/after differences were observed with respect to paclitaxel treatment (5 mg/kg, Mayne Pharma, Paramus, NJ, USA) with either method (p ≥ 0.15). Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Hip chondrolabral mechanics during activities of daily living: Role of the labrum and interstitial fluid pressurization.

    PubMed

    Todd, Jocelyn N; Maak, Travis G; Ateshian, Gerard A; Maas, Steve A; Weiss, Jeffrey A

    2018-03-01

    Osteoarthritis of the hip can result from mechanical factors, which can be studied using finite element (FE) analysis. FE studies of the hip often assume there is no significant loss of fluid pressurization in the articular cartilage during simulated activities and approximate the material as incompressible and elastic. This study examined the conditions under which interstitial fluid load support remains sustained during physiological motions, as well as the role of the labrum in maintaining fluid load support and the effect of its presence on the solid phase of the surrounding cartilage. We found that dynamic motions of gait and squatting maintained consistent fluid load support between cycles, while static single-leg stance experienced slight fluid depressurization with significant reduction of solid phase stress and strain. Presence of the labrum did not significantly influence fluid load support within the articular cartilage, but prevented deformation at the cartilage edge, leading to lower stress and strain conditions in the cartilage. A morphologically accurate representation of collagen fibril orientation through the thickness of the articular cartilage was not necessary to predict fluid load support. However, comparison with simplified fibril reinforcement underscored the physiological importance. The results of this study demonstrate that an elastic incompressible material approximation is reasonable for modeling a limited number of cyclic motions of gait and squatting without significant loss of accuracy, but is not appropriate for static motions or numerous repeated motions. Additionally, effects seen from removal of the labrum motivate evaluation of labral reattachment strategies in the context of labral repair. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy

    PubMed Central

    Winslow, Timothy B.; Eranki, Annu; Ullas, Soumya; Singh, Anurag K.; Repasky, Elizabeth A.; Sen, Arindam

    2015-01-01

    Purpose The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. Materials and methods SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Results Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Conclusions Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy. PMID:25986432

  7. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy.

    PubMed

    Winslow, Timothy B; Eranki, Annu; Ullas, Soumya; Singh, Anurag K; Repasky, Elizabeth A; Sen, Arindam

    2015-01-01

    The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy.

  8. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  9. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    PubMed

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  10. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    ... establish the diagnosis of normal pressure hydrocephalus. Normal Results Normal values typically range as follows: Pressure: 70 ... measurements or may test different specimens. What Abnormal Results Mean If the CSF looks cloudy, it could ...

  11. Abnormal stress echocardiography findings in cardiac amyloidosis.

    PubMed

    Ong, Kevin C; Askew, J Wells; Dispenzieri, Angela; Maleszewski, Joseph J; Klarich, Kyle W; Anavekar, Nandan S; Mulvagh, Sharon L; Grogan, Martha

    2016-06-01

    Cardiac involvement in immunoglobulin light chain (amyloid light chain, AL) amyloidosis is characterized by myocardial interstitial deposition but can also cause obstructive deposits in the coronary microvasculature. We retrospectively identified 20 patients who underwent stress echocardiography within 1 year prior to the histologic diagnosis of AL amyloidosis. Only patients with cardiac amyloidosis and no known obstructive coronary disease were included. Stress echocardiograms (13 exercise; 7 dobutamine) were performed for evaluation of dyspnea and/or chest pain. Stress-induced wall motion abnormalities (WMAs) occurred in 11 patients (55%), 4 of whom had normal left ventricular wall thickness. Coronary angiogram was performed in 9 of 11 patients and demonstrated no or mild epicardial coronary artery disease. Seven (54%) patients had an abnormal exercise blood pressure which occurred with similar likelihood between those with and without stress-induced WMAs. Stress-induced WMAs and abnormal exercise blood pressure may occur in patients with cardiac AL amyloidosis despite the absence of significant epicardial coronary artery disease. This finding should raise the possibility of cardiac amyloidosis even in the absence of significant myocardial thickening.

  12. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  13. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  14. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  15. Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes.

    PubMed

    Carver, S E; Heath, C A

    1999-11-05

    Equine articular chondrocytes, embedded within a polyglycolic acid nonwoven mesh, were cultured with various combinations of intermittent pressure, fluid flow, and mixing to examine the effects of different physical stimuli on neochondrogenesis from young cells. The cell/polymer constructs were cultured first in 125 ml spinner flasks for 1, 2, or 4 weeks and then in a perfusion system with intermittent pressure for a total of up to 6 weeks. Additional constructs were either cultured for all 6 weeks in the spinner flasks or for 1 week in spinners followed by 5 weeks in the perfusion system without intermittent pressure. Tissue constructs cultivated for 2 or 4 weeks in spinner flasks followed by perfusion with intermittent pressure had significantly higher concentrations of both sulfated glycosaminoglycan and collagen than constructs cultured entirely in spinners or almost entirely in the pressure/perfusion system. Initial cultivation in the spinner flasks, with turbulent mixing, enhanced both cell attachment and early development of the extracellular matrix. Subsequent culture with perfusion and intermittent pressure appeared to accelerate matrix formation. While the correlation was much stronger in the pressurized constructs, the compressive modulus was directly proportional to the concentration of sulfated glycosaminoglycan in all physically stressed constructs. Constructs that were not stressed beyond the 1-week seeding period lost mechanical integrity upon harvest, suggesting that physical stimulation, particularly with intermittent pressure, of immature tissue constructs during their development may contribute to their ultimate biomechanical functionality. Copyright 1999 John Wiley & Sons, Inc.

  16. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  17. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  18. Fluid front displacement dynamics affecting pressure fluctuations and phase entrapment in porous media

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-04-01

    Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.

  19. Diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less

  20. Rotigotine Improves Abnormal Circadian Rhythm of Blood Pressure in Parkinson's Disease.

    PubMed

    Oka, Hisayoshi; Nakahara, Atuso; Umehara, Tadashi

    2018-05-15

    Cardiovascular autonomic failure is commonly associated with Parkinson's disease (PD), affecting the daily lives of patients. Rotigotine was recently reported not to influence cardiovascular autonomic responses in contrast to other dopaminergic drugs. The effect of rotigotine on daily blood pressure (BP) fluctuations might reflect autonomic failure in patients with PD. Twenty-five PD patients who were receiving rotigotine and 12 patients not receiving rotigotine were recruited. Systolic BP during the daytime and nighttime was measured by 24-h BP monitoring at an interval of 2 years. The patients were divided into 3 groups according to the BP fluctuation type: dippers (nocturnal fall in BP ≥10%), non-dippers (0-10%), and risers (< 0%). The time course of BP was compared between the patients given rotigotine and those not given rotigotine. Among the 25 patients who received rotigotine, the BP type worsened in 2 patients, was unchanged in 16 patients, and improved in 7 patients. Among the 12 patients who were not receiving rotigotine, the BP type worsened in 5 patients, was unchanged in 4 patients, and improved only in 3 patients (p = 0.042). Rotigotine improves the abnormal circadian rhythm of BP in patients with PD. Rotigotine was suggested to have favorable effects on cardiovascular autonomic responses and circadian rhythm in patients with PD. © 2018 S. Karger AG, Basel.

  1. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  2. Office blood pressure, ambulatory blood pressure monitoring, and echocardiographic abnormalities in women with polycystic ovary syndrome: role of obesity and androgen excess.

    PubMed

    Luque-Ramírez, Manuel; Martí, David; Fernández-Durán, Elena; Alpañés, Macarena; Álvarez-Blasco, Francisco; Escobar-Morreale, Héctor F

    2014-03-01

    Whether or not blood pressure (BP) and heart function of women with polycystic ovary syndrome (PCOS) are altered remains unclear, albeit subtle abnormalities in the regulation of BP observed in these women might suggest a mild masculinization of their cardiovascular system. To study the influence of obesity and androgen excess on BP and echocardiographic profiles of women with the syndrome, we conducted a cross-sectional case-control study comparing office and ambulatory BP monitoring, as well as echocardiographic assessments, in 63 premenopausal women with the classic phenotype, 33 nonhyperandrogenic women with regular menses, and 25 young men. Forty-nine subjects were lean and 72 had weight excess (body mass index ≥25 kg/m(2)). Participants had no previous history of hypertension and were nonsmokers. Men showed the highest BP readings, and the lowest readings were observed in control women, whereas women with PCOS had intermediate values. Undiagnosed hypertension was more common in subjects with weight excess irrespective of sex and hyperandrogenism. Women with PCOS and weight excess showed frequencies of previously undiagnosed hypertension that were similar to those of men with weight excess and higher than those observed in nonhyperandrogenic women. Lastly, male sex, weight excess and hypertension, the latter in men as well as in women with PCOS, increased left ventricular wall thickness. In summary, our results show that patients with classic PCOS and weight excess frequently have undiagnosed BP abnormalities, leading to target organ damage.

  3. High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lerner, A. H.; Taylor, M.; Baldwin, J. K.; Grubbs, R. K.; Majewski, J.; Hickmott, D. D.

    2012-07-01

    A new high pressure-temperature ( P - T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( ensuremath ˜ 30000 psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical ensuremath Qz range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P - T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P - T NR applications and perspectives on future research are discussed.

  4. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  5. Determining temperature limits of drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud ismore » necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.« less

  6. [Predictive value of central venous-to-arterial carbon dioxide partial pressure difference for fluid responsiveness in septic shock patients: a prospective clinical study].

    PubMed

    Liu, Guangyun; Huang, Huibin; Qin, Hanyu; Du, Bin

    2018-05-01

    To evaluate the accuracy of central venous-to-arterial carbon dioxide partial pressure difference (Pcv-aCO 2 ) before and after rapid rehydration test (fluid challenge) in predicting the fluid responsiveness in patients with septic shock. A prospective observation was conducted. Forty septic shock patients admitted to medical intensive care unit (ICU) of Peking Union Medical College Hospital from October 2015 to June 2017 were enrolled. All of the patients received fluid challenge in the presence of invasive hemodynamic monitoring. Heart rate (HR), blood pressure, cardiac index (CI), Pcv-aCO 2 and other physiological variables were recorded at 10 minutes before and immediately after fluid challenge. Fluid responsiveness was defined as an increase in CI greater than 10% after fluid challenge, whereas fluid non-responsiveness was defined as no increase or increase in CI less than 10%. The correlation between Pcv-aCO 2 and CI was explored by Pearson correlation analysis. Receiver operating characteristic (ROC) curves were established to evaluate the discriminatory abilities of baseline and the changes after fluid challenge in Pcv-aCO 2 and other physiological variables to define the fluid responsiveness. The patients were separated into two groups according to the initial value of Pcv-aCO 2 . The cut-off value of 6 mmHg (1 mmHg = 0.133 kPa) was chosen according to previous studies. The discriminatory abilities of baseline and the change in Pcv-aCO 2 (ΔPcv-aCO 2 ) were assessed in each group. A total of 40 patients were finally included in this study. Twenty-two patients responded to the fluid challenge (responders). Eighteen patients were fluid non-responders. There was no significant difference in baseline physiological variable between the two groups. Fluid challenge could increase CI and blood pressure significantly, decrease HR notably and had no effect on Pcv-aCO 2 in fluid responders. In non-responders, blood pressure was increased significantly and CI, HR, Pcv

  7. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for

  8. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  9. Organosiloxane working fluids for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Buch, R. R.; Huntress, A. R.

    1985-01-01

    Siloxane-based working fluids for advanced space radiators requiring direct fluid exposure to the space environment are evaluated. Isolation of five candidate fluids by vacuum distillation from existing siloxane polymers is discussed. The five fluids recovered include a polydimethylsiloxane, three phenyl-containing siloxanes, and a methylhexylsiloxane. Vapor pressures and viscosities for the five fluids are reported over the temperature range of 250 to 400 K. Use of thermal-gravimetric analysis to reliably estimate vapor pressures of 10 to the -8 power Pascals is described. Polydimethylsiloxane (PDMS) and polymethylphenylsiloxane (PMPS) are selected from the five candidate fluids based on favorable vapor pressure and viscosity, as well as perceived stability in low-Earth orbit environments. Characterization of these fluids by infrared spectroscopy, Si-29 NMR, gel-permeation chromatography, and liquid chromatography is presented. Both fluids consist of narrow molecular weight distributions, with average molecular weights of about 2500 for PDMS and 1300 for PMPS.

  10. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)

    2016-01-01

    An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.

  11. Fluid Shifts: Otoacoustical Emission Changes in Response to Posture and Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Melgoza, R.; Kemp, D.; Ebert, D.; Danielson, R.; Stenger, M.; Hargens, A.; Dulchavsky, S.

    2016-01-01

    INTRODUCTION: The purpose of the NASA Fluid Shifts Study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to correlate these findings with vision changes and other elements of the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. Due to the invasive nature of direct measures of ICP, a noninvasive technique of monitoring ICP is desired for use during spaceflight. The phase angle and amplitude of otoacoustic emissions (OAEs) have been shown to be sensitive to posture change and ICP (1, 2), therefore use of OAEs is an attractive option. OAEs are low-level sounds produced by the sensory cells of the cochlea in response to auditory stimulation. These sounds travel peripherally from the cochlea, through the oval window, to the ear canal where they can be recorded. OAE transmission is sensitive to changes in the stiffness of the oval window, occurring as a result of changes in cochlear pressure. Increased stiffness of the oval window largely affects the transmission of sound from the cochlea at frequencies between 800 Hz and 1600 Hz. OAEs can be self-recorded in the laboratory or on the ISS using a handheld device. Our primary objectives regarding OAE measures in this experiment were to 1) validate this method during preflight testing of each crewmember (while sitting, supine and in head-down tilt position), and 2) determine if OAE measures (and presumably ICP) are responsive to lower body negative pressure and to spaceflight. METHODS: Distortion-product otoacoustic emissions (DPOAEs) and transient evoked otoacoustic emissions (TEOAEs) were recorded preflight using the Otoport Advance OAE system (Otodynamics Ltd., Hatfield, UK). Data were collected in four conditions (seated

  12. Personalised fluid resuscitation in the ICU: still a fluid concept?

    PubMed

    van Haren, Frank

    2017-12-28

    The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically

  13. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less

  14. "Zero-Mass" Noninvasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2009-01-01

    Extremely lightweight, compact, noninvasive, rugged, relatively inexpensive strain-gauge transducers have been developed for use in measuring pressures of fluids in tubes. These gauges were originally intended for measuring pressures of spacecraft-propulsion fluids, but they are also attractive for use in numerous terrestrial applications especially those involving fluids that are extremely chemically reactive, fluids that must be isolated for hygienic purposes, fluids that must be allowed to flow without obstruction, and fluid-containing tubes exposed to severe environments. A basic pressure transducer of this type comprises one or more pair(s) of thin-film strain gauges integral with a tube that contains the fluid of interest. Following established strain-gauge practice, the gauges in each pair are connected into opposite arms of a Wheatstone bridge (see figure). Typically, each pressure transducer includes one pair (the active pair) of strain gauges for measuring the hoop stress proportional to the pressure of the fluid in the tube and another pair (the dummy pair) of strain gauges that are nominally unstrained: The dummy gauges are mounted on a substrate that is made of the same material as that of the tube. The substrate is welded to the tube at only one spot so that stresses and strains are not coupled from the tube into the substrate. The dummy strain gauges measure neutral strains (basically, strains associated with thermal expansion), so that the neutral-strain contribution can be subtracted out of the final gauge reading.

  15. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    NASA Astrophysics Data System (ADS)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  16. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  17. Low Blood Pressure

    MedlinePlus

    ... to low blood pressure are an abnormally low heart rate ( bradycardia ), problems with heart valves , heart attack and ... occurred. Is low blood pressure related to low heart rate? Find out . This content was last reviewed October ...

  18. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  19. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  20. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  1. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  2. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  3. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  4. Fluid pressure development beneath the décollement at the Nankai subduction zone: its implications for slow earthquakes

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Kamiya, N.; Yamamoto, Y.; Heuer, V.; Inagaki, F.; Kubo, Y.

    2017-12-01

    Pore fluid pressure along a fault zone is very important for understanding earthquake generation processes in subduction zones. However, quantitative constraints on the pore pressure are quite limited. Here we report two estimates of the pore pressure developed within the underthrust sediments in the Nankai Trough off Cape Muroto, Japan, using the shipboard data obtained during IODP Expedition 370 (Heuer et al., 2017). First estimates are based on the depth trend of porosity data in the lower Shikoku Basin (LSB) facies, in which the décollement zone has propagated. Porosities in the LSB facies generally decrease with depth, but turn to increase by 5-7% below the décollement zone at 760 mbsf. Deeper than 830 mbsf, porosities resume a general compaction trend. By applying the method followed by Screaton et al. (2002) in which the downward porosity-increase is reflected by an excess pore pressure, we estimated the highest excess pore pressure of 4.2 MPa (λ* = 0.4: a ratio of excess pore pressure to effective overburden stress) at 1020 mbsf within the underthrust sediments. Another estimate is based on the analysis of upwelling drilling-mud flow from the borehole, which is a direct evidence the development of overpressure. We assumed that the borehole penetrated a disc-shaped high pore pressure zone with 10 m thickness and the steady-state flow. Then the pore pressure for a given radius of the disc-shaped zone, which is necessary for explaining the observed flow rate, was calculated using Darcy's law. The calculation yields that the pore pressure exceeded by 2-4 MPa above hydrostatic in case of the 10-13 m2 permeability and the 100-1000 m radius of the disc-shaped zone. Our analysis indicates a significant development of excess pore pressure beneath the décollement zone, most likely at the depth of 1020 mbsf where the highest overpressure was estimated from the downhole porosity trend and also an anomaly in relative hydrocarbon gas concentrations. Friction

  5. Internally supported flexible duct joint. [device for conducting fluids in high pressure systems

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F., Jr. (Inventor)

    1975-01-01

    An internally supported, flexible duct joint for use in conducting fluids under relatively high pressures in systems where relatively large deflection angles must be accommodated is presented. The joint includes a flexible tubular bellows and an elongated base disposed within the bellows. The base is connected through radiating struts to the bellows near mid-portion and to each of the opposite end portions of the bellows through a pivotal connecting body. A motion-controlling linkage is provided for linking the connecting bodies, whereby angular displacement of the joint is controlled and uniformity in the instantaneous bend radius of the duct is achieved as deflection is imposed.

  6. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  7. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  8. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  9. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  10. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Zhao, Jijun; Plyasunov, Andrey V.; Belonoshko, Anatoly B.

    2017-11-01

    Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD) runs have been performed to obtain the pressure-volume-temperature (P-V-T) data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T) range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2) and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS) for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381-387; Geochim. Cosmochim. Acta 55, 3191-3208; Geochim. Cosmochim. Acta 56, 3611-3626; Comput. Geosci. 18, 1267-1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce) experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  11. Dynamics of fluid expulsion during high-pressure devolatilization of serpentinite in subduction settings: field, petrological and textural constraints from the Almirez ultramafic massif.

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Padrón-Navarta, J. A.; López-Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M. T.; Marchesi, C.; Tommasi, A.

    2012-04-01

    Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. Studies metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Granoblastic texture are interspersed in decameter-sized domains with spinifex-like chl-harzburgite and were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C). We ascribe these textures to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture). Evidences of brittle

  12. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  13. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  14. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.

    PubMed

    Hammel, H T; Schlegel, Whitney M

    2005-01-01

    In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries

  15. Abnormal formation velocities and applications to pore pressure prediction

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Shen, Guoqiang; Wang, Zhentao; Yang, Hongwei; Han, Hongwei; Cheng, Yuanfeng

    2018-06-01

    The pore pressure is a vital concept to the petroleum industry and cannot be ignored by either reservoir engineers or geoscientists. Based on theoretical analyses of effective stresses and the grain packing model, a new equation is proposed for predicting pore pressures from formation velocity data. The predictions agree well with both measured pressures and estimations using Eaton's empirical equation, but the application of the new equation to seismic data is simple and convenient. One application example shows that the identification of sweet spots is much easier using pore pressure data than with inverted seismic velocity data. In another application example using field seismic data, a distribution of overpressured strata is revealed, which is a crucial clue for petroleum generation and accumulation. Still, the accuracy of pore pressure prediction is hardly always guaranteed, mainly owing to the complexity of the real geology and the suitability of specific assumptions about the underlying rock physics.

  16. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  17. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection.

    PubMed

    Peluso, Michael J; Meyerhoff, Dieter J; Price, Richard W; Peterson, Julia; Lee, Evelyn; Young, Andrew C; Walter, Rudy; Fuchs, Dietmar; Brew, Bruce J; Cinque, Paola; Robertson, Kevin; Hagberg, Lars; Zetterberg, Henrik; Gisslén, Magnus; Spudich, Serena

    2013-06-01

    Cerebrospinal fluid (CSF) and neuroimaging abnormalities demonstrate neuronal injury during chronic AIDS, but data on these biomarkers during primary human immunodeficiency virus (HIV) infection is limited. We compared CSF concentrations of neurofilament light chain, t-tau, p-tau, amyloid precursor proteins, and amyloid-beta 42 in 92 subjects with primary HIV infection and 25 controls. We examined relationships with disease progression and neuroinflammation, neuropsychological testing, and proton-magnetic resonance spectroscopy (MRS)-based metabolites. Neurofilament light chain was elevated in primary HIV infection compared with controls (P = .0004) and correlated with CSF neopterin (r = 0.38; P = .0005), interferon gamma-induced protein 10 (r = 0.39; P = .002), white blood cells (r = 0.32; P = .004), protein (r = 0.59; P < .0001), and CSF/plasma albumin ratio (r = 0.60; P < .0001). Neurofilament light chain correlated with decreased N-acteylaspartate/creatine and glutamate/creatine in the anterior cingulate (r = -0.35, P = .02; r = -0.40, P = .009, respectively), frontal white matter (r = -0.43, P = .003; r = -0.30, P = .048, respectively), and parietal gray matter (r = -0.43, P = .003; r = -0.47, P = .001, respectively). Beta-amyloid was elevated in the primary infection group (P = .0005) and correlated with time infected (r = 0.34; P = .003). Neither marker correlated with neuropsychological abnormalities. T-tau and soluble amyloid precursor proteins did not differ between groups. Elevated neurofilament light chain and its correlation with MRS-based metabolites suggest early neuronal injury in a subset of participants with primary HIV infection through mechanisms involving central nervous system inflammation.

  18. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  19. Shock Re-equilibration of Fluid Inclusions

    NASA Technical Reports Server (NTRS)

    Madden, M. E. Elwood; Horz, F.; Bodnar, R. J.

    2004-01-01

    Fluid inclusions (microscopic volumes of fluid trapped within minerals as they precipitate) are extremely common in terrestrial minerals formed under a wide range of geological conditions from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are nearly ubiquitous, only a few fluid inclusion-bearing meteorites have been documented. The scarcity of fluid inclusions in meteoritic materials may be a result of (a) the absence of fluids when the mineral was formed on the meteorite parent body or (b) the destruction of fluid inclusions originally contained in meteoritic materials by subsequent shock metamorphism. However, the effects of impact events on pre-existing fluid inclusions trapped in target and projectile rocks has received little study. Fluid inclusions trapped prior to the shock event may be altered (re-equilibrated) or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by terrestrial and meteoritic shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteorite samples.

  20. Speciation in Aqueous MgSO4 Fluid at High Pressures and Temperatures Studied by First-Principles Modeling and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jahn, S.; Schmidt, C.

    2008-12-01

    Aqueous fluids play an essential role in mass and energy transfer in the lithosphere. Their presence has also a large effect on physical properties of rocks, e.g. the electrical conductivity. Many chemical and physical properties of aqueous fluids strongly depend on the speciation, but very little is known about this fundamental parameter at high pressures and temperatures, e.g. at subduction zone conditions. Here we use a combined approach of first-principles molecular dynamics simulation and Raman spectroscopy to study the molecular structure of aqueous 2~mol/kg MgSO4 fluids up to pressures of 3~GPa and temperatures of 750~°C. MgSO4-H2O is selected as a model system for sulfate bearing subduction zone fluids. The simulations are performed using Car-Parrinello dynamics, a system size of 120 water and four MgSO4 molecules with production runs of at least 10~ps at each P and T. Raman spectra were obtained in situ using a Bassett-type hydrothermal diamond anvil cell with external heating. Both simulation and spectroscopic data show a dynamic co-existence of various associated molecular species as well as dissociated Mg2+ and SO42- in the single phase fluid. Fitting the Raman signal in the frequency range of the ν1-SO42- stretching mode yields the P-T dependence of the relative proportions of different peaks. The latter can be assigned to species based on literature data and related to the species found in the simulation. The dominant associated species found in the P-T range of interest here are Mg-SO4 ion pairs with one (monodentate) and two (bidentate) binding sites. At the highest P and T, an additional peak is identified. At low pressures and high temperature (T>230~°C), kieserite, MgSO4·H2O, nucleated in the experiment. At the same conditions the simulations show a clustering of Mg, which is interpreted as a precursor of precipitation. In conclusion, the speciation of aqueous MgSO4 fluid shows a complex behavior at high P and T that cannot be extrapolated

  1. Fluid Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, Alan; Dulchavsky, Scott

    2014-01-01

    Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.

  2. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  3. Nonlinear Fluid Migration Patterns in Fractured Reservoirs due to Stress-Pressure Coupling induced Changes in Reservoir Permeabilities

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Geiger, S.; Main, I. G.

    2011-12-01

    Sustainable storage of carbon dioxide (CO2) requires a thorough understanding of injection induced pressure build-up and its effects on the storage formation's integrity, since it determines the cap rock's sealing properties as well as the total storable amount of carbon dioxide. Fractures are abundant in the subsurface and difficult to detect due to their subseismic characteristic. If present in the cap during injection, they can be primary pathways for CO2 leakage. The North Sea is considered as Europe's most important carbon dioxide storage area. However, almost all of the potential storage formations have been exposed to post-glacial lithospheric flexure, possibly causing the generation of new fracture networks in the overburden whilst rebounding. Drawing upon, fast carbon dioxide uprise can be facilitated due to opening of fractures caused by changes in the stress field over time. The overall effective permeability, and hence possible leakage rates, of a fractured storage formation is highly sensitive to the fracture aperture which itself depends on the far field and in situ stress field. For this reason, our in-house general purpose reservoir simulator Complex System Modeling Platform (CSMP++) has been expanded, which is particularly designed to simulate multiphase flow on fractured porous media. It combines finite element (FE) and finite volume (FV) methods on mixed-dimensional hybrid-element meshes. The unstructured FE-FV based scheme allows us to model complex geological structures, such as fractures, at great detail. The simulator uses a compositional model for NaCl-H2O-CO2-systems for compressible fluids for computing thermophysical properties as a function of formation pressure and temperature. A fixed stress-split sequential procedure is being used to calculate coupled fluid flow and geomechanics. Numerical proof of concept studies will be presented showing the impact of fracture opening and closure on fluid migration patterns due to coupled stress-pressure

  4. Hormonal regulation of fluid and electrolyte metabolism during periods of headward fluid shifts

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.; Severs, W. B.; Thrasher, T.; Ramsay, D. J.

    1991-01-01

    In the broadest sense, this project evaluates how spaceflight induced shifts of blood and interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related to salt/water balance and their potential function in the control of intracranial pressure and cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spaceflight gradually equilibrates, with a reduction in all body fluid compartments. Related to this is the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as orthostatic intolerance.

  5. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  6. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  7. Esophageal motor abnormalities in eosinophilic esophagitis identified by high-resolution manometry.

    PubMed

    Martín Martín, Leticia; Santander, Cecilio; Lopez Martín, Mari Carmen; Espinoza-Ríos, Jorge; Chavarría-Herbozo, Carlos; Gisbert, Javier P; Moreno-Otero, Ricardo

    2011-09-01

    Esophageal motility abnormalities, as measured by conventional manometry (CM), are non-specific in the majority of patients with eosinophilic esophagitis (EoE). Moreover, the study of CM is limited by poor interobserver agreement. The aims of the present study were: (i) to assess the esophageal patterns in EoE by a topographic analysis of high-resolution manometry (HRM) data; and (ii) to establish a relationship between motility abnormalities and symptoms of EoE, such as dysphagia and bolus impaction. All adult patients with EoE diagnosed according to histological criteria, and controls with gastroesophageal reflux disease symptoms and dysphagia, were included. HRM was done in EoE patients and controls. For the analysis of data, the Chicago classification was followed. HRM was performed in 21 patients with EoE, as well as in 21 controls. Of the 21 patients with EoE, 10 (48%) showed pan-esophageal pressurization, six (28%) showed peristaltic dysfunction, and in five cases (24%), HRM was normal. There was no pan-esophageal pressurization in controls. Nine of 10 patients with pan-esophageal pressurization required endoscopic bolus removal (P < 0.05); none had obstructive endoscopy findings. The most frequent esophageal motor abnormality measured by HRM was a pan-esophageal pressurization. Bolus impaction in patients with EoE was associated with pan-esophageal pressurization. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  8. Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Sánchez-Vizcaíno, Vicente López; Gómez-Pugnaire, María Teresa; Jabaloy, Antonio; Vauchez, Alain

    2010-08-01

    Before attaining the mantle wedge, where they trigger partial melting, volatiles released from dehydration reactions in the slab have to migrate across a relatively cold (< 750 °C), peridotite-layer above the incoming slab. In order to unravel the mechanisms allowing for this initial stage of fluid transport, we performed a detailed field and microstructural study of metamorphic prograde peridotites in the Cerro del Almirez ultramafic massif (Betic Cordillera, Spain), where evidences of one of the most important dehydration reactions in subduction zones, the high-pressure antigorite breakdown ( P = 1.6-1.9 GPa and T ≈ 680 °C), can be mapped in the field. This reaction led to arborescent growth of centimeter-size olivine and orthopyroxene, producing a chlorite-harzburgite with a spinifex-like texture. Microstructural observations and crystal preferred orientations (CPO) mapping show no evidences of solid-state deformation during the prograde growth of olivine and orthopyroxene at the expenses of antigorite. However, a few tens to a hundred meters away from the reaction front, the metamorphic texture is partially obliterated by grain-size reduction in roughly planar conjugate zones, a few mm to meters wide. Grain size reduction zones (GSRZ) are characterized by (1) sharp contacts with undeformed spinifex-like texture domains, (2) important reduction of the olivine grain size (60-250 μm), (3) olivine color change from brownish to colorless, (4) decrease in the modal amount of orthopyroxene, and (5) at the mm- to cm-scale, irregular shapes and abrupt terminations. Field and microstructural observations exclude that relative displacement took place across these GSRZ. Changes in modal composition imply reactions with fluids undersaturated in silica. Analysis of olivine crystal-preferred orientations (CPO) in GSRZ shows patterns similar, but more dispersed, than those in neighboring spinifex-like domains. It also reveals mm- to cm-scale discrete domains with rather

  9. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    USGS Publications Warehouse

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the

  10. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  11. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  12. Using functional hemodynamic indicators to guide fluid therapy.

    PubMed

    Bridges, Elizabeth

    2013-05-01

    Hemodynamic monitoring has traditionally relied on such static pressure measurements as pulmonary artery occlusion pressure and central venous pressure to guide fluid therapy. Over the past 15 years, however, there's been a shift toward less invasive or noninvasive monitoring methods, which use "functional" hemodynamic indicators that reflect ventilator-induced changes in preload and thereby more accurately predict fluid responsiveness. The author reviews the physiologic principles underlying functional hemodynamic indicators, describes how the indicators are calculated, and discusses when and how to use them to guide fluid resuscitation in critically ill patients.

  13. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

    PubMed Central

    Norsk, Peter; Asmar, Ali; Damgaard, Morten; Christensen, Niels Juel

    2015-01-01

    Acute weightlessness in space induces a fluid shift leading to central volume expansion. Simultaneously, blood pressure is either unchanged or decreased slightly. Whether these effects persist for months in space is unclear. Twenty-four hour ambulatory brachial arterial pressures were automatically recorded at 1–2 h intervals with portable equipment in eight male astronauts: once before launch, once between 85 and 192 days in space on the International Space Station and, finally, once at least 2 months after flight. During the same 24 h, cardiac output (rebreathing method) was measured two to five times (on the ground seated), and venous blood was sampled once (also seated on the ground) for determination of plasma catecholamine concentrations. The 24 h average systolic, diastolic and mean arterial pressures (mean ± se) in space were reduced by 8 ± 2 mmHg (P = 0.01; ANOVA), 9 ± 2 mmHg (P < 0.001) and 10 ± 3 mmHg (P = 0.006), respectively. The nightly blood pressure dip of 8 ± 3 mmHg (P = 0.015) was maintained. Cardiac stroke volume and output increased by 35 ± 10% and 41 ± 9% (P < 0.001); heart rate and catecholamine concentrations were unchanged; and systemic vascular resistance was reduced by 39 ± 4% (P < 0.001). The increase in cardiac stroke volume and output is more than previously observed during short duration flights and might be a precipitator for some of the vision problems encountered by the astronauts. The spaceflight vasodilatation mechanism needs to be explored further. PMID:25774397

  14. Tightness of Salt Rocks and Fluid Percolation

    NASA Astrophysics Data System (ADS)

    Lüdeling, C.; Minkley, W.; Brückner, D.

    2016-12-01

    Salt formations are used for storage of oil and gas and as waste repositiories because of their excellent barrier properties. We summarise the current knowledge regarding fluid tightness of saliferous rocks, in particular rock salt. Laboratory results, in-situ observations and natural analogues, as well as theoretical and numerical investigations, indicate that pressure-driven percolation is the most important mechanism for fluid transport: If the fluid pressure exceeds the percolation threshold, i.e. the minor principal stress, the fluid can open up grain boundaries, create connected flow paths and initiate directed migration in the direction of major principal stress. Hence, this mechanism provides the main failure mode for rock salt barriers, where integrity can be lost if the minor principal stress is lowered, e.g. due to excavations or thermomechanical uplift. We present new laboratory experiments showing that there is no fluid permeation below the percolation threshold also at high temperatures and pressures, contrary to recent claims in the literature.

  15. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  16. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  17. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  18. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  19. Fluid-structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures

    NASA Astrophysics Data System (ADS)

    Torii, Ryo; Oshima, Marie; Kobayashi, Toshio; Takagi, Kiyoshi; Tezduyar, Tayfun E.

    2006-09-01

    Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid-structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.

  20. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  1. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Fluid therapy for septic shock resuscitation: which fluid should be used?

    PubMed

    Corrêa, Thiago Domingos; Rocha, Leonardo Lima; Pessoa, Camila Menezes Souza; Silva, Eliézer; de Assuncao, Murillo Santucci Cesar

    2015-01-01

    Early resuscitation of septic shock patients reduces the sepsis-related morbidity and mortality. The main goals of septic shock resuscitation include volemic expansion, maintenance of adequate tissue perfusion and oxygen delivery, guided by central venous pressure, mean arterial pressure, mixed or central venous oxygen saturation and arterial lactate levels. An aggressive fluid resuscitation, possibly in association with vasopressors, inotropes and red blood cell concentrate transfusion may be necessary to achieve those hemodynamic goals. Nonetheless, even though fluid administration is one of the most common interventions offered to critically ill patients, the most appropriate type of fluid to be used remains controversial. According to recently published clinical trials, crystalloid solutions seem to be the most appropriate type of fluids for initial resuscitation of septic shock patients. Balanced crystalloids have theoretical advantages over the classic solutions, but there is not enough evidence to indicate it as first-line treatment. Additionally, when large amounts of fluids are necessary to restore the hemodynamic stability, albumin solutions may be a safe and effective alternative. Hydroxyethyl starches solutions must be avoided in septic patients due to the increased risk of acute renal failure, increased need for renal replacement therapy and increased mortality. Our objective was to present a narrative review of the literature regarding the major types of fluids and their main drawbacks in the initial resuscitation of the septic shock patients.

  3. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses

    PubMed Central

    Wakayama, Tadashi; Suzuki, Masaaki; Tanuma, Tadashi

    2016-01-01

    Objective Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction. Methods We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine. Results Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups. Conclusion This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow

  4. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  5. Slow slip pulses driven by thermal pressurization of pore fluid: theory and observational constraints

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2012-12-01

    We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate

  6. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less

  7. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids.

    PubMed

    Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir

    2017-06-01

    The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

  8. Fluid therapy in small ruminants and camelids.

    PubMed

    Jones, Meredyth; Navarre, Christine

    2014-07-01

    Body water, electrolytes, and acid-base balance are important considerations in the evaluation and treatment of small ruminants and camelids with any disease process, with restoration of these a priority as adjunctive therapy. The goals of fluid therapy should be to maintain cardiac output and tissue perfusion, and to correct acid-base and electrolyte abnormalities. Hypoglycemia, hyperkalemia, and acidosis are the most life-threatening abnormalities, and require most immediate correction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Rana, Brinda K.; Stenger, Michael B.; Lee, Stuart M. C.; Macias, Brandon R.; Siamwala, Jamila; Piening, Brian Donald; Hook, Vivian; Ebert, Doug; Patel, Hemal; Smith, Scott; hide

    2016-01-01

    BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein

  10. Device Stores and Discharges Metered Fluid

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  11. Magnetic Fluid Friction and Wear Behavior

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1998-01-01

    The friction and wear properties of two groups of magnetic fluids, one developed at NASA Lewis Research Center and a commercial fluid, were evaluated for boundary lubrication. Friction and wear measurements were made using a pin-on-disk apparatus. Three different ball materials were evaluated, (1) 440C, (2) Al2O3, and (3) Si3N4 against 440C disks. The first class of magnetic fluids have a low vapor pressure hydrocarbon base oil and are suitable for space application. Four variations of this fluid were evaluated: (1) the base oil, (2) base oil with anti-wear additives, (3) a 100 Gauss strength magnetic fluid, and (4) a 400 gauss magnetic fluid. The commercial fluid base oil and four different magnetic particle concentration levels have been evaluated. A space qualified fluorinated lubricant was tested for base line comparison. Hardness, optical microscopy, surface profilometry, and surface analysis were used to characterize the test specimens. Friction was unaffected by the concentration of magnetic particles. Wear rates for magnetic fluids were slightly higher than the base oil. The low vapor pressure magnetic fluid has better wear characteristics than the space qualified fluorinated lubricant.

  12. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  13. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from

  14. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  15. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study.

    PubMed

    Wang, Ningli; Xie, Xiaobin; Yang, Diya; Xian, Junfang; Li, Yong; Ren, Ruojin; Peng, Xiaoxia; Jonas, Jost B; Weinreb, Robert N

    2012-10-01

    Low cerebrospinal fluid pressure (CSF-P) may be involved in the pathogenesis of glaucoma. We measured the optic nerve subarachnoid space width (ONSASW) as a surrogate for orbital CSF-P in patients with primary open-angle glaucoma (POAG) with normal and high pressure and a control group. Prospective observational study. The study included 39 patients with POAG; 21 patients had normal pressure (intraocular pressure [IOP] 21 mmHg), and 18 patients had high pressure (IOP >21 mmHg); 21 subjects formed the control group. By using magnetic resonance imaging (MRI) with fat-suppressed fast recovery fast spin echo (FRFSE) T2-weighted sequence, we determined the ONSASW at 3, 9, and 15 mm posterior to the globe. The ONSASW and optic nerve diameter. At all 3 measurement locations of 3, 9, and 15 mm, the ONSASW was significantly (P<0.001, P<0.001, and P = 0.003, respectively) narrower in the normal-pressure group (0.67±0.16, 0.55±0.09, and 0.51±0.12 mm, respectively) than in the high-pressure group (0.93±0.21, 0.70±0.12, and 0.62±0.11 mm, respectively) or the control group (0.87±0.15, 0.67±0.07, and 0.61±0.07 mm, respectively). The high-pressure and control groups did not vary significantly at 3, 9, and 15 mm (P = 0.31, P = 0.39, and P = 0.44, respectively). At all 3 measurement locations, ONSASW was narrower in the normal-pressure group compared with the high-pressure and control groups after adjustment for optic nerve diameter (P<0.01). Correspondingly, the width of the optic nerve subarachnoid space measured at 3, 9, and 15 mm behind the globe, respectively, was significantly (all P<0.05) associated with IOP after adjustment for optic nerve diameter and visual field defect. The narrower orbital optic nerve subarachnoid space in patients with POAG with normal pressure compared with high pressure suggests a lower orbital CSF-P in patients with POAG with normal pressure. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Phoresis in fluids.

    PubMed

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  17. Cerebrospinal Fluid and Neuroimaging Biomarker Abnormalities Suggest Early Neurological Injury in a Subset of Individuals During Primary HIV Infection

    PubMed Central

    Peluso, Michael J.; Meyerhoff, Dieter J.; Price, Richard W.; Peterson, Julia; Lee, Evelyn; Young, Andrew C.; Walter, Rudy; Fuchs, Dietmar; Brew, Bruce J.; Cinque, Paola; Robertson, Kevin; Hagberg, Lars; Zetterberg, Henrik; Gisslén, Magnus; Spudich, Serena

    2013-01-01

    Background. Cerebrospinal fluid (CSF) and neuroimaging abnormalities demonstrate neuronal injury during chronic AIDS, but data on these biomarkers during primary human immunodeficiency virus (HIV) infection is limited. Methods. We compared CSF concentrations of neurofilament light chain, t-tau, p-tau, amyloid precursor proteins, and amyloid-beta 42 in 92 subjects with primary HIV infection and 25 controls. We examined relationships with disease progression and neuroinflammation, neuropsychological testing, and proton-magnetic resonance spectroscopy (MRS)–based metabolites. Results. Neurofilament light chain was elevated in primary HIV infection compared with controls (P = .0004) and correlated with CSF neopterin (r = 0.38; P = .0005), interferon gamma-induced protein 10 (r = 0.39; P = .002), white blood cells (r = 0.32; P = .004), protein (r = 0.59; P < .0001), and CSF/plasma albumin ratio (r = 0.60; P < .0001). Neurofilament light chain correlated with decreased N-acteylaspartate/creatine and glutamate/creatine in the anterior cingulate (r = −0.35, P = .02; r = −0.40, P = .009, respectively), frontal white matter (r = −0.43, P = .003; r = −0.30, P = .048, respectively), and parietal gray matter (r = −0.43, P = .003; r = −0.47, P = .001, respectively). Beta-amyloid was elevated in the primary infection group (P = .0005) and correlated with time infected (r = 0.34; P = .003). Neither marker correlated with neuropsychological abnormalities. T-tau and soluble amyloid precursor proteins did not differ between groups. Conclusions. Elevated neurofilament light chain and its correlation with MRS-based metabolites suggest early neuronal injury in a subset of participants with primary HIV infection through mechanisms involving central nervous system inflammation. PMID:23460748

  18. Increased negatively of interstitial fluid pressure in rat skin contributes to the edema formation induced by Zymosan.

    PubMed

    Ostgaard, G; Reed, R K

    1993-11-01

    Increased negatively of interstitial fluid pressure (Pif) contributes to rapid edema formation in several acute inflammatory reactions attesting to an "active" role for the loose connective tissues in the transcapillary fluid exchange and edema formation under these circumstances. The present study reports the effect of the complement activator Zymosan on Pif, transcapillary fluid, and albumin flux. Micropipettes (tip diameter 5 to 7 microns) connected to a servo-controlled counterpressure system were used to measure Pif in rat dermis. When compared to saline injection, subdermal injection of 1 mg Zymosan in 10 microliters 0.15 M NaCl increased total tissue water by 1.6 ml/g dry weight in 5 min, corresponding to about 150% increase in interstitial fluid volume. Pif increased from +0.4 to +3.7 mm Hg. Increased negativity of Pif can be masked by the edema formation which will increase Pif. Measurements were therefore also performed after circulatory arrest, when transcapillary fluid flux and edema formation are abolished. Using this experimental protocol Pif fell from +0.3 mm Hg to -2.5 mm Hg 5 min after subdermal injection of Zymosan and remained at this level throughout the observation period of 90 min. Injection of saline alone after circulatory arrest increased Pif transiently by about 1 mm Hg. Thus, subdermal injection of Zymosan causes increased negativity of Pif by about 4 mm Hg. Although the lowering of Pif itself will explain a minor part of the increased fluid filtration, the results attest to the role of loose connective tissues being active in the edema-generating process also in the inflammatory reaction induced by Zymosan.

  19. The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus.

    PubMed

    Delwel, E J; de Jong, D A; Avezaat, C J J

    2005-10-01

    It is difficult to predict which patients with symptoms and radiological signs of normal pressure hydrocephalus (NPH) will benefit from a shunting procedure and which patients will not. Risk of this procedure is also higher in patients with NPH than in the overall population of hydrocephalic patients. The aim of this study is to investigate which clinical characteristics, CT parameters and parameters of cerebrospinal fluid dynamics could predict improvement after shunting. Eighty-three consecutive patients with symptoms and radiological signs of NPH were included in a prospective study. Parameters of the cerebrospinal fluid dynamics were measured by calculation of computerised data obtained by a constant-flow lumbar infusion test. Sixty-six patients considered candidates for surgery were treated with a medium-pressure Spitz-Holter valve; in seventeen patients a shunting procedure was not considered indicated. Clinical and radiological follow-up was performed for at least one year postoperatively. The odds ratio, the sensitivity and specificity as well as the positive and negative predictive value of individual and combinations of measured parameters did not show a statistically significant relation to clinical improvement after shunting. We conclude that neither individual parameters nor combinations of measured parameters show any statistically significant relation to clinical improvement following shunting procedures in patients suspected of NPH. We suggest restricting the term normal pressure hydrocephalus to cases that improve after shunting and using the term normal pressure hydrocephalus syndrome for patients suspected of NPH and for patients not improving after implantation of a proven well-functioning shunt.

  20. Pressure-temperature-fluid evolution of the Mongolian Altai in the Central Asian Orogenic Belt: evidence from mineral equilibrium modeling and fluid inclusion studies on amphibolite-facies rocks from western Mongolia

    NASA Astrophysics Data System (ADS)

    Zorigtkhuu, O.-E.

    2012-04-01

    The Central Asian Orogenic Belt (CAOB), also known as Altaids, located between the Archean Siberian Craton to the north and the Tarim and North China Cratons to the south, is regarded as one of the largest accretionary and collisional orogen in the world. Detailed petrological studies on the CAOB therefore provide useful information of pressure-temperature (P-T) history of the orogeny as well as the tectonic evolution of East Asia. This study reports detailed petrological data, particularly the results of phase equilibrium modeling and fluid inclusion analysis, of pelitic schists and amphibolites from Bodonch area, southwestern Mongolia, which occupies a significant part of the Paleozoic history of the Altai Orogen in the southwestern margin of the CAOB, and discuss pressure-temperature-fluid evolution of the area. The dominant mineral assemblages of pelitic schist in Bodonch area are garnet + kyanite + staurolite + biotite + plagioclase, garnet + biotite + staurolite + cordierite, and garnet + biotite + sillimanite + plagioclase with quartz and ilmenite, while amphibolite contains calcic amphibole + quartz + plagioclase + garnet + ilmenite assemblage. Application of conventional garnet-biotite and garnet-cordierite geothermometers as well as GASP geobarometer gave metamorphic conditions of 615-635°C/8.2-8.9 kbar from kyanite-bearing pelitic schist samples. Slightly higher P-T condition of 640-690°C/6.3-10.7 kbar was obtained by mineral equilibrium modeling of garnet-kyanite-staurolite and garnet-staurolite-cordierite assemblages using Theriak-Domino software. The calculation was made in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). We constructed a clockwise P-T path staring from high-pressure amphibolite facies condition within the stability field of kyanite (approximately 650°C/9 kbar) possibly through the stability field of sillimanite by post-peak decompressional cooling. Our petrographical observations of fluid inclusions in pelitic schists

  1. Measurement of viscosity and elasticity of lubricants at high pressures

    NASA Technical Reports Server (NTRS)

    Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.

    1975-01-01

    The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.

  2. Association of left ventricular structural and functional abnormalities with aortic and brachial blood pressure variability in hypertensive patients: the SAFAR study.

    PubMed

    Chi, C; Yu, S-K; Auckle, R; Argyris, A A; Nasothimiou, E; Tountas, C; Aissopou, E; Blacher, J; Safar, M E; Sfikakis, P P; Zhang, Y; Protogerou, A D

    2017-10-01

    Both brachial blood pressure (BP) level and its variability (BPV) significantly associate with left ventricular (LV) structure and function. Recent studies indicate that aortic BP is superior to brachial BP in the association with LV abnormalities. However, it remains unknown whether aortic BPV better associate with LV structural and functional abnormalities. We therefore aimed to investigate and compare aortic versus brachial BPV, in terms of the identification of LV abnormalities. Two hundred and three participants who underwent echocardiography were included in this study. Twenty-four-hour aortic and brachial ambulatory BP was measured simultaneously by a validated BP monitor (Mobil-O-Graph, Stolberg, Germany) and BPV was calculated with validated formulae. LV mass and LV diastolic dysfunction (LVDD) were evaluated by echocardiography. The prevalence of LV hypertrophy (LVH) and LVDD increased significantly with BPV indices (P⩽0.04) in trend tests. After adjustment to potential confounders, only aortic average real variability (ARV), but not brachial ARV or weighted s.d. (wSD, neither aortic nor brachial) significantly associated with LV mass index (P=0.02). Similar results were observed in logistic regression. After adjustment, only aortic ARV significantly associated with LVH (odds ratio (OR) and 95% confidence interval (CI): 2.28 (1.08, 4.82)). As for LVDD, neither the brachial nor the aortic 24-hour wSD, but the aortic and brachial ARV, associated with LVDD significantly, with OR=2.28 (95% CI: (1.03, 5.02)) and OR=2.36 (95% CI: (1.10, 5.05)), respectively. In summary, aortic BPV, especially aortic ARV, seems to be superior to brachial BPV in the association of LV structural and functional abnormalities.

  3. Bubble oscillation and inertial cavitation in viscoelastic fluids.

    PubMed

    Jiménez-Fernández, J; Crespo, A

    2005-08-01

    Non-linear acoustic oscillations of gas bubbles immersed in viscoelastic fluids are theoretically studied. The problem is formulated by considering a constitutive equation of differential type with an interpolated time derivative. With the aid of this rheological model, fluid elasticity, shear thinning viscosity and extensional viscosity effects may be taken into account. Bubble radius evolution in time is analyzed and it is found that the amplitude of the bubble oscillations grows drastically as the Deborah number (the ratio between the relaxation time of the fluid and the characteristic time of the flow) increases, so that, even for moderate values of the external pressure amplitude, the behavior may become chaotic. The quantitative influence of the rheological fluid properties on the pressure thresholds for inertial cavitation is investigated. Pressure thresholds values in terms of the Deborah number for systems of interest in ultrasonic biomedical applications, are provided. It is found that these critical pressure amplitudes are clearly reduced as the Deborah number is increased.

  4. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  5. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  6. Fluid Film Bearing Code Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the

  7. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories.

    PubMed

    Martin, Bryn A; Labuda, Richard; Royston, Thomas J; Oshinski, John N; Iskandar, Bermans; Loth, Francis

    2010-11-01

    Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.

  8. Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension

    PubMed Central

    DiCarlo, Stephen E.; Morris, R. Curtis

    2016-01-01

    Abstract The term “abnormal pressure natriuresis” refers to a subnormal effect of a given level of blood pressure (BP) on sodium excretion. It is widely believed that abnormal pressure natriuresis causes an initial increase in BP to be sustained. We refer to this view as the “pressure natriuresis theory of chronic hypertension.” The proponents of the theory contend that all forms of chronic hypertension are sustained by abnormal pressure natriuresis, irrespective of how hypertension is initiated. This theory would appear to follow from “the three laws of long-term arterial pressure regulation” stated by Guyton and Coleman more than 3 decades ago. These “laws” articulate the concept that for a given level of salt intake, the relationship between arterial pressure and sodium excretion determines the chronic level of BP. Here, we review and examine the recent assertion by Beard that these “laws” of long-term BP control amount to nothing more than a series of tautologies. Our analysis supports Beard’s assertion, and also indicates that contemporary investigators often use tautological reasoning in support of the pressure natriuresis theory of chronic hypertension. Although the theory itself is not a tautology, it does not appear to be testable because it holds that abnormal pressure natriuresis causes salt-induced hypertension to be sustained through abnormal increases in cardiac output that are too small to be detected. PMID:28637271

  9. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  10. Metering System for Compressible Fluids.

    DTIC Science & Technology

    1995-04-10

    pressure switch and a low pass pressure switch are included in 5 line with the compressible fluid cylinder; consequently, the density of the...Once the pressure in first container 30 reaches the preset pressure for pressure switch 58, inlet valves 20 and 24 are closed and outlet valves 36...is allowed to drop to the preset pressure for pressure switch 60, at which time outlet valves 36 and 40 are closed, inlet valves 20 and 24 are

  11. High Pressure Rotary Shaft Sealing Mechanism

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  12. Negative-Pressure Hydrocephalus: A Case Report on Successful Treatment Under Intracranial Pressure Monitoring with Bilateral Ventriculoperitoneal Shunts.

    PubMed

    Pandey, Sajan; Jin, Yi; Gao, Liang; Zhou, Cheng Cheng; Cui, Da Ming

    2017-03-01

    Negative-pressure hydrocephalus (NegPH), a very rare condition of unknown etiology and optimal treatment, usually presents postneurosurgery with clinical and imaging features of hydrocephalus, but with negative cerebrospinal fluid pressure. We describe a NegPH case of -3 mm Hg intracranial pressure that was successfully treated to achieve 5 mm Hg under continuous intracranial pressure monitoring with horizontal positioning, head down and legs elevated to 10°-15°, neck wrapping for controlled venous drainage, chest and abdomen bandages, infusion of 5% dextrose fluid to lower plasma osmolarity (Na + , 130-135 mmol/L), daily cerebrospinal fluid drainage >200 mL, and arterial blood gas partial pressure of carbon dioxide >40 mm Hg. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.

    2017-04-01

    The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating

  14. Stress and Pore Fluid Pressure Cycles Beneath the Seismogenic Layer Recorded by Veins

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Stöckhert, B.

    2006-12-01

    Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer, while still residing in a long-term viscous environment. The (micro-)structural record of monogenetic syntaxial quartz veins in metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350° C. The following features are characteristic: 1) The veins crosscut the foliation and all syn-metamorphic structures; 2) the veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; 3) some veins branch symmetrically with an aperture angle of 30°, which is interpreted to indicate high crack propagation rates similar to Raleigh wave speed; 4) the veins formed during a single sealing stage by mineral precipitation in open cavities; 5) the veins show a low aspect ratio of about 10 to 100 and a characteristic lenticular shape, controlled by distributed ductile deformation of the host rock, with vein-parallel shortening by typically less than 1 %; 6) the intensity of crystal plastic deformation in the vein quartz decreases from the vein walls towards the center; 7) fluid inclusions trapped in the vein quartz record a time series of pore fluid pressure (Pf) evolution during progressive sealing, with low Pf at the vein walls (early stage) to high Pf in the vein core (final stage). These features indicate: Opening of the fractures commenced immediately after crack arrest, controlled by ductile deformation of the host rock at temperatures between about 300 and 350° C. The crack opening rate exceeded the rate of sealing, so that the quartz crystals grew into an open cavity. For opening of cracks, the effective stress on the fracture walls must be tensile and the fluid pressure must be similar to that of the

  15. Simulation Of The Synovial Fluid In A Deformable Cavity

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Nancy; Ibarra-Bracamontes, Laura A.

    2016-11-01

    The main components of a synovial joint are a cartilage and a biofluid known as the synovial fluid. The results were obtained using the FLUENT software to simulate the behavior of the synovial fluid within a deformable cavity with a simple geometry. The cartilage is represented as a porous region. By reducing the available region for the fluid, a fluid displacement into the cartilage is induced. The total pressure reached in the interface of the deformable cavity and the porous region is presented. The geometry and properties of the system are scaled to values found in a knee joint. The effect of deformation rate, fluid viscosity and properties of the porous medium on the total pressure reached are analyzed. The higher pressures are reached either for high deformation rate or when the fluid viscosity increases. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  16. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  17. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the

  18. Amniotic fluid gamma-glutamyl transpeptidase activity during the second trimester.

    PubMed

    Legge, M; Potter, H C

    1986-03-12

    Gamma glutamyl transpeptidase (GGTP) activity was determined in second trimester amniotic fluid taken from normal fetuses and those with fetal abnormalities. GGTP activity decreased with advancing gestation. Increasing meconium contamination correlated with an increase in GGTP activity as did increasing fetal blood contamination. Maternal blood did not affect GGTP activity. Anencephaly did not significantly alter the GGTP activity, however, fetuses with spina bifida had significantly lower activity. Klinefelters and Turners syndromes both had GGTP activity close to the 50th percentile, and two trisomy 21 fetuses had GGTP activity below the 40th percentile. Two trisomy 18 fetuses and two translocation Downs syndromes (46 XY, t (14;21) had GGTP activities considerably lower than the 20th percentile as did a fetus with gastroschisis. Second trimester amniotic fluid GGTP activity may provide an easy preliminary test to screen amniotic fluids for the possibility of certain fetal chromosome abnormalities.

  19. Impact of fluid injection velocity on CO2 saturation and pore pressure in porous sandstone

    NASA Astrophysics Data System (ADS)

    Kitamura, Keigo; Honda, Hiroyuki; Takaki, Shinnosuke; Imasato, Mitsunori; Mitani, Yasuhiro

    2017-04-01

    The elucidation of CO2 behavior in sandstone is an essential issue to understand the fate of injecting CO2 in reservoirs. Injected CO2 invades pore spaces and replaces with resident brine and forms complex two-phase flow with brine. It is considered that this complex CO2 flow arises CO2 saturation (SCO_2)and pore fluid pressure(Pp) and makes various types of CO2 distribution pattern in pore space. The estimation of SCO_2 in the reservoir is one of important task in CCS projects. Fluid pressure (Pp) is also important to estimate the integrity of CO2 reservoir and overlying cap rocks. Generally, elastic waves are used to monitor the changes of SCO_2. Previous experimental and theoretical studies indicated that SCO_2 and Pp are controlled by the fluid velocity (flow rate) of invaded phase. In this study, we conducted the CO2 injection test for Berea sandstone (φ=18.1{%}) under deep CO2 reservoir conditions (confining pressure: 20MPa; temperature: 40 rC). We try to estimate the changes of SCO_2 and Pp with changing CO2 injection rate (FR) from 10 to 5000 μ l/min for Berea sandstone. P-wave velocities (Vp) are also measured during CO2 injection test and used to investigate the relationships between SCO2 and these geophysical parameters. We set three Vp-measurement channels (ch.1, ch2 and ch.3 from the bottom) monitor the CO2 behavior. The result shows step-wise SCO_2 changes with increasing FR from 9 to 25 {%} in low-FR condition (10-500 μ l/min). Vp also shows step wise change from ch1 to ch.3. The lowermost channel (ch.1) indicates that Vp-reduction stops around 4{%} at 10μ m/min condition. However, ch.3 changes slightly from 4{%} at 10 μ l/min to 5{%} at 100 μ l/min. On the other hand, differential Pp (Δ P) dose not shows obvious changes from 10kPa to 30kPa. Over 1000 μ l/min, SCO_2 increases from 35 to 47 {%}. Vp of all channels show slight reductions and Vp-reductions reach constant values as 8{%}, 6{%} and 8{%}, respectively at 5000{}μ l/min. On the other

  20. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  1. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  2. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  3. Convertible socket for pressure gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, R.D.

    1990-01-01

    This patent describes a pressure gauge having a case in which is disposed a Bourdon tube and a base socket connected to the Bourdon tube for placing the tube in pressure communication with a fluid pressure source. Base socket has a rearward face and a bottom face with respect to the gauge adjacent openings defined through the case and an internal passage communication with the tube. It includes means for connecting a source of fluid pressure to the socket selectively through one of the case openings to the bottom face or the rearward face.

  4. Long-term Response of Cerebrospinal Fluid Pressure in Patients with Idiopathic Intracranial Hypertension - A Prospective Observational Study.

    PubMed

    Gafoor, V Abdul; Smita, B; Jose, James

    2017-01-01

    Idiopathic intracranial hypertension (IIH) is increased intracranial pressure (ICP) with normal cerebrospinal fluid (CSF) contents, in the absence of an intracranial mass, hydrocephalus, or other identifiable causes. The current knowledge of the treatment outcome of IIH is limited, and the data on the natural history of this entity are scant. The objective of the study is to study the treatment response of IIH by serially measuring the CSF opening pressure and to delineate the factors influencing the same. A prospective observational study in a cohort of fifty patients with IIH in whom CSF opening pressure was serially measured at pre-specified intervals. The mean CSF opening pressure at baseline was 302.4 ± 51.69 mm of H 2 O (range: 220-410). Even though a higher body mass index (BMI) showed a trend toward a higher CSF opening pressure, the association was not significant ( P = 0.168). However, the age of the patient had a significant negative correlation with the CSF pressure ( P = 0.006). The maximum reduction in CSF pressure occurred in the first 3 months of treatment, and thereafter it plateaued. Remission was attained in 12 (24%) patients. BMI had the strongest association with remission ( P = 0.001). In patients with IIH, treatment response is strongly related to BMI. However, patients with normal BMI are also shown to relapse and hence should have continuous, long-term follow-up. The reduction in CSF pressure attained in the first 3 months could reflect the long-term response to treatment.

  5. A unifying hypothesis for a patient with superficial siderosis, low-pressure headache, intraspinal cyst, back pain, and prominent vascularity.

    PubMed

    Kumar, Neeraj; Miller, Gary M; Piepgras, David G; Mokri, Bahram

    2010-07-01

    A source of bleeding is often not evident during the evaluation of patients with superficial siderosis of the CNS despite extensive imaging. An intraspinal fluid-filled collection of variable dimensions is frequently observed on spine MR imaging in patients with idiopathic superficial siderosis. A similar finding has also been reported in patients with idiopathic intracranial hypotension. The authors report on a patient with superficial siderosis and a longitudinally extensive intraspinal fluid-filled collection secondary to a dural tear. The patient had a history of low-pressure headaches. His spine MR imaging and spine CT suggested the possibility of an underlying vascular malformation, but none was found on angiography. Repair of the dural tear resulted in resolution of the intraspinal fluid collection and CSF abnormalities. The significance of the association between superficial siderosis and idiopathic intracranial hypotension, and potential therapeutic and pathophysiological implications, are the subject of this report.

  6. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients.

  7. [Taurine as a regulator of fluid-electrolyte balance and arterial pressure].

    PubMed

    Ciechanowska, B

    1997-01-01

    Taurine is a sulfonic beta-amino acid which occurs in the highest concentration in the brain, the retina and in the myocardium. In cardiomyocytes it presents about 50% of free amino acids and plays a role as an osmoregulator, an inotropic factor and has an antiarrhythmic property. Moreover, taurine lowers arterial pressure by extension of diuresis and by vasodilatation. Similar effect on the vascular system and arterial pressure is exerted by atrial natriuretic peptide (ANP). Increase of both ANP secretion and myocardial taurine concentration is present in the same diseases as congestive cardiac failure, hypertension and hypernatremia. The aim of the study was the evaluation of general taurine depletion, caused by making the rats drink guanidinoethyl sulfonate (GES)--an inhibitor of taurine transport affecting fluid balance and arterial pressure as well as plasma ANP concentration under normal conditions and after increase of sodium load. The 103 male Wistar rats weighing 250-300 g were used. The animals were separated into 5 groups. Control group received tap water to drink. Group II was sodium-loaded by drinking 171 mmol/l NaCl. In group III depletion of taurine was obtained by the intake of 60 mmol/l GES. Rats in group IV were drinking 60 mmol/l GES in 171 mmol/l NaCl. Group V was made to drink 200 mmol/l taurine in 171 mmol/l NaCl. All animals had standard food and were able at any time to drink. Duration of the experiment was 20 days. At the onset and after 10 and 20 days the rats were weighed and their systolic blood pressure was measured by tail plethysmography. After 10 and 20 days of the study, plasma and myocardium taurine concentration, ANP, hematocrit, plasma osmolity, natremia, kalemia, urea and creatinine concentrations were determined. Taking GES for 20 days led to 43% decrease of plasma taurine and its myocardium content about 50% as compared to control group (Tab. 2). High, statistically significant correlation (r = 0.50, p < 0.001) between

  8. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  9. The ability of pulse pressure variations obtained with CNAP™ device to predict fluid responsiveness in the operating room.

    PubMed

    Biais, Matthieu; Stecken, Laurent; Ottolenghi, Laetitia; Roullet, Stéphanie; Quinart, Alice; Masson, Françoise; Sztark, François

    2011-09-01

    Respiratory-induced pulse pressure variations obtained with an arterial line (ΔPP(ART)) indicate fluid responsiveness in mechanically ventilated patients. The Infinity® CNAP™ SmartPod® (Dräger Medical AG & Co. KG, Lübeck, Germany) provides noninvasive continuous beat-to-beat arterial blood pressure measurements and a near real-time pressure waveform. We hypothesized that respiratory-induced pulse pressure variations obtained with the CNAP system (ΔPP(CNAP)) predict fluid responsiveness as well as ΔPP(ART) predicts fluid responsiveness in mechanically ventilated patients during general anesthesia. Thirty-five patients undergoing vascular surgery were studied after induction of general anesthesia. Stroke volume (SV) measured with the Vigileo™/FloTrac™ (Edwards Lifesciences, Irvine, CA), ΔPP(ART), and ΔPP(CNAP) were recorded before and after intravascular volume expansion (VE) (500 mL of 6% hydroxyethyl starch 130/0.4). Subjects were defined as responders if SV increased by ≥15% after VE. Twenty patients responded to VE and 15 did not. The correlation coefficient between ΔPP(ART) and ΔPP(CNAP) before VE was r = 0.90 (95% confidence interval [CI] = 0.84-0.96; P < 0.0001). Before VE, ΔPP(ART) and ΔPP(CNAP) were significantly higher in responders than in nonresponders (P < 0.0001). The values of ΔPP(ART) and ΔPP(CNAP) before VE were significantly correlated with the percent increase in SV induced by VE (respectively, r(2) = 0.50; P < 0.0001 and r(2) = 0.57; P < 0.0001). Before VE, a ΔPP(ART) >10% discriminated between responders and nonresponders with a sensitivity of 90% (95% CI = 69%-99%) and a specificity of 87% (95% CI = 60%-98%). The area under the receiver operating characteristic (ROC) curve was 0.957 ± 0.035 for ΔPP(ART). Before VE, a ΔPP(CNAP) >11% discriminated between responders and nonresponders with a sensitivity of 85% (95% CI = 62%-97%) and a specificity of 100% (95% CI = 78%-100%). The area under the ROC curve was 0.942 ± 0

  10. Reduced viscosity interpreted for fluid/gas mixtures

    NASA Technical Reports Server (NTRS)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  11. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment?

    PubMed

    Gładysz, Dominika; Krzywdzińska, Amanda; Hozyasz, Kamil K

    2018-01-06

    Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.

  12. Noninvasive beat-to-beat finger arterial pressure monitoring during orthostasis: a comprehensive review of normal and abnormal responses at different ages.

    PubMed

    van Wijnen, V K; Finucane, C; Harms, M P M; Nolan, H; Freeman, R L; Westerhof, B E; Kenny, R A; Ter Maaten, J C; Wieling, W

    2017-12-01

    Over the past 30 years, noninvasive beat-to-beat blood pressure (BP) monitoring has provided great insight into cardiovascular autonomic regulation during standing. Although traditional sphygmomanometric measurement of BP may be sufficient for detection of sustained orthostatic hypotension, it fails to capture the complexity of the underlying dynamic BP and heart rate responses. With the emerging use of noninvasive beat-to-beat BP monitoring for the assessment of orthostatic BP control in clinical and population studies, various definitions for abnormal orthostatic BP patterns have been used. Here, age-related changes in cardiovascular control in healthy subjects will be reviewed to define the spectrum of the most important abnormal orthostatic BP patterns within the first 180 s of standing. Abnormal orthostatic BP responses can be defined as initial orthostatic hypotension (a transient systolic BP fall of >40 mmHg within 15 s of standing), delayed BP recovery (an inability of systolic BP to recover to a value of >20 mmHg below baseline at 30 s after standing) and sustained orthostatic hypotension (a sustained decline in systolic BP of ≥20 mmHg occurring 60-180 s after standing). In the evaluation of patients with light-headedness, pre(syncope), (unexplained) falls or suspected autonomic dysfunction, it is essential to distinguish between normal cardiovascular autonomic regulation and these abnormal orthostatic BP responses. The prevalence, clinical relevance and underlying pathophysiological mechanisms of these patterns differ significantly across the lifespan. Initial orthostatic hypotension is important for identifying causes of syncope in younger adults, whereas delayed BP recovery and sustained orthostatic hypotension are essential for evaluating the risk of falls in older adults. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  13. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  14. Simulating Gas-Liquid-Water Partitioning and Fluid Properties of Petroleum under Pressure: Implications for Deep-Sea Blowouts.

    PubMed

    Gros, Jonas; Reddy, Christopher M; Nelson, Robert K; Socolofsky, Scott A; Arey, J Samuel

    2016-07-19

    With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas-liquid-water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng-Robinson equation-of-state and the modified Henry's law (Krychevsky-Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279-280 pseudocomponents, including 131-132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29-44% gas and ∼56-71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1-C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.

  15. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  16. A monolithic Lagrangian approach for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.

    2010-11-01

    Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

  17. Texture Analysis of T1-Weighted and Fluid-Attenuated Inversion Recovery Images Detects Abnormalities That Correlate With Cognitive Decline in Small Vessel Disease.

    PubMed

    Tozer, Daniel J; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S

    2018-06-04

    Magnetic resonance imaging may be useful to assess disease severity in cerebral small vessel disease (SVD), identify those individuals who are most likely to progress to dementia, monitor disease progression, and act as surrogate markers to test new therapies. Texture analysis extracts information on the relationship between signal intensities of neighboring voxels. A potential advantage over techniques, such as diffusion tensor imaging, is that it can be used on clinically obtained magnetic resonance sequences. We determined whether texture parameters (TP) were abnormal in SVD, correlated with cognitive impairment, predicted cognitive decline, or conversion to dementia. In the prospective SCANS study (St George's Cognition and Neuroimaging in Stroke), we assessed TP in 121 individuals with symptomatic SVD at baseline, 99 of whom attended annual cognitive testing for 5 years. Conversion to dementia was recorded for all subjects during the 5-year period. Texture analysis was performed on fluid-attenuated inversion recovery and T1-weighted images. The TP obtained from the SVD cohort were cross-sectionally compared with 54 age-matched controls scanned on the same magnetic resonance imaging system. There were highly significant differences in several TP between SVD cases and controls. Within the SVD population, TP were highly correlated to other magnetic resonance imaging parameters (brain volume, white matter lesion volume, lacune count). TP correlated with executive function and global function at baseline and predicted conversion to dementia, after controlling for age, sex, premorbid intelligence quotient, and magnetic resonance parameters. TP, which can be obtained from routine clinical images, are abnormal in SVD, and the degree of abnormality correlates with executive dysfunction and global cognition at baseline and decline during 5 years. TP may be useful to assess disease severity in clinically collected data. This needs testing in data clinically acquired

  18. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  19. How Pore-Fluid Pressure due to Heavy Rainfall Influences Volcanic Eruptions, Example of 1998 and 2008 Eruptions of Cerro Azul (Galapagos)

    NASA Astrophysics Data System (ADS)

    Albino, F.; Amelung, F.; Gregg, P. M.

    2016-12-01

    About 30 worldwide seismic studies have shown a strong correlation between rainfall and earthquakes in the past 22 years (e.g. Costain and Bollinger, 2010). Such correlation has been explained by the phenomenon of hydro-seismicity via pore pressure diffusion: an increase of pore-fluid in the upper crust reduces the normal stress on faults, which can trigger shear failure. Although this pore pressure effect is widely known for earthquakes, this phenomenon and more broadly poro-elasticity process are not widely studied on volcanoes. However, we know from our previous works that tensile failures that open to propagate magma through the surface are also pore pressure dependent. We have demonstrated that an increase of pore pressure largely reduces the overpressure required to rupture the magma reservoir. We have shown that the pore pressure has more influence on reservoir stability than other parameters such as the reservoir depth or the edifice loading. Here, we investigate how small pore-fluid changes due to hydrothermal or aquifer refill during heavy rainfall may perturb the conditions of failure around magma reservoirs and, what is more, if these perturbations are enough to trigger magma intrusions. We quantify the pore pressure effect on magmatic system by combining 1) 1D pore pressure diffusion model to quantify how pore pressure changes from surface to depth after heavy rainfall events and 2) 2D poro-elastic numerical model to provide the evolution of failure conditions of the reservoir as a consequence of these pore pressure changes. Sensitivity analysis is also performed to characterize the influence on our results of the poro-elastic parameters (hydraulic diffusivity, permeability and porosity) and the geometry of the magma reservoir and the aquifer (depth, size, shape). Finally, we apply our methodology to Cerro Azul volcano (Galapagos) where both last eruptions (1998 and 2008) occurred just after heavy rainfall events, without any pre-eruptive inflation. In

  20. Non-invasive method and apparatus for monitoring intracranial pressure and pressure volume index in humans

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Yost, William T. (Inventor)

    1994-01-01

    Non-invasive measuring devices responsive to changes in a patient's intracranial pressure (ICP) can be accurately calibrated for monitoring purposes by providing known changes in ICP by non-invasive methods, such as placing the patient on a tilting bed and calculating a change in ICP from the tilt angle and the length of the patient's cerebrospinal column, or by placing a pressurized skull cap on the patient and measuring the inflation pressure. Absolute values for the patient's pressure-volume index (PVI) and the steady state ICP can then be determined by inducing two known changes in the volume of cerebrospinal fluid while recording the corresponding changes in ICP by means of the calibrated measuring device. The two pairs of data for pressure change and volume change are entered into an equation developed from an equation describing the relationship between ICP and cerebrospinal fluid volume. PVI and steady state ICP are then determined by solving the equation. Methods for inducing known changes in cerebrospinal fluid volume are described.

  1. Non-invasive method and apparatus for monitoring intracranial pressure and pressure volume index in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    Non-invasive measuring devices responsive to changes in a patient's intracranial pressure (ICP) can be accurately calibrated for monitoring purposes by providing known changes in ICP by non-invasive methods, such as placing the patient on a tilting bed and calculating a change in ICP from the tilt angle and the length of the patient's cerebrospinal column, or by placing a pressurized skull cap on the patient and measuring the inflation pressure. Absolute values for the patient's pressure-volume index (PVI) and the steady state ICP can then be determined by inducing two known changes in the volume of cerebrospinal fluid while recording the corresponding changes in ICP by means of the calibrated measuring device. The two pairs of data for pressure change and volume change are entered into an equation developed from an equation describing the relationship between ICP and cerebrospinal fluid volume. PVI and steady state ICP are then determined by solving the equation. Methods for inducing known changes in cerebrospinal fluid volume are described.

  2. Impact of Compression Stockings vs. Continuous Positive Airway Pressure on Overnight Fluid Shift and Obstructive Sleep Apnea among Patients on Hemodialysis.

    PubMed

    Silva, Bruno C; Santos, Roberto S S; Drager, Luciano F; Coelho, Fernando M; Elias, Rosilene M

    2017-01-01

    Obstructive sleep apnea (OSA) is common in edematous states, notably in hemodialysis patients. In this population, overnight fluid shift can play an important role on the pathogenesis of OSA. The effect of compression stockings (CS) and continuous positive airway pressure (CPAP) on fluid shift is barely known. We compared the effects of CS and CPAP on fluid dynamics in a sample of patients with OSA in hemodialysis, through a randomized crossover study. Each participant performed polysomnography (PSG) at baseline, during CPAP titration, and after 1 week of wearing CS. Neck circumference (NC) and segmental bioelectrical impedance were done before and after PSG. Fourteen patients were studied (53 ± 9 years; 57% men; body mass index 29.7 ± 6.8 kg/m 2 ). Apnea-hypopnea index (AHI) decreased from 20.8 (14.2; 39.6) at baseline to 7.9 (2.8; 25.4) during CPAP titration and to 16.7 (3.5; 28.9) events/h after wearing CS (CPAP vs. baseline, p  = 0.004; CS vs. baseline, p  = 0.017; and CPAP vs. CS, p  = 0.017). Nocturnal intracellular trunk water was higher after wearing CS in comparison to baseline and CPAP ( p  = 0.03). CS reduced the fluid accumulated in lower limbs during the day, although not significantly. Overnight fluid shift at baseline, CPAP, and CS was -183 ± 72, -343 ± 220, and -290 ± 213 ml, respectively ( p  = 0.006). Overnight NC increased at baseline (0.7 ± 0.4 cm), decreased after CPAP (-1.0 ± 0.4 cm), and while wearing CS (-0.4 ± 0.8 cm) (CPAP vs. baseline, p  < 0.0001; CS vs. baseline, p  = 0.001; CPAP vs. CS, p  = 0.01). CS reduced AHI by avoiding fluid retention in the legs, favoring accumulation of water in the intracellular component of the trunk, thus avoiding fluid shift to reach the neck. CPAP improved OSA by exerting local pressure on upper airway, with no impact on fluid redistribution. CPAP performed significantly better than CS for both reduction of AHI and

  3. Implanted Blood-Pressure-Measuring Device

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E.

    1988-01-01

    Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.

  4. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  5. Low central venous pressure versus acute normovolemic hemodilution versus conventional fluid management for reducing blood loss in radical retropubic prostatectomy: a randomized controlled trial.

    PubMed

    Habib, Ashraf S; Moul, Judd W; Polascik, Thomas J; Robertson, Cary N; Roche, Anthony M; White, William D; Hill, Stephen E; Nosnick, Israel; Gan, Tong J

    2014-05-01

    To compare acute normovolemic hemodilution versus low central venous pressure strategy versus conventional fluid management in reducing intraoperative estimated blood loss, hematocrit drop and need for blood transfusion in patients undergoing radical retropubic prostatectomy under general anesthesia. Patients undergoing radical retropubic prostatectomy under general anesthesia were randomized to conventional fluid management, acute normovolemic hemodilution or low central venous pressure (≤5 mmHg). Treatment effects on estimated blood loss and hematocrit change were tested in multivariable regression models accounting for surgeon, prostate size, and all two-way interactions. Ninety-two patients completed the study. Estimated blood loss (mean ± SD) was significantly lower with low central venous pressure (706 ± 362 ml) compared to acute normovolemic hemodilution (1103 ± 635 ml) and conventional (1051 ± 714 ml) groups (p = 0.0134). There was no difference between the groups in need for blood transfusion, or hematocrit drop from preoperative values. The multivariate model predicting estimated blood loss showed a significant effect of treatment (p = 0.0028) and prostate size (p = 0.0323), accounting for surgeon (p = 0.0013). In the model predicting hematocrit change, accounting for surgeon difference (p = 0.0037), the treatment effect depended on prostate size (p = 0.0007) with the slope of low central venous pressure differing from the other two groups. Hematocrit was predicted to drop more with increased prostate size in acute normovolemic hemodilution and conventional groups but not with low central venous pressure. Limitations include the inability to blind providers to group assignment, possible variability between providers in estimation of blood loss, and the relatively small sample size that was not powered to detect differences between the groups in need for blood transfusion. Maintaining low central venous

  6. A modified fluid percussion device.

    PubMed

    Yamaki, T; Murakami, N; Iwamoto, Y; Yoshino, E; Nakagawa, Y; Ueda, S; Horikawa, J; Tsujii, T

    1994-10-01

    This report examines a modified fluid percussion device with specific improvements made to address deficiencies found in previously reported devices. These improvements include the use of a cylindrical saline reservoir made of stainless steel, placement of the reservoir in a 15-degree head-up position for the easy release of air bubbles, placement of the fluid flushing outlet and the pressure transducer close to the piston on the same plane, with both perpendicular to the direction of the piston, and adjustable reservoir volume to vary the waveform of the pressure pulse, and a metallic central injury screw secured to the animal's skull over the exposed dura. Using this device, midline fluid percussion (MFP) and lateral fluid percussion (LFP) injuries were performed in 70 rats. Histopathologic findings included diffuse axonal injury in the MFP model and cortical contusion in the LFP model. Survival rate was 41.4% in MFP animals and 100% in LFM animals when the device settings were 178 mm3 of the cylindrical reservoir and 50 degrees-60 degrees in height of the pendulum. Our results suggest that this modified fluid percussion device may offer significant improvements over previously reported fluid percussion models for use in experimental head injury.

  7. Vectorcardiographic results from Skylab medical experiment M092: Lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hoffler, G. W.; Johnson, R. L.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.

    1974-01-01

    Vectorcardiograms were recorded via a modified Frank lead system from all crewmen of the three Skylab missions in conjuction with the Lower Body Negative Pressure - M092 Experiment. Data were analyzed by a specially developed computer program (VECTAN). Design of the test sequences allowed direct comparisons of supine resting, Earth based (reference) vectorcardiograms with those taken during lower body negative pressure stress and those obtained at rest in orbit, as well as combinations of these conditions. Results revealed several statistically significant space flight related changes; namely, increased testing and lower body negative pressure stressed heart rates, modestly increased PR interval and corrected QTC interval, and greatly increased P and QPS loop maximal amplitudes. In addition, orientation changes in the QRS maximum vector and the J-vector at rest in space seem quite consistent among crewmen and different from those caused by the application of lower body negative pressure. No clinical abnormalities were observed. Etiology of these findings is conjectured to be, at least in part, related to fluid mass shifts occurring in weightlessness and attendant alterations in cardiovascular dynamics and myocardial autonomic control mechanisms.

  8. CMC blade with pressurized internal cavity for erosion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interiormore » fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.« less

  9. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  10. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  11. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  12. Fluid overpressures and strength of the sedimentary upper crust

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2014-12-01

    The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.

  13. Abrupt contraction flow of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; López-López, M. T.; Bossis, G.

    2009-05-01

    Contraction and expansion flows of magnetorheological fluids occur in a variety of smart devices. It is important therefore to learn how these flows can be controlled by means of applied magnetic fields. This paper presents a first investigation into the axisymmetric flow of a magnetorheological fluid through an orifice (so-called abrupt contraction flow). The effect of an external magnetic field, longitudinal or transverse to the flow, is examined. In experiments, the pressure-flow rate curves were measured, and the excess pressure drop (associated with entrance and exit losses) was derived from experimental data through the Bagley correction procedure. The effect of the longitudinal magnetic field is manifested through a significant increase in the slope of the pressure-flow rate curves, while no discernible yield stress occurs. This behavior, observed at shear Mason numbers 10fluids accompanied by shrinkage of the entrance flow into a conical funnel. At the same range of Mason numbers, the transverse magnetic field appears not to influence the pressure drop. This can be explained by a total destruction of magnetic particle aggregates by large hydrodynamic forces acting on them when they are perpendicular to the flow. To support these findings, we have developed a theoretical model connecting the microstructure of the magnetorheological fluid to its extensional rheological properties and predicting the pressure-flow rate relations through the solution of the flow equations. In the case of the longitudinal magnetic field, our model describes the experimental results reasonably well.

  14. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  15. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  16. Abnormal cerebrospinal fluid biochemistry in biotinidase deficiency causing diagnostic conundrum.

    PubMed

    Krishnakumar, Deepa; Maw, Anna; Brown, Richard; Hogg, Sarah; Calvin, Jackie; Parker, Alasdair P J

    2014-01-01

    Biotinidase deficiency is a treatable cause of infantile epilepsy and the presentation can be nonspecific. The seizures are difficult to differentiate from other causes of epileptic encephalopathy, which generally have a poor prognosis. We report 2 infants who presented with seizures, and whose low cerebrospinal fluid glucose and high cerebrospinal lactate caused a diagnostic dilemma. Subsequent urine organic acids pointed to the correct diagnosis and avoided invasive investigation. The children had a good clinical outcome with resolution of their seizures on biotin treatment.

  17. Biobased extreme pressure additives: Structure-property considerations

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...

  18. Anaesthesia for 1131 patients undergoing proximal femoral fracture repair: a retrospective, observational study of effects on blood pressure, fluid administration and perioperative anaemia.

    PubMed

    Wood, R J; White, S M

    2011-11-01

    Intra-operative hypotension is a frequent occurrence during anaesthesia for hip fracture surgery in older patients with co-morbidities. We analysed retrospective data from the Brighton Hip Fracture Database to determine the intra-operative fall in systolic blood pressure, and the incidence of absolute (lowest systolic blood pressure < 90 mmHg) and relative (> 20% fall in systolic blood pressure from baseline) hypotension during general or spinal anaesthesia among 1131 non-consecutive patients with hip fracture. General anaesthesia for 489 patients (43.2%) produced a greater mean (SD) fall in systolic blood pressure than spinal anaesthesia for 578 patients (51.1%): 34.2% (13.0%) vs 29.7% (10.8%), respectively (p < 0.0001), mean difference 4.5% (95% CI 3.1-5.9%), and was associated with greater mean (SD) intra-operative fluid administration (1555 (801) ml vs 1375 (621) ml, respectively, p < 0.0001). We observed a correlation between the volume of subarachnoid hyperbaric bupivacaine 0.5% and fall in systolic blood pressure (p = 0.004): compared with patients receiving > 1.5 ml (n = 463), fewer patients receiving ≤ 1.5 ml bupivacaine 0.5% (n = 97) experienced episodes of absolute (31.1% vs 11.3%, p < 0.0001) or relative (83.9% vs 26.8%, p < 0.0001) hypotension. Both mean (SD) intravenous fluid administration (1097 ml (439) vs 1431 ml (638), p < 0.0001) and mean peri-operative fall in haemoglobin concentration (2.1 (1.8) g.dl(-1) vs 2.6 (1.7) g.dl(-1), p = 0.009) were lower in the low-dose spinal group. If these data are confirmed by other researchers, intra-operative hypotension (and consequent haemodilution secondary to reactive fluid administration) in this patient group may be reduced by the simple expedient of administering more cautious general anaesthesia, or reduced volumes of subarachnoid local anaesthetic. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  19. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the

  20. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  1. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  2. Abnormal findings in peers during skills learning.

    PubMed

    Wearn, Andy; Nakatsuji, Miriam; Bhoopatkar, Harsh

    2017-02-01

    Peer physical examination (PPE), where students examine each other, is common in contemporary clinical skills learning. A range of benefits and risks have been explored in the literature. One persistent concern has been the identification and management of abnormal physical findings. Two previous studies have attempted to quantify the risk, one through the discussion of two exemplar cases and the other with a retrospective student survey. Here, we report the first prospective study of the number and type of abnormalities encountered as part of early clinical skills learning in a medical programme. We have a formal written consent process for PPE, which includes the management of abnormal findings through the completion of an event form. Our data come from cohorts undertaking years 2 and 3 of the programme between 2003 and 2014. One persistent concern (of PPE) has been the identification and management of abnormal physical findings RESULTS: Nineteen event forms were completed over this period. The incidence rates per year ranged from 0.23 to 1.05 per cent. Abnormal findings included raised blood pressure, heart murmur, abnormal bedside test values, and eye and skin conditions. The low event rate, along with a feasible process for dealing with this issue, goes some way to reassuring those with concerns. We acknowledge that some abnormalities may have been missed, and that some data may have been lost as a result of incorrect process; however, even the highest annual rate is low in absolute terms. We recommend a formal process for managing abnormalities. Ideally this would be part of an overall PPE written policy, communicated to students, enacted by tutors and approved by the local ethics committee. © 2016 John Wiley & Sons Ltd.

  3. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  4. Pleural pressure theory revisited: a role for capillary equilibrium.

    PubMed

    Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco

    2017-04-01

    Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.

  5. Pleural pressure theory revisited: a role for capillary equilibrium

    PubMed Central

    Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca

    2017-01-01

    Background Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. Methods A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. Results The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes’ hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. Conclusions This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation. PMID:28523153

  6. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex

  7. Valve assembly for use with high temperature and high pressure fluids

    DOEpatents

    De Feo, Angelo

    1982-01-01

    The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.

  8. Fluid-flow measurements in low permeability media with high pressure gradients using neutron imaging: Application to concrete

    NASA Astrophysics Data System (ADS)

    Yehya, Mohamad; Andò, Edward; Dufour, Frédéric; Tengattini, Alessandro

    2018-05-01

    This article focuses on a new experimental apparatus for investigating fluid flow under high pressure gradients within low-permeability porous media by means of neutron imaging. A titanium Hassler cell which optimises neutron transparency while allowing high pressure confinement (up to 50 MPa) and injection is designed for this purpose and presented here. This contribution focuses on the development of the proposed methodology thanks to some preliminary results obtained using a new neutron imaging facility named NeXT on the D50 beamline at the Institute Laue Langevin (Grenoble). The preliminary test was conducted by injecting normal water into concrete sample prepared and saturated with heavy water to take advantage of the isotope sensitivity of neutrons. The front between these two types of water is tracked in space and time with a combination of neutron radiography and tomography.

  9. 21 CFR 880.2500 - Spinal fluid manometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spinal fluid manometer. 880.2500 Section 880.2500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... column fluid space, to connect the spinal fluid to a graduated column so that the pressure can be...

  10. The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus.

    PubMed

    Damasceno, B P; Carelli, E F; Honorato, D C; Facure, J J

    1997-06-01

    Eighteen patients (mean age of 66.5 years) with normal pressure hydrocephalus (NPH) underwent a ventriculo-peritoneal shunt surgery. Prior to operation a cerebrospinal fluid tap-test (CSF-TT) was performed with measurements of gait pattern and psychometric functions (memory, visuo-motor speed and visuo-constructive skills) before and after the removal of 50 ml CSF by lumbar puncture (LP). Fifteen patients improved and 3 were unchanged after surgery. Short duration of disease, gait disturbance preceding mental deterioration, wide temporal horns and small sulci on CT-scan were associated with good outcome after shunting. There was a good correlation between the results of CSF-TT and shunt surgery (chi 2 = 4.11, phi = 0.48, p < 0.05), with gait test showing highest correlation (r = 0.99, p = 0.01). In conclusion, this version of CSF-TT proved to be an effective test to predict improvement after shunting in patients with NPH.

  11. Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft

    NASA Astrophysics Data System (ADS)

    Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing

    2005-03-01

    The authors obtain anti-pressure formula of reciprocating shaft magnetic fluid seal from general Navier-Stokes equation. In order to verify the correctness of the anti-pressure formula, the authors set up a magnetic fluid anti-pressure experiment rig for a reciprocating seal. Finally, the authors have verified influence of speed and stroke on the seal anti-pressure.

  12. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  13. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  14. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    NASA Astrophysics Data System (ADS)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  15. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  16. Analysis of pressure buildups taken from fluid level data - Tyler sands, central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.F.

    Pressure buildups taken by fluid level recording prove to be quite usable for formation evaluation in the Tyler sands of central Montana. This method provides low cost information with surprising accuracy. The procedures followed in obtaining the data, and the precautions taken in assuring the validity of the data are discussed. The data proved sufficiently accurate to perform engineering calculations in 2 separate Tyler fields. The calculations aided in determination of reservoir parameters, and in one field provided justification for additional development drilling. In another field, the data substantiated the limited reservoir, and development drilling plans were cancelled. The buildupmore » curves illustrated well-bore damage in some of the wells and subsequent stimulation of 2 wells resulted in sustained 6-fold and 9-fold increases in producing rates of these wells.« less

  17. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  18. Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice

    PubMed Central

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-01-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992

  19. Experimental, in-situ carbon solution mechanisms and isotope fractionation in and between (C-O-H)-saturated silicate melt and silicate-saturated (C-O-H) fluid to upper mantle temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2017-02-01

    Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.

  20. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  1. Applied Fluid Mechanics. Lecture Notes.

    ERIC Educational Resources Information Center

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  2. A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid

    NASA Astrophysics Data System (ADS)

    Wayte, Gavin J.; Worden, Richard H.; Rubie, David C.; Droop, Giles T. R.

    1989-04-01

    High-pressure metamorphism (˜600° C, ˜20 kbar) of the Allalin Gabbro (Western Alps) resulted in the breakdown of plagioclase (˜An63) to fine-grained zoisite, jadeite, kyanite and quartz. In rare cases this reaction failed to reach completion. The resulting textures of partial reaction have been studied by transmission and analytical electron microscopy. In localised regions of a plagioclase crystal where the extent of reaction is <10%, only zoisite developed and the orientation relationship 1 410_2004_Article_BF00372216_TeX2GIFE1.gif left( {100} right)_{{text{Zo}}} //left( {101} right)_{{text{P1}}} and 1 410_2004_Article_BF00372216_TeX2GIFE2.gif left( {012} right)_{{text{Zo}}} //left( {010} right)_{{text{P1}}} is frequently present. In regions where 10 50% of plagioclase has transformed, the reaction plagioclase+H2O→zoisite+kyanite+quartz +(NaSiCa-1Al-1)pl has occurred. The systematic orientation relationship between plagioclase and zoisite is absent at ≥50% transformation. Complete breakdown of plagioclase occurred in localized micron-scale domains by the reaction plagioclase+H2O→zoisite+jadeite+kyanite+quartz and the reaction products are variably orientated with respect to each other. Incomplete reaction, together with the concentration of reaction products around cracks in original plagioclase grains, suggests that extent of reaction was controlled primarily by the availability of H2O. The textural observations are interpreted in terms of two possible disequilibrium reaction models. (1) Plagioclase persists metastably with its original igneous composition to a pressure > 17 kbar at 600° C. Reaction to the equilibrium assemblage then develops adjacent to cracks in response to the presence of aqueous fluid. At intracrystalline sites, only partial reaction occurs because Jadeite, and sometimes kyanite and quartz, fail to nucleate for kinetic reasons. (2) Localized regions of a plagioclase crystal partially equilibrate at several stages during the

  3. Patterns of pulmonary maturation in normal and abnormal pregnancy.

    PubMed

    Goldkrand, J W; Slattery, D S

    1979-03-01

    Fetal pulmonary maturation may be a variable event depending on various feto-maternal environmental and biochemical influences. The patterns of maturation were studied in 211 amniotic fluid samples from 123 patients (normal 55; diabetes 23; Rh sensitization 19; preeclampsia 26). The phenomenon of globule formation from the amniotic fluid lipid extract and is relation to pulmonary maturity was utilized for this analysis. Validation of this technique is presented. A normal curve was constructed from 22 to 42 weeks; gestation and compared to the abnormal pregnancies. Patients with class A, B, and C diabetes and Rh-sensitized pregnancies had delayed pulmonary maturation. Patients with class D diabetes and preclampsia paralleled the normal course of maturation. A discussion of these results and their possible cause is presented.

  4. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  5. Overview of Methods for Overcoming Hindrance to Drug Delivery to Tumors, with Special Attention to Tumor Interstitial Fluid

    PubMed Central

    Baronzio, Gianfranco; Parmar, Gurdev; Baronzio, Miriam

    2015-01-01

    Every drug used to treat cancer (chemotherapeutics, immunological, monoclonal antibodies, nanoparticles, radionuclides) must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells, they must overcome a number of impediments created by the tumor microenvironment (TME), beginning with tumor interstitial fluid pressure (TIFP), and a multifactorial increase in composition of the extracellular matrix (ECM). A primary modifier of TME is hypoxia, which increases the production of growth factors, such as vascular endothelial growth factor and platelet-derived growth factor. These growth factors released by both tumor cells and bone marrow recruited myeloid cells form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass (tumor interstitial fluid), ultimately creating an increased pressure (TIFP). Fibroblasts are also up-regulated by the TME, and deposit fibers that further augment the density of the ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview, we will describe all the methods (drugs, nutraceuticals, and physical methods of treatment) able to lower TIFP and to modify ECM used for increasing drug concentration within the tumor tissue. PMID:26258072

  6. Simple cubic equation of state applied to hard-sphere, Lennard-Jones fluids, simple fluids and solids

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke

    2013-09-01

    Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.

  7. ESTIMATION OF FREE HYDROCARBON VOLUME FROM FLUID LEVELS IN MONITORING WELLS

    EPA Science Inventory

    Under the assumption of local vertical equilibrium, fluid pressure distributions specified from well fluid levels in monitoring wells may be used to predict water and hydrocarbon saturation profiles given expressions for air-water-hydrocarbon saturation-pressure relations. Verti...

  8. Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.

  9. Intracellular fluid flow in rapidly moving cells

    PubMed Central

    Keren, Kinneret; Yam, Patricia T.; Kinkhabwala, Anika; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    Cytosolic fluid dynamics have been implicated in cell motility1–5 because of the hydrodynamic forces they induce and because of their influence on transport of components of the actin machinery to the leading edge. To investigate the existence and the direction of fluid flow in rapidly moving cells, we introduced inert quantum dots into the lamellipodia of fish epithelial keratocytes and analysed their distribution and motion. Our results indicate that fluid flow is directed from the cell body towards the leading edge in the cell frame of reference, at about 40% of cell speed. We propose that this forward-directed flow is driven by increased hydrostatic pressure generated at the rear of the cell by myosin contraction, and show that inhibition of myosin II activity by blebbistatin reverses the direction of fluid flow and leads to a decrease in keratocyte speed. We present a physical model for fluid pressure and flow in moving cells that quantitatively accounts for our experimental data. PMID:19767741

  10. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  11. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  12. Statistics of pressure fluctuations in decaying isotropic turbulence.

    PubMed

    Kalelkar, Chirag

    2006-04-01

    We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.

  13. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome.

    PubMed

    Vootla, Vamshidhar R; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  14. Fluid Dynamic Mechanisms and Interactions within Separated Flows.

    DTIC Science & Technology

    1986-07-01

    Vol. 42, Series E, No., pp. 197, pp. 387-39S. b5-bD, March N95, 18. Warpinski , N. R., and Chow, W. L., "Base Pres- 27. Chow, W. L., "Base Pressure of a...lied Rocket/Plume Fluid Dynamic Interactions, Vol. Mechanics, Vol. 46, No. 3, Sept. 197. 1, Base Flows, Fluid Dynamic Lab Report 63-101, 19. Warpinski ...34Surface Pressure Measurements ’" Warpinski , N. R. and Chow, W. L., "Base Pressure Associated on a Boattailed Projectile Shape at Transonic Speeds," ARBRL

  15. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  16. Fluid-Driven Deformation of a Soft Porous Medium

    NASA Astrophysics Data System (ADS)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  17. Cytokine signalling in rat pulp interstitial fluid and transcapillary fluid exchange during lipopolysaccharide-induced acute inflammation

    PubMed Central

    Bletsa, Athanasia; Berggreen, Ellen; Fristad, Inge; Tenstad, Olav; Wiig, Helge

    2006-01-01

    The dental pulp consists of loose connective tissue encased in rigid dentinal walls. Because of its topography the tissue has low interstitial compliance and limited capacity to expand during fluid volume changes. Due to limitations regarding access to interstitial fluid, basic knowledge on transcapillary fluid transport parameters is lacking for this organ. The scope of this project was dual: first we aimed at establishing a method for isolation of pulp interstitial fluid (IF), and second we applied the method in rats subjected to lipopolysaccharide (LPS)-induced endotoxaemia. The aim was to measure colloid osmotic pressure (COP) and pro-inflammatory cytokines in the pulp IF during acute inflammation. Fluid volumes and pulpal blood flow (PBF) were measured to obtain more information about microcirculatory changes that take place in this pulpitis model. By centrifugation of incisor pulp at 239 g we were able to extract fluid representative for IF. Pulp IF had a relative high control COP (∼83% of plasma COP) and was similar to plasma COP 3 h after LPS challenge. The pulp exhibited a high content of IF (0.60 ± 0.03 ml (g wet weight)−1) and a vascular volume of 0.03 ± 0.01 ml (g w.w.)−1 No differences were observed in the distribution of fluid volumes after 1.5 and 3 h LPS exposure. PBF and systemic blood pressure dropped significantly after LPS administration. PBF remained low whereas systemic blood pressure was re-established during the 3-h period, implying organ dysfunction. There was a differential pattern of cytokine expression in pulp IF and serum with cytokines such as IL-1α, IL-1β and TNF-α locally produced, whereas others such as IFN-γ and IL-6 were produced systemically and probably spilled over to the pulp IF after LPS exposure. Our findings show that pulp IF can be isolated by centrifugation and that this method is useful when studying fluid balance and extracellular signalling mechanisms in the dental pulp in normal and pathological conditions

  18. Flow over a membrane-covered, fluid-filled cavity.

    PubMed

    Thomson, Scott L; Mongeau, Luc; Frankel, Steven H

    2007-01-01

    The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.

  19. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    PubMed

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    NASA Astrophysics Data System (ADS)

    Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano

    2018-01-01

    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest