Science.gov

Sample records for abnormal formation pressures

  1. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  2. Underground structure of terrestrial mud volcanoes and abnormal water pressure formation in Niigata, Central JAPAN

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Shinya, T.; Miyata, Y.; Tokuyasu, S.

    2005-12-01

    Activity of mud volcano is thought to be caused by an abnormal water pressure generated in deep underground and make a serious problem for underground constructions such as railway tunnel, underground facility for radwaste and so on. It is important to investigate the underground structure of a mud volcano and the mechanism of abnormal water formation for site selection and safety assessment of such facilities. Serious trouble such as tunnel wall collapse due to the rock swelling has happened 180m deep under mud volcanoes. It took more than 10 years to excavate the section of 150 m long. 4 terrestrial mud volcanoes were found in the Tertiary sedimentary basin in Niigata, central Japan All the mud volcanoes are distributed along the rim of the topographic basin that is located at the NE-SW trending crest of mountainous area and distributed along the wing of anticline. Geological structure inside basin is heavily disturbed. The extinct mud volcano is exposed in the side-slope of newly constructed road and the internal vent structure of mud volcano can be observed. The vent is 30 m in diameter and is consisted of mud breccia and scaly network clay that is thought to be generated by hydro-fracturing and the following water-rock interaction between mudstone and groundwater. Groundwater erupted from mud volcano is highly saline with electric conductivity of 15 mS/cm and high 18 O/16 O isotope ratio of 1.2 parmillage. Also, the vitrinite reflectance is 1.5 to 1.9 % that is not expected in the sedimentary rocks exposed near ground surface. As a result, it is assumed that these erupted materials were introduced from the deep underground about 4000 m deep. CSA-MT geophysical exploration was carried out to survey the underground structure and obtained the profile of electrical resistivity from the surface to 800 m in depth. It is found that the disk-shaped low resistivity zone less than 1 m due to the high salinity content is identified in underground 600 m deep, 200 m thick

  3. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  4. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  5. Abnormal treating pressures in MHF treatments

    SciTech Connect

    Medlin, W.L.; Fitch, J.L.

    1983-10-01

    Abnormal treating pressures are observed during massive hydraulic fracturing (MHF) treatments in the Mesa Verde formation of the Piceance Basin, Colorado. Data from three widely separated wells and in several zones per well all show a pressure increase during MHF treatments which the authors call ''pressure growth''. This pressure growth is at least semi-permanent. The elevated instantaneous shut-in pressures do not return to initial values over periods of several days. The magnitude of this pressure growth is highly variable. When its value is less than about 2300 psi the MHF treatments are usually completed and results are obtained which are within normal expectations. When its value exceeds 2300 psi, sandout occurs and the fracture length estimated from production data is much less than that calculated using crack propagation models. Temperature logs indicate little or only modest vertical extension of the fractures above the perforations. These data, along with sandouts, point to a large increase in width of the fractures in response to pressure growth. One possible cause of pressure growth is fracture branching. A multiplicity of branches could produce a plastic-like effect. Laboratory measurements have ruled out plasticity as the cause. The stress-strain behavior of the rock is similar to that of rocks where no pressure growth occurs. Pressure growth seems to be dependent on both pumping rate and fluid viscosity. Thus, there is some hope for its mitigation through treatment design. Also, pressure growth appears to correlate negatively with pay zone quality. This suggests that the phenomenon can be exploited as a fluid diversion technique.

  6. Abnormal treating pressures in MHF (massive hydraulic fracturing) treatments

    SciTech Connect

    Medlin, W.L.; Fitch, J.L.

    1983-01-01

    Abnormal treating pressures are observed during massive hydraulic fracturing (MHF) treatments in the Mesa Verde Formation of the Piceance Basin, Colorado. Data from 3 widely separated wells and in several zones per well all show a pressure increase during MHF treatments, called pressure growth. This pressure growth is at least semi-permanent. The elevated instantaneous shut-in pressures do not return to initial values over periods of several days. The magnitude of this pressure growth is highly variable. One possible cause of pressure growth is fracture branching. Pressure growth seems to be dependent on both pumping rate and fluid viscosity. 16 references.

  7. Abnormal treating pressures in massive hydraulic fracturing treatments

    SciTech Connect

    Medlin, W.L.; Fitch, J.L.

    1988-05-01

    Abnormal treating pressures were observed during massive hydraulic fracturing (MHF) treatments in the Mesa Verde formation of the Piceance basin, CO. Data from three widely separated wells and in several zones per well showed a pressure increase during MHF treatments that the authors call ''pressure growth.'' This pressure growth was at least semipermanent. The elevated instantaneous shut-in pressures (ISIP's) did not return to initial values over periods of several days. The magnitude of this pressure growth is highly variable. When its value is less than about 2,300 psi (15.9 MPa), the MHF treatments are usually completed and results are obtained that are within normal expectations. When its value exceeds 2,300 psi (15.9 MPa), sandout occurs and the fracture length estimated from production data is much less than that calculated with crack propagation models. Temperature logs indicate little or only modest vertical extension of the fractures above the perforations. These data, along with sandouts, point to a large increase in fracture width in response to pressure growth. One possible cause of pressure growth is fracture branching. A multiplicity of branches could produce a plastic-like effect. Laboratory measurements have ruled out plasticity as the cause. The stress/strain behavior of the rock is similar to that of rocks where no pressure growth occurs. Pressure growth seems to depend on both pumping rate and fluid viscosity. Thus, there is some hope for its mitigation through treatment design. Also, pressure growth appears to correlate negatively with pay-zone quality. This suggests that the phenomenon can be exploited as a fluid-diversion technique.

  8. Postoperative chronic pressure abnormalities in the vitreon study.

    PubMed

    Adile, S L; Peyman, G A; Greve, M D; Millsap, C M; Verma, L K; Wafapoor, H; Soheilian, M

    1994-01-01

    Perfluoroperhydrophenanthrene (Vitreon) was used as an intraoperative hydrokinetic retinal manipulator, followed by C3F8 or SF6 gases, silicone oil, or Vitreon as postoperative tamponading agents in 234 eyes. Two chronic intraoperative pressure abnormalities were defined: hypotony (5 mm Hg or less) and elevated intraocular pressure (IOP) (25 mm Hg or more at three or more postoperative visits). Postoperatively, 28 eyes (12%) had chronically elevated IOP, and 41 (18%) had chronic hypotony. There was no significant difference in the incidence of abnormal IOP among the groups of eyes in which the various tamponading agents had been used. In particular, the use of Vitreon as an intraoperative tool or as a short-term tamponade did not affect the incidence of chronic abnormal IOP any more than did the use of silicone oil, C3F8, or SF6 as tamponading agents.

  9. Postoperative chronic pressure abnormalities in the vitreon study.

    PubMed

    Adile, S L; Peyman, G A; Greve, M D; Millsap, C M; Verma, L K; Wafapoor, H; Soheilian, M

    1994-01-01

    Perfluoroperhydrophenanthrene (Vitreon) was used as an intraoperative hydrokinetic retinal manipulator, followed by C3F8 or SF6 gases, silicone oil, or Vitreon as postoperative tamponading agents in 234 eyes. Two chronic intraoperative pressure abnormalities were defined: hypotony (5 mm Hg or less) and elevated intraocular pressure (IOP) (25 mm Hg or more at three or more postoperative visits). Postoperatively, 28 eyes (12%) had chronically elevated IOP, and 41 (18%) had chronic hypotony. There was no significant difference in the incidence of abnormal IOP among the groups of eyes in which the various tamponading agents had been used. In particular, the use of Vitreon as an intraoperative tool or as a short-term tamponade did not affect the incidence of chronic abnormal IOP any more than did the use of silicone oil, C3F8, or SF6 as tamponading agents. PMID:7830998

  10. Prediabetes is associated with abnormal circadian blood pressure variability.

    PubMed

    Gupta, A K; Greenway, F L; Cornelissen, G; Pan, W; Halberg, F

    2008-09-01

    Blood pressure (BP) exhibits a circadian variation characterized by a morning increase, followed by a small postprandial valley and a deeper descent during nocturnal rest. Although abnormal 24-h variability (abnormal circadian variability (ACV)) predicts adverse cardiovascular disease (CVD) outcomes, a 7-day automatic ambulatory BP monitoring (ABPM) and subsequent chronobiologic analysis of the gathered data, permits identification of consistency of any abnormal circadian variation. To test whether normal overweight healthy men and women with prediabetes differed from subjects with normoglycemia in having ACV with a 7-day ABPM. Consent for a 7-day ABPM was obtained from subjects with family history of diabetes mellitus, who were participating in the screening phase for a randomized, double blind, placebo-controlled weight loss trial in prediabetics to prevent progression to diabetes mellitus. The automatic 7-day ABPM device recorded BP and heart rate every 30 min during the day and every 60 min during the night. Normoglycemic and prediabetic subjects matched for age, sex, race, BP, BMI, waist circumference and glycemic control, differed statistically significantly only in their fasting and/or 2-h postprandial serum glucose concentrations. Chronobiologically-interpreted 7-day ABPM uncovered no abnormalities in normoglycemics, whereas prediabetics had a statistically significantly higher incidence of high mean BP (MESOR-hypertension), excessive pulse pressure and/or circadian hyper-amplitude-tension (CHAT) (P<0.001). ACV detected with 7-day ABPM may account for the enhanced CVD risk in prediabetes. These findings provide a basis for larger-scale studies to assess the predictive value of 7-day ABPM over the long term. PMID:18480832

  11. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL... flight operations during abnormally high barometric pressure conditions. (a) Special flight...

  12. Abnormal elastic and vibrational behaviors of magnetite at high pressures.

    PubMed

    Lin, Jung-Fu; Wu, Junjie; Zhu, Jie; Mao, Zhu; Said, Ayman H; Leu, Bogdan M; Cheng, Jinguang; Uwatoko, Yoshiya; Jin, Changqing; Zhou, Jianshi

    2014-01-01

    Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe(2+)-Fe(3+)-Fe(2+) ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature. PMID:25186916

  13. Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures

    PubMed Central

    Lin, Jung-Fu; Wu, Junjie; Zhu, Jie; Mao, Zhu; Said, Ayman H.; Leu, Bogdan M.; Cheng, Jinguang; Uwatoko, Yoshiya; Jin, Changqing; Zhou, Jianshi

    2014-01-01

    Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature. PMID:25186916

  14. Predicting abnormal pressure from 2-D seismic velocity modeling

    SciTech Connect

    Grauls, D.; Dunand, J.P.; Beaufort, D.

    1995-12-01

    Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.

  15. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  16. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  17. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  18. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  19. Heating tar sands formations while controlling pressure

    DOEpatents

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  20. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    SciTech Connect

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.; Stambrook, M.; Sutherland, J.B.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude did not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.

  1. Formation and superconductivity of hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Kim, Duck Young; Scheicher, Ralph H.; Pickard, Chris J.; Needs, Richard J.; Ahuja, Rajeev

    2011-03-01

    Hydrogen is the lightest and smallest element in the periodic table. Despite its simplest electronic structure, enormous complexity can arise when hydrogen participates in the formation of solids. Pressure as a controllable parameter can provide an excellent platform to investigate novel physics of hydrides because it can induce structural transformation and even changes in stoichiometry accompanied with phenomena such as metallization and superconductivity. In this presentation, we will briefly overview contemporary high-pressure research on hydrides and show our most recent results on predicting crystal structures of metal hydrides under pressure using ab initio random structure searching. Our findings allow for a better understanding of pressure-induced metallization/superconductivity in hydrides which can help to shed light on recent observations of pressure-induced metallization and superconductivity in hydrogen-rich materials. Wenner-Gren Foundations and VR in Sweden, The Royal Society in UK.

  2. Origin of abnormal formation of pearlite in medium-carbon steel under nonequilibrium conditions of heating

    NASA Astrophysics Data System (ADS)

    Mirzaev, D. A.; Yakovleva, I. L.; Tereshchenko, N. A.; Urtsev, V. N.; Degtyarev, V. N.; Shmakov, A. V.

    2016-06-01

    The structure and kinetics of the formation of austenite in medium-carbon steel during shortterm heating above the temperature Ac 1 followed by accelerated cooling are analyzed. It has been shown that the abnormal formation of pearlite in steel results from the concentrational and structural inhomogeneity of austenite, as well as the presence of carbide particles in ferrite areas.

  3. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea

    PubMed Central

    Clement, Colin I.; Parker, Douglas G.A.; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics. PMID:27014386

  4. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea.

    PubMed

    Clement, Colin I; Parker, Douglas G A; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics. PMID:27014386

  5. Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.

    1994-01-01

    This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.

  6. Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California

    SciTech Connect

    Unruh, J.R.; Davisson, M.L.; Criss, R.E.; Moores, E.M. )

    1992-05-01

    Perennial saline springs in the Rumsey Hills area, southwestern Sacramento Valley, California, locally discharge at high elevations and near ridgetops. The springs are cold, are commonly associated with natural gas seeps, and typically emerge along west-vergent thrust faults. Stable isotope analyses indicate that the spring waters are similar to oil-field formation fluids and they have had a significant residence time in the subsurface at moderate temperatures. The nonmeteoric character of the springs demonstrates that they are not being fed by perched water tables. The authors propose that these subsurface formation waters are being forced to the surface by anomalously high porefluid pressures. The Rumsey Hills area is one of Quaternary uplift, thrusting, and crustal shortening, and prospect wells drilled there have encountered anomalously high fluid pressures at shallow depths. They attribute these high fluid pressures to active tectonic compression and shortening of Cretaceous marine sedimentary rocks. The widespread occurrence of anomalously high pore-fluid pressures and perennial saline springs in the Coast Ranges and western Great Valley suggests that much of western California may be characterized as a seismically active, overpressured thrust belt. The emergence of formation waters along thrust faults further suggests that patterns of subsurface fluid flow in western California may be similar to those in overpressured accretionary prisms, and that excess fluid pressures may also play a role in the distribution of seismicity.

  7. Prediction of subsidence: Relationship between lowering of formation pressure and subsidence due to fluid withdrawal

    SciTech Connect

    Serebryakov, V.A.; Chilingar, G.V.

    2000-06-01

    Abnormally low formation pressures develop in petroleum reservoirs during intensive oil and gas production or in aquifers as a result of water extraction. A simple method is presented for calculating (predicting) the amount of compaction (and resulting subsidence) from the pressure drop in formation due to production, i.e., the increase in the effective pressure p{sub e} (p{sub e} = p{sub t} {minus} p{sub p}, where p{sub t} is the total overburden pressure and p{sub p} is the fluid or pore pressure). This work is based on extensive data collected in Russia. For example, large petroliferous areas in Western Siberia became marshlands as a result of fluid withdrawal. One should remember that sophisticated methods, such as FSMT (direct measurement of rock compaction by wireline tools in situ) and GPS (measurement of surface subsidence by satellite microwave Doppler techniques), are not yet available in many areas of the world.

  8. Correlation between abnormal pore pressure and tectonic jointing in the Devonian Catskill Delta

    NASA Astrophysics Data System (ADS)

    Engelder, Terry; Oertel, Gerhard

    1985-12-01

    Using the preferred orientation of chlorite, we measured vertical compaction in 53 samples from the Devonian Catskill Delta in central New York State. The marine part of this delta contains three levels based on different amounts of vertical compaction. These levels correspond roughly to (1) black shales at the base, (2) prodelta turbidites, and (3) a cap of shallow-water sediments including abundant storm-washed shell hashes deposited within the wave base. The cap is normally compacted, whereas the lower two levels are undercompacted. Tectonic (cross-fold) joints that propagated during the late Paleozoic Alleghanian orogeny are restricted to the deeper, undercompacted levels of the Catskill Delta, whereas unloading (cross-fold) joints pervade the cap. The correlation between undercompaction and the distribution of tectonic joints indicates that abnormal fluid pressure was a key mechanism during the propagation of these joints.

  9. [Renin-angiotensin-aldosterone inhibitors for treatment of hypertension with abnormal circadian rhythm of blood pressure].

    PubMed

    Yagi, Shusuke; Sata, Masataka

    2014-08-01

    Circadian rhythm of blood pressure (BP) has recently been focused on because increase in nocturnal BP and morning BP surge have been shown to be risks for cardio-cerebrovascular diseases independent of 24-h BP level. The renin-angiotensin-aldosterone system (RAAS) is involved in BP circadian rhythm, and RAAS inhibitors therefore play an important role in the control of circadian rhythm of BP. Bedtime administration of RAAS inhibitors is more effective than morning administration for reducing nocturnal and morning BP levels in addition to converting the BP profile into a dipper pattern, which is known as chronotherapy. For reducing cardio-cerebro-vascular events, controlling abnormal circadian rhythm of BP in addition to 24-h BP using RAAS inhibitors with optimal time dosing should be considered.

  10. Pressure sore formation in the operating theatre: 2.

    PubMed

    Pope, R

    The incidence of pressure sores is seen as a key quality indicator by the Department of Health (1993). The effects of pressure are dependent on its intensity and duration and are widely acknowledged as contributing to pressure sore formation. Therefore, all patients undergoing surgery should be regarded as being at risk. The first article in this two-part series, outlined the pathophysiology of pressure sores and the contributory factors present within the operating theatre (Vol 8(4): 211-17). This article suggests nursing interventions to reduce the incidence of pressure sore formation during the perioperative period.

  11. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  12. Resting pulmonary artery pressure of 21-24 mmHg predicts abnormal exercise haemodynamics.

    PubMed

    Lau, Edmund M T; Godinas, Laurent; Sitbon, Olivier; Montani, David; Savale, Laurent; Jaïs, Xavier; Lador, Frederic; Gunther, Sven; Celermajer, David S; Simonneau, Gérald; Humbert, Marc; Chemla, Denis; Herve, Philippe

    2016-05-01

    A resting mean pulmonary artery pressure (mPAP) of 21-24 mmHg is above the upper limit of normal but does not reach criteria for the diagnosis of pulmonary hypertension (PH). We sought to determine whether an mPAP of 21-24 mmHg is associated with an increased risk of developing an abnormal pulmonary vascular response during exercise.Consecutive patients (n=290) with resting mPAP <25 mmHg who underwent invasive exercise haemodynamics were analysed. Risk factors for pulmonary vascular disease or left heart disease were present in 63.4% and 43.8% of subjects. An abnormal pulmonary vascular response (or exercise PH) was defined by mPAP >30 mmHg and total pulmonary vascular resistance >3 WU at maximal exercise.Exercise PH occurred in 74 (86.0%) out of 86 versus 96 (47.1%) out of 204 in the mPAP of 21-24 mmHg and mPAP <21 mmHg groups, respectively (OR 6.9, 95% CI: 3.6-13.6; p<0.0001). Patients with mPAP of 21-24 mmHg had lower 6-min walk distance (p=0.002) and higher New York Heart Association functional class status (p=0.03). Decreasing levels of mPAP were associated with a lower prevalence of exercise PH, which occurred in 60.3%, 38.7% and 7.7% of patients with mPAP of 17-20, 13-16 and <13 mmHg, respectively.In an at-risk population, a resting mPAP between 21-24 mmHg is closely associated with exercise PH together with worse functional capacity. PMID:26965292

  13. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  14. Abnormal Pressure Pain, Touch Sensitivity, Proprioception, and Manual Dexterity in Children with Autism Spectrum Disorders

    PubMed Central

    Riquelme, Inmaculada; Hatem, Samar M.

    2016-01-01

    Children with autism spectrum disorders (ASD) often display an abnormal reactivity to tactile stimuli, altered pain perception, and lower motor skills than healthy children. Nevertheless, these motor and sensory deficits have been mostly assessed by using clinical observation and self-report questionnaires. The present study aims to explore somatosensory and motor function in children with ASD by using standardized and objective testing procedures. Methods. Tactile and pressure pain thresholds in hands and lips, stereognosis, proprioception, and fine motor performance of the upper limbs were assessed in high-functioning children with ASD (n = 27) and compared with typically developing peers (n = 30).  Results. Children with ASD showed increased pain sensitivity, increased touch sensitivity in C-tactile afferents innervated areas, and diminished fine motor performance and proprioception compared to healthy children. No group differences were observed for stereognosis. Conclusion. Increased pain sensitivity and increased touch sensitivity in areas classically related to affective touch (C-tactile afferents innervated areas) may explain typical avoiding behaviors associated with hypersensitivity. Both sensory and motor impairments should be assessed and treated in children with ASD. PMID:26881091

  15. Pericellular Innervation of Neurons Expressing Abnormally Hyperphosphorylated Tau in the Hippocampal Formation of Alzheimer's Disease Patients

    PubMed Central

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; DeFelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered. PMID:20631843

  16. The relationship between stress and pressure sore formation.

    PubMed

    Braden, B J

    1998-03-01

    The purpose of this study was to explore the relationship between serum cortisol and pressure sore formation among persons over age 65 who recently relocated to a nursing home. Twenty-six subjects who exhibited risk for pressure sore formation and were free of pressure sores and diagnoses or medications known to affect cortisol were recruited from consecutive admissions to a nursing home. Morning and evening cortisol levels were assayed the first and second weeks following admission, and subject's skin and risk status were assessed twice weekly for five weeks. Subjects who developed pressure sores had significantly higher cortisol levels than those who did not (p < 0.02), with the greatest differences occurring in the second week (p < 0.002). The cortisol levels observed in subjects who developed pressure sores may be due to the stress of relocation, but other explanations are also possible. Furthermore, a causal relationship between cortisol and pressure sore development cannot be inferred.

  17. [Microflora formation in the newborn in maternity hospitals and neonatal abnormality units].

    PubMed

    Shilova, V P; Rozanova, S M; Kyrf, M V; Beĭkin, Ia B; Kuznetsova, L S; Turintseva, E G; Usova, O P; Chernykh, N G; Iagafarova, I S

    2007-10-01

    The basic sources of pyoseptic infection pathogens are infected and colonized neonatal infants in maternity hospitals. Microbiological monitoring revealed the specific features of biocenosis formation in the newborn in the "Mother and Baby" units, resuscitative departments (RD), intensive care units, and neonatal abnormality departments (NAD). Irrespective of the conditions of hospital stay, methicillin-resistant S. epidermis (MRSE) and Enterococcus faecium were prevalent in the neonatal microbial landscape. Colonization with the normal flora in the newborn actively treated with antibiotics is difficult in RD, at the same time there is a significant infection with the mycotic flora. Broad-spectrum beta-lactamase producing Klebsiela pneumonia strains have received wide acceptance in NAD. PMID:18154133

  18. Structure formation of atmospheric pressure discharge

    NASA Astrophysics Data System (ADS)

    Medvedev, Alexey E.

    2016-02-01

    In this paper it is shown, by analyzing the results of experimental studies, that the outer boundary of the atmospheric pressure discharge pinch is determined by the condition of equality of plasma flows based on the thermal and electric field energy. In most cases, the number of charged particles coming from near-electrode zones is sufficient to compensate for losses in the discharge bulk. At large currents and enhanced heating, plasma is in the diffusion mode of losses, with recombination of charged particles at the pinch boundary. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  19. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    PubMed

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  20. Abnormal Anatomical Variations of Extra-Hepatic Biliary Tract, and Their Relation to Biliary Tract Injuries and Stones Formation

    PubMed Central

    Khayat, Meiaad F.; Al-Amoodi, Munaser S.; Aldaqal, Saleh M.; Sibiany, Abdulrahman

    2014-01-01

    Background To determine the most common abnormal anatomical variations of extra-hepatic biliary tract (EHBT), and their relation to biliary tract injuries and stones formation. Methods This is a retrospective review of 120 patients, who underwent endoscopic retrograde cholangiopancreaticography (ERCP) and/or magnetic resonance cholangiopancreaticography (MRCP), between July 2011 and June 2013. The patients’ ERCP and MRCP images were reviewed and evaluated for the anatomy of EHBT; the medical records were reviewed for demographic data, biliary tracts injuries and stones formation. Results Out of 120 patients, 50 were males (41.7%) and 70 were females (58.3%). The mean age was 54 years old (range 20 - 88). Abnormal anatomy was reported in 30% (n = 36). Short cystic duct (CD) was found in 20% (n = 24), left CD insertion in 5% (n = 6), CD inserted into the right hepatic duct (RHD) in 1.7% (n = 2), duct of Luschka in 3.33% (n = 4) and accessory hepatic duct in also 3.33% (n = 4). Biliary tract injuries were reported in 15% (n = 18) and stones in 71.7% (n = 86). Biliary tract injuries were higher in abnormal anatomy (P = 0.04), but there was no relation between abnormal anatomy and stones formation. Conclusion Abnormal anatomy of EHBT was found to be 30%. The most common abnormality is short CD followed by left CD insertion. Surgeons should be aware of these common abnormalities in our patients, hence avoiding injuries to the biliary tract during surgery. The abnormal anatomy was associated with high incidence of biliary tract injury but has no relation to biliary stone formation.

  1. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  2. Pressure sore formation in the operating theatre: 1.

    PubMed

    Pope, R

    While theatre nurses strive to master increasingly sophisticated equipment and techniques they must also endeavour to ensure that the quality of fundamental nursing care has positive outcomes for the patient. According to Land (1995), pressure area care is such a fundamental nursing activity that many health professionals do not recognize the importance of keeping abreast of new developments. A review of the literature concerning pressure sore formation suggests that, far from being a ward-based problem, all surgical patients experience a critical period during which they are most susceptible to pressure injury--the time spent on the operating table. This article, the first of two parts, outlines the pathophysiology of pressure sores and the contributory factors present within the operating theatre. The second part suggests nursing interventions to reduce the incidence of pressure sore formation during the perioperative phase.

  3. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    PubMed

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.

  4. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys

    PubMed Central

    Mustari, Michael J.

    2015-01-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. PMID:26063778

  5. Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Little, Reginald B.; Lochner, Eric; Goddard, Robert

    2005-01-01

    Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external

  6. Fluid Pressure Anomalies in Shallow Intraplate Argillaceous Formations

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2015-12-01

    Fluid transport in shales and other argillaceous formations is difficult to study because these materials often have extremely low permeability. However, recent investigations have revealed a number of instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. The presence (or absence) of such pressure anomalies may provide clues to fluid flow. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with water-saturated transient Darcian flow caused by strain at rates of ~ 10-17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 years or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies constrain formation-scale flow properties, flow history, and local geological forcing in the last 106 years and in particular indicate zones of low permeability (10-19 - 10-22 m2) that could be useful for isolation of nuclear waste.

  7. Pressure regimes and core formation in the accreting earth

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Recent work suggests that a large degree of melting is required to segregate metal from silicates, suggesting a connection with the formation of magma oceans. At low pressures metallic liquids do not wet silicate minerals, preventing the metal from aggregating into large masses that can sink. At high pressures, above 25 GPa, the dihedral angles of grains in contact with oxygen-rich metallic liquids may be reduced enough to allow percolation of metal, but this has not been confirmed. Physical models of core formation and accretion may therefore involve the formation of magma oceans and the segregation of metal at both high and low pressures. Models of core formation involving different pressure regimes are discussed as well as chemical evidence bearing on the models. Available geophysical data is ambiguous. The nature of the 670 km boundary (chemical difference or strictly phase change) between the upper and lower mantle is in doubt. There is some evidence that plumes are derived from the lower mantle, and seismic tomography strongly indicates that penetration of subducting oceanic crust into the lower mantle, but the tomography data also indicates that the 670 km discontinuity is a significant barrier to general mantle convection. The presence of the D' layer at the base of the lower mantle could be a reaction zone between the mantle and core indicating core-mantle disequilibrium, or D' layer could be subducted material. The abundance of the siderophile elements in the mantle could provide clues to the importance of high pressure processes in Earth, but partition coefficients at high pressures are only beginning to be measured.

  8. Hydrocarbon distribution in Tertiary sandstones as a function of formation pressure and temperature

    SciTech Connect

    Leach, W.G. ); Fertl, W.H. )

    1990-05-01

    Hydrocarbon distribution is related to formation pressure and temperature, with the highest concentrations of all hydrocarbons encountered near the onset of abnormal pressure regimes. A thorough understanding of the interactive relationship between lithology, pressure, temperature, and hydrocarbon distribution is essential for the efficient exploration and development of oil and gas accumulations. All information, such as lithology, pore pressure, and temperature, can be obtained from geophysical well logs. The primary purpose of this presentation is to discuss distribution and redistribution of hydrocarbons in Tertiary sandstones of southern Louisiana with respect to the depth pressure, and temperature at which these oil and gas accumulations are predominantly encountered. Also discussed are the thermodynamics of ascending fluid movement and the sourcing of these hydrocarbons. Production data from approximately 33,000 well completions and pressure/temperature data from over 20,000 wells provide the database used in this analysis. In addition, similar findings are presented for clastic overpressured reservoirs in the Baram Delta, located offshore in Sarawak Malaysia and the hydrocarbon resources being developed in the West Turkmen depression of the Soviet Union.

  9. Hydrostatic Pressure Promotes Domain Formation in Model Lipid Raft Membranes.

    PubMed

    Worcester, David L; Weinrich, Michael

    2015-11-01

    Neutron diffraction measurements demonstrate that hydrostatic pressure promotes liquid-ordered (Lo) domain formation in lipid membranes prepared as both oriented multilayers and unilamellar vesicles made of a canonical ternary lipid mixture for which demixing transitions have been extensively studied. The results demonstrate an unusually large dependence of the mixing transition on hydrostatic pressure. Additionally, data at 28 °C show that the magnitude of increase in Lo caused by 10 MPa pressure is much the same as the decrease in Lo produced by twice minimum alveolar concentrations (MAC) of general anesthetics such as halothane, nitrous oxide, and xenon. Therefore, the results may provide a plausible explanation for the reversal of general anesthesia by hydrostatic pressure.

  10. Abnormal fiber end migration in Royal College of Surgeons rats during posterior subcapsular cataract formation

    PubMed Central

    Joy, Anita; Al-Ghoul, Kristin J.

    2010-01-01

    lenses showed the expected peripheral pattern of labeling at all ages. Dystrophic RCS lenses at 2 weeks were comparable to controls, however by 3–4 weeks they displayed scattered foci of F-actin within the BMC. At all time points thereafter, F-actin was rearranged into a ‘rosette’ pattern of prominent foci at cell vertices. Conclusions The data are consistent with the hypothesis that migration of basal fiber ends is altered in a two stage process wherein initially, migration patterns undergo a rapid shift resulting in abnormal suture sub-branch formation. Subsequent cytological alterations are consistent with an eventual cessation of migration, precluding proper targeting of basal ends to their sutural destinations and leading to cataract plaque formation. PMID:20806082

  11. Ash formation under pressurized pulverized coal combustion conditions

    NASA Astrophysics Data System (ADS)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  12. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  13. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2015-01-01

    Investigations have revealed several instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with transient Darcian flow caused by strain at rates of ~ 10−17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 annum or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies provide constraints on formation-scale flow properties, flow history, and local geological forcing in the last 106 annum and in particular indicate zones of low permeability (10−19–10−22 m2) that could be useful for isolation of nuclear waste.

  14. Developmental abnormalities, blood pressure variability and renal disease in Riley Day syndrome.

    PubMed

    Norcliffe-Kaufmann, L; Axelrod, F B; Kaufmann, H

    2013-01-01

    Riley Day syndrome, commonly referred to as familial dysautonomia (FD), is a genetic disease with extremely labile blood pressure owing to baroreflex deafferenation. Chronic renal disease is very frequent in these patients and was attributed to recurrent arterial hypotension and renal hypoperfusion. Aggressive treatment of hypotension, however, has not reduced its prevalence. We evaluated the frequency of kidney malformations as well as the impact of hypertension, hypotension and blood pressure variability on the severity of renal impairment. We also investigated the effect of fludrocortisone treatment on the progression of renal disease. Patients with FD appeared to have an increased incidence of hydronephrosis/reflux and patterning defects. Patients <4 years old had hypertension and normal estimated glomerular filtration rates (eGFR). Patients with more severe hypertension and greater variability in their blood pressure had worse renal function (both, P<0.01). In contrast, there was no relationship between eGFR and the lowest blood pressure recorded during upright tilt. The progression of renal disease was faster in patients receiving fludrocortisone (P<0.02). Hypertension precedes kidney disease in these patients. Moreover, increased blood pressure variability as well as mineralocorticoid treatment accelerate the progression of renal disease. No association was found between hypotension and renal disease in patients with FD.

  15. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  16. Abnormal increase of intraocular pressure in fellow eye after severe ocular trauma

    PubMed Central

    Vaajanen, Anu; Tuulonen, Anja

    2016-01-01

    Abstract Background: An ocular injury can lead to secondary glaucoma in the traumatized eye in 3% to 20% of cases. Literature on the risk of developing elevated intraocular pressure in the nontraumatized fellow eye is scant. Clinicians treating ocular traumas should also bear in mind sympathetic ophthalmia, a rare bilateral granulomatous panuveitis following accidental or surgical trauma to 1 eye. Case report: We report a case of high-pressure glaucoma of the fellow eye without any signs of uveitis. The left eye of a 24-year-old man was injured in an inadvertent movement during a free-time table-tennis match. The eye was severely crushed, leading to blindness. His right eye developed medically uncontrolled high-pressure glaucoma only 1 month after the injury. Conclusion: To the best of our knowledge, there are no previous reports of post-traumatic glaucoma in the nontraumatized eye after open-globe injury. PMID:27495058

  17. Increasing Body Mass Index, Blood Pressure, and Acanthosis Nigricans Abnormalities in School-Age Children

    ERIC Educational Resources Information Center

    Otto, Debra E.; Wang, Xiaohui; Garza, Viola; Fuentes, Lilia A.; Rodriguez, Melinda C.; Sullivan, Pamela

    2013-01-01

    This retrospective quantitative study examined the relationships among gender, Acanthosis Nigricans (AN), body mass index (BMI), and blood pressure (BP) in children attending school Grades 1-9 in Southwest Texas. Of the 34,897 health screening records obtained for the secondary analysis, 32,788 were included for the study. A logistic regression…

  18. Evaluation of Formation Damage Caused by Drilling Fluids Specifically in Pressure-Reduced Formation

    SciTech Connect

    Marx, C.; Rahman, S.S.

    1984-02-01

    The paper describes a method for evaluating formation damage caused by drilling fluid in reservoirs which may have pressure considerably less than hydrostatic pressure. The problem is of specific interest for enhanced oil recovery and/or underground gas storage projects. The method is flexible and practically oriented. It allows formation damage evaluation under the conditions of differential pressure of up to 100 bar (1400 psi) temperature of 140/sup 0/C (300 /sup 0/F), annular velocity of 2 m/s (.6 ft/s), 1 - 2,5 cm (0,4 - 1'') core diameter and length of 25 cm (10 ''). Formation damage is evaluated by 2 factors: damage ratio (DR) and sectional damage ratio (SDR). The residual permeability is expressed in terms of relative values using the initial permeability as reference. The depth of permeability impairment is determined by measuring the permeability of segmented cores of 5 cm (2 '') length (fig. 1). For this criterion the term sectional damage ratio is introduced. The method as described in this paper was applied to evaluate formation damage caused by a KC1-Chalk-Mud in two sandstones of 10 mD and 1000 mD range with pressure difference, temperature, annular velocity and time of contamination as the influencing variables.

  19. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  20. Abnormal fluid pressures at ODP Site 1251: Implications for fluid flow and hydrate concentration

    NASA Astrophysics Data System (ADS)

    Weinberger, J. L.; Brown, K. M.

    2005-12-01

    Consolidation test results from whole round samples collected at Ocean Drilling Program (ODP) Site 1251 were combined with geophysical logging-while-drilling (LWD) data to create a continuous down-hole record of fluid pressure in the slope basin to the east of Hydrate Ridge, OR. Underconsolidation of the sediment is documented in the void ratio vs. effective stress relationships from the consolidation studies in the upper 140 mbsf of the section. This interval corresponds with a zone of consistently elevated fluid pressure that reaches ~90% of the lithostatic overburden stress. Models of one dimensional sedimentation and consolidation show that the observed degree of overpressuring can be accounted for by the combined effect of rapid sedimentation (60 to 160 cm/k.y.) and low permeability (1x10-16 to 1x10-17 m2). Between 140 and 300 mbsf the fluid pressure varies from 90% of lithostatic to sub-hydrostatic in 5 distinct horizons. This variation may be linked to mechanical consolidation of the sediment related to pore fluid drainage along more permeable horizons, or changes in sedimentation rate related to either glacial/ interglacial cycles or the uplift history of the ridge. The derived pressure gradient and permeability measurements predict Darcy flow rates on the order of 1 mm/yr at this site, but a lack of laterally continuous permeable conduits likely prevents the flow generated by basin overpressures in the interval from 0 to 140 mbsf from contributing to flow at the crest of the ridge. Using an average methane concentration of 100 mM and the determined flow rate, the methane flux through the system is calculated to be ~5 x 10-11 kg s-1 m-2. These data can be used to examine the maximum theoretical percentage of the pore space that can be filled with hydrate given the time of deposition in the basin. At a depth of 50 mbsf, we find that the maximum concentration of hydrate in the pore space is expected to be 0.1 to 0.3%, agreeing with the lack of concentrated

  1. Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure overload in the rat.

    PubMed Central

    Isoyama, S; Ito, N; Kuroha, M; Takishima, T

    1989-01-01

    Using an experimental model of ascending aortic banding in the rat, we examined whether coronary circulation abnormalities in hypertrophied hearts are reversible after debanding. 4-wk banding produced significant increases in in vivo left ventricular (LV) pressure (194 +/- 13 vs. 114 +/- 9 mmHg in shamoperated controls) and LV dry wt/body wt (48 +/- 5% above controls). In isolated hearts perfused with Krebs-Henseleit buffer, coronary flow rate (CFR) was estimated under nonworking conditions. During maximal vasodilation after 1 min-ischemia, CFR at a coronary perfusion pressure (CPP) of 100 mmHg and CFR/myocardidial mass at CPPs of 100 and 150 mmHg decreased significantly (72 +/- 5%; 53 +/- 4 and 61 +/- 4% of controls). 1 or 4 wk after debanding, LV systolic pressures were similar to control values, and the degree of myocardial hypertrophy decreased to levels 23 +/- 6 (P less than 0.01) and 11 +/- 6% (P less than 0.01) above their control values, respectively. At 1 wk there was no significant increase in CFR/myocardial mass, compared to values in the banded group (67 +/- 8 vs. 53 +/- 4% of controls at 100 mmHg and 67 +/- 9 vs. 61 +/- 4% at 150 mmHg of CPP). At 4 wk, CFR and the ratio had increased toward normal. Thus, decreased coronary perfusion in hypertrophied hearts is completely reversible. Images PMID:2525568

  2. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    SciTech Connect

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  3. Why continued surveillance? Intermittent blood pressure and heart rate abnormality under treatment

    PubMed Central

    Katinas, G. S.; Cornélissen, G.; Otsuka, K.; Haus, E.; Bakken, E. E.; Halberg, F.

    2008-01-01

    Several opinion leaders have monitored their blood pressure systematically a sufficient number of times a day for chronomic (time structural) analyses, from the time of encountering chronobiology until their death; they set an example for others who also may not wish to base treatment on single spotchecks in a health care office. Such self-measurements, while extremely helpful, were not readily feasible without a noteworthy interruption of activities during waking as well as of sleep. New, relatively unobtrusive instrumentation now makes monitoring possible and cost-effective and will save lives. Illustrative results and problems encountered in an as-one-goes self-survey by GSK, a physician-scientist, are presented herein. Both MESOR-hypertension and CHAT (circadian hyper-amplitude-tension) can be intermittent conditions even under treatment, and treatment is best adjusted based on monitoring, rather than “flying blind”. PMID:16275483

  4. Abnormal heating of low-energy electrons in low-pressure capacitively coupled discharges.

    PubMed

    Park, G Y; You, S J; Iza, F; Lee, J K

    2007-02-23

    In low-pressure capacitively coupled plasmas, high-energy electrons are collisionlessly heated by large rf fields in the sheaths while low-energy electrons are confined in the bulk plasma by the ambipolar potential. Low-energy electrons are typically inefficiently heated due to their low collisionality and the weak rf electric field present in the bulk. It is shown, however, that as a result of the nonlinear interaction between the electron motion and the weak rf field present in the bulk, low-energy electrons can be efficiently heated. Electrons in the bulk that bounce inside the electrostatic potential well with a frequency equal to the rf excitation frequency are efficiently heated by the coherent interaction with the rf field. This resonant collisionless heating can be very efficient and manifest itself as a plateau in the electron energy probability function.

  5. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    NASA Astrophysics Data System (ADS)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a <100> preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  6. Office blood pressure, ambulatory blood pressure monitoring, and echocardiographic abnormalities in women with polycystic ovary syndrome: role of obesity and androgen excess.

    PubMed

    Luque-Ramírez, Manuel; Martí, David; Fernández-Durán, Elena; Alpañés, Macarena; Álvarez-Blasco, Francisco; Escobar-Morreale, Héctor F

    2014-03-01

    Whether or not blood pressure (BP) and heart function of women with polycystic ovary syndrome (PCOS) are altered remains unclear, albeit subtle abnormalities in the regulation of BP observed in these women might suggest a mild masculinization of their cardiovascular system. To study the influence of obesity and androgen excess on BP and echocardiographic profiles of women with the syndrome, we conducted a cross-sectional case-control study comparing office and ambulatory BP monitoring, as well as echocardiographic assessments, in 63 premenopausal women with the classic phenotype, 33 nonhyperandrogenic women with regular menses, and 25 young men. Forty-nine subjects were lean and 72 had weight excess (body mass index ≥25 kg/m(2)). Participants had no previous history of hypertension and were nonsmokers. Men showed the highest BP readings, and the lowest readings were observed in control women, whereas women with PCOS had intermediate values. Undiagnosed hypertension was more common in subjects with weight excess irrespective of sex and hyperandrogenism. Women with PCOS and weight excess showed frequencies of previously undiagnosed hypertension that were similar to those of men with weight excess and higher than those observed in nonhyperandrogenic women. Lastly, male sex, weight excess and hypertension, the latter in men as well as in women with PCOS, increased left ventricular wall thickness. In summary, our results show that patients with classic PCOS and weight excess frequently have undiagnosed BP abnormalities, leading to target organ damage.

  7. Increasing body mass index, blood pressure, and Acanthosis Nigricans abnormalities in school-age children.

    PubMed

    Otto, Debra E; Wang, Xiaohui; Garza, Viola; Fuentes, Lilia A; Rodriguez, Melinda C; Sullivan, Pamela

    2013-12-01

    This retrospective quantitative study examined the relationships among gender, Acanthosis Nigricans (AN), body mass index (BMI), and blood pressure (BP) in children attending school Grades 1-9 in Southwest Texas. Of the 34,897 health screening records obtained for the secondary analysis, 32,788 were included for the study. A logistic regression analysis was carried out with AN as the dependent variable, with year, gender, BMI, and BP as independent variables. The results indicate that the rate of children in each grade with three positive markers increased 2% during a 3-year period between 2008 and 2010. In the 5-year period between 2005 and 2010, a clear trend of significantly higher numbers of children with both AN and BMI markers was apparent. Gender played a significant role as females were more likely to have the AN marker than males. Further study is indicated based on the increasing trend of school-age children in Texas with positive markers for AN, increased BMI and BP.

  8. Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu

    2014-12-01

    We have measured acoustic VP and VS velocities of (Fe,Al)-bearing MgSiO3 silicate glasses and an Icelandic basalt glass up to 25 GPa. The velocity profiles of the (Fe,Al)-bearing and basaltic silicate glasses display decreased VP and VS with minima at approximately 5 and 2 GPa, respectively, which could be explained by the mode softening in the aluminosilicate networks. Our results represent the first observation of such velocity softening extending into the chemically complex basaltic glass at a relatively low transition pressure, which is likely due to its degree of polymerization, while the Fe and Al substitutions reduce sound velocities in MgSiO3 glass. If the velocity softening in the basaltic and silicate glasses can be used as analogs for understanding melts in Earth's interior, these observations suggest that the melt fraction needed to account for the velocity reduction in the upper mantle low-velocity zone may be smaller than previously thought.

  9. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    PubMed

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  10. Using theories of delusion formation to explain abnormal beliefs in Body Dysmorphic Disorder (BDD).

    PubMed

    Rossell, Susan L; Labuschagne, Izelle; Dunai, Judy; Kyrios, Michael; Castle, David J

    2014-03-30

    Body Dysmorphic Disorder (BDD) is characterised by overvalued or delusional beliefs of 'imagined ugliness'. Delusional beliefs have been explained by a number of cognitive theories, including faulty perceptions, biases in attention, and corruption of semantic memory. Atypical aesthetics may also influence beliefs in BDD. In fourteen BDD patients, compared to controls (n=14), we examined these theories of beliefs in a cognitive test battery consisting of perceptual organisation and visual affect perception tasks, a Stroop task using body words, a sentence verification task, a fluency task, and an attractiveness task. BDD patients performed similar to controls on tasks measuring information (bias) processing and aesthetics. However, BDD showed abnormal abilities on semantic processing involving sentence verification and category fluency. There was only a trend finding of impaired performance on perceptual processing tasks in BDD. The findings suggest that the delusional beliefs in BDD may be explained by impaired semantic processing.

  11. Carbon onions as nanoscopic pressure cells for diamond formation

    NASA Astrophysics Data System (ADS)

    Banhart, F.; Ajayan, P. M.

    1996-08-01

    SPHERICAL particles of carbon consisting of concentric graphite-like shells ('carbon onions') can be formed by electron irradiation of graphitic carbon materials1,2. Here we report that, when such particles are heated to ~700 °C and irradiated with electrons, their cores can be transformed to diamond. Under these conditions the spacing between layers in the carbon onions decreases from 0.31 in the outer shells (slightly less than the 0.34-nm layer spacing of graphite) to about 0.22 nm in the core, indicating considerable compression towards the particle centres. We find that this compression allows diamond to nucleate-in effect the carbon onions act as nanoscopic pressure cells for diamond formation.

  12. Environment, Ram Pressure, and Shell Formation in Holmberg II

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Carignan, C.

    2002-03-01

    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. These were extracted from the multiconfiguration data set of Puche and colleagues. H I is detected to radii over 16' or 4R25, almost a factor of 2 better than previous studies. The total H I mass MHI=6.44×108 Msolar. The integrated H I map has a comet-like appearance, with a large but faint component extending to the northwest and the H I appearing compressed on the opposite side. This suggests that HoII is affected by ram pressure from an intragroup medium (IGM). The velocity field shows a clear rotating disk pattern, and a rotation curve corrected for asymmetric drift was derived. However, the gas at large radii may not be in equilibrium. Puche and colleagues' multiconfiguration data were also reanalyzed, and it is shown that they overestimated their fluxes by over 20%. The rotation curve derived for HoII is well defined for r<~10 kpc. For 10<~r<~18 kpc, however, velocities are only defined on the approaching side, such that this part of the rotation curve should be used with caution. An analysis of the mass distribution, using the whole extent of this rotation curve, yields a total mass of 6.3×109 Msolar, of which ~80% is dark. Similarly to what is seen in many dwarfs, there is more luminous mass in H I than in stars. One peculiarity, however, is that luminous matter dominates within the optical body of the galaxy and dark matter only in the outer parts, analogous to what is seen in massive spirals rather than dwarfs. HoII lies northeast of the M81 Group's core, along with Kar 52 (M81 dwarf A) and UGC 4483. No signs of interaction are observed, however, and it is argued that HoII is part of the NGC 2403 subgroup, infalling toward M81. A case is made for ram pressure stripping and an IGM in the M81 Group. Stripping of the outer parts of the disk would require an IGM density nIGM>~4.0×10-6 atoms cm-3 at the location of

  13. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    PubMed Central

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities. PMID

  14. Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide

    SciTech Connect

    Hur, Tae-Bong; Baltrus, John P.; Howard, Bret H.; Harbert, William P.; Romanov, Vyacheslav N.

    2013-03-01

    Carbonation reaction with silicate minerals that are common components of the host rock and cap rock within geological storage reservoirs and the associated structural deformation were investigated for better understanding of the geochemical reactions associated with geologic CO2 storage. Exposure of a model expanding clay, Wyoming montmorillonite, SWy-2, to high-pressure CO2 resulted in the formation of a mineral carbonate phase via dry CO2–clay mineral interactions at two different temperatures. The experimental evidence suggests that the properties of CO2 fluid at 70 °C provide more favorable conditions for carbonate formation at the clay surface less accessible to CO2 at 22 °C. The carbonation reaction occurred predominantly within the first couple of days of exposure to the fluid and then proceeded slower with continuing exposure. As compared to the as-received clay under the same ambient conditions, the (0 0 1) basal spacing of the clay bearing carbonates (after the CO2 exposure) was slightly expanded at a relative humidity (RH) level of 12% but it was slightly collapsed at the RH level of 40%. Finally, experimental observations suggest that the carbonation reaction occurs at the external surface as well as internal surface (interlayer) of the clay particles.

  15. Formation of plasma dust structures at atmospheric pressure

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Dyatko, N. A.; Pal', A. F.; Starostin, A. N.; Taran, M. D.; Fortov, V. E.

    2006-02-15

    The formation of strongly coupled stable dust structures in the plasma produced by an electron beam at atmospheric pressure was detected experimentally. Analytical expressions were derived for the ionization rate of a gas by an electron beam in an axially symmetric geometry by comparing experimental data with Monte Carlo calculations. Self-consistent one-dimensional simulations of the beam plasma were performed in the diffusion drift approximation of charged plasma particle transport with electron diffusion to determine the dust particle levitation conditions. Since almost all of the applied voltage drops on the cathode layer in the Thomson glow regime of a non-self-sustained gas discharge, a distribution of the electric field that grows toward the cathode is produced in it; this field together with the gravity produces a potential well in which the dust particles levitate to form a stable disk-shaped structure. The nonideality parameters of the dust component in the formation region of a highly ordered quasi-crystalline structure calculated using computational data for the dust particle charging problem were found to be higher than the critical value after exceeding which an ensemble of particles with a Yukawa interaction should pass to the crystalline state.

  16. Controlling and assessing pressure conditions during treatment of tar sands formations

    DOEpatents

    Zhang, Etuan; Beer, Gary Lee

    2015-11-10

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.

  17. A ram-pressure threshold for star formation

    NASA Astrophysics Data System (ADS)

    Whitworth, A. P.

    2016-05-01

    In turbulent fragmentation, star formation occurs in condensations created by converging flows. The condensations must be sufficiently massive, dense and cool to be gravitationally unstable, so that they start to contract; and they must then radiate away thermal energy fast enough for self-gravity to remain dominant, so that they continue to contract. For the metallicities and temperatures in local star-forming clouds, this second requirement is only met robustly when the gas couples thermally to the dust, because this delivers the capacity to radiate across the full bandwidth of the continuum, rather than just in a few discrete spectral lines. This translates into a threshold for vigorous star formation, which can be written as a minimum ram pressure PCRIT ˜ 4 × 10-11 dyne. PCRIT is independent of temperature, and corresponds to flows with molecular hydrogen number density n_{{H_2.FLOW}} and velocity vFLOW satisfying n_{{H_2.FLOW}} v_{FLOW}^2≳ 800 cm^{-3} (km s^{-1})^2. This in turn corresponds to a minimum molecular hydrogen column density for vigorous star formation, N_{{H_2.CRIT}} ˜ 4 × 10^{21} cm^{-2} (ΣCRIT ˜ 100 M⊙ pc-2), and a minimum visual extinction AV, CRIT ˜ 9 mag. The characteristic diameter and line density for a star-forming filament when this threshold is just exceeded - a sweet spot for local star formation regions - are 2RFIL ˜ 0.1 pc and μFIL ˜ 13 M⊙ pc-2. The characteristic diameter and mass for a prestellar core condensing out of such a filament are 2RCORE ˜ 0.1 pc and MCORE ˜ 1 M⊙. We also show that fragmentation of a shock-compressed layer is likely to commence while the convergent flows creating the layer are still ongoing, and we stress that, under this circumstance, the phenomenology and characteristic scales for fragmentation of the layer are fundamentally different from those derived traditionally for pre-existing layers.

  18. Determinants of skin contact pressure formation during non-invasive ventilation.

    PubMed

    Dellweg, Dominic; Hochrainer, Dieter; Klauke, Matthias; Kerl, Jens; Eiger, Glenn; Kohler, Dieter

    2010-03-01

    There is no published data about mask features that impact skin contact pressure during mask ventilation. To investigate the physical factors of skin contact pressure formation. We measured masks with original and reduced air cushion size and recorded contact pressure. We determined cushion contact and mask areas by planimetric measurements. Contact pressures necessary to prevent air leakage during inspiration exceed inspiratory pressure by 1.01+/-0.41 hPa independent of cushion size. Contact area, ventilator pressure and mask area during inspiration and expiration impact contact pressure. Mask contact pressures are higher during expiration. The contact pressure increases with increase in inspiratory pressures independent of the ventilator cycle. During expiration, the contact pressure will increase in proportion to the expiratory pressure reduction of the ventilator. The mask with reduced air cushion size developed higher contact pressures. Contact pressure can be reduced by selecting masks with a small mask area in combination with a large mask cushion.

  19. Formation of xenon-nitrogen compounds at high pressure

    PubMed Central

    Howie, Ross T.; Turnbull, Robin; Binns, Jack; Frost, Mungo; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2016-01-01

    Molecular nitrogen exhibits one of the strongest known interatomic bonds, while xenon possesses a closed-shell electronic structure: a direct consequence of which renders both chemically unreactive. Through a series of optical spectroscopy and x-ray diffraction experiments, we demonstrate the formation of a novel van der Waals compound formed from binary Xe-N2 mixtures at pressures as low as 5 GPa. At 300 K and 5 GPa Xe(N2)2-I is synthesised, and if further compressed, undergoes a transition to a tetragonal Xe(N2)2-II phase at 14 GPa; this phase appears to be unexpectedly stable at least up to 180 GPa even after heating to above 2000 K. Raman spectroscopy measurements indicate a distinct weakening of the intramolecular bond of the nitrogen molecule above 60 GPa, while transmission measurements in the visible and mid-infrared regime suggest the metallisation of the compound at ~100 GPa. PMID:27748357

  20. Formation of xenon-nitrogen compounds at high pressure

    NASA Astrophysics Data System (ADS)

    Howie, Ross T.; Turnbull, Robin; Binns, Jack; Frost, Mungo; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2016-10-01

    Molecular nitrogen exhibits one of the strongest known interatomic bonds, while xenon possesses a closed-shell electronic structure: a direct consequence of which renders both chemically unreactive. Through a series of optical spectroscopy and x-ray diffraction experiments, we demonstrate the formation of a novel van der Waals compound formed from binary Xe-N2 mixtures at pressures as low as 5 GPa. At 300 K and 5 GPa Xe(N2)2-I is synthesised, and if further compressed, undergoes a transition to a tetragonal Xe(N2)2-II phase at 14 GPa this phase appears to be unexpectedly stable at least up to 180 GPa even after heating to above 2000 K. Raman spectroscopy measurements indicate a distinct weakening of the intramolecular bond of the nitrogen molecule above 60 GPa, while transmission measurements in the visible and mid-infrared regime suggest the metallisation of the compound at ~100 GPa.

  1. Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice

    PubMed Central

    Zanucco, Emanuele; Götz, Rudolf; Potapenko, Tamara; Carraretto, Irene; Ceteci, Semra; Ceteci, Fatih; Seeger, Werner; Savai, Rajkumar; Rapp, Ulf R.

    2011-01-01

    Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation. PMID:22194995

  2. Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish.

    PubMed

    Botelho, R G; Monteiro, S H; Christofoletti, C A; Moura-Andrade, G C R; Tornisielo, V L

    2015-11-01

    A rapid and sensitive method using liquid chromatography coupled with mass spectrometry triple quadrupole direct aqueous injection for analysis of atrazine and ametrine herbicides in surface waters was developed. According to the validation method, water samples from six different locations in the Piracicaba River were collected monthly from February 2011 to January 2012 and injected into a liquid chromatographer/dual mass spectrometer without the need for sample extraction. The method was validated and shown to be precise and accurate; limits of detection and quantification were 0.07 and 0.10 µg L(-1) for atrazine and 0.09 and 0.14 µg L(-1) for ametrine. During the sampling period, concentrations of atrazine ranged from 0.11 to 1.92 µg L(-1) and ametrine from 0.25 to 1.44 µg L(-1). After analysis of the herbicides, Danio rerio were exposed a range of concentrations found in the river water to check the induction of micronuclei and nuclear abnormalities (NAs) in erythrocytes. Concentrations of atrazine and ametrine >1.0 and 1.5 µg L(-1), respectively, induced MN formation in D. rerio. Ametrine was shown to be more genotoxic to D. rerio because a greater incidence of NAs was observed compared with atrazine. Therefore, environmentally relevant concentrations of atrazine and ametrine found in the Piracicaba River are dangerous to the aquatic biota. PMID:26081367

  3. Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish.

    PubMed

    Botelho, R G; Monteiro, S H; Christofoletti, C A; Moura-Andrade, G C R; Tornisielo, V L

    2015-11-01

    A rapid and sensitive method using liquid chromatography coupled with mass spectrometry triple quadrupole direct aqueous injection for analysis of atrazine and ametrine herbicides in surface waters was developed. According to the validation method, water samples from six different locations in the Piracicaba River were collected monthly from February 2011 to January 2012 and injected into a liquid chromatographer/dual mass spectrometer without the need for sample extraction. The method was validated and shown to be precise and accurate; limits of detection and quantification were 0.07 and 0.10 µg L(-1) for atrazine and 0.09 and 0.14 µg L(-1) for ametrine. During the sampling period, concentrations of atrazine ranged from 0.11 to 1.92 µg L(-1) and ametrine from 0.25 to 1.44 µg L(-1). After analysis of the herbicides, Danio rerio were exposed a range of concentrations found in the river water to check the induction of micronuclei and nuclear abnormalities (NAs) in erythrocytes. Concentrations of atrazine and ametrine >1.0 and 1.5 µg L(-1), respectively, induced MN formation in D. rerio. Ametrine was shown to be more genotoxic to D. rerio because a greater incidence of NAs was observed compared with atrazine. Therefore, environmentally relevant concentrations of atrazine and ametrine found in the Piracicaba River are dangerous to the aquatic biota.

  4. The effect of abnormal birth history on ambulatory blood pressure and disease progression in children with chronic kidney disease

    PubMed Central

    Flynn, Joseph T; Ng, Derek K; Chan, Grace J; Samuels, Joshua; Furth, Susan; Warady, Bradley; Greenbaum, Larry A.

    2014-01-01

    Objective To examine the associations between abnormal birth history (birth weight [BW] <2500 grams, gestational age <36 weeks, or small for gestational age), BP, and renal function among 332 participants (97 with abnormal and 235 with normal birth history) in the Chronic Kidney Disease in Children (CKiD) Study, a cohort of children with chronic kidney disease (CKD). Study design Casual and 24-hour ambulatory BP were obtained. Glomerular filtration rate (GFR) was determined by iohexol disappearance. Confounders (birth and maternal characteristics, socioeconomic status) were used to generate predicted probabilities of abnormal birth history for propensity score matching. Weighted linear and logistic regression models with adjustment for quintiles of propensity scores and CKD diagnosis were used to assess the impact of birth history on BP and GFR. Results Age at enrollment, percent with glomerular disease, and baseline GFR were similar between the groups. Those with abnormal birth history were more likely to be female, of Black race or Hispanic ethnicity, to have low household income, or part of a multiple birth. Unadjusted BP measurements, baseline GFR and change in GFR did not differ significantly between the groups; no differences were seen after adjusting for confounders by propensity score matching. Conclusions Abnormal birth history does not appear to have exerted a significant influence on BP or GFR in this cohort of children with CKD. The absence of an observed association is likely secondary to the dominant effects of underlying CKD and its treatment. PMID:24698454

  5. Theoretical assessment of bonaccordite formation in pressurized water reactors

    DOE PAGES

    Rak, Zsolt; O'Brien, Chris; Shin, Dongwon; Andersson, Anders David; Stanek, Christopher; Brenner, Donald

    2016-03-04

    The free energy of formation of bonaccordite (Ni2FeBO5) as a function of temperature has been calculated using a technique that combines first principles calculations with experimental free energies of formation of aqueous species. The results suggest that bonaccordite formation from aqueous metal ions (Ni2+ andFe3+) and boric acid is thermodynamically favorable at elevated temperature and pH that have been predicted to exist at the CRUD-clad interface in deposits thicker than 60 μm.

  6. Theoretical assessment of bonaccordite formation in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Rak, Zs; O'Brien, C. J.; Shin, D.; Andersson, A. D.; Stanek, C. R.; Brenner, D. W.

    2016-06-01

    The free energy of formation of bonaccordite (Ni2FeBO5) as a function of temperature has been calculated using a technique that combines first principles calculations with experimental free energies of formation of aqueous species. The results suggest that bonaccordite formation from aqueous metal ions (Ni2+ andFe3+) and boric acid is thermodynamically favorable at elevated temperature and pH that have been predicted to exist at the CRUD-clad interface in deposits thicker than 60 μm.

  7. Carbon Onions as Nanoscopic Pressure Cells for Diamond Formation

    NASA Astrophysics Data System (ADS)

    Banhart, Florian

    1997-03-01

    Concentric-shell carbon onions form under electron irradiation of different carbon precursors in an electron microscope. Carbon onions under irradiation at high temperature are in a state of high compression with a considerable decrease of the c-plane spacing towards the centre. Under prolonged irradiation at temperatures around 900 K the cores of the graphitic onions transform into diamond crystals (F. Banhart and P.M. Ajayan, Nature 382), 433 (1996). Hence, carbon onions can be thought of as nanoscopic pressure cells for the directly observable nucleation and growth of diamond from graphitic material. The diamond crystals grow under further irradiation until the whole graphitic particles have transformed to diamond. Apparently the conversion of the graphitic structure to diamond starts at high pressure and proceeds at decreasing, possibly even at zero pressure. The experiment is carried out in a transmission electron microscope which enables us to monitor this phase transformation in-situ on an atomic scale.

  8. In-situ Spectroscopic Ellipsometry of the Cu Deposition Process from Supercritical Fluids: Evidence of an Abnormal Surface Layer Formation

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuya; Tamegai, Yukihiro; Ueno, Takahiro; Watanabe, Mitsuhiro; Jin, Lianhua; Kondoh, Eiichi

    2012-05-01

    In this paper, we report in-situ spectroscopic ellipsometry of Cu deposition from supercritical carbon dioxide fluids. The motivations of this work were 1) to perform a detailed observation of Cu growth with precision optical metrology, 2) to study substrate dependence on Cu growth, particularly for Ru and TiN substrates in the present case, and 3) to demonstrate the possibility and usefulness of ellipsometry for diagnosing supercritical fluid processing. The Cu deposition was carried out through hydrogen reduction of a Cu β-diketonate precursor at 160-180 °C. During growth, a very large deviation of ellipsometric parameters (Ψ and Δ) from a single-layer model prediction was observed; this deviation was much larger than that expected from island formation which has been frequently reported in in-situ ellipsometric observation of the vapor growth of thin films. From model analyses, it was found that an abnormal dielectric layer having a high refractive index and a thickness of 10-50 nm is present on the growing Cu surface. The refractive index of this layer was (1.5-2) + (0.2-0.3)i and from this, we concluded that this layer is the condensed precursor. The condensed layer develops prior to Cu nucleation. As for the substrate dependence on Cu growth, both layers develop faster on Ru than on TiN. This corresponds to the fact that chemisorption occurs more easily on Ru. The deposition kinetics under the presence of the condensed layer are also discussed.

  9. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure.

    PubMed

    Szczesniak, Anna-Maria; Maor, Yehoshua; Robertson, Harold; Hung, Orlando; Kelly, Melanie E M

    2011-10-01

    The objective of our study was to examine the pharmacology of the intraocular pressure (IOP)-lowering actions of the behaviorally inactive cannabinoids, abnormal cannabidiol (abn-CBD), and a cannabigerol analog, cannabigerol-dimethyl heptyl (CBG-DMH), in comparison to that of the nonselective cannabinoid 1 receptor (CB(1)R) and CB(2)R agonist, WIN55,212-2, in Brown Norway rats. The IOP was measured noninvasively using a hand-held tonometer in nonanesthetized animals. The IOP measurements were taken every 15 min for a period of 2 h after drug administration. All drugs were administered via intraperitoneal (i.p.) injections, and abn-CBD and CBG-DMH were also given topically. Both abn-CBD and CBG-DMH reduced IOP when administrated i.p. at doses of ≥2.5 mg/kg or topically at concentrations of 1%-2%. The IOP-lowering effects of abn-CBD and CBG-DMH were reduced by i.p. administration of O-1918 (2.5 mg/kg), a selective antagonist of the abn-CBD-sensitive cannabinoid-related receptor (CBx), but were unaffected by the CB(1)R antagonist, AM251 (2.5 mg/kg), or the CB(2)R antagonist, AM630 (2.5 mg/kg). In contrast, the IOP-lowering action of WIN55,212-2 was completely blocked by the CB(1)R-selective antagonist, AM251, and was unaffected by the CBx receptor antagonist, O-1918. However, similar to the nonpsychotropic cannabinoids, the ocular hypotensive actions of WIN55,212-2 were also insensitive to block by the CB(2)R antagonist, AM630. Consistent with this, the selective CB(2)R agonist, HU-308 (2 mg/kg) failed to reduce IOP in Brown Norway rats. Concurrent application of a dose of WIN55,212-2 that was subthreshold to reduce IOP (0.25 mg/kg), together with a topical dose of either abn-CBD (0.5%) or CBG-DMH (0.25%), respectively, potentiated the ocular hypotensive effect of either compound applied alone. This study demonstrates that the atypical cannabinoid, abn-CBD, and the cannabigerol analog, CBG-DMH, decrease IOP in the normotensive Brown Norway rat eye independent of CB

  10. Pressure-driven formation and stabilization of superconductive chromium hydrides

    PubMed Central

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  11. Abnormal Eu behavior at formation of H2O- and Cl-bearing fluids during degassing of granite magmas

    NASA Astrophysics Data System (ADS)

    Lukanin, Oleg

    2010-05-01

    One of the important features of REE behavior in the process of decompression degassing of granite melts is the presence of europium anomalies in REE spectrum of forming fluid phase. Negative Eu anomaly in REE spectrum of fluids enriched by chlorine that were formed under high pressures at early stages of degassing relative to REE spectrum of granite melts may take place. Negative Eu anomaly in fluid is replaced by positive one with pressure decrease and decline of Cl concentration in fluid [1, 2]. Observable unique features of europium redistribution between fluid and melt find an explanation in such a fact that Eu in contrast to the other REE under oxidation-reduction conditions, being typical for magmatic process, is present in acidic silica-alumina melts in two valency forms Eu3+ and Eu2+ whereas the dominant form for the other REE in such a melts is (REE)3+ [3, 4]. From the analysis of melt-fluid exchange reactions with participation of two valency forms of europium Eu3+ and Eu2+ follows that the total distribution coefficient of Eu between fluid and melt D(Eu)f-m is equal as a first approximation to [5, 6]: D(Eu)f-m = a1α [C(Cl)f]3 + a2 (1 - α)[C(Cl)f]2, where C(Cl)f - the concentration of Cl in fluid, α = Eu3+/(Eu3+ + Eu2+), i.e. fraction of Eu3+ from the general amount of europium in the melt, and, a1anda2- constants that can be approximately estimated from empirical data upon Eu fluid/melt distribution. The equation given allows to estimate the influence of oxidizing condition of europium on sign and size of Eu anomaly, which is expressed by Eu/Eu# ratio, where Eu is real concentration of europium in fluid being in equilibrium with melt with constant Eu3+/(Eu3+ + Eu2+) ratio, and Eu# is possible "virtual" concentration of europium that could be in the same fluid provided that all europium as other REE as well were exclusively present in trivalent form. The sign and size of Eu anomaly in fluid depends upon Cl concentration in fluid and Eu3+/Eu2+ ratio in

  12. A pressure-induced, magnetic transition in pyrrhotite: Implications for the formation pressure of meteorites and diamonds

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Egli, R.; Hochleitner, R.; Roud, S. C.; Volk, M.; Le Goff, M.; de Wit, M.

    2010-12-01

    Meteorites and diamonds encounter high-pressures during their geologic histories. These materials commonly contain magnetic inclusions of pyrrhotite, and because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report magnetic measurements performed at high-pressures on single and multi-domain pyrrhotite. A magnetic hysteresis model based on our observations suggests that multidomain pyrrhotite transforms into single domain-like material, and once in the single domain state, hysteresis loops become progressively squarer and then squatter with increasing pressure, until they ultimately collapse approaching the paramagnetic state at the transition. The ratio of the bulk magnetic coercive force to magnetic remanence for pure pyrrhotite is reversible with pressure and follows a logarithmic law as a function of pressure, which can be used as a magnetic barometer for natural systems.

  13. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  14. Formation of an Apokampic Discharge Under Atmospheric Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Skakun, V. S.; Panarin, V. A.; Pechenitsyn, D. S.; Sosnin, É. A.; Tarasenko, V. F.

    2016-09-01

    A new phenomenon is observed in a spark discharge developing under normal conditions in air in a discharge circuit with a capacitive decoupling. It consists in the current channel bending becoming a source of a 4-6 cm long plasma jet directed across the channel. The phenomenon is termed an apokampic discharge or an apokamp. Its emission spectrum contains the bands of electron-vibration transitions from the second positive group of molecular nitrogen. The conditions of formation of an apokamp are experimentally determined. A conclusion is drawn that in order construct a physical model of an apokamp, one has to take into account: 1) the presence of a local gas overheating in the site of the current channel bending, 2) the similarity of the current and voltage time dependences in the corona discharge and in the current channel (becoming a source of an apokamp), and 3) the length of the apokamp plasma jet.

  15. Laminar plume formation by high pressure CO2

    NASA Astrophysics Data System (ADS)

    Nadal, Francois; Meunier, Patrice; Pouligny, Bernard; Laurichesse, Eric

    2012-11-01

    Convection flows have often revealed the presence of plumes, especially in the earth's mantle where the Schmidt number is large. There has thus been a large number of studies on plumes created by a point source. However, there are very few results on plumes generated by an extended source. Here, we present experimental, numerical and theoretical results on the flow created by high pressure CO2 dissolved into distilled water. The thin layer of dense fluid created at the surface destabilizes through the Rayleigh-Taylor instability and leads to a laminar and parallel stationary plume. The plume width and amplitude are measured by Particle Image Velocimetry for various aspect ratios, Bond and Rayleigh numbers. They are in good agreement with the numerical result if a no-slip boundary condition is assumed at the free surface. Finally, the theory for a plume generated by a point source is adapted for an extended source, which leads to different scaling exponents (with a logarithmic dependence), in excellent agreement with the experimental and numerical results. This study thus provides a simple and accurate description of axisymmetric plumes generated by an extended source.

  16. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure.

    PubMed

    Zhang, Chuanwu; Mao, Guangyun; He, Suxia; Yang, Zuopeng; Yang, Wei; Zhang, Xiaojing; Qiu, Wenting; Ta, Na; Cao, Li; Yang, Hui; Guo, Xiaojuan

    2013-11-15

    Arsenic increases the risk and incidence of cardiovascular disease. To explore the impact of long-term exposure to low-level arsenic in drinking water on blood pressure including pulse pressure (PP) and mean arterial blood pressure (MAP), a cross-sectional study was conducted in 2010 in which the blood pressure of 405 villagers was measured, who had been drinking water with an inorganic arsenic content <50 μg/L. A multivariate logistic regression model was used to estimate odds ratios and 95% confidence intervals. After adjusting for age, gender, Body Mass Index (BMI), alcohol consumption and smoking, the odds ratios showed a 1.45-fold (95%CI: 0.63-3.35) increase in the group with >30-50 years of arsenic exposure and a 2.95-fold (95%CI: 1.31-6.67) increase in the group with >50 years exposure. Furthermore, the odds ratio for prevalence of abnormal PP and MAP were 1.06 (95%CI: 0.24-4.66) and 0.87 (95%CI: 0.36-2.14) in the group with >30-50 years of exposure, and were 2.46 (95%CI: 0.87-6.97) and 3.75 (95%CI: 1.61-8.71) for the group with >50 years exposure, compared to the group with arsenic exposure ≤ 30 years respectively. Significant trends for Hypertension (p<0.0001), PP (p<0.0001) and MAP (p=0.0016) were found. The prevalence of hypertension and abnormal PP as well as MAP is marked among a low-level arsenic exposure population, and significantly increases with the duration of arsenic exposure.

  17. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  18. Superconductivity and abnormal pressure effect in Sr{}_{0.5}La{}_{0.5}FBiSe2 superconductor

    NASA Astrophysics Data System (ADS)

    Li, Lin; Xiang, Yongliang; Chen, Yihong; Jiao, Wenhe; Zhang, Chuhang; Zhang, Li; Dai, Jianhui; Li, Yuke

    2016-04-01

    Through the solid state reaction method, we synthesized a new BiSe2-based superconductor Sr{}0.5La{}0.5FBiSe2 with superconducting transition temperature T {}c ≈ \\quad 3.8 K. A strong diamagnetic signal below T c in susceptibility χ (T) is observed indicating the bulk nature of superconductivity. Different to most BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, the present compound exhibits a metallic behavior down to T c . Under weak magnetic field or pressure, however, a remarkable crossover from metallic to insulating behaviors takes place around T min where the resistivity picks up a local minimum. With increasing pressure, T {}c decreases monotonously and T min shifts to high temperatures, while the absolute value of the normal state resistivity at low temperatures first decreases and then increases with pressure up to 2.5 GPa. These results imply that the electronic structure of Sr{}0.5La{}0.5FBiSe2 may be different to those in the other BiS2-based systems.

  19. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10{sup -3} M{sub sun} yr{sup -1} or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  20. Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility

    SciTech Connect

    Saulnier, G.J. Jr.

    1992-03-01

    Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

  1. Kinetics of the formation of radicals in meat during high pressure processing.

    PubMed

    Bolumar, Tomas; Skibsted, Leif H; Orlien, Vibeke

    2012-10-15

    The kinetics of the formation of radicals in meat by high pressure processing (HPP) has been described for the first time. A threshold for the radicals to form at 400 MPa at 25 °C and at 500 MPa at 5 °C has been found. Above this threshold, an increased formation of radicals was observed with increasing pressure (400-800 MPa), temperature (5-40 °C) and time (0-60 min). The volume of activation (ΔV(#)) was found to have the value -17 ml mol(-1). The energy of activation (E(a)) was calculated to be 25-29 kJ mol(-1) within the pressure range (500-800 MPa) indicating high independence on the temperature at high pressures whereas the reaction was strongly dependent at atmospheric pressure (E(a)=181 kJ mol(-1)). According to the effect of the processing conditions on the reaction rate, three groups of increasing order of radical formation were established: (1) 55 °C at 0.1 MPa, (2) 500 and 600 MPa at 25 °C and 65 °C at 0.1 MPa, and (3) 700 MPa at 25 °C and 75 °C at 0.1 MPa. The implication of the formation of radicals as initiators of lipid oxidation under HPP is discussed.

  2. High pressure rheometer for in situ formation and characterization of methane hydrates

    NASA Astrophysics Data System (ADS)

    Webb, Eric B.; Rensing, Patrick J.; Koh, Carolyn A.; Dendy Sloan, E.; Sum, Amadeu K.; Liberatore, Matthew W.

    2012-01-01

    We present a novel setup for a high pressure rheometer operating with concentric cylinders geometry for in situ studies of hydrate formation and rheological characterization. The apparatus uses an external high pressure mixing cell to saturate water-in-oil emulsions with methane gas. The capability of mixing combined with a true rheometer design make this apparatus unique in terms of setup and sample formation. We have used the apparatus to form gas hydrates in situ from water-in-oil emulsions and characterize suspension rheological properties such as yield stress and shear-thinning behavior.

  3. Control of tetrahedron satellite formation flying in the geosynchronous orbit using solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Hou, Yong-Gang; Zhang, Ming-Jiang; Zhao, Chang-Yin; Sun, Rong-Yu

    2016-04-01

    In this paper, the control of tetrahedron satellite formation flying in the geosynchronous orbit (GEO) using solar radiation pressure is investigated. The long term disturbing effect of the main zonal and tesseral harmonics J2 and J_{22} of the geopotential are eliminated by adjusting the initial orbital elements, and a tetrahedron satellite formation flying in the GEO is designed. Then a control system using solar radiation pressure is further proposed to maintain the tetrahedron satellite formation, in which a sliding mode control (SMC) is developed to determine the control force. The control force is acquired from the solar sails equipped on the satellites, and the final control law and strategy using solar radiation pressure are presented. Moreover, three kinds of numerical simulations are especially given to verify the validity of the control system using solar radiation. It shows that Laplace precession of the GEO satellite can be avoided effectively, and the in-plane and out-of-plane errors of the formation can be eliminated easily. And hence the control of tetrahedron satellite formation flying in the GEO using solar radiation pressure is proved to be feasible.

  4. Effect of plasticity and atmospheric pressure on the formation of donut- and croissantlike buckles.

    PubMed

    Hamade, S; Durinck, J; Parry, G; Coupeau, C; Cimetière, A; Grilhé, J; Colin, J

    2015-01-01

    The formation of donut- and croissantlike buckles has been observed onto the free surface of gold thin films deposited on silicon substrates. Numerical simulations clearly evidence that the coupling effect between the atmospheric pressure acting on the free surface and the plastic folding of the ductile film is responsible for the circular blister destabilization and the formation of the donut- and croissantlike buckling patterns. PMID:25679631

  5. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  6. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Wen, Dadong; Tian, Zean; Liu, Rangsu

    2016-12-01

    Molecular dynamics (MD) simulations have been performed to examine the glass formation and cluster evolution during the rapid solidification of monatomic metallic liquid Ta under high pressure. The atomic structures in the systems are characterized by the radical distribution function (RDF), Honeycutt-Anderson (H-A) bond-type index method and cluster-type index method (CTIM). It is observed that the defective icosahedra play the critical role in the formation of Ta monatomic metallic glasses (MGs) rather than (12 0 12 0) perfect icosahedra, which have been identified as the basic local atomic units in many multi-component MGs. With the increase of pressure P, the fraction of icosahedral type clusters decreases remarkably in Ta MGs, while the fraction of bcc type clusters rises evidently. The evolution of vitrification degree (DSRO or DMRO) of the rapidly cooled metal Ta system further reveals that a higher pressure P is disadvantageous to the formation of Ta monatomic MGs. The weaker glass forming ability (GFA) of liquid metal Ta obtained under higher pressure P can be contributed to the decrease of DSRO or DMRO which is induced by increasing high pressure P to some extent.

  7. Tracking CO2 Plume in Deep Saline Formations Utilizing a Time-lapse Pressure Tomography Approach

    NASA Astrophysics Data System (ADS)

    Hu, L.; Bayer, P.; Brauchler, R.

    2015-12-01

    CO2 storage in deep saline formations is considered as an attractive option to cut down greenhouse gas emissions. Among the major challenges is the development of efficient technologies for controlling and monitoring the evolution of CO2 plumes during and after injection in the underground. As an alternative to the most commonly used geophysical approaches for subsurface characterization, we propose a pressure-based tomographical approach to track CO2 plume history. By taking into account the direct relationship between saturation and flow properties, pressure tomography has the potential not only to detect a plume but also to estimate the saturation of CO2. The experimental set-up of pressure tomography involves injection of brine or CO2 at variable depths (sources). We use a time-lapse approach, considering first the CO2-free formation, and then the multi-phase CO2-brine system. By applying a rapid eikonal-based inversion technique, pressure fluctuations at observation locations (receivers) are utilized to reconstruct the spatial distribution of the apparent single-phase and mixed-phase diffusivity. Evolution of the plume shape is then delineated by comparison of diffusivity tomograms derived from different times. Finally, an integrated value of CO2 saturation within the plume is obtained by means of a single-phase proxy. Applicability of this novel approach is evaluated in different virtual formations. The time-lapse pressure tomographic investigation revealed that knowledge about the spatial heterogeneity of permeability has a remarkable impact on proper characterization of plume shape.

  8. Comparative proteomics reveals abnormal binding of ATGL and dysferlin on lipid droplets from pressure overload-induced dysfunctional rat hearts.

    PubMed

    Li, Linghai; Zhang, Huina; Wang, Weiyi; Hong, Yun; Wang, Jifeng; Zhang, Shuyan; Xu, Shimeng; Shu, Qingbo; Li, Juanfen; Yang, Fuquan; Zheng, Min; Qian, Zongjie; Liu, Pingsheng

    2016-01-01

    Excessive retention of neutral lipids in cardiac lipid droplets (LDs) is a common observation in cardiomyopathy. Thus, the systematic investigation of the cardiac LD proteome will help to dissect the underlying mechanisms linking cardiac steatosis and myocardial dysfunction. Here, after isolation of LDs from normal and dysfunctional Sprague-Dawley rat hearts, we identified 752 heart-associated LD proteins using iTRAQ quantitative proteomic method, including 451 proteins previously unreported on LDs. The most noteworthy finding was the identification of the membrane resealing protein, dysferlin. An analysis of dysferlin truncation mutants indicated that its C2 domain was responsible for its LD localization. Quantitative proteomic results further determined that 27 proteins were increased and 16 proteins were decreased in LDs from post pressure overload-induced dysfunctional hearts, compared with normal hearts. Notably, adipose triacylglycerol lipase (ATGL) was dramatically decreased and dysferlin was substantially increased on dysfunctional cardiac LDs. This study for the first time reveals the dataset of the heart LD proteome in healthy tissue and the variation of it under cardiac dysfunction. These findings highlight an association between the altered LD protein localization of dysferlin and ATGL and myocardial dysfunction. PMID:26795240

  9. Comparative proteomics reveals abnormal binding of ATGL and dysferlin on lipid droplets from pressure overload-induced dysfunctional rat hearts

    PubMed Central

    Li, Linghai; Zhang, Huina; Wang, Weiyi; Hong, Yun; Wang, Jifeng; Zhang, Shuyan; Xu, Shimeng; Shu, Qingbo; Li, Juanfen; Yang, Fuquan; Zheng, Min; Qian, Zongjie; Liu, Pingsheng

    2016-01-01

    Excessive retention of neutral lipids in cardiac lipid droplets (LDs) is a common observation in cardiomyopathy. Thus, the systematic investigation of the cardiac LD proteome will help to dissect the underlying mechanisms linking cardiac steatosis and myocardial dysfunction. Here, after isolation of LDs from normal and dysfunctional Sprague-Dawley rat hearts, we identified 752 heart-associated LD proteins using iTRAQ quantitative proteomic method, including 451 proteins previously unreported on LDs. The most noteworthy finding was the identification of the membrane resealing protein, dysferlin. An analysis of dysferlin truncation mutants indicated that its C2 domain was responsible for its LD localization. Quantitative proteomic results further determined that 27 proteins were increased and 16 proteins were decreased in LDs from post pressure overload-induced dysfunctional hearts, compared with normal hearts. Notably, adipose triacylglycerol lipase (ATGL) was dramatically decreased and dysferlin was substantially increased on dysfunctional cardiac LDs. This study for the first time reveals the dataset of the heart LD proteome in healthy tissue and the variation of it under cardiac dysfunction. These findings highlight an association between the altered LD protein localization of dysferlin and ATGL and myocardial dysfunction. PMID:26795240

  10. Pressure-dependent formation of i-motif and G-quadruplex DNA structures.

    PubMed

    Takahashi, S; Sugimoto, N

    2015-12-14

    Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA. We investigated the effect of high pressure on the folding of duplex, DNA i-motif, and G-quadruplex (G4) structures; the non-canonical structures may be modulators of expression of genes involved in cancer progression. The i-motif structure was stabilized by high pressure, whereas the G4 structure was destabilized. The melting temperature of an intramolecular i-motif formed by 5'-dCGG(CCT)10CGG-3' increased from 38.8 °C at atmospheric pressure to 61.5 °C at 400 MPa. This effect was also observed in the presence of 40 wt% ethylene glycol, a crowding agent. In the presence of 40 wt% ethylene glycol, the G4 structure was less destabilized than in the absence of the crowding agent. P-T stability diagrams of duplex DNA with a telomeric sequence indicated that the duplex is more stable than G4 and i-motif structures under low pressure, but the i-motif dominates the structural composition under high pressure. Under crowding conditions, the P-T diagrams indicated that the duplex does not form under high pressure, and i-motif and G4 structures dominate. Our findings imply that temperature regulates the formation of the duplex structure, whereas pressure triggers the formation of non-canonical DNA structures like i-motif and G4. These results suggest that pressure impacts the function of nucleic acids by stabilizing non-canonical structures; this may be relevant to deep sea organisms and during evolution under prebiotic conditions.

  11. Prolonged elevation of intraocular pressure results in retinal ganglion cell loss and abnormal retinal function in mice

    PubMed Central

    Khan, A Kareem; Tse, Dennis Y; van der Heijden, Meike; Shah, Priya; Nusbaum, Derek; Yang, Zhuo; Wu, Samuel M; Frankfort, Benjamin J

    2014-01-01

    The purpose of this study was to assess the impact of prolonged intraocular pressure (IOP) elevation on retinal anatomy and function in a mouse model of experimental glaucoma. IOP was elevated by anterior chamber injection of a fixed combination of polystyrene beads and sodium hyaluronate, and maintained via re-injection after 24 weeks. IOP was measured weekly with a rebound tonometer for 48 weeks. Histology was assessed with a combination of retrograde labeling and antibody staining. Retinal physiology and function was assessed with dark-adapted electroretinograms (ERGs). Comparisons between bead-injected animals and various controls were conducted at both 24 and 48 weeks after bead injection. IOP was elevated throughout the study. IOP elevation resulted in a reduction of retinal ganglion cell (RGCs) and an increase in axial length at both 24 and 48 weeks after bead injection. The b-wave amplitude of the ERG was increased to the same degree in bead-injected eyes at both time points, similar to previous studies. The positive scotopic threshold response (pSTR) amplitude, a measure of RGC electrical function, was diminished at both 24 and 48 weeks when normalized to the increased b-wave amplitude. At 48 weeks, the pSTR amplitude was reduced even without normalization, suggesting more profound RGC dysfunction. We conclude that injection of polystyrene beads and sodium hyaluronate causes chronic IOP elevation which results in phenotypes of stable b-wave amplitude increase and progressive pSTR amplitude reduction, as well as RGC loss and axial length elongation. PMID:25450059

  12. Effect of Processing Pressure on Isolated Pore Formation during Controlled Directional Solidification in Small Channels

    NASA Technical Reports Server (NTRS)

    Cox, Matthew C.; Anilkumar, Amrutur V.; Grugel, RIchard N.; Lee, Chun P.

    2008-01-01

    Directional solidification experiments were performed, using succinonitrile saturated with nitrogen gas, to examine the effects of in-situ processing pressure changes on the formation growth, and evolution of an isolated, cylindrical gaseous pore. A novel solidification facility, capable of processing thin cylindrical samples (I.D. < 1.0 mm), under controlled pressure conditions, was used for the experiments. A new experimental method for growing the isolated pore from a seed bubble is introduced. The experimental results indicate that an in-situ processing pressure change will result in either a transient change in pore diameter or a complete termination of pore growth, indicating that pressure changes can be used as a control parameter to terminate bubble growth. A simple analytical model has been introduced to explain the experimental observations.

  13. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  14. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  15. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  16. Effect of negative pressure on growth, secretion and biofilm formation of Staphylococcus aureus.

    PubMed

    Li, Tongtong; Wang, Guoqi; Yin, Peng; Li, Zhirui; Zhang, Licheng; Liu, Jianheng; Li, Ming; Zhang, Lihai; Han, Li; Tang, Peifu

    2015-10-01

    Negative pressure wound therapy (NPWT) has gained popularity in the management of contaminated wounds as an effective physical therapy, although its influence on the bacteria in the wounds remains unclear. In this study, we attempted to explore the effect of negative pressure conditions on Staphylococcus aureus, the most frequently isolated pathogen during wound infection. S. aureus was cultured in Luria-Bertani medium at subatmospheric pressure of -125 mmHg for 24 h, with the bacteria grown at ambient pressure as the control. The application of negative pressure was found to slow down the growth rate and inhibit biofilm development of S. aureus, which was confirmed by static biofilm assays. Furthermore, decreases in the total amount of virulence factors and biofilm components were observed, including α-hemolysin, extracellular adherence protein, polysaccharide intercellular adhesin and extracellular DNA. With quantitative RT-PCR analysis, we also revealed a significant inhibition in the transcription of virulence and regulatory genes related to wound infections and bacterial biofilms. Together, these findings indicated that negative pressure could inhibit the growth, virulence and biofilm formation of S. aureus. A topical subatmospheric pressure condition, such as NPWT, may be a potential antivirulence and antibiofilm strategy in the field of wound care. PMID:26272011

  17. Effect of negative pressure on growth, secretion and biofilm formation of Staphylococcus aureus.

    PubMed

    Li, Tongtong; Wang, Guoqi; Yin, Peng; Li, Zhirui; Zhang, Licheng; Liu, Jianheng; Li, Ming; Zhang, Lihai; Han, Li; Tang, Peifu

    2015-10-01

    Negative pressure wound therapy (NPWT) has gained popularity in the management of contaminated wounds as an effective physical therapy, although its influence on the bacteria in the wounds remains unclear. In this study, we attempted to explore the effect of negative pressure conditions on Staphylococcus aureus, the most frequently isolated pathogen during wound infection. S. aureus was cultured in Luria-Bertani medium at subatmospheric pressure of -125 mmHg for 24 h, with the bacteria grown at ambient pressure as the control. The application of negative pressure was found to slow down the growth rate and inhibit biofilm development of S. aureus, which was confirmed by static biofilm assays. Furthermore, decreases in the total amount of virulence factors and biofilm components were observed, including α-hemolysin, extracellular adherence protein, polysaccharide intercellular adhesin and extracellular DNA. With quantitative RT-PCR analysis, we also revealed a significant inhibition in the transcription of virulence and regulatory genes related to wound infections and bacterial biofilms. Together, these findings indicated that negative pressure could inhibit the growth, virulence and biofilm formation of S. aureus. A topical subatmospheric pressure condition, such as NPWT, may be a potential antivirulence and antibiofilm strategy in the field of wound care.

  18. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    SciTech Connect

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.

    2014-11-10

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.

  19. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea

    PubMed Central

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  20. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  1. The formation of chondrules at high gas pressures in the solar nebula.

    PubMed

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula.

  2. Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: Experimental measurement

    SciTech Connect

    Young, K.J.; Stewart, C.D.; Moss, J.B.

    1994-12-31

    Detailed scalar property maps have been constructed for turbulent jet flames of prevaporized kerosine, burning in a coflowing air stream and confined within an optically accessed cylindrical chamber, which permits operation at elevated pressure. Time-averaged measurements of spatially resolved soot volume fraction by path-integrated laser absorption and tomographic inversion, temperature by fine wire thermocouple, and mixture fraction by microprobe sampling and mass spectrometric analysis are reported at chamber pressures from 1 to 6.4 bar. While the principal objective of the study has been to develop a database for modelling and computational prediction, the centerline data admit presentation in a standardized form, based on the centerline flame length to the maximum soot concentration, which permits analysis of the pressure dependence from turbulent flames of differing sizes. In this form, the peak soot volume fractions and soot formation rates appear linearly dependent on pressure, exhibiting a peak mass fraction of soot carbon of 7%, substantially independent of pressure. The peak soot loading, at the highest pressure investigated, approaches 120 gm{sup {minus}3} before complete laser extinction renders the flame inaccessible to further measurement. The high carbon loading and enhanced radiative loss lead to reduced mean temperatures throughout the flame by comparison with more widely studied gaseous fuels such as ethylene. Measured temperatures do not exceed 1,438 K anywhere on the centerline of the flame at 1 bar, for example.

  3. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  4. [Left ventricular pressure-volume diagram determined by forward and backward formatting of radionuclide ventriculography and analog pressure data].

    PubMed

    Inagaki, S; Sugihara, H; Nakagawa, T; Katahira, T; Kubota, Y; Katsume, H; Adachi, H; Nakagawa, M; Ikegaya, K; Matsui, S

    1989-02-01

    Pressure-volume (PV) loop is of great value for the assessment of left ventricular (LV) function, but its clinical application has been limited by methodological complexity. A new system was developed to make accurate loop with simplified procedure, and was applied to clinical and interventional study. The system constitutes of a mobile gamma camera, a poly-amplifier and a data processor (GMS-550U, Toshiba Medical) installed in cardiac catheterization labo for simultaneous raw data handling and successive analysis. Since LV time activity curve (TAC) obtained by usual ECG gating is not fully reliable for a entire cardiac cycle, radionuclide data acquired in list mode was formatted forward and backward from ECG trigger together with analog data of LV pressure, ECG and PCG. PV loops were drawn in 10 patients (OMI, AP, MR, HCM) and 5 normals before and after infusion of angiotensin-II (AII), and Emax and LV work (systolic; SW, diastolic; DW, net; NW = SW - DW) were measured. Radionuclide ventriculography was safely performed with cardiac catheterization even in patients with congestive heart failure. Satisfactory PV loops were obtained by the advantage of simultaneous acquisition of RNV and analog data. Changes of ECG, PCG, volume, pressure and derived indices through one cardiac cycle were readily comparable each other. Peak LV pressure (mmHg) increased from 134 to 159 and then 182 by infusion of AII, but no change in heart rate was observed Emax was higher in normals and AP (mean 1.96 mmHg/ml/m2) than in OMI and MR (range of 0.85-1.36). SW increased in response to rise of LV pressure in all subjects. NW increased in normals and AP, but decreased in OMI and MR with relative increase in DW. In conclusion, this new system is feasible for repetitive studies under drug intervention, since it makes accurate PV loop under physiologic state, i.e. without pacing and volume overloading. Variable changes of SW, DW, and NW in response to afterloading were clarified, which may be

  5. Do Fluid Inclusions That Homogenize by Halite Disappearance Indicate a High Pressure of Formation?

    NASA Astrophysics Data System (ADS)

    Becker, S. P.; Bodnar, R. J.

    2006-05-01

    Fluid inclusions containing halite daughter minerals are common in many silicic intrusive environments, including porphyry copper deposits. The inclusions may display three modes of homogenization during heating: A) halite dissolution (Tm halite) followed by liquid-vapor homogenization (Th L-V), B) simultaneous Th L-V and Tm halite, or C) Th L-V followed by Tm halite. Previous experimental studies of the H2O-NaCl system describe the vapor-saturated halite solubility curve and liquid-vapor curves, allowing researchers to interpret inclusions that homogenize via modes "A" and "B". However, PTX data describing the path for inclusions that homogenize via mode "C" are scarce, and have only been determined experimentally for a composition of 40 weight % NaCl. Therefore, the minimum trapping pressure at halite dissolution cannot be estimated with sufficient accuracy from measured Th L-V and Tm halite values. Because trapping pressure is directly related to depth of formation, the ability to interpret the trapping pressure conditions for inclusions that homogenize via mode "C" has implications for genetic models of porphyry copper formation and may affect exploration strategies in the search for new prospects. To better constrain formation conditions for inclusions that homogenize by halite dissolution, synthetic fluid inclusions were trapped under halite-saturated conditions at pressures of 0.5, 1.0, 2.0, and 3.0 kbar over a range of temperatures from 300 to 500°C. Microthermometric data obtained from these synthetic inclusions were used to develop a relationship between Th L-V and Tm halite which may be used to estimate the minimum trapping pressure of an inclusion that homogenizes via mode "C". Based on these results, trapping pressures for halite-bearing inclusions from several porphyry copper deposits were estimated using data from literature sources. The results indicate formation pressures which are not consistent with shallow crustal conditions for porphyry copper

  6. Use of abnormal and health psychology as topics in a classroom format to reduce alcohol and other drug abuse among college students at risk.

    PubMed

    Miley, W M

    2001-12-01

    This study was done to assess whether classes containing topics derived from two college courses, Abnormal Psychology and Health Psychology, could be used in a class room format to reduce alcohol and other drug abuse among at-risk college students. Topics covered included stress and stress management, alcohol and other drug use and abuse, chronic illnesses and psychological disorders that develop from an unhealthy lifestyle, and factors that play a role in good health and well-being. Students were enrolled in a semester-long course for college credit as an alternative to punitive sanctions for on-campus alcohol violations and other drug violations. The Midwest Institute on Drug Use Survey and the CORE Alcohol and Drug Survey were administered on the first and last days of class. Analysis indicated a significant self-reported reduction in drug use and associated negative symptoms and behavioral effects. Women were more likely to report reductions in drug use than men.

  7. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  8. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  9. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  10. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... Just like the skin, the fingernails tell a lot about your health: ... the fingernail. These lines can occur after illness, injury to ...

  11. A synthesis of the factors that contribute to pressure sore formation.

    PubMed

    Krouskop, T A

    1983-06-01

    Information about the etiology of pressure sores has been contradictory and is inconsistent with the idea that pressure sore formation is due extensively to depriving a tissue region of blood. Based on these observations and on studies done in the cooperating laboratories, an hypothesis has been formulated that integrates the published data and is consistent with clinical observations. The hypothesis states that a major contributing factor to pressure sores is tissue necrosis that is caused by cell to cell contact or accumulation of anaerobic metabolic waste products and that emotional stress is an independent variable that mediates how long a person can tolerate a set load on a soft tissue region without irreversible tissue damage.

  12. Polymorphism and Formation Mechanism of Nanobipods in Manganese Sulfide Nanocrystals Induced by Temperature or Pressure

    SciTech Connect

    Yang, Xinyi; Wang, Yingnan; Wang, Kai; Sui, Yongming; Zhang, Meiguang; Li, Bing; Ma, Yanming; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-03-15

    Manganese sulfide (MnS) nanocrystals (NCs) with three different phases were synthesized by one-pot solvent thermal approach. The crystal structures and morphologies were investigated using powder X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy. We found that the crystal structure and morphology of MnS NCs could be controlled by simply varying the reaction temperature. The detailed growth process of MnS nanobipods, including the zinc blende (ZB)-core formation and wurtzite (WZ)-arms growth, provides direct experimental evidence for the polymorphism model. Furthermore, we have studied the stability of metastable ZB- and WZ-MnS NCs under high pressure and found that ZB-nanoparticles and ZB/WZ-nanobipods are stable below their critical pressure, 5.3 and 2.9 GPa, respectively. When pressures exceed the critical point, all these metastable MnS NCs directly convert to the stable rock salt MnS.

  13. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress

    PubMed Central

    Müller, C. Catharina; Nguyen, Tam H.; Ahlemeyer, Barbara; Meshram, Mallika; Santrampurwala, Nishreen; Cao, Siyu; Sharp, Peter; Fietz, Pamela B.; Baumgart-Vogt, Eveline; Crane, Denis I.

    2011-01-01

    SUMMARY Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology. PMID:20959636

  14. Erythropoietin restores C-fiber function and prevents pressure ulcer formation in diabetic mice.

    PubMed

    Demiot, Claire; Sarrazy, Vincent; Javellaud, James; Gourloi, Loriane; Botelle, Laurent; Oudart, Nicole; Achard, Jean-Michel

    2011-11-01

    Pressure-induced vasodilatation (PIV), a cutaneous physiological neurovascular (C-fiber/endothelium) mechanism, is altered in diabetes and could possibly contribute to pressure ulcer development. We wanted to determine whether recombinant human erythropoietin (rhEPO), which has protective neurovascular effects, could prevent PIV alteration and pressure ulcer formation. We developed a skin pressure ulcer model in mice by applying two magnetic plates to the dorsal skin. This induced significant stage 2 ulcers (assessed visually and histologically) in streptozotocin-treated mice with 8 weeks of diabetes compared with very few in controls. Control and streptozotocin mice received either no treatment or systematic rhEPO (3,000 UI kg(-1) intraperitoneally, twice a week) during the last 2 weeks of diabetes. After 8 weeks of diabetes, we assessed ulcer development, PIV, endothelium-dependent vasodilation, C-fiber-mediated nociception threshold, and skin innervation density. Pretreatment with rhEPO fully prevented ulcer development in streptozotocin mice and also fully restored C-fiber nociception, skin innervation density, and significantly improved PIV, but had no effect on endothelium-dependent vasodilation. Our finding that rhEPO treatment protects the skin against pressure-induced ulcers in diabetic mice encourages evaluation of the therapeutic potential for non-hematopoietic analogs of EPO in preventing neuropathic diabetic ulcers.

  15. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  16. High Pressure Metal-Silicate Partitioning of Molybdenum and Constraints on Core Formation

    NASA Astrophysics Data System (ADS)

    Burkemper, L. K.; Agee, C. B.; Garcia, K. A.

    2011-12-01

    Over 12 new high pressure Mo metal-silicate partitioning experiments were performed in the pressure (P) and temperature (T) range of 3-8 GPa and 2173-2373 K. Parameterization of our data and literature data, limited to experiments with an Fe-rich metal phase and no light elements, produces a PT solution set that is compatible with the magma ocean hypothesis, and can be used to further constrain core formation models. The goal of these models is to reproduce the siderophile element abundances observed in Earth's mantle. The mantle is depleted in siderophile elements relative to chondrites as a result of their affinity for the metal phase during core formation. Metal-silicate partitioning experiments on the siderophile elements Ni and Co have provided valuable constraints on the PT conditions of core formation. Li and Agee (1996) showed that at 2273 K and pressures above 28 GPa, equilibrium core formation, such as in a magma ocean, can explain the observed mantle depletion of Ni and Co. Compared to Ni and Co, there is a paucity of data on the siderophile element Mo, especially at high pressure. Only 15 partitioning experiments have been performed at pressures above 1.5 GPa, which leads to large errors when the results are extrapolated to the higher pressure conditions of core formation. Consequentially, Mo has been left out of most core formation models such as those proposed by Rubie et al. (2011) and Wade and Wood (2005). Increasing the number of Mo partitioning data points will provide much needed additional constraints on core formation. All of our experiments were performed on a Walker-type multi-anvil press at the Institute of Meteoritics. Run products were analyzed by EPMA with a 20 μm broad beam. Crushable MgO capsules were used in all experiments. With this capsule material there is significant MgO infiltration into the silicate; however, MgO is already part of the system so it is more ideal than graphite capsules which impart a significant carbon component

  17. Pressure dependence of butyl nitrate formation in the reaction of butylperoxy radicals with nitrogen oxide.

    PubMed

    Butkovskaya, N I; Kukui, A; Le Bras, G; Rayez, M-T; Rayez, J-C

    2015-05-14

    The yield of 1- and 2-butyl nitrates in the gas-phase reactions of NO with n-C4H9O2 and sec-C4H9O2, obtained from the reaction of F atoms with n-butane in the presence of O2, was determined over the pressure range of 100-600 Torr at 298 K using a high-pressure turbulent flow reactor coupled with a chemical ionization quadrupole mass spectrometer. The yield of butyl nitrates was found to increase linearly with pressure from about 3% at 100 Torr to about 8% at 600 Torr. The results obtained are compared with the available data concerning nitrate formation from NO reaction with other small alkylperoxy radicals. These results are also discussed through the topology of the lowest potential energy surface mainly obtained from DFT(B3LYP/aug-cc-pVDZ) calculations of the RO2 + NO reaction paths. The formation of alkyl nitrates, due essentially to collision processes, is analyzed through a model that points out the pertinent physical parameters of this system. PMID:25380343

  18. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.

    PubMed

    McKee, Christopher F; Tan, Jonathan C

    2002-03-01

    Massive stars (with mass m* > 8 solar masses Mmiddle dot in circle) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically about 105yr. The corresponding mass accretion rate depends on the pressure within the cloud--which we relate to the gas surface density--and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from about 100M middle dot in circle protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.

  19. Annealing of nitrogen-doped ZnSe at high pressures: Toward suppression of native defect formation

    SciTech Connect

    Chen, A.L.; Walukiewicz, W.; Haller, E.E. |; Luo, H.; Karczewski, G.; Furdyna, J.

    1994-07-01

    Pressure is shown to have a drastic effect an the annealing characteristics of p-type, nitrogen-doped ZnSe. Samples annealed in vacuum show decreased carrier concentrations and simultaneous formation of deep-donor-related luminescence, while samples annealed under pressure show suppression of this compensating donor. Results are interpreted as an increase in the formation energy of the compensating deep donor under pressure. In addition the samples annealed under pressure show emergence of a new, intense, green luminescence band centered at 2.44 eV. The magnitude of the shift of this Peak under applied stress suggests that it results from a recombination involving a deep acceptor.

  20. Effects of pressure on the mechanisms of soot formation and oxidation in laminar diffusion flames

    NASA Astrophysics Data System (ADS)

    Kim, Chul Han

    Soot processes within flames fueled with hydrocarbons are important because they affect the durability and performance of propulsion systems, the danger associated with unwanted fires, the pollutant and particulate emissions of combustion processes, local and global environments and the potential for developing computational combustion. The objective of the current work was to improve understanding of the processes controlling soot formation in combustion systems over a broad range of pressure conditions. The flame and soot structure, including primary soot particle nucleation, soot particle surface growth and oxidation properties, of round laminar diffusion flames were studied experimentally at pressures of 0.1-8.0 atm. Acetylene-nitrogen mixtures were used at pressures from 0.1 to 1.0 atm (in air coflow). Ethylene-helium mixtures were used at pressures from 1.0 to 8.0 atm (in oxygen/helium coflow). Soot concentrations, soot temperatures, soot structure, concentrations of major stable gas species, concentrations of radical species (H, OH, O), and flow velocities were measured along the axis of each flame studied. The data were analyzed to determine local soot surface growth, oxidation and nucleation rates, as well as local flame properties that are thought to affect these rates. The measurements of soot surface growth rates were consistent with earlier measurements in laminar premixed and diffusion flames involving a variety of hydrocarbons at atmospheric pressure. In addition, the growth rates from all the available flames were in good agreement with each other and with existing hydrogen-abstraction/carbon-addition (HACA) soot surface growth mechanisms available in the literature. Measurements of soot surface oxidation rates were consistent with earlier measurements, and the oxidation rates from all available flame data could be explained by reaction with OH; supplemented to only a minor degree by direct soot surface oxidation by O2. A simplified method to

  1. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  2. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  3. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  4. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  5. Asteroid entry in Venusian atmosphere: Pressure and density fields effect on crater formation

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert

    1995-01-01

    The objectives are to look at time scales of overpressure compared to cratering and to determine: what are the transient pressure and density due to atmospheric entry; do shock waves evacuate ambient gas; do transient atmospheric disturbances 'settle down' during cratering; can the pressure/density field be approximated as quasi-static; how does disturbance scale with impactor size; and what is the role of atmospheric thickness. The general approach is to perform inexpensive exploratory calculations, perform experiments to validate code and observe crater growth, and to follow up with more realistic coupling calculations. This viewgraph presentation presents progress made with the objective to obtain useful scaling relationships for crater formation when atmospheric effects are important.

  6. Mixing unmixables: Unexpected formation of Li-Cs alloys at low pressure

    PubMed Central

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo; Tse, Justin J.

    2015-01-01

    Contrary to the empirical Miedema and Hume-Rothery rules and a recent theoretical prediction, we report experimental evidence on the formation of Li-Cs alloys at very low pressure (>0.1 GPa). We also succeeded in synthesizing a pure nonstoichiometric and ordered crystalline phase from an approximately equimolar mixture and resolved its structure using the maximum entropy method. The new alloy has a primitive cubic cell with the Li atom situated in the center and the Cs at the corners. This structure is stable to at least 10 GPa and has an anomalously high coefficient of thermal expansion at low pressure. Analysis of the valence charge density shows that electrons are donated from Cs to the Li “p”-orbitals, resulting in a rare formal oxidation state of −1 for Li. The observation indicates the diversity in the bonding of the seeming simple group I Li element. PMID:26601304

  7. Formation pressure data file - Palo Duro Basin, Texas and New Mexico: unanalyzed data

    SciTech Connect

    Not Available

    1984-05-01

    This is an unanalyzed computer listing of drill stem test data being reviewed by Stone and Webster Engineering Corporation (SWEC). This file contains well data from counties in and immediately surrounding the Palo Duro Basin of West Texas. These data files, compiled from Petroleum Information Services (PI) prior to October 1983, are one part of an extensive program to define the geology and geohydrology of the Palo Duro Basin. The computer listing supplies geologic, hydrologic, and formation pressure data obtained from the drill-stem tests. These data are preliminary. They have been neither analyzed nor evaluated.

  8. Equatorial disk formation around rotating stars due to ram pressure confinement by the stellar wind

    NASA Technical Reports Server (NTRS)

    Bjorkman, J. E.; Cassinelli, J. P.

    1993-01-01

    The axisymmetric 2D supersonic solution of a rotating, radiation-driven stellar wind presently obtained by a simple approximation predicts the formation of a dense equatorial disk, when the star's rotation rate lies above a threshold value that depends on the ratio of the wind's terminal speed to the escape speed of the star. The disk is formed because the trajectories of the wind leaving the stellar surface at high latitudes carry it down to the equatorial plane; there, the material passes through a standing oblique shock atop the disk; it is therefore the ram pressure of the polar wind that compresses and confines the disk.

  9. Self-regulating galaxy formation. Part 1: HII disk and Lyman alpha pressure

    NASA Technical Reports Server (NTRS)

    Cox, D. P.

    1983-01-01

    Assuming a simple but physically based prototype for behavior of interstellar material during formation of a disk galaxy, coupled with the lowest order description of infall, a scenario is developed for self-regulated disk galaxy formation. Radiation pressure, particularly that of Lyman depha (from fluorescence conversion Lyman continuum), is an essential component, maintaining an inflated disk and stopping infall when only a small fraction of the overall perturbation has joined the disk. The resulting galaxies consist of a two dimensional family whose typical scales and surface density are expressable in terms of fundamental constants. The model leads naturally to galaxies with a rich circumgalactic environment and flat rotation curves (but is weak in its analysis of the subsequent evolution of halo material).

  10. Subnanosecond processes in the stage of breakdown formation in gas at a high pressure

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Bykov, N. M.; Ivanov, S. N.

    2008-12-01

    Results are presented from experimental studies of the prebreakdown stage of a discharge in nitrogen at pressures of a few tens of atmospheres, gap voltages higher than 140 kV, and a voltage rise time of about 1 ns. Breakdown occurs at the front of the voltage pulse; i.e., the time of breakdown formation is shorter than the front duration. It is shown that, in gaps with a nonuniform electric field, the breakdown formation time is mainly determined by the time of avalanche development to the critical number of charge carriers. The subsequent stages of breakdown (the development of the ionization wave and the buildup of the conductivity in the weakly conducting channel bridging the gap) turn out to be shorter than this time or comparable to it.

  11. Periodic seepage face formation and water pressure distribution along a vertical boundary of an aquifer

    NASA Astrophysics Data System (ADS)

    Jazayeri Shoushtari, Seyed Mohammad Hossein; Nielsen, Peter; Cartwright, Nick; Perrochet, Pierre

    2015-04-01

    Detailed measurements of the piezometric head from sand flume experiments of an idealised coastal aquifer forced by a simple harmonic boundary condition across a vertical boundary are presented. The measurements focus on the pore pressures very close to the interface (x = 0.01m) and throw light on the details of the boundary condition, particularly with respect to meniscus suction and seepage face formation during the falling tide. Between the low and the mean water level, the response is consistent with meniscus suction free models in terms of both the vertical mean head and oscillation amplitude profiles and is consistent with the observation that this area of the interface was generally within the seepage face. Above the mean water level, the influence of meniscus formation is significant with the mean pressure head being less than that predicted by capillary free theory and oscillation amplitudes decaying faster than predicted by suction free models. The reduced hydraulic conductivity in this area due to partial drainage of pores on the falling tide also causes a delay in the response to the rising tide. The combined influence of seepage face formation, meniscus suction and reduced hydraulic conductivity generate higher harmonics with amplitudes of up to 26% of the local main harmonic. To model the influence of seepage face formation and meniscus suction a numerical solution of the Richards' equation was developed and evaluated against the data. The model-data comparison shows a good agreement with the behaviour high above the water table sensitive to the choice of moisture retention parameters.

  12. Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure

    NASA Astrophysics Data System (ADS)

    Henderson, Benjamin; Bekki, Kenji

    2016-05-01

    We show for the first time that H2 formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H2 components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H2 formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H2 density. We also find that the level of this H2 formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H2 mass in disk galaxies under strong RP. We discuss how the correlation between H2 fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H2 densities.

  13. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    PubMed

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M Kristi; Sowa, Gwendolyn A; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-06-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  14. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  15. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  16. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury

    PubMed Central

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M. Kristi; Sowa, Gwendolyn A.; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-01-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU. PMID:26111346

  17. Coke formation on HFAU and HEMT zeolites. Influence of the reaction temperature and propene pressure

    NASA Astrophysics Data System (ADS)

    Doka Nassionou, G. A.; Magnoux, P.; Guisnet, M.

    1999-02-01

    The formation of coke from propene (Pp = 1.3 kPa and 13 kPa) was investigated on HFAU and HEMT zeolites in a microbalance for temperatures ranging from 120 °C to 450 °C. For both zeolites, the greater the propene pressure and the lower the temperature the faster the initial coke formation. However for high propene pressure, initial coke formation is faster with HEMT zeolite. This can be related to the stronger acidity of the HEMT sample. For low propene pressure and after 420 minutes of coking, a minimum in coke is observed for T = 350 ^circC, which can be related to the difference between the rate of formation and the rate of retention of coke molecules. At low temperature, due to their low volatility, oligomers are easily formed and retained in the zeolite pores. These molecules can be totally eliminated by an adequate thermal treatment in vacuum. At higher temperature, only aromatic or polyaromatic compounds which present a size larger than the pore apertures can be retained in the cavities of the zeolites. The greater the reaction time, the faster the retention. Whatever the reaction temperature, coke molecules are more homogeneously distributed in the HEMT crystallites than in those of HFAU samples. For this latter zeolite coke molecules are preferentially formed in the cavities located near the outer surface of the crystallites (shell coking). La formation de coke à partir du propène (Pp = 1,3 et 13 kPa) a été étudiée en microbalance sur zéolithes HFAU et HEMT dans une gamme de température variant de 120 à 450°C. La vitesse initiale de formation de coke dépend de la pression du propène, de la température et également de la zéolithe. Ainsi, pour une forte pression en propène, la vitesse initiale de formation de coke est toujours plus importante sur HEMT que sur HFAU. Ceci est à relier à la plus grande acidité et à la présence de sites acides plus forts sur HEMT. Après 420 minutes de réaction, et pour une faible pression en propène le

  18. Shock Formation by Plasma Filaments of Microwave Discharge under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-03-01

    A one-dimensional compressible fluid calculation was coupled with a finite- difference time-domain code and a particle-in-cell code with collision to reproduce propagation of electromagnetic wave, ionization process of plasma, and shock wave formation in atmospheric microwave discharge. Plasma filaments are driven toward the microwave source at 1 atm, and the distance between each filament is one-fifth of the wavelength of the incident microwave. The strong shock wave is generated due to the high plasma density at the atmospheric pressure. A simple analysis of the microwave propagation into the plasma shows that cut-off density of the microwave becomes smaller with the pressure decrease in a collisional plasma. At the lower pressure, the smaller density plasma is obtained with a diffusive pattern because of the smaller cut-off density and the larger diffusion effect. In contrast with the 1-atm case, the weak shock wave is generated at a rarefied condition, which lowers performance of microwave thruster.

  19. Pressure-induced bonding and compound formation in xenon-hydrogen solids

    SciTech Connect

    Somayazulu, Maddury; Dera, Przemyslaw; Goncharov, Alexander F; Gramsch, Stephen A; Liermann, Peter; Yang, Wenge; Liu, Zhenxian; Mao, Ho-kwang; Hemley, Russell J

    2010-11-03

    Closed electron shell systems, such as hydrogen, nitrogen or group 18 elements, can form weakly bound stoichiometric compounds at high pressures. An understanding of the stability of these van der Waals compounds is lacking, as is information on the nature of their interatomic interactions. We describe the formation of a stable compound in the Xe-H{sub 2} binary system, revealed by a suite of X-ray diffraction and optical spectroscopy measurements. At 4.8 GPa, a unique hydrogen-rich structure forms that can be viewed as a tripled solid hydrogen lattice modulated by layers of xenon, consisting of xenon dimers. Varying the applied pressure tunes the Xe-Xe distances in the solid over a broad range from that of an expanded xenon lattice to the distances observed in metallic xenon at megabar pressures. Infrared and Raman spectra indicate a weakening of the intramolecular covalent bond as well as persistence of semiconducting behaviour in the compound to at least 255 GPa.

  20. The collaborative effect of ram pressure and merging on star formation and stripping fraction

    NASA Astrophysics Data System (ADS)

    Bischko, J. C.; Steinhauser, D.; Schindler, S.

    2015-04-01

    Aims: We investigate the effect of ram pressure stripping (RPS) on several simulations of merging pairs of gas-rich spiral galaxies. We are concerned with the changes in stripping efficiency and the time evolution of the star formation rate. Our goal is to provide an estimate of the combined effect of merging and RPS compared to the influence of the individual processes. Methods: We make use of the combined N-body/hydrodynamic code GADGET-2. The code features a threshold-based statistical recipe for star formation, as well as radiative cooling and modeling of galactic winds. In our simulations, we vary mass ratios between 1:4 and 1:8 in a binary merger. We sample different geometric configurations of the merging systems (edge-on and face-on mergers, different impact parameters). Furthermore, we vary the properties of the intracluster medium (ICM) in rough steps: the speed of the merging system relative to the ICM between 500 and 1000 km s-1, the ICM density between 10-29 and 10-27 g cm-3, and the ICM direction relative to the mergers' orbital plane. Ram pressure is kept constant within a simulation time period, as is the ICM temperature of 107 K. Each simulation in the ICM is compared to simulations of the merger in vacuum and the non-merging galaxies with acting ram pressure. Results: Averaged over the simulation time (1 Gyr) the merging pairs show a negligible 5% enhancement in SFR, when compared to single galaxies under the same environmental conditions. The SFRs peak at the time of the galaxies first fly-through. There, our simulations show SFRs of up to 20 M⊙ yr-1 (compared to 3 M⊙ yr-1 of the non-merging galaxies in vacuum). In the most extreme case, this constitutes a short-term (<50 Myr) SFR increase of 50 % over the non-merging galaxies experiencing ram pressure. The wake of merging galaxies in the ICM typically has a third to half the star mass seen in the non-merging galaxies and 5% to 10% less gas mass. The joint effect of RPS and merging, according

  1. Experimental constraints on formation of hematite in olivine at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Yanfei; Wang, Chao; Wu, Yao; Liu, Wenlong; Jin, Zhenmin

    2015-10-01

    Iron-rich oxides, such as magnetite or hematite, have been reported in olivine grains in many orogenic garnet peridotites from continental collision zones. Whether these iron-rich minerals originate from dry oxidation, dehydrogenation-oxidation or exsolution from a precursor wadsleyite phase is debatable. This paper explores high-pressure and high-temperature experiments in a hydrous harzburgite system, by taking advantage of electron backscattered diffraction (EBSD) analyses, to examine the formation of hematite in olivine. Experimental results show that hematite can be formed within olivine grains at pressures >6 GPa and temperatures in the 1073-1473 K range. EBSD analysis suggests that hematite rods (not associated with clinopyroxene) and host olivine have the following crystallographic relations: < 0001 rangle _{{Hem}} // [100]_{{Ol}} , < 10{-}10rangle _{{Hem}} //[001]_{{Ol}} , < 11{-}20rangle _{{Hem}} //[010]_{{Ol}} , which are consistent with those observed in natural garnet peridotite from the Dabie-Sulu ultra-high-pressure (UHP) metamorphic terrane. It is postulated that both hydroxide (OH-) and hydrogen (H+) ions have the potential to oxidize Fe2+ to Fe3+, followed by rapid dehydrogenation and slow Fe diffusion, thus forming hematite within the olivine grains. It is proposed that dehydrogenation-oxidation is the most likely formation mechanism of hematite inclusions within olivine, with the following two requirements: an ample amount of H2O and specific P- T conditions (>6 GPa, at 1073 K). Such conditions are consistent with those calculated in natural garnet peridotites from the Dabie-Sulu UHP metamorphic terranes. The present study also indicates that hematite (or magnetite?) inclusions in olivine contain important clues about the tectonic evolution of UHP rocks in continental crust collision zones.

  2. Superior vena caval pressure elevation causes pleural effusion formation in sheep.

    PubMed

    Allen, S J; Laine, G A; Drake, R E; Gabel, J C

    1988-09-01

    The effect of superior vena caval pressure (SVCP) elevation on the formation of pleural effusions (PE) was studied in sheep. Through a right thoracotomy, a Silastic cuff was placed around the superior vena cava. Catheters for monitoring SVCP and pulmonary artery pressure (PAP) were also placed. After a 1- to 3-wk recovery period, we measured the SVCP, PAP, cardiac output, and plasma protein concentration (Cp). We then elevated the SVCP to various levels from base line [5.3 +/- 2.6 (SD) mmHg] to 33 mmHg. The cardiac output, PAP, and Cp were remeasured 1-2 h and 24 h after SVCP elevation. At the end of the 24-h period, the animals were killed. The PE volume and pleural fluid protein concentration (Cpl) were measured, and the Cpl/Cp was calculated. PE generally did not occur until the SVCP was elevated above 15 mmHg. To study the effect of the thoracotomy on the subsequent pleural effusion, we studied six additional sheep in which we did not perform a thoracotomy. In these animals, the SVCP was elevated to between 5 and 28 mmHg for 24 h by use of a 16-Fr balloon catheter placed via a left external jugular vein and a right carotid-external jugular shunt. We found that the PE volume, for a given SVCP elevation, was similar to that present in sheep that received a thoracotomy. For all sheep the volume of PE was related to SVCP by the equation PE (ml) = 0.24e0.26SVCP, r = 0.85. In the sheep without a thoracotomy, Cpl/Cp rose with increasing volume of PE. Our data demonstrate that elevation of SVCP greater than 15 mmHg for 24 h results in the formation of PE. The rise in Cpl/Cp with PE volume suggests that filtration through the pleural vessels is not the major contributor to PE formation. PMID:3414816

  3. The relationship between red blood cell distribution width and blood pressure abnormal dipping in patients with essential hypertension: a cross-sectional study

    PubMed Central

    Su, Dan; Guo, Qi; Gao, Ya; Han, Jin; Yan, Bin; Peng, Liyuan; Song, Anqi; Zhou, Fuling; Wang, Gang

    2016-01-01

    Objective To investigate whether red blood cell distribution width (RDW) is associated with the blood pressure (BP) reverse-dipper pattern in patients with hypertension. Design Cross-sectional study. Setting Single centre. Participants Patients with essential hypertension were included in our study (n=708). The exclusion criteria included age <18 or >90 years, incomplete clinical data, night workers, diagnosis of secondary hypertension, under antihypertensive treatment, intolerance for the 24 h ambulatory BP monitoring (ABPM) and BP reading success rate <70%. Measurement Physical examination and ABPM were performed for all patients in our study. The value of RDW was measured using an automated haematology analyser. Statistical methods The distribution of RDW in patients with hypertension among different circadian BP pattern groups was analyzed using analysis of variance (ANOVA). Multinomial logistic regression was applied to explore the associations of RDW and other relevant variables with ABPM results. Results There was significantly increased RDW in reverse dippers (13.52±1.05) than dippers (13.25±0.85) of hypertension (p=0.012). Moreover, multinomial logistic regression analysis showed that RDW (OR 1.325, 95% CI 1.037 to 1.692, p=0.024) and diabetes mellitus (OR 2.286, 95% CI 1.380 to 3.788, p=0.001) were significantly different when comparing the reverse-dipper BP pattern with the dipper pattern. However, there was no difference of RDW between the non-dipper pattern and the reverse-dipper pattern (OR 1.036, 95% CI 0.867 to 1.238, p=0.693). In addition to this, RDW was negatively correlated with the decline rate of nocturnal systolic BP (r=−0.113; p=0.003) and diastolic BP (r=−0.101; p=0.007). Conclusions Our results suggested that RDW might associate with the abnormal dipper BP patterns of either reverse dipping or non-dipping homogeneously examined with 24 h ABPM. PMID:26908530

  4. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  5. THE RELATION OF EXERCISE TO BUBBLE FORMATION IN ANIMALS DECOMPRESSED TO SEA LEVEL FROM HIGH BAROMETRIC PRESSURES.

    PubMed

    Harris, M; Berg, W E; Whitaker, D M; Twitty, V C

    1945-01-20

    1. Bullfrogs (Rana catesbiana) and rats have been subjected to high barometric pressures and studied for bubble formation on subsequent decompression to sea level. Pressures varying from 3 to 60 pounds per square inch, in excess of atmospheric pressure, were used. 2. Muscular activity after decompression is necessary for bubble formation in bullfrogs after pressure treatment throughout the above range. Anesthetized frogs remained bubble-free following decompression. Rats compressed at 15 to 45 pounds per square inch likewise did not contain bubbles unless exercised on return to sea level. 3. Bubbles form without voluntary muscular activity in anesthetized rats previously subjected to pressure of 60 pounds per square inch. Small movements involved in breathing and other vital activities are believed sufficient to initiate bubbles in the presence of very high supersaturations of N(2). 4. Bubbles appear (with exercise) in rats previously compressed at 15 pounds per square inch, and in bullfrogs subjected to pressure at levels as low as 3 pounds per square inch above atmospheric pressure. The percentage drop in pressure necessary for bubble formation is less in compressed animals than in those decompressed from sea level to simulated altitudes. 5. The action of exercise on bubble formation in compressed frogs and rats is attributed to mechanical factors associated with muscular activity, combined with the high supersaturation of N(2). CO(2) probably is not greatly involved, since its concentration does not reach supersatuation, as it does at high altitude. 6. Anoxia following decompression from high barometric pressures has no observable facilitating effect on bubble formation.

  6. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels

    SciTech Connect

    Christopher J. Pope; James A. Miller

    2000-12-13

    A modeling study of benzene and phenyl radical formation is performed for three low-pressure premixed laminar flat flames having an unsaturated C{sub 2} or C{sub 3} hydrocarbon fuel (acetylene, ethylene, and propene). Predictions using three published detailed elementary-step chemical kinetics mechanisms are tested against MBMS species profile data for all three flames. The differences between the three mechanisms predictive capabilities are explored, with an emphasis on benzene formation pathways. A new chemical kinetics mechanism is created combining features of all three published mechanisms. Included in the mechanism are several novel benzene formation reactions involving combinations of radicals such as C{sub 2}H+C{sub 4}H{sub 5}, and C{sub 5}H{sub 3}+CH{sub 3}. Reactions forming fulvene (a benzene isomer) are included, such as C{sub 3}H{sub 3}+C{sub 3}H{sub 5},as well as fulvene-to-benzene reactions. Predictions using the new mechanism show virtually all of the benzene and phenyl radical to be formed by reactions of either C{sub 3}H{sub 3}+C{sub 3}H{sub 3} or C{sub 3}H{sub 3}+C{sub 3}H{sub 5}, with the relative importance being strongly dependent upon the fuel. C{sub 5}H{sub 3}+CH{sub 3} plays a minor role in fulvene formation in the acetylene flame. The C{sub 2}H{sub x}+C{sub 4}H{sub 4} reactions do not contribute noticeably to benzene or phenyl radical formation in these flames, sometimes being a major decomposition channel for either fulvene or phenyl radical. The formation pathways for C{sub 3}H{sub 3} and C{sub 3}H{sub 5}are delineated for the three flames; while the key reactions differ from flame to flame, CH{sub 2}+C{sub 2}H{sub 2} {Longleftrightarrow} C{sub 3}H{sub 3}+H is important for all three flames.

  7. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  8. High pressure constraints core formation from x-ray nanoscale tomography

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Mao, W. L.; Zhang, L.; Yang, W.; Wang, J.; Liu, Y.; Meng, Y.; Hayter, J. A.

    2011-12-01

    Core-formation represents the most significant differentiation event in Earth's history. Percolation of liquid iron-rich alloy through a crystalline silicate matrix has been suggested as a possible core formation mechanism, especially for the differentiation of planetesimals during the early history of our solar system, since radioactive decay of short-lived isotopes in the small accreting bodies cannot provide enough heat to form extensive melting (i.e. magma ocean). Previous experimental results looking at dihedral angles in silicate metal samples synthetized at elevated pressures and temperatures suggest that percolation is unlikely to be an efficient mechanism in our planet. However, experimental conditions in previous work have been limited in upper mantle conditions (<30GPa). Moreover the measurement of dihedral angles using transmission electron microscopy or backscattered electron microscopy may not generate satisfactory statistics. Nanoscale x-ray computed tomography (nanoXCT) has exciting potential as an accurate probe to study the 3D connectivity and permeability of core forming melts in crystalline silicates. Using a laser-heated diamond anvil cell, experimental conditions over the entire pressure-temperature range in the lower mantle can be accessed. In this study, we compressed and heated the mixture of iron-rich alloy + orthopyroxene, and then used a focused ion beam (FIB) to mill the quenched samples to extract a portion for nano-XCT. Pilot studies from our group using 3D nano XCT have demonstrated the ability to image the detailed morphology of the iron-alloy and silicates, along with details of Fe-FeS eutectic intergrowth patterns, which help to distinguish the relative Fe content in Fe and FeS. Data resulting from the combination of these techniques could improve our understanding of planetary core-forming processes.

  9. Detection of carbon dioxide leakage during injection in deep saline formations by pressure tomography

    NASA Astrophysics Data System (ADS)

    Hu, Linwei; Bayer, Peter; Brauchler, Ralf

    2016-07-01

    CO2 injected into storage formations may escape to the overlying permeable layers. Mixed-phase diffusivity, namely the ratio of hydraulic conductivity and specific storage of the phase mixture, declines with increasing CO2 saturation. Thus, it can be an indicator of CO2 leakage. In this study, we perform interference brine or CO2 injection tests in a synthetic model, including a storage reservoir, an above aquifer, and a caprock. Pressure transients derived from an observation well are utilized for a travel-time based inversion technique. Variations of diffusivity are resolved by inverting early travel time diagnostics, providing an insight of plume development. Results demonstrate that the evolution of CO2 leakage in the above aquifer can be inferred by interpreting and comparing the pressure observations, travel times, and diffusivity tomograms from different times. The extent of the plume in reservoir and upper aquifer are reconstructed by clustering the time-lapse data sets of the mixed-phase diffusivity, as the diffusivity cannot be exactly reproduced by the inversion. Furthermore, this approach can be used to address different leaky cases, especially for leakage occurring during the injection.

  10. Bent chert tubes in the Phosphoria Formation of Wyoming: Pressure solution strain markers

    SciTech Connect

    Scotford, D.M.; Knecht, M.D. )

    1990-09-01

    Tubular chert in the Phosphoria Formation in the Gros Ventre Mountains of Wyoming appears to have been deformed by pressure solution during the flexural-slip folding of the Gros Ventre uplift. We suggest that these chert tubes can be used as strain markers. The tubes are 0.4 to 1.2 m in length and 5 to 12 cm in diameter, and are bent where they occur in two concentrated zones which parallel bedding. The orientation of the bent chert tubes is regionally consistent. The tubes plunge to the northeast in the direction of bedding-plane dip at an angle greater than dip. This is the orientation that would be produced by shear parallel to bedding on the northeast limb of the northwest-trending Gros Ventre anticline. Pressure solution is indicated by the truncation of concentric bands by the walls of the tubes observed in cross sections. The tubes are not bend by soft-sediment deformation or the action of paleocurrents. A value of maximum shear strain of {gamma} {approximately} 1.5 and a maximum volume loss of 46% is obtained by treating the zones of bent chert tubes as shear zones.

  11. An experimental study of the formation of pressure shadows in partially molten rocks

    NASA Astrophysics Data System (ADS)

    Qi, C.; Kohlstedt, D. L.

    2011-12-01

    Deformation of a two-phase, solid-melt rock containing rigid particles results in the formation of pressure shadows as melt flows from regions in relative compression to those in relative tension coupled with a counter flux of solid. To investigate this compaction-decompaction process, samples fabricated from fine-grained San Carlos olivine plus 10 vol % mid-ocean ridge basalt (MORB) containing dispersed sub-millimeter-sized beads of single crystals of San Carlos olivine were deformed in torsion at a temperature of 1200°C and a confining pressure of 300 MPa in a gas-medium apparatus. Samples were sheared to a strain of γ ≈ 10 at a constant shear strain rate of 10-4 s-1 at the outer radius with a corresponding shear stress of ~100 MPa. Maps of the melt distribution around the olivine beads obtain by reflected-light optical microscopy demonstrated that pressure shadows became observable around the beads at a strain of γ ≈ 1. Crystallographic preferred orientations (CPOs) generated from electron backscattered diffraction (EBSD) analyses of the olivine grains revealed that [100] and [001] axes form girdles approximately parallel to shear plane, and [010] axes form point maxima approximately perpendicular to shear plane. The changes in the directions of (010) planes around the beads indicated changes in stress field caused by the existence of the beads. Alignment of melt pockets also constrains the local orientation of the stress field by orienting ~20° to the shear plane, antithetic to the shear direction. One goal of these experiments is to obtain the relative value of the bulk viscosity to the shear viscosity based on the two phase flow analysis of McKenzie and Holness (2000).

  12. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  13. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  14. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect

    Joo, Hyun I.; Guelder, Oemer L.

    2010-06-15

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  15. DIRECT STELLAR RADIATION PRESSURE AT THE DUST SUBLIMATION FRONT IN MASSIVE STAR FORMATION: EFFECTS OF A DUST-FREE DISK

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2011-10-01

    In massive star formation ({approx}> 40 M{sub sun}) by core accretion, the direct stellar radiation pressure acting on the dust particles exceeds the gravitational force and interferes with mass accretion at the dust sublimation front, the first absorption site. Ram pressure generated by high accretion rates of 10{sup -3} M{sub sun} yr{sup -1} is thought to be required to overcome the direct stellar radiation pressure. We investigate the direct stellar irradiation on the dust sublimation front, including the inner accretion disk structure. We show that the ram pressure of the accretion disk is lower than the stellar radiation pressure at the dust sublimation front. Thus, another mechanism must overcome the direct stellar radiation pressure. We suggest that the inner hot dust-free region is optically thick, shielding the dust sublimation front from direct stellar irradiation. Thus, accretion would not halt at the dust sublimation front, even at lower accretion rates.

  16. Thickness of mouthguard sheets after vacuum-pressure formation: influence of mouthguard sheet material.

    PubMed

    Takahashi, Mutsumi; Koide, Kaoru; Iwasaki, Shin-Ichi

    2016-06-01

    The aim of this study was to investigate the thickness of mouthguard sheet after vacuum-pressure formation based on the mouthguard sheet material. Three mouthguard sheet materials (4.0 mm thick) were compared: ethylene-vinyl acetate co-polymer (EVA), olefin co-polymer (OL), and polyolefin-polystyrene co-polymer (OS). The working model was made by hard gypsum that was trimmed to the height of 20 mm at the cutting edge of the maxillary central incisor and 15 mm at the mesiobuccal cusp of the maxillary first molar. Where the center of the softened sheet sagged 15 mm lower than the clamp, the sheet was pressed against the working model, followed by vacuum forming for 10 s and compression molding for 2 min. The thickness of mouthguard sheets after fabrication was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface), and dimensional measurements were obtained using a measuring device. Differences in the change in thickness due to sheet materials were analyzed by one-way analysis of variance (anova) followed by Bonferroni's multiple comparison tests. The OL sheet was thickest at all measurement points. At the incisal edge and cusp, thickness after formation was highest for OL, then EVA and finally OS. At the labial surface and buccal surface, the thickness after formation was highest for OL, then OS and finally EVA. This study suggested that post-fabrication mouthguard thickness differed according to sheet material, with the olefin co-polymer sheet having the smallest thickness reduction.

  17. Formation of green-blue compounds in Brassica rapa root by high pressure processing and subsequent storage.

    PubMed

    Ueno, Shigeaki; Hayashi, Mayumi; Shigematsu, Toru; Fujii, Tomoyuki

    2009-04-23

    The effect of high pressure treatment on biochemical changes during storage was investigated using Brassica rapa root. High pressure treated samples with 400 and 600 MPa formed unique green-blue color during 7-d storage at 4 degrees C. The mechanism of green-blue compound formation would be based on biochemical pathway for a unique green-blue pigment synthesis, containing O2-dependent steps and possibly enzymatic reactions.

  18. Implications for Core Formation of the Earth from High Pressure-Temperature Au Partitioning Experiments

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Sharp, T. G.; Hervig, R. L.

    2005-01-01

    Siderophile elements in the Earth.s mantle are depleted relative to chondrites. This is most pronounced for the highly siderophile elements (HSEs), which are approximately 400x lower than chondrites. Also remarkable is the relative chondritic abundances of the HSEs. This signature has been interpreted as representing their sequestration into an iron-rich core during the separation of metal from silicate liquids early in the Earth's history, followed by a late addition of chondritic material. Alternative efforts to explain this trace element signature have centered on element partitioning experiments at varying pressures, temperatures, and compositions (P-T-X). However, first results from experiments conducted at 1 bar did not match the observed mantle abundances, which motivated the model described above, a "late veneer" of chondritic material deposited on the earth and mixed into the upper mantle. Alternatively, the mantle trace element signature could be the result of equilibrium partitioning between metal and silicate in the deep mantle, under P-T-X conditions which are not yet completely identified. An earlier model determined that equilibrium between metal and silicate liquids could occur at a depth of approximately 700 km, 27(plus or minus 6) GPa and approximately 2000 (plus or minus 200) C, based on an extrapolation of partitioning data for a variety of moderately siderophile elements obtained at lower pressures and temperatures. Based on Ni-Co partitioning, the magma ocean may have been as deep as 1450 km. At present, only a small range of possible P-T-X trace element partitioning conditions has been explored, necessitating large extrapolations from experimental to mantle conditions for tests of equilibrium models. Our primary objective was to reduce or remove the additional uncertainty introduced by extrapolation by testing the equilibrium core formation hypothesis at P-T-X conditions appropriate to the mantle.

  19. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  20. The anatomy of a star-forming galaxy: pressure-driven regulation of star formation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Benincasa, S. M.; Wadsley, J.; Couchman, H. M. P.; Keller, B. W.

    2016-11-01

    We explore the regulation of star formation in star-forming galaxies through a suite of high-resolution isolated galaxy simulations. We use the smoothed particle hydrodynamics code GASOLINE, including photoelectric heating and metal cooling, which produces a multi-phase interstellar medium (ISM). We show that representative star formation and feedback sub-grid models naturally lead to a weak, sub-linear dependence between the amount of star formation and changes to star formation parameters. We incorporate these sub-grid models into an equilibrium pressure-driven regulation framework. We show that the sub-linear scaling arises as a consequence of the non-linear relationship between scaleheight and the effective pressure generated by stellar feedback. Thus, simulated star formation regulation is sensitive to how well vertical structure in the ISM is resolved. Full galaxy discs experience density waves which drive locally time-dependent star formation. We develop a simple time-dependent, pressure-driven model that reproduces the response extremely well.

  1. Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure

    PubMed Central

    Wisløff, Ulrik; Brubakk, Alf O

    2001-01-01

    The formation of bubbles is the basis for injury to divers after decompression, a condition known as decompression illness. In the present study we investigated the effect of endurance training in the rat on decompression-induced bubble formation. A total of 52 adult female Sprague-Dawley rats (300-370 g) were randomly assigned to one of two experimental groups: training or sedentary control. Trained rats exercised on a treadmill for 1.5 h per day for 1 day, or for 2 or 6 weeks (5 days per week) at exercise intervals that alternated between 8 min at 85-90 % of maximal oxygen uptake (V̇O2,max) and 2 min at 50-60 % of V̇O2,max. Rats were compressed (simulated dive) in a decompression chamber in pairs, one sedentary and one trained, at a rate of 200 kPa min−1 to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the ‘surface’ (100 kPa) at a rate of 50 kPa min−1. Immediately after reaching the ‘surface’ (100 kPa) the animals were anaesthetized and the right ventricle was insonated using Doppler ultrasound. Intensity-controlled interval training significantly increased V̇O2,max by 12 and 60 % after 2 and 6 weeks, respectively. At 6 weeks, left and right ventricular weights were 14 and 17 % higher, respectively, in trained compared to control rats. No effect of training was observed on skeletal muscle weight. Bubble formation was significantly reduced in trained rats after both 2 and 6 weeks. However, the same effect was seen after a single bout of aerobic exercise lasting 1.5 h on the day prior to decompression. All of the rats that exercised for 1.5 h and 2 weeks, and most of those that trained for 6 weeks, survived the protocol, whereas most sedentary rats died within 60 min post-decompression. This study shows that aerobic exercise protects rats from severe decompression and death. This may be a result of less bubbling in the trained animals. The data showed that the

  2. Room-temperature formation of low refractive index silicon oxide films using atmospheric-pressure plasma.

    PubMed

    Nakamura, Kei; Yamaguchi, Yoshihito; Yokoyama, Keiji; Higashida, Kosuke; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2011-04-01

    This study aims to apply atmospheric-pressure (AP) plasma to the fabrication of single-layer anti-reflection (AR) coatings with porous silicon oxide. 150 MHz very high-frequency (VHF) excitation of AP plasma permits to enhance the chemical reactions both in the gas phase and on the film-growing surface, increasing deposition rate significantly. Silicon oxide films were prepared from silane (SiH4) and carbon dioxide (CO2) dual sources diluted with helium. The microstructure and refractive index of the films were studied using infrared absorption and ellipsometry as a function of VHF power density. It was shown that significant increase in deposition rate at room temperature prevented the formation of a dense SiO2 network, decreasing refractive index of the resulting film effectively. As a result, a porous silicon oxide film, which had the lowest refractive index of 1.24 at 632.8 nm, was obtained with a very high deposition rate of 235 nm/s. The reflectance and transmittance spectra showed that the low refractive index film functioned as a quarter-wave AR coating of a glass plate.

  3. Isomekes: A fundamental tool to determine the formation pressure for diamond-inclusion pairs

    NASA Astrophysics Data System (ADS)

    Alvaro, Matteo; Angel, Ross; Mazzucchelli, Mattia; Nestola, Fabrizio; Domeneghetti, Chiara

    2014-05-01

    Because diamond is almost chemically pure carbon and extremely chemically inert, the structure and chemistry of diamond reveals very little about its conditions of formation. Much of what is believed about the genesis and distribution of diamond in the Earth's mantle has therefore been deduced indirectly from the characterisation of its mineral inclusions. The possible depths of entrapment of an inclusion within a host phase (and hence the depth of growth of the host diamond) can be determined if (1) the final pressure of the inclusion can be measured, (2) the Equations of State (EoS) of the host and inclusion phases are known, and (3) the elastic interaction between the host and inclusion can be calculated without gross assumptions. Given knowledge of all three, an isomeke line in P-T space (from the Greek "equal" and "length", Adams et al. 1975) can be calculated. The isomeke defines the conditions at which the host and inclusion would have had the same P, T and volume, and thus represents possible entrapment conditions. The recent application (Nestola et al. 2011; Howell et al. 2012) of in-situ diffraction techniques to the measurement of entrapped inclusions provides accurate final inclusion pressures. We have reformulated the elasticity problem so that, unlike previous work, these calculations can be performed with any form of equation of state and thermal expansion, and are not restricted to linear elasticity or just invertible EoS. This alone has significant advantages in the precision of the calculated depths of formation. Numerical calculations have been performed with a new module of EoS routines (Angel et al. 2014) that has been added to the publicly-available CrysFML library. The question remains as to what uncertainties in calculated depths of formation arise from uncertainties in experimentally-determined EoS. We will present two geologically-relevant examples, for olivine and garnet in diamond. Our calculations show that there is still a clear need

  4. Diagenesis, compaction, and fluid chemistry modeling of a sandstone near a pressure seal: Lower Tuscaloosa Formation, Gulf Coast

    USGS Publications Warehouse

    Weedman, S.D.; Brantley, S.L.; Shiraki, R.; Poulson, S.R.

    1996-01-01

    Petrographic, isotopic, and fluid-inclusion evidence from normally and overpressured sandstones of the lower Tuscaloosa Formation (Upper Cretaceous) in the Gulf Coast documents quartz-overgrowth precipitation at 90??C or less, calcite cement precipitation at approximately 100?? and 135??C, and prismatic quartz cement precipitation at about 125??C. Textural evidence suggests that carbonate cement dissolution occurred before the second phases of calcite and quartz precipitation, and was followed by precipitation of grain-rimming chlorite and pore-filling kaolinite. Geochemical calculations demonstrate that present-day lower Tuscaloosa Formation water from 5500 m depth could either dissolve or precipitate calcite cements in model simulations of upward water flow. Calcite dissolution or precipitation depends on PCO2 variability with depth (i.e., whether there is one or two-phase flow) or on the rate of generation of CO2 with depth. Calculations suggest that 105-106 rock volumes of water are required to flow through the section to precipitate 1-10% calcite cement. Compaction analysis suggests that late-stage compaction occurred in normally pressured sandstones after dissolution of carbonate cements, but was hindered in overpressured sandstones despite the presence of high porosity. These results document the inhibition of compaction by overpressured fluids and constrain the timing of pressure seal formation. Modeling results demonstrate that the proposed paragenesis used to constrain timing of pressure seal formation is feasible, and that most of the cement diagenesis occurred before the pressure seal became effective as a permeability barrier.

  5. Formation Process of High-Pressure Silica Polymorphs in Lunar Meteorites of the NWA 773 Clan

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Tomioka, N.; Seto, Y.; Ohtani, E.; Nagaoka, H.; Fagan, T. J.; Ozawa, S.; Sekine, T.; Miyahara, M.; Miyake, A.; Tomeoka, K.

    2016-08-01

    Recent studies of lunar samples discovered high-pressure phases of silica in Asuka-881757, NWA 4734 and Apollo 15299. Here, we first discovered high-pressure silica from lunar meteorite NWA 773 clan, constraining the shock-pressure and temperature.

  6. The significance of stylolitization and intergranular pressure solution in the formation of pressure compartment seals in the St. Peter Sandstone, Ordovician, Michigan basin

    SciTech Connect

    Drzewiecki, P.A.; Simo, T.; Moline, G.; Bahr, J.M.; Nadon, G.; Shepherd, L.; Vandrey, M.R. )

    1991-03-01

    The Middle to Late Ordovician St. Peter Sandstone of the Michigan basin is a fine- to medium-grained quartz sandstone. Extensive stylolitization and intergranular pressure solution have been major factors in reducing the porosity of certain horizons within the St. Peter, resulting in pressure compartmentation of the reservoir. Pressure versus depth data for various Michigan basin wells indicate that the basin contains compartments that are overpressured by as much as 500 psi. Horizons bounding these compartments are often affected by intense stylolitization (or intergranular pressure solution) and quartz cementation and have been correlated with zones of low porosity and permeability ({phi} = 0-3%, k = <50 {mu}d). These tight zones can be correlated within single gas fields, and some may extend across the Michigan basin. The St. Peter Sandstone has been buried to depths of about 3,500 m in the central part of the basin and 1,500 m at the margins. Intensely stylolitized zones are found at all depths throughout the basin and do not appear to change in abundance or style with depths. Factors that influence the formation, morphology, and abundance of stylolites in the St. Peter include (1) clay intraclasts, (2) intergranular clay, and (3) fine-grained, feldspar-rich sand. Stylolites also occur at contacts between quartz-cemented and carbonate-cemented zones and within well-cemented sands. Intergranular pressure solution and stylolites may be responsible for the formation of a compartment seal. Understanding their genesis can allow prediction of variations in porosity in Michigan basin well cores.

  7. Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation

    SciTech Connect

    Desgroux, P.; Mercier, X.; Lefort, B.; Lemaire, R.; Therssen, E.; Pauwels, J.F.

    2008-10-15

    Soot volume fraction (f{sub v}) profiles are recorded in low-pressure methane/oxygen/nitrogen flat flames using laser-induced incandescence (LII). Experiments are performed from 20 to 28 kPa in flames having the same equivalence ratio (2.32). Calibration is performed by cavity ring-down spectroscopy (CRDS) and indicates a very weak soot volume fraction (0.066 ppb at 21.33 kPa and 0.8 ppb at 26.66 kPa in the burnt gases). Soot volume fraction is found to increase continuously after a given distance above the burner (HAB) and tends to level off in the burnt gases. The reaction time resolution available in low-pressure flames makes it possible to examine the early steps of soot formation. The variation of the LII signal with laser energy before the LII ''plateau'' region is much weaker at the beginning of soot formation than after a given reaction time. The LII time decays are nearly constant within the first millimetres, whereas an increase in the decay, correlated with the growth of the primary soot particle, is observed later. The growth of soot volume fraction is then analysed by considering the variation of the derivative function df{sub v}/dt with f{sub v}. Three regimes having respectively a positive slope, a constant slope, and a negative slope are observed and are interpreted with respect to the soot inception process. Finally, a very important sensitivity of f{sub v} with pressure P (at 30 mm HAB) is observed, leading to a power law, f{sub v}=KP{sup 11}, confirmed by extinction measurements (by CRDS). The observed dependence of f{sub v} with pressure could be a result of the prominence of the early soot inception process in the investigated low-pressure flames. (author)

  8. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  9. High positive end-expiratory pressure: only a dam against oedema formation?

    PubMed Central

    2013-01-01

    Introduction Healthy piglets ventilated with no positive end-expiratory pressure (PEEP) and with tidal volume (VT) close to inspiratory capacity (IC) develop fatal pulmonary oedema within 36 h. In contrast, those ventilated with high PEEP and low VT, resulting in the same volume of gas inflated (close to IC), do not. If the real threat to the blood-gas barrier is lung overinflation, then a similar damage will occur with the two settings. If PEEP only hydrostatically counteracts fluid filtration, then its removal will lead to oedema formation, thus revealing the deleterious effects of overinflation. Methods Following baseline lung computed tomography (CT), five healthy piglets were ventilated with high PEEP (volume of gas around 75% of IC) and low VT (25% of IC) for 36 h. PEEP was then suddenly zeroed and low VT was maintained for 18 h. Oedema was diagnosed if final lung weight (measured on a balance following autopsy) exceeded the initial one (CT). Results Animals were ventilated with PEEP 18 ± 1 cmH2O (volume of gas 875 ± 178 ml, 89 ± 7% of IC) and VT 213 ± 10 ml (22 ± 5% of IC) for the first 36 h, and with no PEEP and VT 213 ± 10 ml for the last 18 h. On average, final lung weight was not higher, and actually it was even lower, than the initial one (284 ± 62 vs. 347 ± 36 g; P = 0.01). Conclusions High PEEP (and low VT) do not merely impede fluid extravasation but rather preserve the integrity of the blood-gas barrier in healthy lungs. PMID:23844622

  10. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  11. In situ characterization of formation and growth of high-pressure phases in single-crystal silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2016-04-01

    Pressure-induced intermediate phases of silicon exhibit unique characteristics in mechanics, chemistry, optics, and electrics. Clarifying the formation and growth processes of these new phases is essential for the preparation and application of them. For in situ characterization of the formation and growth of high-pressure phases in single-crystal silicon, a quantitative parameter, namely displacement change of indenter (Δ h) during the unloading holding process in nanoindentation, was proposed. Nanoindentation experiments under various unloading holding loads and loading/unloading rates were performed to investigate their effects on Δ h. Results indicate that Δ h varies significantly before and after the occurrence of pop-out; for the same maximum indentation load, it tends to increase with the decrease in the holding load and to increase with the increase in the loading/unloading rate. Thus, the value of Δ h can be regarded as an indicator that reflects the formation and growth processes of the high-pressure phases. Using Δ h, the initial position for the nucleation of the high-pressure phases, their growth, and their correlation to the loading/unloading rate were predictable.

  12. Influence of the Gas Pressure on Single-wall Carbon Nanotubes Formation

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; Scott, C. D.

    2005-01-01

    Experiments and modeling have been performed to predict the effect of gas pressure on species distribution and nanotube growth rate under specific conditions of synthesis of singlewall carbon nanotubes (SWCNTs) by arc discharge. Numerical results were compared with experiments in order to find a consistent correlation between the nanotube growth and the pressure. We used argon and helium as buffer gases with a total pressure varied between 0.1 and 1 bar. We experimentally observed that both the anode erosion rate and the Brunauer-Emmett-Teller (BET) surface area of the as produced nanotube soot material are very sensitive to the total gas pressure in the reactor

  13. Pressure dependence of NO formation in laminar fuel-rich premixed CH{sub 4}/air flames

    SciTech Connect

    van Essen, V.M.; Sepman, A.V.; Mokhov, A.V.; Levinsky, H.B.

    2008-05-15

    Effects of pressure on NO formation in CH{sub 4}/air flames at a fixed equivalence ratio of 1.3 are investigated. The axial profiles of temperature, OH, CH, and NO mole fractions are measured using laser-induced fluorescence and compared with one-dimensional flame calculations. The measured and calculated temperature, CH, and NO profiles in free flames are observed to vary upon increasing the pressure from 40 to 75 Torr, following a scaling law derived for a chemical mechanism containing only second-order reactions. At pressures 300-760 Torr, the measurements and calculations in burner-stabilized flames show increasing flame temperature and NO mole fractions when the mass flux is increased linearly with pressure, while the CH profiles remain unchanged. The observed deviation from the scaling law in the temperature profiles arises from the increasing contribution of three-body reactions to the flame front propagation velocity, leading to a decrease in the degree of burner stabilization. The deviation from the pressure scaling law for the NO mole fractions is due to the temperature dependence of the rate coefficient for the reaction between CH and N{sub 2} and the fact that the temperature profiles themselves do not scale. In contrast, the surprisingly good scaling of the CH mole fractions with pressure indicates the dominant role of two-body reactions participating in the chain of chemical reactions leading to CH formation. The calculations using GRI-Mech 3.0 substantially overpredict (up to 50%) the measured nitric oxide concentrations for all pressures studied. The observed differences in the NO mole fraction may be addressed by improving the CH prediction. (author)

  14. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    NASA Astrophysics Data System (ADS)

    Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.

    2016-01-01

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410

  15. "Real-time" core formation experiments using X-ray tomography at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Anzures, B.; Yu, T.; Wang, Y.

    2015-12-01

    The process of differentiation is a defining moment in a planet's history. Direct observation of this process at work is impossible in our solar system because it was complete within the first few tens of millions of years. Geochemical and geophysical evidence points to magma ocean scenarios to explain differentiation of large planets such as Earth. Smaller planets and planetesimals likely never achieved the high temperatures necessary for wide scale melting. In these smaller bodies, silicates may have only partially melted, or not melted at all. Furthermore, isotopic signatures in meteorites suggest that some planetesimals differentiated within just a few million years. Achieving efficient core segregation on this rapid timescale is difficult, particularly in a solid or semi-solid silicate matrix. Direct measurements of metallic melt migration velocities have been difficult due to experimental limitations and most previous work has relied on geometric models based on 2-D observations in quenched samples. We have employed a relatively new technique of in-situ, high pressure, high temperature, X-ray micro-tomography coupled with 3-D numerical simulations to evaluate the efficiency of melt percolation in metal/silicate systems. From this, we can place constraints on the timing of core formation in early solar system bodies. Mixtures of olivine and KLB-1 peridotite and up to 12 vol% FeS were pre-synthesized to achieve an initial equilibrium microstructure of silicate and sulfide. The samples were then were then pressed again to ~2GPa, and heated to ~1300°C to collect X-ray tomography images as the partially molten samples were undergoing shear deformation. The reconstructed 3-D images of melt distribution were used as the input for lattice Boltzmann simulations of fluid flow through the melt network and calculations of permeability and melt migration velocity. Our in-situ x-ray tomography results are complemented by traditional 2-D image analysis and high

  16. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  17. Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis.

    PubMed

    Hardt, Sebastian; Wlokas, Irenäus; Schulz, Christof; Wiggers, Hartmut

    2015-12-01

    Nanocrystalline titania was synthesized via liquid-fed spray-flame synthesis in a hermetically closed system at various pressures. Titanium tetraisopropoxide dissolved in isopropanol was used as precursor. The size, crystal structure, degree of agglomeration, morphology and the band gap of the as-prepared particles were investigated ex situ by nitrogen adsorption, transmission electron microscopy, X-ray diffraction, and UV-VIS absorption spectroscopy. In comparison to synthesis at atmospheric pressure it was found that decreasing pressure has a significant influence on the particle size distribution leading to smaller particles with reduced geometric standard deviation while particle morphology and crystal structure are not affected. Computational fluid dynamics simulations support the experimental findings also indicating a significant decrease in particle size at reduced pressure. Although it is well known that decreasing pressure leads to smaller particle sizes, it is (to our knowledge) the first time that this relation was investigated for spray-flame synthesis. PMID:26682365

  18. Biogenic amine formation and nitrite reactions in meat batter as affected by high-pressure processing and chilled storage.

    PubMed

    Ruiz-Capillas, C; Aller-Guiote, P; Carballo, J; Colmenero, F Jiménez

    2006-12-27

    Changes in biogenic amine formation and nitrite depletion in meat batters as affected by pressure-temperature combinations (300 MPa/30 min/7, 20, and 40 degrees C), cooking process (70 degrees C/30 min), and storage (54 days/2 degrees C) were studied. Changes in residual nitrite concentration in raw meat batters were conditioned by the temperature and not by the pressure applied. Cooking process decreased (P < 0.05) the residual nitrite concentration in all samples. High-pressure processing and cooking treatment increased (P < 0.05) the nitrate content. Whereas protein-bound nitrite concentration decreased with pressure processing, no effect was observed with the heating process of meat batters. High-pressure processing conditions had no effect on the rate of residual nitrite loss throughout the storage. The application of high pressure decreased (P < 0.05) the concentration of some biogenic amines (tyramine, agmatine, and spermine). Irrespective of the high processing conditions, generally, throughout storage biogenic amine levels did not change or increased, although quantitatively this effect was not very important.

  19. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  20. The effect of ram-pressure stripping and starvation on the star formation properties of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2009-12-01

    We have combined UV to radio centimetric observations of resolved galaxies in the Virgo cluster with multizone, chemo-spectrophotometric models of galaxy evolution especially tailored to take into account the effects of the cluster environment (ram pressure stripping and starvation). This exercise has shown that anemic spirals with truncated radial profiles of the gas component and of the young stellar populations, typical in rich clusters of galaxies, have been perturbed by a recent (˜100 Myr) ram pressure stripping event induced by their interaction with the cluster intergalactic medium. Starvation is not able to reproduce the observed truncated radial profiles. Both ram pressure and starvation induce a decrease of the stellar surface brightness of the perturbed disc, and thus can hardly be invoked to explain the formation of lenticular galaxies inhabiting rich clusters, which are characterised by higher surface brightnesses than early type spirals of similar luminosity. In dwarfs the ram pressure stripping event is so efficient to totally remove their gas thus stopping on short time scales (<2 Gyr) their star formation activity. Low luminosity star forming discs can be transformed in dE galaxies.

  1. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells

  2. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  3. Abiotic formation of valine peptides under conditions of high temperature and high pressure.

    PubMed

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  4. Polymerization of cyanoacetylene under pressure: Formation of carbon nitride polymers and bulk structures

    NASA Astrophysics Data System (ADS)

    Khazaei, Mohammad; Liang, Yunye; Venkataramanan, Natarajan S.; Kawazoe, Yoshiyuki

    2012-02-01

    High-pressure phase transitions of polar and nonpolar molecular structures of cyanoacetylene (HC3N) are studied by using first-principles simulations at constant pressure. In both polar and nonpolar crystals, at pressure ˜20 GPa, the cyanoacetylene molecules are interconnected together and form polyacrylonitrile (PA) polymers. At pressure ˜30 GPa, PA polymers are transformed to polymers with fused pyridine rings (FPR's). The individual geometrical structures of PA and FPR polymers obtained from polar and nonpolar molecular crystals of cyanoacetylene are identical, but their stacking is different. At pressures above 40 GPa, the FPR polymers are interconnected together and new three-dimensional (3D) carbon nitride systems are formed. At ambient pressure, the long-length PA and FPR polymers are metallic, and the created 3D structures are an insulator with energy band gaps around 2.85 eV. The electron transport characteristics of FPR polymers with different lengths are investigated at finite biases by using the nonequilibrium Green's function technique combined with density functional theory (DFT) by connecting the polymers to gold electrodes. The results show that FPR polymers have negative differential resistance behavior. Our time-dependent DFT calculations reveal that FPR polymers can absorb light in the visible region. From our results, it is expected that the FPR polymers will be a good material for optoelectronic applications.

  5. Abiotic Formation of Valine Peptides Under Conditions of High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  6. Racial Differences in Abnormal Ambulatory Blood Pressure Monitoring Measures: Results From the Coronary Artery Risk Development in Young Adults (CARDIA) Study

    PubMed Central

    Lewis, Cora E.; Diaz, Keith M.; Carson, April P.; Kim, Yongin; Calhoun, David; Yano, Yuichiro; Viera, Anthony J.; Shimbo, Daichi

    2015-01-01

    BACKGROUND Several ambulatory blood pressure monitoring (ABPM) measures have been associated with increased cardiovascular disease risk independent of clinic blood pressure (BP). African Americans have higher clinic BP compared with Whites but few data are available on racial differences in ABPM measures. METHODS We compared ABPM measures between African American (n = 178) and White (n = 103) participants at the Year 5 Coronary Artery Risk Development in Young Adults study visit. BP was measured during a study visit and the second and third measurements were averaged. ABPM was conducted over the following 24 hours. RESULTS Mean ± SD age of participants was 29.8±3.8 years and 30.8±3.5 years for African Americans and Whites, respectively. Mean daytime systolic BP (SBP) was 3.90 (SD 1.18) mm Hg higher among African Americans compared with Whites (P < 0.001) after age–gender adjustment and 1.71 (SD 1.03) mm Hg higher after multivariable adjustment including mean clinic SBP (P = 0.10). After multivariable adjustment including mean clinic SBP, nighttime SBP was 4.83 (SD 1.11) mm Hg higher among African Americans compared with Whites (P < 0.001). After multivariable adjustment, the African Americans were more likely than Whites to have nocturnal hypertension (prevalence ratio: 2.44, 95% CI: 0.99–6.05) and nondipping (prevalence ratio: 2.50, 95% CI: 1.39–4.48). The prevalence of masked hypertension among African Americans and Whites was 4.4% and 2.1%, respectively, (P = 0.49) and white coat hypertension was 3.3% and 3.9%, respectively (P = 0.99). Twenty-four hour BP variability on ABPM was higher among African Americans compared with Whites. CONCLUSIONS These data suggest racial differences in several ABPM measures exist. PMID:25376639

  7. Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

    PubMed Central

    Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram

    2013-01-01

    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726

  8. Investigation Of Adhesion Formation In New Stainless Steel Trim Spring Operated Pressure Relief Valves

    SciTech Connect

    Gross, Robert E.; Bukowski, Julia V.; Goble, William M.

    2013-04-16

    Examination of proof test data for new (not previously installed) stainless steel (SS) trim spring operated pressure relief valves (SOPRV) reveals that adhesions form between the seat and disc in about 46% of all such SOPRV. The forces needed to overcome these adhesions can be sufficiently large to cause the SOPRV to fail its proof test (FPT) prior to installation. Furthermore, a significant percentage of SOPRV which are found to FPT are also found to ''fail to open'' (FTO) meaning they would not relief excess pressure in the event of an overpressure event. The cases where adhesions result in FTO or FPT appear to be confined to SOPRV with diameters < 1 in and set pressures < 150 psig and the FTO are estimated to occur in 0.31% to 2.00% of this subpopulation of SS trim SOPRV. The reliability and safety implications of these finding for end-users who do not perform pre-installation testing of SOPRV are discussed.

  9. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors?

    PubMed

    Benedetti, L R; Nguyen, J H; Caldwell, W A; Liu, H; Kruger, M; Jeanloz, R

    1999-10-01

    Experiments using laser-heated diamond anvil cells show that methane (CH4) breaks down to form diamond at pressures between 10 and 50 gigapascals and temperatures of about 2000 to 3000 kelvin. Infrared absorption and Raman spectroscopy, along with x-ray diffraction, indicate the presence of polymeric hydrocarbons in addition to the diamond, which is in agreement with theoretical predictions. Dissociation of CH4 at high pressures and temperatures can influence the energy budgets of planets containing substantial amounts of CH4, water, and ammonia, such as Uranus and Neptune. PMID:10506552

  10. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors?

    PubMed

    Benedetti, L R; Nguyen, J H; Caldwell, W A; Liu, H; Kruger, M; Jeanloz, R

    1999-10-01

    Experiments using laser-heated diamond anvil cells show that methane (CH4) breaks down to form diamond at pressures between 10 and 50 gigapascals and temperatures of about 2000 to 3000 kelvin. Infrared absorption and Raman spectroscopy, along with x-ray diffraction, indicate the presence of polymeric hydrocarbons in addition to the diamond, which is in agreement with theoretical predictions. Dissociation of CH4 at high pressures and temperatures can influence the energy budgets of planets containing substantial amounts of CH4, water, and ammonia, such as Uranus and Neptune.

  11. Enhancing Magnesite Formation at Low Temperature and High CO2 Pressure: The Impact of Seed Crystals and Minor Components

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Kovarik, Libor; Liu, Jia; Perea, Daniel E.; Ilton, Eugene S.

    2015-02-24

    The formation of magnesite was followed in aqueous solution containing initially added Mg(OH)2 equilibrated with supercritical carbon dioxide (90 atm pressure, 50°C) in the presence of introduced magnesite particles and minor components, Co(II). As expected, the introduction of magnesite particles accelerated the formation of magnesite from solution. However, the formation rate of magnesite was even greater when small concentrations of Co(II) were introduced, indicating that the increased rate of magnesite formation in the presence of Co(II) was not solely due to the addition of a growth promoting surface. Detailed analysis of the magnesite particles by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atom probe tomography (APT) revealed that the originally added Co(II) was concentrated in the center but also present throughout the growing magnesite particles. Addition of the Co(II) in different chemical forms (i.e. as solid phase CoCO3 or Co(OH)2) could alter the growth rate of magnesite depending upon the addition of bicarbonate to the starting solution. Geochemical modeling calculations indicate that this difference is related to the thermodynamic stability of these different phases in the initial solutions. More broadly, these results indicate that the presence of even small concentrations of foreign ions that form carbonate compounds with a similar structure as magnesite can be incorporated into the magnesite lattice, accelerating the formation of anhydrous carbonates in natural environments.

  12. High-temperature- and high-pressure-induced formation of the Laves-phase compound XeS2

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhen; Chen, Yangmei; Xiang, Shikai; Kuang, Xiaoyu; Bi, Yan; Chen, Haiyan

    2016-06-01

    We explore the reactivity of xenon with sulfur under high pressure, using unbiased structure searching techniques combined with first-principles calculations, which identify a stable XeS2 compound crystallized in a Laves phase with hypercoordinated (16-fold) Xe at 191 GPa and 0 K. Taking the thermal effects into account, we find that increasing the temperature could further stabilize it. The formation of XeS2 is a consequence of pressure-induced charge transfer from Xe to S atoms and the delocalization of Xe 5 p and S 3 p electrons. Meanwhile, the stabilization into a Laves phase of XeS2 is the result of delocalized chemical bonding and the need for optimum structure packing. The present discussion of the formation mechanism in XeS2 is general, and conclusions can be used to understand the formation of other Laves-phase compounds and the Xe chemistry that allows closed-shell Xe to participate in chemical reactions.

  13. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AN ATMOSPHERIC PRESSURE ETHYLENE DIFFUSION FLAME. (R825412)

    EPA Science Inventory

    Abstract

    The microstructure of an atmospheric pressure, counterflow, sooting, flat, laminar ethylene diffusion flame has been studied experimentally by withdrawing samples from within the flame using a heated quartz microprobe coupled to an online gas chromatograph/mas...

  14. Water transport during metamorphic vein formation: the role of reaction-induced pressure buildup during serpentinization

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Podladchikov, Yuri

    2014-05-01

    At slow-spreading ridges, the extension is accommodated both by an exhumation of mantle rocks and a magmatic input. The heat released during the crystallization of the magmas is evacuated through the hydrothermal circulation transporting high-temperature fluids up to mantle rocks which can be hydrated through a serpentinization reaction. At the millimetre scale, water transport is also accommodated by advection in the highly permeable fracture network typically found in serpentinized peridotites. This high permeability is the consequence of fracturing processes related to lithospheric scale deformation, thermal contraction or a pressure build-up associated with the positive volume increase occurring during the reaction. If the relationship between pressure increase and fracturing has been studied in details, the impact of this pressure increases on the fluid flow is still unclear. Therefore, we used existing data on the texture and composition of serpentine veins (mm to µm scale) found in peridotites to identify the physical processes involved in the transport of water during the reaction. A finite difference model was then developed to investigate the couplings between pressure increase and fluid flow at the scale of the vein. This model will allow us to probe the influence on the reaction of parameters such as the kinetics of the reaction, the geometry and the texture of the veins, the amount of the volume increase, or the external forces.

  15. Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance.

    PubMed

    Gupta, Ashish; Chacko, V P; Weiss, Robert G

    2009-07-01

    (31)P magnetic resonance spectroscopy (MRS) offers a unique means to noninvasively quantify the major cardiac high-energy phosphates, creatine phosphate (PCr) and adenosine 5'-triphosphate (ATP), that are critical for normal myocardial contractile function and viability. Spatially localized (31)P MRS has been used to quantify the in vivo PCr-to-ATP ratio (PCr/ATP) of murine hearts, including those with pressure-overload hypertrophy induced by thoracic aortic constriction (TAC). To date, there has been no approach for measuring the absolute tissue concentrations of PCr and ATP in the in vivo mouse heart that promise a better understanding of high-energy metabolism. A method to quantify in vivo murine myocardial concentrations of PCr and ATP using an external reference is described, validated, and applied to normal and TAC hearts. This new method does not prolong the scan times in mice beyond those previously required to measure PCr/ATP. The new method renders an [ATP] of 5.0 +/- 0.9 (mean +/- SD) and [PCr] of 10.4 +/- 1.4 micromol/g wet wt in normal mouse hearts (n = 7) and significantly lower values in TAC hearts (n = 10) of 4.0 +/- 0.8 and 6.7 +/- 2.0 micromol/g wet wt for [ATP] (P < 0.04) and [PCr] (P < 0.001), respectively. The in vivo magnetic resonance [ATP] results are in good agreement with those obtained using an in vitro enzyme luminescent assay of perchloric acid extracts of the same hearts. In conclusion, a validated (31)P MRS method for quantifying [ATP] and [PCr] in the in vivo mouse heart using spatial localization and an external reference is described and used to demonstrate significant reductions in not only PCr/ATP but [ATP] in hypertrophied TAC hearts.

  16. Magnesite formation from MgO and CO2 at the pressures and temperatures of Earth's mantle

    SciTech Connect

    Scott, Henry P.; Doczy, Vincent M.; Frank, Mark R.; Hasan, Maggie; Lin, Jung-Fu; Yang, Jing

    2013-08-02

    Magnesite (MgCO3) is an important phase for the carbon cycle in and out of the Earth’s mantle. Its comparably large P-T stability has been inferred for several years based on the absence of its decomposition in experiments. Here we report the first experimental evidence for synthesis of magnesite out of its oxide components (MgO and CO2) at P-T conditions relevant to the Earth’s mantle. Magnesite formation was observed in situ using synchrotron X-ray diffraction, coupled with laser-heated diamond-anvil cells (DACs), at pressures and temperatures of Earth’s mantle. Despite the existence of multiple high-pressure CO2 polymorphs, the magnesite-forming reaction was observed to proceed at pressures ranging from 5 to 40 GPa and temperatures between 1400 and 1800 K. No other pressure-quenchable materials were observed to form via the MgO + CO2 = MgCO3 reaction. This work further strengthens the notion that magnesite may indeed be the primary host phase for oxidized carbon in the deep Earth.

  17. Formation and electron-ion recombination of N4(+) following photoionization in near-atmospheric pressure N2.

    PubMed

    Adams, S F; DeJoseph, C A; Williamson, J M

    2009-04-14

    The time dependent behavior of molecular nitrogen ions has been investigated following pulsed photoionization of near atmospheric pressure N(2) using multiphoton laser techniques and kinetic modeling. Multiple fluorescence bands, some unreported previously, with various temporal behaviors were observed after ultraviolet laser photoionization of N(2)(X (1)Sigma(g)). The initial N(2) ionization was generated via resonance-enhanced multiphoton ionization with focused radiation in the 275-290 nm range, where several resonant transitions are accessible. The observed optical fluorescence bands appeared to be unique to the near-atmospheric pressure N(2) condition and were shown by the evidence in this work to be the result of collisional formation and recombination of N(4)(+). Measured time dependent fluorescence spectra during and after pulsed laser photoionization of N(2), together with a coupled rate equation model, allowed for the determination of the absolute densities of N(2)(+) and N(4)(+) as these species evolved. PMID:19368454

  18. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    SciTech Connect

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.

  19. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    SciTech Connect

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.

    2009-01-30

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 {mu}m and about 30 1 {mu}m-sized particles situated on a sphere with a radius of 190 {mu}m and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle.

  20. Dolomitization by fluids under pressure: an example from the Ordovician Chickamauga Formation, West Virginia

    SciTech Connect

    Ferm, J.B.; Ehrlich, R.

    1985-01-01

    The lowermost two hundred feet of Chickamauga limestone, on the subsurface flank of the Burning Springs anticline, West Virginia, has been dolomitized. Evidence based on detailed thin section petrography and carbon and oxygen stable isotope analyses suggests dolomitization occurred following lithification and was effected by upward migrating fluids from the St. Peter sandstone aquifer. The presence of dilated, horizontal stylolites is considered evidence that, for a time, fluid pressure exceeded overburden pressure, promoting upward fluid migration. The dolomitizing process was inhibited when the solutions made contact with a zone rich in calcium sulfate. Dissolution of calcium sulfate resulted in the production of substantial (20%) intercrystalline porosity. The presence of undilated, inclined stylolites suggests that the dolomitization event preceded Alleghenian tectonism. Carbon isotope data indicate that at least some of the carbon in the dolomite of the gypsiferous zone was derived from organic matter or microbial sulfate reduction.

  1. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  2. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  3. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  4. RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN

    SciTech Connect

    Vuitton, V.; Klippenstein, S. J. E-mail: yelle@lpl.arizona.edu E-mail: sjk@anl.gov

    2012-01-01

    Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

  5. Formation of Large-Volume High-Pressure Plasma in Triode-Configuration Discharge Devices

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Wang, Youqing

    2006-03-01

    A ``plane cathode micro-hollow anode discharge (PCHAD)'' is studied in comparison with micro-hollow cathode discharge (MHCD). A new triode-configuration discharge device is also designed for large-volume, high-pressure glow discharges plasma without glow-to-arc transitions, as well as with an anode metal needle, and a cathode of PCHAD. It has a ``needle-hole" sustained glow discharge. Its discharge circuit employs only one power supply circuit with a variable resistor. The discharge experiments have been carried out in the air. The electrical properties and the photo-images in PCHAD, multi-PCHAD and ``needle-hole" sustained discharge have been investigated. The electrical and the optical measurements show that this triode-configuration discharge device can operate stably at high-pressure, in parallel without individual ballasting resistance. And the electron density of the plasma is estimated to be up to 1012cm-3. Compared with the two-supply circuit system, this electrode configuration is very simple with lower cost in generating large-volume plasma at high pressures.

  6. Formation of a Cubic Iron-Sulfur Alloy at Megabar Pressures and its Equation of State

    NASA Astrophysics Data System (ADS)

    Seagle, C. T.; Heinz, D. L.; Campbell, A. J.; Miller, N. A.; Prakapenka, V. B.

    2008-12-01

    The details of binary iron-light element systems at pressures and temperatures relevant to the core can be used to constrain core composition and temperature. The addition of light elements to iron is known to affect the stability field of iron polymorphs. In this study, an iron plus 10 wt. percent sulfur sample was compressed and laser heated at 145 GPa in a diamond anvil cell at the GSECARS beamline of the APS. Phases present in the sample were monitored with x-ray diffraction. At this pressure, hcp-Fe was found to coexist with Fe3S. However, at 158 GPa, upon laser heating a new cubic phase formed at the expense of hcp-Fe until all hcp-Fe was consumed and a single cubic phase was left, apparently indicating solid solution behavior. The strongest x-ray diffraction lines closely resemble the x-ray diffraction pattern of bcc-Fe, however several additional weak lines rule out a structure as simple as bcc. The sample was slowly decompressed in order to measure the pressure-volume relationship. The unit cell volume of the metastable cubic phase began to expand rapidly below 100 GPa during decompression, and was completely amorphous below 80 GPa. Solid solution behavior would suggest that sulfur could be an important component of Earth's inner core; the implications of this, and the possible structure of the cubic phase in relation to the known iron polymorphs, will be discussed.

  7. High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese.

    PubMed

    Calzada, J; Del Olmo, A; Picon, A; Gaya, P; Nuñez, M

    2013-01-01

    Enzyme-rich cheeses are prone to over-ripening during refrigerated storage. Blue-veined cheeses fall within this category because of the profuse growth of Penicillium roqueforti in their interior, which results in the production of highly active proteinases, lipases, and other enzymes responsible for the formation of a great number of flavor compounds. To control the excessive formation of free fatty acids (FFA) and volatile compounds, blue-veined cheeses were submitted to high-pressure processing (HPP) at 400 or 600 MPa on d 21, 42, or 63 after manufacture. Cheeses were ripened for 30d at 10°C and 93% relative humidity, followed by 60 d at 5°C, and then held at 3°C until d 360. High-pressure processing influenced the concentrations of acetic acid and short-chain, medium-chain, and long-chain FFA. The effect was dependent on treatment conditions (pressure level and cheese age at the time of treatment). The lowest concentrations of acetic acid and FFA were recorded for cheeses treated at 600 MPa on d 21; these cheeses showed the lowest esterase activity values. Acetic acid and all FFA groups increased during ripening and refrigerated storage. The 102 volatile compounds detected in cheese belonged to 10 chemical groups (5 aldehydes, 12 ketones, 17 alcohols, 12 acids, 35 esters, 9 hydrocarbons, 5 aromatic compounds, 3 nitrogen compounds, 3 terpenes, and 1 sulfur compound). High-pressure processing influenced the levels of 97 individual compounds, whereas 68 individual compounds varied during refrigerated storage. Total concentrations of all groups of volatile compounds were influenced by HPP, but only ketones, acids, esters, and sulfur compounds varied during refrigerated storage. The lowest total concentrations for most groups of volatile compounds were recorded for the cheese pressurized at 600 MPa on d 21. A principal component analysis combining total concentrations of groups of FFA and volatile compounds discriminated cheeses by age and by the pressure level

  8. Formation of halogenated organic byproducts during medium-pressure UV and chlorine coexposure of model compounds, NOM and bromide.

    PubMed

    Zhao, Quan; Shang, Chii; Zhang, Xiangru; Ding, Guoyu; Yang, Xin

    2011-12-01

    When chlorine is applied before or during UV disinfection of bromide-containing water, interactions between chlorine, bromide and UV light are inevitable. Formation of halogenated organic byproducts was studied during medium-pressure UV (MPUV) and chlorine coexposure of phenol, nitrobenzene and benzoic acid and maleic acid, chosen to represent electron-donating aromatics, electron-withdrawing aromatics, and aliphatic structures in natural organic matter (NOM), respectively. All were evaluated in the presence and absence of bromide. MPUV and chlorine coexposure of phenol produced less total organic halogen (TOX, a collective parameter for halogenated organic byproducts) than chlorination in the dark, and more haloacetic acids instead of halophenols. Increases in TOX were found in the coexposure of nitrobenzene and benzoic acid, but maleic acid was rather inert during coexposure. The presence of bromide increased the formation of brominated TOX but did not significantly affect total TOX formation, in spite of the fact that it reduced hydroxyl radical levels. MPUV and chlorine coexposure of NOM gave a higher differential UV absorbance of NOM and a larger shift to lower molecular weight compounds than chlorination in the dark. However, TOX formation with NOM remained similar to that observed from dark chlorination.

  9. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  10. Investigation of the formation of a fully pressure-driven tokamak

    SciTech Connect

    Forest, C.B.; Hwang, Y.S.; Ono, M.; Greene, G.; Jones, T.; Choe, W. ); Schaffer, M.; Hyatt, A.; Osborne, T.; Pinsker, R.I.; Petty, C.C.; Lohr, J.; Lippmann, S. )

    1994-05-01

    A noninductive current drive concept, based on internal pressure-driven currents in a low-aspect-ratio toroidal geometry, has been demonstrated on the Current Drive Experiment Upgrade (CDX-U) [Forest [ital et] [ital al]., Phys. Rev. Lett. [bold 68], 3559 (1992)] and further tested on DIII-D [in [ital Plasma] [ital Physics] [ital and] [ital Controlled] [ital Nuclear] [ital Fusion] [ital Research], 1986, Proceedings of the 11th International Conference, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. For both experiments, electron cyclotron power provided the necessary heating to breakdown and maintain a plasma with high-[beta][sub [ital p

  11. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  12. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer.

    PubMed

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng

    2014-12-31

    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food.

  13. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability.

    PubMed

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-05-27

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices.

  14. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    NASA Astrophysics Data System (ADS)

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-05-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices.

  15. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    PubMed Central

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-01-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices. PMID:27230981

  16. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    PubMed Central

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID

  17. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    PubMed

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  18. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    PubMed

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470

  19. Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Righter, K.; Danielson, L. R.; Pando, K. M.; Williams, J.; Humayun, M.; Hervig, R. L.; Sharp, T. G.

    2015-04-01

    Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal-silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal-silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositions—C-bearing and C-free. The second series examines temperature effects for D(Re) in FeO-bearing silicate melts and FeNi-rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal-silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14 GPa, 2100 °C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal-silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general.

  20. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  1. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  2. Hydrostatic pressure and fluid-density distribution of the Culebra Dolomite member of the Rustler Formation near the Waste Isolation Pilot Plant, southeastern New Mexico

    SciTech Connect

    Crawley, M.E.

    1988-05-01

    The primary objectives of the Pressure - Density Survey were to obtain the middle-of-formation pressures, determine well-bore fluid densities, define well-bore fluid density stratification, and to provide, where possible, formation water density values for wells where little or no information on densities exists. The survey collected ground-water pressure and density data during three field testing periods during the years 1986 and 1987. Data were collected from 33 individual wells located in the vicinity of the WIPP Site. 18 refs., 10 figs., 10 tabs.

  3. The formation of red colobus-diana monkey associations under predation pressure from chimpanzees.

    PubMed Central

    Noë, R; Bshary, R

    1997-01-01

    It is generally assumed that most primates live in monospecific or polyspecific groups because group living provides protection against predation, but hard evidence is scarce. We tested the antipredation hypothesis with observational and experimental data on mixed-species groups of red colobus (Procolobus badius) and diana monkeys (Cercopithecus diana) in the Taï National Park, Ivory Coast. Red colobus, but not diana monkeys, are frequently killed by cooperatively hunting chimpanzees. Association rates peaked during the chimpanzees' hunting season, as a result of changes in the behaviour of the red colobus. In addition, playbacks of recordings of chimpanzee sounds induced the formation of new associations and extended the duration of existing associations. No such effects were observed in reaction to control experiments and playbacks of leopard recordings. PMID:9061972

  4. Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air

    SciTech Connect

    Kourtzanidis, K. Boeuf, J. P.; Rogier, F.

    2014-12-15

    Recent experiments have demonstrated that a freely localized 100 GHz microwave discharge can propagate towards the microwave source with high speed, forming a complex pattern of self-organized filaments. We present three-dimensional simulations of the formation and propagation of such patterns that reveal more information on their nature and interaction with the electromagnetic waves. The developed three-dimensional Maxwell-plasma solver permits the study of different forms of incident field polarization. Results for linear and circular polarization of the wave are presented and comparisons with recent experiments show a good overall agreement. The three dimensional simulations provide a quantitative analysis of the parameters controlling the time and length scales of the strongly non-linear plasma dynamics and could be useful for potential microwave plasma applications such as aerodynamic flow and combustion control.

  5. Laser-driven formation of a high-pressure phase in amorphous silica

    SciTech Connect

    Salleo, Alberto; Taylor, Seth T.; Martin, Michael C.; Panero, Wendy R.; Jeanloz, Raymond; Genin, Francois Y.; Sands, Timothy

    2002-05-31

    A combination of electron diffraction and infrared reflectance measurements shows that synthetic silica transforms partially into stishovite under high-intensity (GW/cm2) laser irradiation, probably by the formation of a dense ionized plasma above the silica surface. During the transformation the silicon coordination changes from four-fold to six-fold and the silicon-oxygen bond changes from mostly covalent to mostly ionic, such that optical properties of the transformed material differ significantly from those of the original glass. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics applications such as inertial confinement fusion.

  6. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real

  7. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  8. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  9. CIRCUMVENTING THE RADIATION PRESSURE BARRIER IN THE FORMATION OF MASSIVE STARS VIA DISK ACCRETION

    SciTech Connect

    Kuiper, Rolf; Klahr, Hubert; Beuther, Henrik; Henning, Thomas

    2010-10-20

    We present radiation hydrodynamic simulations of the collapse of massive pre-stellar cores. We treat frequency-dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, for the first time it is possible to simulate the whole accretion phase (up to the end of the accretion disk epoch) for a forming massive star and to perform a broad scan of the parameter space. Our simulation series evidently shows the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. While confirming the upper mass limit of spherically symmetric accretion, our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field. This yields the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamic simulations, far beyond the upper mass limit of spherical accretion. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time, as presumed from observations. For an initial mass of the pre-stellar host core of 60, 120, 240, and 480 M{sub sun} the masses of the final stars formed in our simulations add up to 28.2, 56.5, 92.6, and at least 137.2 M{sub sun}, respectively.

  10. Under Pressure: Quenching Star Formation in Low-Mass Satellite Galaxies via Stripping

    NASA Astrophysics Data System (ADS)

    Fillingham, Sean P.; Cooper, Michael C.; Pace, Andrew B.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2016-08-01

    Recent studies of galaxies in the local Universe, including those in the Local Group, find that the efficiency of environmental (or satellite) quenching increases dramatically at satellite stellar masses below ˜108~M⊙. This suggest a physical scale where quenching transitions from a slow "starvation" mode to a rapid "stripping" mode at low masses. We investigate the plausibility of this scenario using observed HI surface density profiles for a sample of 66 nearby galaxies as inputs to analytic calculations of ram-pressure and turbulent viscous stripping. Across a broad range of host properties, we find that stripping becomes increasingly effective at M★ ≲ 108 - 9~M⊙, reproducing the critical mass scale observed. However, for canonical values of the circumgalactic medium density (nhalo < 10-3.5 cm-3), we find that stripping is not fully effective; infalling satellites are, on average, stripped of only ≲ 40 - 60% of their cold gas reservoir, which is insufficient to match observations. By including a host halo gas distribution that is clumpy and therefore contains regions of higher density, we are able to reproduce the observed HI gas fractions (and thus the high quenched fraction and short quenching timescale) of Local Group satellites, suggesting that a host halo with clumpy gas may be crucial for quenching low-mass systems in Local Group-like (and more massive) host halos.

  11. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  12. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    NASA Astrophysics Data System (ADS)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture

  13. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation.

    PubMed

    Geissler, Maren; Gottschling, Christine; Aguado, Ainhara; Rauch, Uwe; Wetzel, Christian H; Hatt, Hanns; Faissner, Andreas

    2013-05-01

    The extracellular matrix (ECM) of the brain plays crucial roles during the development, maturation, and regeneration of the CNS. In a subpopulation of neurons, the ECM condenses to superstructures called perineuronal nets (PNNs) that surround synapses. Camillo Golgi described PNNs a century ago, yet their biological functions remain elusive. Here, we studied a mouse mutant that lacks four ECM components highly enriched in the developing brain: the glycoproteins tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans brevican and neurocan. Primary embryonic hippocampal neurons and astrocytes were cultivated using a cell insert system that allows for co-culture of distinct cell populations in the absence of direct membrane contacts. The wild-type and knock-out cells were combined in the four possible permutations. Using this approach, neurons cultivated in the presence of mutant astrocytes displayed a transient increase of synapses after 2 weeks. However, after a period of 3 weeks or longer, synapse formation and stabilization were compromised when either neuron or astrocyte cell populations or both were of mutant origin. The development of PNN structures was observed, but their size was substantially reduced on knock-out neurons. The synaptic activity of both wild-type and knock-out neurons was monitored using whole-cell patch clamping. The salient observation was a reduced frequency of IPSCs and EPSCs, whereas the amplitudes were not modified. Remarkably, the knock-out neuron phenotypes could not be rescued by wild-type astrocytes. We conclude that the elimination of four ECM genes compromises neuronal function.

  14. Phase Stability and Pressure Dependence of Defect Formation in Gd2Ti2O7 and Gd2Zr2O7 Pyrochlores

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Wang, J. W.; Lian, J.; Lang, M. K.; Becker, U.; Ewing, R. C.

    2008-02-01

    We report dramatically different behaviors between isostructural Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at pressures up to 44 GPa, in which the substitution of Ti for Zr significantly increases structural stability. Upon release of pressure, the Gd2Ti2O7 becomes amorphous. In contrast, the high-pressure phase of Gd2Zr2O7 transforms to a disordered defect-fluorite structure. First-principle calculations for both compositions revealed that the response of pyrochlore to high pressure is controlled by the intrinsic energetics of defect formation.

  15. Phase stability and pressure dependence of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores.

    PubMed

    Zhang, F X; Wang, J W; Lian, J; Lang, M K; Becker, U; Ewing, R C

    2008-02-01

    We report dramatically different behaviors between isostructural Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at pressures up to 44 GPa, in which the substitution of Ti for Zr significantly increases structural stability. Upon release of pressure, the Gd2Ti2O7 becomes amorphous. In contrast, the high-pressure phase of Gd2Zr2O7 transforms to a disordered defect-fluorite structure. First-principle calculations for both compositions revealed that the response of pyrochlore to high pressure is controlled by the intrinsic energetics of defect formation.

  16. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  17. Investigation of the formation of a fully pressure-driven tokamak*

    NASA Astrophysics Data System (ADS)

    Forest, C. B.; Hwang, Y. S.; Ono, M.; Greene, G.; Jones, T.; Choe, W.; Schaffer, M.; Hyatt, A.; Osborne, T.; Pinsker, R. I.; Petty, C. C.; Lohr, J.; Lippmann, S.

    1994-05-01

    A noninductive current drive concept, based on internal pressure-driven currents in a low-aspect-ratio toroidal geometry, has been demonstrated on the Current Drive Experiment Upgrade (CDX-U) [Forest et al., Phys. Rev. Lett. 68, 3559 (1992)] and further tested on DIII-D [in Plasma Physics and Controlled Nuclear Fusion Research, 1986, Proceedings of the 11th International Conference, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. For both experiments, electron cyclotron power provided the necessary heating to breakdown and maintain a plasma with high-βp and low collisionality (ɛβp˜1, ν*≤1). A poloidal vacuum field similar to a simple magnetic mirror is superimposed on a much stronger toroidal field to provide the initial confinement for a hot, trapped electron species. With application of electron cyclotron heating (ECH), toroidal currents spontaneously flow within the plasma and increase with applied ECH power. The direction of the generated current is independent of the toroidal field direction and depends only on the direction of the poloidal field, scaling inversely with magnitude of the later. On both CDX-U and DIII-D, these currents were large enough that stationary closed flux surfaces were observed to form with no additional Ohmic heating. The existence of such equilibria provides further evidence for the existence of some type of bootstrap current. Equilibrium reconstructions show the resulting plasma exhibits properties similar to more conventional tokamaks, including a peaked current density profile which implies some form of current on axis or nonclassical current transport.

  18. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  19. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study

    PubMed Central

    Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998

  20. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain

  1. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  2. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  3. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  4. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  5. Formation of As-As Interlayer Bonding in the collapsed tetragonal phase of NaFe2As2 under pressure

    PubMed Central

    Stavrou, Elissaios; Chen, Xiao-Jia; Oganov, Artem R.; Wang, A. F.; Yan, Y. J.; Luo, X. G.; Chen, X. H.; Goncharov, Alexander F.

    2015-01-01

    NaFe2As2 is investigated experimentally using powder x-ray diffraction and Raman spectroscopy at pressures up to 23 GPa at room temperature and using ab-initio calculations. The results reveal a pressure-induced structural modification at 4 GPa from the starting tetragonal to a collapsed tetragonal phase. We determined the changes in interatomic distances under pressure that allowed us to connect the structural changes and superconductivity. The transition is related to the formation of interlayer As-As bonds at the expense of weakening of Fe-As bonds in agreement with recent theoretical predictions. PMID:26014105

  6. Abnormal uterine bleeding.

    PubMed

    Jennings, J C

    1995-11-01

    Physicians who care for female patients cannot avoid the frequent complaint of abnormal uterine bleeding. Knowledge of the disorders that cause this problem can prevent serious consequences in many patients and improve the quality of life for many others. The availability of noninvasive and minimally invasive diagnostic studies and minimally invasive surgical treatment has revolutionized management of abnormal uterine bleeding. Similar to any other disorder, the extent to which a physician manages abnormal uterine bleeding depends on his or her own level of comfort. When limitations of either diagnostic or therapeutic capability are encountered, consultation and referral should be used to the best interest of patients.

  7. Basin formation and hydrocarbon potential: the role of shear heating, tectonic pressure, differential thinning and rate of rifting

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Hartz, Ebbe; Schmid, Dani

    2014-05-01

    Nature displays numerous examples of basin formation and inversion that cannot be explained by simple rift and post-rift subsidence models. One example is the super-regional Base Cretaceous Unconformity, mapped on-land East Greenland and most of the Norwegian continental shelf. This uplift and erosion unconformity matches a major phase of continental extension, a time for which standard models predict major subsidence. These models attribute surface displacement to tectonic events and thermal contraction. Here we present numerical simulations to quantify the influence of several mechanisms during lithospheric thinning. Mineral phase transitions within the lithosphere, differential thinning of the lithosphere, and rates of sedimentation may subdue syn-rift subsidence and increase post-rift subsidence. We demonstrate that shear heating and tectonic pressure may dramatically shift predictions of basin evolution and lead to syn-extensional uplift and more pronounced post-extensional subsidence. Evidently our understanding, and even apparent observation of structural events (e.g. rifting), and particularly their timing, is intimately linked to our concepts of the involved processes.

  8. Multi-wavelength studies of spectacular ram-pressure stripping of a galaxy. II. Star formation in the tail

    SciTech Connect

    Yagi, Masafumi; Gu, Liyi; Nakazawa, Kazuhiro; Makishima, Kazuo; Fujita, Yutaka; Akahori, Takuya; Hattori, Takashi; Yoshida, Michitoshi

    2013-12-01

    With multiband photometric data in public archives, we detected four intracluster star-forming regions in the Virgo Cluster. Two of them were at a projected distance of 35 kpc from NGC 4388 and the other two were 66 kpc away. Our new spectroscopic observations revealed that their recessional velocities were comparable to the ram-pressure-stripped tail of NGC 4388 and confirmed the association. The stellar mass of the star-forming regions ranged from 10{sup 4} to 10{sup 4.5} M {sub ☉} except for that of the faintest one, which was <10{sup 3} M {sub ☉}. The metallicity was comparable to a solar abundance and the age of the stars was ∼10{sup 6.8} yr. Their young stellar age meant that the star formation should have started after the gas was stripped from NGC 4388. This implied in situ condensation of the stripped gas. We also found that two star-forming regions were located near the leading edge of a filamentary dark cloud. The extinction of the filament was smaller than that derived from the Balmer decrement of the star-forming regions, implying that the dust in the filament would be locally dense around the star-forming regions.

  9. Partitioning of Pd Between Fe-S-C and Mantle Liquids at High Pressure and Temperature: Implications for Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Humayun, M.; Danielson, L.

    2007-01-01

    One of the most elusive geochemical aspects of the early Earth has been explaining the near chondritic relative abundances of the highly siderophile elements (HSE; Au, Re and the platinum group elements) in Earth's primitive upper mantle (PUM). Perhaps they were delivered to the Earth after core formation, by late addition of carbonaceous chondrite material. However, the recognition that many moderately siderophile elements can be explained by high pressure and temperature (PT) metal-silicate equilibrium, leads to the question whether high PT equilibrium can also explain the HSE concentrations. Answers to this question have been slowed by experimental difficulties (nugget effect and very low solubilities). But two different perspectives have emerged from recent studies. One perspective is that D(M/S) for HSE at high PT are not low enough to explain terrestrial mantle depletions of these elements (for Pd and Pt). A second perspective is D(M/S) are reduced substantially at high PT and even low enough to explain terrestrial mantle depletions (for Au and Pt). Issues complicating interpretation of all experiments include use of MgO- and FeO-free silicate melts, and S-free and FeNi metal-free systems. In addition, conclusions for Pt rest on an interpretation that the tiny metallic nuggets plaguing many such experiments, were formed upon quench. There is not agreement on this issue, and the general question of HSE solubility at high PT remains unresolved

  10. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  11. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  12. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  13. Normal Pressure Hydrocephalus

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Normal Pressure Hydrocephalus Information Page Synonym(s): Hydrocephalus - Normal Pressure Table ... Español Additional resources from MedlinePlus What is Normal Pressure Hydrocephalus? Normal pressure hydrocephalus (NPH) is an abnormal ...

  14. A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

    NASA Astrophysics Data System (ADS)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki

    2012-05-01

    In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 - 0.057 × Ph (eV) and HmI = 0.981 - 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 - 0

  15. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants.

    PubMed

    Bolumar, Tomas; Andersen, Mogens L; Orlien, Vibeke

    2014-05-01

    The generation of radicals during high pressure (HP) processing of beef loin and chicken breast was studied by spin trapping and electron spin resonance detection. The pressurization resulted in a higher level of spin adducts in the beef loin than in the chicken breast. It was shown that radicals were formed in the sarcoplasmic and myofibrillar fractions as well as in the non-soluble protein fraction due to the HP treatment, indicating that other radicals than iron-derived radicals were formed, and most likely protein-derived radicals. The addition of iron as well as the natural antioxidants caffeic acid, rosemary extract, and ascorbic acid resulted in an increased formation of radicals during the HP treatment, whereas addition of ethylendiamintetraacetic acid (EDTA) reduced the radical formation. This suggests that iron-species (protein-bound or free) catalyses the formation of radicals when meat systems are submitted to HP.

  16. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 2 Olefin-based thermoplastic elastomer.

    PubMed

    Takahashi, Mutsumi; Koide, Kaoru

    2016-04-01

    The purposes of this study were to clarify the suitable heating conditions during vacuum-pressure formation of olefin copolymer sheets and to examine the sheet temperature at molding and the thickness of the molded mouthguard. Mouthguards were fabricated using 4.0-mm-thick olefin copolymer sheets utilizing a vacuum-pressure forming device, and then, 10 s of vacuum forming and 2 min of compression molding were applied. Three heating conditions were investigated. They were, defined by the degree of sagging observed at the center of the softened sheet (10, 15, or 20 mm lower than the clamp (H-10, H-15, or H-20, respectively)). The working model was trimmed to the height of 20 mm at the maxillary central incisor and 15 mm at the mesiobuccal cusp of the maxillary first molar. The temperature on both the directly heated and the non-heated surfaces of the mouthguard sheet was measured by the radiation thermometer for each condition. The thickness of mouthguard sheets after fabrication was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface), and dimensional measurements were obtained using a measuring device. Differences in the thickness due to the heating condition of the sheets were analyzed by one-way analysis of variance and Bonferroni's multiple comparison tests. The temperature difference between the heated and non-heated surfaces was highest under H-10. Sheet temperature under H-15 and H-20 was almost the same. The thickness differences were noted at incisal edge, cusp, and buccal surface, and H-15 was the greatest. This study demonstrated that heating of the sheet resulting in sag of 15 mm or more was necessary for sufficient softening of the sheet and that the mouthguard thickness decreased with increased sag. In conclusion, sag of 15 mm can be recommended as a good indicator of appropriate molding timing for this material.

  17. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  18. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real

  19. [Hair shaft abnormalities].

    PubMed

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  20. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    NASA Astrophysics Data System (ADS)

    Subbotin, A. V.; Panyukov, S. V.

    2016-08-01

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  1. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe

    NASA Astrophysics Data System (ADS)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A.; Dunstan, Dave E.; Hartley, Patrick G.; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  2. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe.

    PubMed

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A; Dunstan, Dave E; Hartley, Patrick G; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  3. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  4. Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Operational summary, history matching, and interpretations

    USGS Publications Warehouse

    Anderson, B.; Hancock, S.; Wilson, S.; Enger, C.; Collett, T.; Boswell, R.; Hunter, R.

    2011-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), and the U.S. Geological Survey, collected open-hole pressure-response data, as well as gas and water sample collection, in a gas hydrate reservoir (the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool. Four such MDT tests, ranging from six to twelve hours duration, and including a series of flow, sampling, and shut-in periods of various durations, were conducted. Locations for the testing were selected based on NMR and other log data to assure sufficient isolation from reservoir boundaries and zones of excess free water. Test stages in which pressure was reduced sufficiently to mobilize free water in the formation (yet not cause gas hydrate dissociation) produced readily interpretable pressure build-up profiles. Build-ups following larger drawdowns consistently showed gas-hydrate dissociation and gas release (as confirmed by optical fluid analyzer data), as well as progressive dampening of reservoir pressure build-up during sequential tests at a given MDT test station.History matches of one multi-stage, 12-h test (the C2 test) were accomplished using five different reservoir simulators: CMG-STARS, HydrateResSim, MH21-HYDRES, STOMP-HYD, and TOUGH. +. HYDRATE. Simulations utilized detailed information collected across the reservoir either obtained or determined from geophysical well logs, including thickness (11.3. m, 37 ft.), porosity (35%), hydrate saturation (65%), both mobile and immobile water saturations, intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 ??C). This paper will present the approach and preliminary results of the history-matching efforts, including estimates of initial formation permeability and analyses of the various unique features exhibited by the MDT results. ?? 2010 Elsevier Ltd.

  5. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  6. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  7. Abnormal grain growth in Ni-5at.%W

    NASA Astrophysics Data System (ADS)

    Witte, M.; Belde, M.; Barrales Mora, L.; de Boer, N.; Gilges, S.; Klöwer, J.; Gottstein, G.

    2012-12-01

    The growth of abnormally large grains in textured Ni-5at.%W substrates for high-temperature superconductors deteriorates the sharp texture of these materials and thus has to be avoided. Therefore the growth of abnormal grains is investigated and how it is influenced by the grain orientation and the annealing atmosphere. Texture measurements and grain growth simulations show that the grain orientation only matters so far that a high-angle grain boundary exists between an abnormally growing grain and the Cube-orientated matrix grains. The annealing atmosphere has a large influence on abnormal grain growth which is attributed to the differences in oxygen partial pressure.

  8. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  9. Pressure oscillations caused by momentum on shut in of a high rate well in a fractured formation

    SciTech Connect

    Bhatnagar, S.

    1989-06-01

    Pressure transient testing techniques are an important part of reservoir and production testing procedures. These techniques are frequently used to determine practical information about underground reservoirs such as the permeability, porosity, liquid content, reservoir and liquid discontinuities and other related data. This information is valuable in helping to analyze, improve and forecast reservoir performance. This report is concerned with developing models for pressure transient well testing in high permeability, high flow rate, naturally fractured reservoirs. In the present work, a study was made of the effects of liquid inertia in the fractures and the wellbore on the pressure response obtained during a well test. The effects of turbulent flow and multi-phase flow effects such as gravitational segregation or anisotropic porous media effects were not considered. The scope of the study was limited to studying inertial effects on the pressure response of a fractured reservoir.

  10. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  11. Thymine photoproduct formation and inactivation of intact spores of Bacillus subtilis irradiated with short wavelength UV (200-300nm) at atmospheric pressure and in vacuo

    NASA Astrophysics Data System (ADS)

    Lindberg, C.; Horneck, G.

    Vacuum exposure renders the survival of spores of Bacillus subtilis approximately five times more sensitive to ultraviolet light irradiation than exposure under atmospheric conditions. The photoproduct formation in spores irradiated under ultrahigh vacuum (UHV) conditions is compared to the photoproduct formation in spores irradiated at atmospheric pressure. Compared to irradiation at atmospheric pressure, where only the ``spore photoproduct'' 5-thyminyl-5,6-dihydrothymine (TDHT) can be detected, two additional photoproducts, known as the c,s and t,s isomers of thymine dimer (T???T) are produced in vacuo. The spectral efficiencies for photoproduct formation in spores under atmospheric and vacuum conditions are compared. Since there is no increased formation of TDHT after irradiation in vacuum, TDHT cannot be made responsible for the observed vacuum effect. ``Vacuum specific'' photoproducts may cause a synergistic response of spores to the simultaneous action of ultraviolet light (UV) and UHV. Three different mechanisms are discussed for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuum. The experiments described contribute valuable research information on the chance for survival of microorganisms in outer space.

  12. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  13. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  14. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  15. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  16. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  17. Abnormal ionization in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Juan; An, Yu

    2015-04-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  18. Abnormal hematological indices in cirrhosis

    PubMed Central

    Qamar, Amir A; Grace, Norman D

    2009-01-01

    Abnormalities in hematological indices are frequently encountered in cirrhosis. Multiple causes contribute to the occurrence of hematological abnormalities. Recent studies suggest that the presence of hematological cytopenias is associated with a poor prognosis in cirrhosis. The present article reviews the pathogenesis, incidence, prevalence, clinical significance and treatment of abnormal hematological indices in cirrhosis. PMID:19543577

  19. Effects of high-temperature pressure cooking and traditional cooking on soymilk: Protein particles formation and sensory quality.

    PubMed

    Zuo, Feng; Peng, Xingyun; Shi, Xiaodi; Guo, Shuntang

    2016-10-15

    This study focused on the effect of high-temperature pressure cooking on the sensory quality of soymilk. Soymilk was prepared by high-temperature pressure cooking (105-125°C and 0.12-0.235MPa) and traditional cooking (97°C and 0.1MPa). The size distribution and composition of protein particles and the rheological properties of soymilk were compared. Results showed that the content of protein particles and the average size of soymilk particles were higher in high-temperature pressure cooking than in traditional cooking (p<0.05). High-temperature pressure cooking affected soymilk protein denaturation and favored protein aggregation. Similar to traditional soymilk, soymilk cooked at 115°C was categorized as a Newtonian fluid but was found with increased viscosity in the rheological test. Soymilk cooked at 115°C for 10min exhibited a homogeneous, smooth, and creamy texture with a high acceptability in the sensory test. PMID:27173533

  20. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure.

    PubMed

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing

    2015-11-11

    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ. PMID:26488848

  1. Pressure increases, the formation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana

    USGS Publications Warehouse

    Lipin, B.R.

    1993-01-01

    This paper explores the hypothesis that chromate seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive ??V of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4-6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0.2-0.25 kbar, or 5-10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place. -from Author

  2. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-06-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  3. Effects of high-temperature pressure cooking and traditional cooking on soymilk: Protein particles formation and sensory quality.

    PubMed

    Zuo, Feng; Peng, Xingyun; Shi, Xiaodi; Guo, Shuntang

    2016-10-15

    This study focused on the effect of high-temperature pressure cooking on the sensory quality of soymilk. Soymilk was prepared by high-temperature pressure cooking (105-125°C and 0.12-0.235MPa) and traditional cooking (97°C and 0.1MPa). The size distribution and composition of protein particles and the rheological properties of soymilk were compared. Results showed that the content of protein particles and the average size of soymilk particles were higher in high-temperature pressure cooking than in traditional cooking (p<0.05). High-temperature pressure cooking affected soymilk protein denaturation and favored protein aggregation. Similar to traditional soymilk, soymilk cooked at 115°C was categorized as a Newtonian fluid but was found with increased viscosity in the rheological test. Soymilk cooked at 115°C for 10min exhibited a homogeneous, smooth, and creamy texture with a high acceptability in the sensory test.

  4. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure.

    PubMed

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing

    2015-11-11

    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ.

  5. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  6. The inviscid pressure field on the tip of a semi-infinite wing and its application to the formation of a tip vortex

    NASA Technical Reports Server (NTRS)

    Hall, G. F.; Shamroth, S. J.; Mcdonald, H.; Briley, W. R.

    1976-01-01

    A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface.

  7. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  8. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    PubMed Central

    Barnden, Leighton R.; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  9. Effects of brine displacement on pressure and salinity increases in a regional freshwater aquifer complex with respect to CO2 storage in saline subsurface formations

    NASA Astrophysics Data System (ADS)

    Janetz, Silvio; Jahnke, Christoph; Tillner, Elena; Kempka, Thomas; Röhmann, Lina; Kühn, Michael

    2013-04-01

    The geological storage of CO2 in deep saline aquifers may cause upward migration of displaced brines along leakage pathways such as highly-transmissive faults due to an increasing pore pressure in the storage formation. Besides the risk of CO2 leakage, the protection of the shallow freshwater reservoirs from upward migrating brine is a requirement with regard to environmental compatibility of future CCS projects. In the present study, the regional impact of pressure build-up and salinity increases in a freshwater reservoir induced by brine displacement due to CO2 injection into saline subsurface formations was investigated. A multi-layered aquifer-aquitard system of Triassic to Cenozoic age was used as a framework to ensure that realistic hydrodynamic and hydrochemical conditions were applied in this assessment. The prospective storage horizon corresponding to a Lower Triassic sandstone aquifer is located in a broad anticlinal structure at the southeastern margin of the Northeast German Basin. This intracontinental basin is not only characterised by large salinity gradients but also by hydrogeologically significant fault zones and glacial erosional structures that may act as migration pathways for saline formation water into Cenozoic freshwater reservoirs. In a first step, a detailed three-dimensional geological model was implemented. The model has a horizontal extent of 73 km (N-S) × 85 km (E-W) and a vertical extent of 2.4 km. In a second step, the geological model was transferred into a hydrogeological model by discretisation and parameterisation using data obtained from borehole measurements, field observations and geological maps. The modelling was performed using the FEFLOW FMH3® code. Long-term transport simulations with NaCl as a tracer were conducted to comprehend the natural freshwater-saltwater distribution of the regional aquifer system. Based on these initial conditions, simulations of possible upward brine migration into a freshwater aquifer complex

  10. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems.

    PubMed

    Knipfer, Thorsten; Cuneo, Italo F; Brodersen, Craig R; McElrone, Andrew J

    2016-06-01

    Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision. Our data show that embolism removal in excised stems was driven by water droplet growth and was qualitatively identical to refilling in intact plants. When stem segments were rehydrated with H2O after excision, vessel refilling occurred rapidly (<1 h). The refilling process was substantially slower when polyethylene glycol was added to the H2O source, thereby providing new support for an osmotically driven refilling mechanism. In contrast, segments not supplied with H2O showed no refilling and increased embolism formation. Dynamic changes in liquid/wall contact angles indicated that the processes of embolism removal (i.e. vessel refilling) by water influx and embolism formation by water efflux were directly linked to the activity of vessel-associated living tissue. Overall, our results emphasize that root pressure is not required as a driving force for vessel refilling, and care should be taken when performing hydraulics measurements on excised plant organs containing living vessel-associated tissue, because the vessel behavior may not be static. PMID:27208267

  11. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems1[OPEN

    PubMed Central

    Knipfer, Thorsten; Cuneo, Italo F.; Brodersen, Craig R.; McElrone, Andrew J.

    2016-01-01

    Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision. Our data show that embolism removal in excised stems was driven by water droplet growth and was qualitatively identical to refilling in intact plants. When stem segments were rehydrated with H2O after excision, vessel refilling occurred rapidly (<1 h). The refilling process was substantially slower when polyethylene glycol was added to the H2O source, thereby providing new support for an osmotically driven refilling mechanism. In contrast, segments not supplied with H2O showed no refilling and increased embolism formation. Dynamic changes in liquid/wall contact angles indicated that the processes of embolism removal (i.e. vessel refilling) by water influx and embolism formation by water efflux were directly linked to the activity of vessel-associated living tissue. Overall, our results emphasize that root pressure is not required as a driving force for vessel refilling, and care should be taken when performing hydraulics measurements on excised plant organs containing living vessel-associated tissue, because the vessel behavior may not be static. PMID:27208267

  12. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer.

    PubMed

    Albrecht, Sascha; Klopotowski, Sebastian; Derpmann, Valerie; Klee, Sonja; Brockmann, Klaus J; Stroh, Fred; Benter, Thorsten

    2014-01-01

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID. PMID:24517784

  13. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    NASA Astrophysics Data System (ADS)

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  14. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect

    Albrecht, Sascha Stroh, Fred; Klopotowski, Sebastian Derpmann, Valerie Klee, Sonja Brockmann, Klaus J. Benter, Thorsten

    2014-01-15

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  15. A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors

    NASA Astrophysics Data System (ADS)

    Brenner, Donald W.; Lu, Shijing; O'Brien, Christopher J.; Bucholz, Eric W.; Rak, Zsolt

    2015-02-01

    A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {1 1 1} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

  16. A first-principles study of pressure-induced phase transformation in a rare-earth formate framework.

    PubMed

    Bhat, Soumya S; Li, Wei; Cheetham, Anthony K; Waghmare, Umesh V; Ramamurty, Upadrasta

    2016-07-28

    Among the panoply of exciting properties that metal-organic frameworks (MOFs) exhibit, fully reversible pressure-induced phase transformations (PIPTs) are particularly interesting as they intrinsically relate to the flexibility of MOFs. Recently, a number of MOFs have been reported to exhibit this feature, which is attributed to bond rearrangement with applied pressure. However, the experimental assessment of whether a given MOF exhibits PIPT or not requires sophisticated instruments as well as detailed structural investigations. Can we capture such low pressure transformations through simulations is the question we seek to answer in this paper. For this, we have performed first-principles calculations based on the density functional theory, on a MOF, [tmenH2][Y(HCOO)4]2 (tmenH2(2+) = N,N,N',N'-tetramethylethylenediammonium). The estimated lattice constants for both the parent and product phases of the PIPT agree well with the earlier experimental results available for the same MOF with erbium. Importantly, the results confirm the observed PIPT, and thus provide theoretical corroborative evidence for the experimental findings. Our calculations offer insights into the energetics involved and reveal that the less dense phase is energetically more stable than the denser phase. From detailed analyses of the two phases, we correlate the changes in bonding and electronic structure across the PIPT with elastic and electronic conduction behavior that can be verified experimentally, to develop a deeper understanding of the PIPT in MOFs. PMID:27355370

  17. Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions

    PubMed Central

    Xiao, Hai; An, Qi; Goddard, William A.; Liu, Wei-Guang; Zybin, Sergey V.

    2013-01-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  18. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed.

  19. Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions.

    PubMed

    Xiao, Hai; An, Qi; Goddard, William A; Liu, Wei-Guang; Zybin, Sergey V

    2013-04-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  20. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed. PMID:27199083

  1. A Rare Stapes Abnormality

    PubMed Central

    Kanona, Hala; Virk, Jagdeep Singh; Kumar, Gaurav; Chawda, Sanjiv; Khalil, Sherif

    2015-01-01

    The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively. PMID:25628909

  2. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  3. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    NASA Astrophysics Data System (ADS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-10-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (GM1)-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16×105 N/m2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without GM1, the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing GM1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of GM1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of GM1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  4. Effect of total pressure on the formation and size evolution of silicon quantum dots in silicon nitride films

    SciTech Connect

    Rezgui, B.; Sibai, A.; Nychyporuk, T.; Lemiti, M.; Bremond, G.; Maestre, D.; Palais, O.

    2010-05-03

    The size of silicon quantum dots (Si QDs) embedded in silicon nitride (SiN{sub x}) has been controlled by varying the total pressure in the plasma-enhanced chemical vapor deposition (PECVD) reactor. This is evidenced by transmission electron microscopy and results in a shift in the light emission peak of the quantum dots. We show that the luminescence in our structures is attributed to the quantum confinement effect. These findings give a strong indication that the quality (density and size distribution) of Si QDs can be improved by optimizing the deposition parameters which opens a route to the fabrication of an all-Si tandem solar cell.

  5. First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105)

    SciTech Connect

    Manaa, M. Riad Kuo, I-Feng W.; Fried, Laurence E.

    2014-08-14

    We report dispersion-corrected density functional theoretical calculations of the unreacted equation of state (EOS) of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) under hydrostatic compression of up to 45 GPa. Convergence tests for k-points sampling in the Brillouin zone show that a 3 × 1 × 2 mesh is required to reproduce the X-ray crystal structure at ambient conditions, and we confirm our finding with a separate supercell calculation. Our high-pressure EOS yields a bulk modulus of 19.2 GPa, and indicates a tendency towards anisotropic compression along the b lattice vector due to molecular orientations within the lattice. We find that the electronic energy band gap decreases from a semiconductor type of 1.3 eV at 0 GPa to quasi-metallic type of 0.6 eV at 45 GPa. The extensive intermolecular hydrogen bonds involving the oxide (–NO) and dioxide (–NO{sub 2}) interactions with the amine (–NH{sub 2}) group showed enhanced interactions with increasing pressure that should be discernible in the mid IR spectral region. We do not find evidence for structural phase transitions or chemically induced transformations within the pressure range of our study. The gas phase heat of formation is calculated at the G4 level of theory to be 22.48 kcal/mol, while we obtain 25.92 kcal/mol using the ccCA-PS3 method. Density functional theory calculations of the crystal and the gas phases provided an estimate for the heat of sublimation of 32.4 kcal/mol. We thus determine the room-temperature solid heat of formation of LLM-105 to be −9.9 or −6.5 kcal/mol based on the G4 or ccCA-PS3 methods, respectively.

  6. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2

    PubMed Central

    Zhao, Feng; Wang, Yongtao; An, Haoran; Hu, Xiaosong

    2016-01-01

    ABSTRACT The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related to membrane transport, central metabolisms, DNA replication, and cell division were mainly downregulated in the VBNC cells. This caused low metabolic activity concurrently with a division arrest in cells, which may be related to VBNC state formation. Cell division repression and outer membrane overexpression were confirmed to be involved in VBNC state formation by homologous expression of z2046 coding for transcriptional repressor and ompF encoding outer membrane protein F. Upon VBNC state entry, pyruvate catabolism in the cells shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route; this led to a low level of ATP. Combating the low energy supply, ATP production in the VBNC cells was compensated by the degradation of l-serine and l-threonine, the increased AMP generation, and the enhanced electron transfer. Furthermore, tolerance of the cells with respect to HPCD-induced acid, oxidation, and high CO2 stresses was enhanced by promoting the production of ammonia and NADPH and by reducing CO2 production during VBNC state formation. Most genes and proteins related to pathogenicity were downregulated in the VBNC cells. This would decrease the cell pathogenicity, which was confirmed by adhesion assays. In conclusion, the decreased metabolic activity, repressed cell division, and enhanced survival ability in E. coli O157:H7 might cause HPCD-induced VBNC state formation. PMID:27578754

  7. Self-organized pattern formation of an atmospheric-pressure, ac glow discharge with an electrolyte electrode

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Wang, Xiaomeng; Wang, Jinmei; Yu, Bin; Liu, Hongdi; Zhang, Bin; Yang, Rui

    2015-02-01

    An atmospheric-pressure plasma sustained by an ac power supply was generated using electrolyte solution as one of the electrodes. By altering the power supply, ring-like patterns, double-ring patterns and plasma-spot patterns were observed at the electrolyte-electrode surface. Synchronous current-voltage characteristics and time-resolved images were measured. Important factors for the self-organized patterns, including the electrode gap, power, frequency and electrolyte concentration, were explored. The optical spectrum characteristics of the device were investigated. The pH of the solution after discharge was also explored and the results show that the pH of the solution is evidently reduced after the discharge, implying that acidic components are produced in the solution. This study provides an alternative discharge method for producing patterns on a water surface.

  8. Instabilities and soot formation in high-pressure, rich, iso-octane-air explosion flames. 1. Dynamical structure

    SciTech Connect

    Lockett, R.D.; Woolley, R.

    2007-12-15

    Simultaneous OH planar laser-induced fluorescence (PLIF) and Rayleigh scattering measurements have been performed on 2-bar rich iso-octane-air explosion flames obtained in the optically accessible Leeds combustion bomb. Separate shadowgraph high-speed video images have been obtained from explosion flames under similar mixture conditions. Shadowgraph images, quantitative Rayleigh images, and normalized OH concentration images have been presented for a selection of these explosion flames. Normalized experimental equilibrium OH concentrations behind the flame fronts have been compared with normalized computed equilibrium OH concentrations as a function of equivalence ratio. The ratio of superequilibrium OH concentration in the flame front to equilibrium OH concentration behind the flame front reveals the response of the flame to the thermal-diffusive instability and the resistance of the flame front to rich quenching. Burned gas temperatures have been determined from the Rayleigh scattering images in the range 1.4{<=}{phi}{<=}1.9 and are found to be in good agreement with the corresponding predicted adiabatic flame temperatures. Soot formation was observed to occur behind deep cusps associated with large-wavelength cracks occurring in the flame front for equivalence ratio {phi}{>=}1.8 (C/O{>=}0.576). The reaction time-scale for iso-octane pyrolysis to soot formation has been estimated to be approximately 7.5-10 ms. (author)

  9. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  10. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  11. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  12. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  13. Abortion for fetal abnormality.

    PubMed

    Maclean, N E

    1979-07-25

    I wish to thank Dr. Pauline Bennett for her reply (NZ Med J, 13 June). She has demonstrated well that in dealing with sensitive difficult issues such as abortion for fetal abnormality, the one thing the doctor is not recommended to do is to speak the truth] I am prompted to write this letter for 2 reasons. Firstly, the excellent letter written by Dr. A. M. Rutherford (NZ Med J, 13 June) on the subject of abortion stated, "The most disturbing feature about the whole controversy is the 'blunting of our conscience'." When the doctors are not encouraged to be honest with patients then indeed our conscience has been blunted. Secondly, I watched Holocaust last night, and cannot refrain from stating that I see frightening parallels between our liberal abortion policy and the activities of the Nazis. As I watched the "mental patients" being herded into the shed for gassing by the polite, tidy, white coated medical staff, and then heard the compassionate, sensitive, letter of the hospital authorities to the relatives of the deceased, the parallel became obvious. The mental patients were weak, defenseless, burdensome, and uneconomic; the unborn are weak, defenseless, burdensome, and uneconomic. The hospital authority's letter was acceptable in many ways, acceptable except that its words bore no relation to the truth. It is said that the "first casualty of war is the truth". Whether that war involves the Jews, or the insane, or the unborn, the statement would seem correct.

  14. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  15. Giant extracellular matrix binding protein expression in Staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure.

    PubMed

    Linnes, Jacqueline C; Ma, Hongyan; Bryers, James D

    2013-06-01

    Staphylococcus epidermidis is an opportunistic bacterium that thrives as a commensal cutaneous organism and as a vascular pathogen. The S. epidermidis extracellular matrix binding protein (Embp) has been reported to be a virulence factor involved in colonization of medical device implants and subsequent biofilm formation. Here, we characterize the expression patterns of Embp in planktonic and biofilm cultures, as well as under high osmotic stresses that typify the commensal environment of the skin. Embp expression without osmotic stress was similar for planktonic and adherent cultures. Addition of osmotic stress via NaCl caused slight increases in embp expression in planktonic cultures. However, in adherent cultures a 100-fold increase in embp expression with NaCl versus controls occurred and coincided with altered biofilm morphology. Results suggest that the central role of Embp lies in commensal skin colonization, stabilizing the cell wall against osmotic stresses, rather than as a virulence factor promoting adhesion.

  16. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2011-06-01

    Thin films of copper oxides were prepared by reactive magnetron sputtering and structural, morphological, chemical, and electronic properties were analyzed using x-ray diffraction, atomic force microscopy, in situ photoelectron spectroscopy, and electrical resistance measurements. The deposition conditions for preparation of Cu(I)-oxide (Cu2O) are identified. In addition, the interface formation between Cu2O and Sn-doped In2O3 (ITO) was studied by stepwise deposition of Cu2O onto ITO and vice versa. A type II (staggered) band alignment with a valence band offset ΔEVB = 2.1-2.6 eV depending on interface preparation is observed. The band alignment explains the nonrectifying behavior of p-Cu2O/n-ITO junctions, which have been investigated for thin film solar cells.

  17. Giant extracellular matrix binding protein expression in Staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure.

    PubMed

    Linnes, Jacqueline C; Ma, Hongyan; Bryers, James D

    2013-06-01

    Staphylococcus epidermidis is an opportunistic bacterium that thrives as a commensal cutaneous organism and as a vascular pathogen. The S. epidermidis extracellular matrix binding protein (Embp) has been reported to be a virulence factor involved in colonization of medical device implants and subsequent biofilm formation. Here, we characterize the expression patterns of Embp in planktonic and biofilm cultures, as well as under high osmotic stresses that typify the commensal environment of the skin. Embp expression without osmotic stress was similar for planktonic and adherent cultures. Addition of osmotic stress via NaCl caused slight increases in embp expression in planktonic cultures. However, in adherent cultures a 100-fold increase in embp expression with NaCl versus controls occurred and coincided with altered biofilm morphology. Results suggest that the central role of Embp lies in commensal skin colonization, stabilizing the cell wall against osmotic stresses, rather than as a virulence factor promoting adhesion. PMID:23380801

  18. Detection of abnormalities in a human gait using smart shoes

    NASA Astrophysics Data System (ADS)

    Kong, Kyoungchul; Bae, Joonbum; Tomizuka, Masayoshi

    2008-03-01

    Health monitoring systems require a means for detecting and quantifying abnormalities from measured signals. In this paper, a new method for detecting abnormalities in a human gait is proposed for an improved gait monitoring system for patients with walking problems. In the previous work, we introduced a fuzzy logic algorithm for detecting phases in a human gait based on four foot pressure sensors for each of the right and left foot. The fuzzy logic algorithm detects the gait phases smoothly and continuously, and retains all information obtained from sensors. In this paper, a higher level algorithm for detecting abnormalities in the gait phases obtained from the fuzzy logic is discussed. In the proposed algorithm, two major abnormalities are detected 1) when the sensors measure improper foot pressure patterns, and 2) when the human does not follow a natural sequence of gait phases. For mathematical realization of the algorithm, the gait phases are dealt with by a vector analysis method. The proposed detection algorithm is verified by experiments on abnormal gaits as well as normal gaits. The experiment makes use of the Smart Shoes that embeds four bladders filled with air, the pressure changes in which are detected by pressure transducers.

  19. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.

  20. Formation of carbonaceous nano-layers under high interfacial pressures during lubrication with mineral and bio-based oils

    SciTech Connect

    Baltrus, John P.

    2014-01-01

    In order to better protect steel surfaces against wear under high loads, understanding of chemical reactions between lubricants and metal at high interfacial pressures and elevated temperatures needs to be improved. Solutions at 5 to 20 wt. % of zinc di-2-ethylhexyl dithio phosphate (ZDDP) and chlorinated paraffins (CP) in inhibited paraffinic mineral oil (IPMO) and inhibited soy bean oil (ISBO) were compared on a Twist Compression Tribotester (TCT) at 200 MPa. Microscopy of wear tracks after 10 seconds tribotesting showed much smoother surface profiles than those of unworn areas. X-ray photoelectron spectroscopy (XPS) coupled with Ar-ion sputtering demonstrated that additive solutions in ISBO formed 2–3 times thicker carbon-containing nano-layers compared to IPMO. The amounts of Cl, S or P were unexpectedly low and detectable only on the top surface with less than 5 nm penetration. CP blends in IPMO formed more inorganic chlorides than those in ISBO. It can be concluded that base oils are primarily responsible for the thickness of carbonaceous nano-layers during early stages of severe boundary lubrication, while CP or ZDDP additive contributions are important, but less significant.

  1. Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Schonewill, Philip P.; Bontha, Jagannadha R.; Blanchard, Jeremy; Kurath, Dean E.; Daniel, Richard C.; Song, Chen

    2013-03-05

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated spray releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not accurately represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate of droplets suspended in a test chamber and droplet size distribution from a range of prototypic sprays. A novel test method was developed to allow measurement of sprays from small to very large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the aerosol generation rate increases with increasing the orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 μm and increases the release fraction below this droplet size.

  2. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  3. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  4. Electrocardiograph abnormalities revealed during laparoscopy.

    PubMed

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner.

  5. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Fukuya, K.; Hojo, T.

    2013-11-01

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates.

  6. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.

    PubMed

    Lang, Longqi; Wan, Junfeng; Zhang, Jing; Wang, Jie; Wang, Yan

    2015-01-01

    The hybrid granular sludge (HGS) formation and its performances on phosphorus removal were investigated in a sequencing batch airlift reactor. Under conditions of low superficial air velocity (SAV = 0.68 cm s(-1)) and relatively long settling time (15-30 min), aerobic granules appeared and coexisted with bio-flocs after 120 days operation. At the stable phase, 54% of total suspended solid (m/m) was granular sludge with the two typical sizes (D(mean) = 1.77 ± 0.33 and 0.89 ± 0.11 mm) in the reactor, where the settling velocity was 98.7 ± 12.4 and 37.8 ± 0.9 m h(-1) for the big and small granules. With progressive extension of anaerobic time from 15 to 60 min before aerobic condition per cycle during the whole experiment, the HGS system can be maintained at a high total phosphorus removal efficiency (ca. 99%) since Day-270. The phosphorus content (wt %) in biomass was respectively 9.54 ± 0.29, 7.60 ± 0.48 and 6.15 ± 0.59 for the big granules, small granules and flocs.

  7. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  8. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  9. Biliary manometry in choledochal cyst with abnormal choledochopancreatico ductal junction.

    PubMed

    Iwai, N; Tokiwa, K; Tsuto, T; Yanagihara, J; Takahashi, T

    1986-10-01

    Intraoperative manometry of the biliary tract and measurement of amylase levels in choledochal cysts were performed in seven patients, aged 14 months to 5 years, with choledochal cysts, in an investigation of the pathophysiology of the biliary tract. An abnormal choledochopancreatico ductal junction was observed in these seven patients by preoperative endoscopic retrograde cholangiopancreaticography (ERCP) or intraoperative cholangiograms. All six patients examined showed a high amylase level in the choledochal cyst (5,450 to 46,500 Somogyi Units). The intraoperative manometry of the biliary tract showed that a remarkable high pressure zone as was found in the area of sphincter of Oddi was not found in the area of abnormal choledochopancreatico ductal junction. The pressure recordings also demonstrated that the sphincter of Oddi pressure in the patient with choledochal cyst was increased by gastrin stimulation. On the contrary, no pressure reaction to gastrin or secretin was found in the area of abnormal choledochopancreatic ductal junction. From these results it seems that free reflux of pancreatic juice into the biliary system occurs, and the reflux stream depends upon the pressure gradient between pancreatic ductal pressure and common bile duct pressure because of the lack of a sphincter function at the choledochopancreatico ductal junction.

  10. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  11. Features of formation of nanocrystalline state in internal- oxidized V-Cr-Zr-W and V-Mo-Zr system alloys during deformation by torsion under pressure

    NASA Astrophysics Data System (ADS)

    Smirnov, I. V.; Ditenberg, I. A.; Grinayev, K. V.; Radishevsky, V. L.

    2016-02-01

    The results of investigation of features of nanostructural state formed during deformation by torsion under pressure in high-strength vanadium V-Cr-Zr-W and V-Mo-Zr systems alloys are presented. It was found that after deformation at number of revolutions N = 1, samples are characterized by high anisotropy of defect and grain structure. Inside grains, limited by high-angle boundaries, the formation of two-level structure states was revealed: fragmentation of the above grains on nanofragments from 5 to 20 nm in size with a dipole nature of low-angle misorientations and high (hundreds of degrees per micron) elastic curvature of crystal lattice. Formation of the above structural states leads to a 3-fold increase in microhardness values. Further increase in deformation degree leads to fracture of samples of vanadium alloy V-Mo-Zr with a high volumetric content of fine-disperse oxide phase. At the same time V-Cr-Zr-W-system alloy with a lower concentration of Zr and, as a result, a lower volume fraction of fine particles remains ductile.

  12. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers.

    PubMed

    Zhu, Bing; Traini, Daniela; Chan, Hak-Kim; Young, Paul M

    2013-11-01

    The aerosol performance of budesonide solution-based pressurized metered-dose inhalers (HFA 134a), with various amounts of ethanol (5-30%, w/w) as co-solvents, was evaluated using impaction and laser diffraction techniques. With the increase of ethanol concentration in a formulation, the mass median aerodynamic diameter was increased and the fine particle fraction showed a significant decline. Although data obtained from laser diffraction oversized that of the impaction measurements, good correlations were established between the two sets of data. Particles emitted from all the five formulations in this study were amorphous, with two different types of morphology - the majority had a smooth surface with a solid core and the others were internally porous with coral-like surface morphology. The addition of ethanol in the formulation decreased the percentage of such irregular-shape particles from 52% to 2.5% approximately, when the ethanol concentration was increased from 5% to 30%, respectively. A hypothesis regarding the possible particle formation mechanisms was also established. Due to the difference of droplet composition from the designed formulation during the atomization process, the two types of particle may have gone through distinct drying processes: both droplets will have a very short period of co-evaporation, droplets with less ethanol may be dried during such period; while the droplets containing more ethanol will undergo an extra condensation stage before the final particle formation.

  13. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers.

    PubMed

    Zhu, Bing; Traini, Daniela; Chan, Hak-Kim; Young, Paul M

    2013-11-01

    The aerosol performance of budesonide solution-based pressurized metered-dose inhalers (HFA 134a), with various amounts of ethanol (5-30%, w/w) as co-solvents, was evaluated using impaction and laser diffraction techniques. With the increase of ethanol concentration in a formulation, the mass median aerodynamic diameter was increased and the fine particle fraction showed a significant decline. Although data obtained from laser diffraction oversized that of the impaction measurements, good correlations were established between the two sets of data. Particles emitted from all the five formulations in this study were amorphous, with two different types of morphology - the majority had a smooth surface with a solid core and the others were internally porous with coral-like surface morphology. The addition of ethanol in the formulation decreased the percentage of such irregular-shape particles from 52% to 2.5% approximately, when the ethanol concentration was increased from 5% to 30%, respectively. A hypothesis regarding the possible particle formation mechanisms was also established. Due to the difference of droplet composition from the designed formulation during the atomization process, the two types of particle may have gone through distinct drying processes: both droplets will have a very short period of co-evaporation, droplets with less ethanol may be dried during such period; while the droplets containing more ethanol will undergo an extra condensation stage before the final particle formation. PMID:24087854

  14. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  15. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo

    2016-04-01

    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle "marble cake". Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  16. Resolution-independent modelling of environmental effects in semi-analytic models of galaxy formation that include ram-pressure stripping of both hot and cold gas

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Kang, Xi; Kauffmann, Guinevere; Fu, Jian

    2016-05-01

    The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al. and Fu et al. semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes (log Mhalo = [14, 15]). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fixed halo mass. At fixed halo mass, the quenched fraction of satellites does not depend on stellar mass in the models, but increases strongly with mass in the data. In addition to the overprediction of low-mass passive satellites, the models also predict too few quenched central galaxies with low stellar masses, so the problems in reproducing quenched fractions are not purely of environmental origin. Further improvements to the treatment of the gas-physical processes regulating the star formation histories of galaxies are clearly necessary to resolve these problems.

  17. Kidney transplantation in abnormal bladder

    PubMed Central

    Mishra, Shashi K.; Muthu, V.; Rajapurkar, Mohan M.; Desai, Mahesh R.

    2007-01-01

    Structural urologic abnormalities resulting in dysfunctional lower urinary tract leading to end stage renal disease may constitute 15% patients in the adult population and up to 20-30% in the pediatric population. A patient with an abnormal bladder, who is approaching end stage renal disease, needs careful evaluation of the lower urinary tract to plan the most satisfactory technical approach to the transplant procedure. Past experience of different authors can give an insight into the management and outcome of these patients. This review revisits the current literature available on transplantation in abnormal bladder and summarizes the clinical approach towards handling this group of difficult transplant patients. We add on our experience as we discuss the various issues. The outcome of renal transplant in abnormal bladder is not adversely affected when done in a reconstructed bladder. Correct preoperative evaluation, certain technical modification during transplant and postoperative care is mandatory to avoid complications. Knowledge of the abnormal bladder should allow successful transplantation with good outcome. PMID:19718334

  18. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  19. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817

  20. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed.

  1. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  2. NHANES III: influence of race on GFR thresholds and detection of metabolic abnormalities.

    PubMed

    Foley, Robert N; Wang, Changchun; Ishani, Areef; Collins, Allan J

    2007-09-01

    Whether the creatinine-based glomerular filtration rate (GFR) thresholds used to define chronic kidney disease (CKD) identify metabolic abnormalities similarly in minority and nonminority populations is unknown. We addressed this question among adult participants in the Third National Health and Nutrition Examination Survey (NHANES III) (n = 15,837). GFR was estimated from serum creatinine values and metabolic abnormalities were defined by 5th or 95th percentile values. After adjustment for age, demographic characteristics, and GFR, black participants were significantly more likely than white participants to have abnormal levels of systolic and diastolic blood pressure, hemoglobin, phosphorus, and uric acid. Hispanic subjects were significantly more likely to have abnormal levels of systolic blood pressure, hemoglobin, bicarbonate, and phosphorus. Among participants with GFR < 60 mL/min per 1.73 m(2), black participants were significantly more likely to have abnormal levels of systolic and diastolic blood pressure, hemoglobin, and uric acid; Hispanic subjects were significantly more likely to have abnormal systolic blood pressure levels. Metabolic abnormalities were more common in minority populations, and low GFR appeared to have a multiplicative effect. Defining CKD using a single GFR threshold may be disadvantageous for minority populations because metabolic abnormalities are present at higher levels of GFR.

  3. Electrocardiograph abnormalities in intracerebral hemorrhage.

    PubMed

    Takeuchi, Satoru; Nagatani, Kimihiro; Otani, Naoki; Wada, Kojiro; Mori, Kentaro

    2015-12-01

    This study investigated the prevalence and type of electrocardiography (ECG) abnormalities, and their possible association with the clinical/radiological findings in 118 consecutive patients with non-traumatic, non-neoplastic intracerebral hemorrhage (ICH). ECG frequently demonstrates abnormalities in patients with ischemic stroke and subarachnoid hemorrhage, but little is known of ECG changes in ICH patients. Clinical and radiological information was retrospectively reviewed. ECG recordings that were obtained within 24 hours of the initial hemorrhage were analyzed. Sixty-six patients (56%) had one or more ECG abnormalities. The most frequent was ST depression (24%), followed by left ventricular hypertrophy (20%), corrected QT interval (QTc) prolongation (19%), and T wave inversion (19%). The logistic regression analysis demonstrated the following: insular involvement was an independent predictive factor of ST depression (p<0.001; odds ratio OR 10.18; 95% confidence interval [CI] 2.84-36.57); insular involvement (p<0.001; OR 23.98; 95% CI 4.91-117.11) and presence of intraventricular hemorrhage (p<0.001; OR 8.72; 95% CI 2.69-28.29) were independent predictive factors of QTc prolongation; deep hematoma location (p<0.001; OR 19.12; 95% CI 3.82-95.81) and hematoma volume >30 ml (p=0.001; OR 6.58; 95% CI 2.11-20.46) were independent predictive factors of T wave inversion. We demonstrate associations between ECG abnormalities and detailed characteristics of ICH.

  4. High prevalence of thyroid ultrasonographic abnormalities in primary aldosteronism.

    PubMed

    Armanini, Decio; Nacamulli, Davide; Scaroni, Carla; Lumachi, Franco; Selice, Riccardo; Fiore, Cristina; Favia, Gennaro; Mantero, Franco

    2003-11-01

    The study was performed to evaluate the prevalence of thyroid abnormalities detected by ultrasonography and, in particular, of multinodular nontoxic goiter in primary aldosteronism. We analyzed 80 consecutive of patients with primary hyperaldosteronism (40 with unilateral adenoma and 40 with idiopathic hyperaldosteronism) and 80 normotensive healthy controls, comparable for age, sex, iodine intake, and geographical area. Blood pressure, thyroid palpation, thyroid function, and ultrasonography were evaluated. The prevalence of ultrasonographic thyroid abnormalities was 60% in primary aldosteronism and 27% in controls (p < 0.0001). There was a statistically significant difference in prevalence of these abnormalities in unilateral adenoma and idiopathic hyperaldosteronism with respect to controls (p < 0.05 and p < 0.0001, respectively). The prevalence of multinodular nontoxic goiter in idiopathic hyperaldosteronism was higher than in controls (p < 0.001) and, in particular, in female patients. From these data it seems to be worth considering the existence of primary hyperaldosteronism in patients with multinodular goiter and hypertension. PMID:14665720

  5. [Transient abnormal Q-waves].

    PubMed

    Godballe, C; Hoeck, H C; Sørensen, J A

    1990-01-01

    We present a case of transient abnormal Q-waves (TAQ) and a review of the literature. TAQ are defined as abnormal Q-waves, which disappear within ten days. They are most often seen in patients with ischemic heart disease (IHD) but are also seen in other conditions. Brief episodes of myocardial ischemia giving rise to reversible biochemical and ultrastructural myocardial changes, resulting in transient ECG changes, provide an accepted theory for the pathogenesis of TAO. Investigations have shown that the occurrence of exercise-induced TAQ may be a symptom of IHD. It is impossible to distinguish TAQ from Q-waves induced by myocardial infarction. Appearance of TAQ during exercise-testing frequently indicates IHD. PMID:2301045

  6. [Chromosome abnormalities in human cancer].

    PubMed

    Salamanca-Gómez, F

    1995-01-01

    Recent investigation on the presence of chromosome abnormalities in neoplasias has allowed outstanding advances in the knowledge of malignant transformation mechanisms and important applications in the clinical diagnosis and prognosis of leukaemias, lymphomas and solid tumors. The purpose of the present paper is to discuss the most relevant cytogenetic aberrations, some of them described at the Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social, and to correlate these abnormalities with recent achievements in the knowledge of oncogenes, suppressor genes or antioncogenes, their chromosome localization, and their mutations in human neoplasia; as well as their perspectives in prevention and treatment of cancer that such findings permit to anticipate.

  7. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought induces xylem embolism formation, but grapevines can refill blocked conduits to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analyzed in vivo embolism formation and repair using x-ray microtomog...

  8. Ultrasound screening for fetal abnormalities.

    PubMed

    Chitty, L S

    1995-12-01

    Ultrasound screening for fetal abnormalities is increasingly becoming part of routine antenatal care in Europe and the UK. However, there has been very little formal evaluation of this practice. In this article reports of routine ultrasound screening are reviewed and the advantages and disadvantages discussed. The majority of routine anomaly scanning is done in the second trimester but there may be a case for screening at other times in pregnancy and alternative anomaly screening policies are discussed. PMID:8710765

  9. [Endocrine abnormalities in HIV infections].

    PubMed

    Verges, B; Chavanet, P; Desgres, J; Kisterman, J P; Waldner, A; Vaillant, G; Portier, H; Brun, J M; Putelat, R

    The finding of endocrine gland lesions at pathological examination in AIDS and reports of several cases of endocrine disease in patients with this syndrome have prompted us to study endocrine functions in 63 patients (51 men, 12 women) with HIV-1 infection. According to the Center for Disease Control (CDC) classification system, 13 of these patients were stage CDC II, 27 stage CDC III and 23 stage CDC IV. We explored the adrenocortical function (ACTH, immediate tetracosactrin test) and the thyroid function (free T3 and T4 levels, TRH on TSH test) in all 63 patients. The hypothalamic-pituitary-gonadal axis (testosterone levels, LHRH test) and prolactin secretion (THR test) were explored in the 51 men. The results obtained showed early peripheral testicular insufficiency at stage CDC II and early pituitary gland abnormalities with hypersecretion of ACTH and prolactin also at stage CDC II. On the other hand, adrenocortical and pituitary abnormalities were not frequently found. The physiopathology of the endocrine abnormalities observed in HIV-1-infected patients remains unclear, but one may suspect that it involves interleukin-1 since this protein factor has recently been shown to stimulate the corticotropin-releasing hormone secretion and to act directly on the glycoprotein capsule of the virus (gp 120) whose structure is similar to that of some neurohormones.

  10. Insular and caudate lesions release abnormal yawning in stroke patients.

    PubMed

    Krestel, Heinz; Weisstanner, Christian; Hess, Christian W; Bassetti, Claudio L; Nirkko, Arto; Wiest, Roland

    2015-03-01

    Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.

  11. PHYSICAL PROPERTIES OF DENSE CORES IN THE {rho} OPHIUCHI MAIN CLOUD AND A SIGNIFICANT ROLE OF EXTERNAL PRESSURES IN CLUSTERED STAR FORMATION

    SciTech Connect

    Maruta, Hajime; Nishi, Ryoichi; Nakamura, Fumitaka; Ikeda, Norio; Kitamura, Yoshimi

    2010-05-01

    Using the archive data of the H{sup 13}CO{sup +} (J = 1-0) line emission taken with the Nobeyama 45 m radio telescope with a spatial resolution of {approx} 0.01 pc, we have identified 68 dense cores in the central dense region of the {rho} Ophiuchi main cloud. The H{sup 13}CO{sup +} data also indicate that the fractional abundance of H{sup 13}CO{sup +} relative to H{sub 2} is roughly inversely proportional to the square root of the H{sub 2} column density with a mean of 1.72 x 10{sup -11}. The mean radius, FWHM line width, and LTE mass of the identified cores are estimated to be 0.045 {+-} 0.011 pc, 0.49 {+-} 0.14 km s{sup -1}, and 3.4 {+-} 3.6 M{sub sun}, respectively. The majority of the identified cores have subsonic internal motions. The virial ratio, the ratio of the virial mass to the LTE mass, tends to decrease with increasing LTE mass and about 60% of the cores have virial ratios smaller than 2, indicating that these cores are not transient structures but self-gravitating. The detailed virial analysis suggests that the surface pressure often dominates over the self-gravity and thus plays a crucial role in regulating core formation and evolution. By comparing the {rho} Oph cores with those in the Orion A molecular cloud observed with the same telescope, we found that the statistical properties of the core physical quantities are similar between the two clouds if the effect of the different spatial resolutions is corrected. The line widths of the {rho} Oph cores appear to be nearly independent of the core radii over the range of 0.01-0.1 pc and deviate upward from the Heyer and Brunt relation. This may be evidence that turbulent motions are driven by protostellar outflows in the cluster environment.

  12. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass

    NASA Astrophysics Data System (ADS)

    Halama, Maximilian; Swanner, Elizabeth D.; Konhauser, Kurt O.; Kappler, Andreas

    2016-09-01

    Anoxygenic phototrophic Fe(II)-oxidizing bacteria potentially contributed to the deposition of Archean banded iron formations (BIFs), before the evolution of cyanobacterially-generated molecular oxygen (O2), by using sunlight to oxidize aqueous Fe(II) and precipitate Fe(III) (oxyhydr)oxides. Once deposited at the seafloor, diagenetic reduction of the Fe(III) (oxyhydr)oxides by heterotrophic bacteria produced secondary Fe(II)-bearing minerals, such as siderite (FeCO3) and magnetite (Fe3O4), via the oxidation of microbial organic carbon (i.e., cellular biomass). During deeper burial at temperatures above the threshold for life, thermochemical Fe(III) reduction has the potential to form BIF-like minerals. However, the role of thermochemical Fe(III) reduction of primary BIF minerals during metamorphism, and its impact on mineralogy and geochemical signatures in BIFs, is poorly understood. Consequently, we simulated the metamorphism of the precursor and diagenetic iron-rich minerals (ferrihydrite, goethite, hematite) at low-grade metamorphic conditions (170 °C, 1.2 kbar) for 14 days by using (1) mixtures of abiotically synthesized Fe(III) minerals and either microbial biomass or glucose as a proxy for biomass, and (2) using biogenic minerals formed by phototrophic Fe(II)-oxidizing bacteria. Mössbauer spectroscopy and μXRD showed that thermochemical magnetite formation was limited to samples containing ferrihydrite and glucose, or goethite and glucose. No magnetite was formed from Fe(III) minerals when microbial biomass was present as the carbon and electron sources for thermochemical Fe(III) reduction. This could be due to biomass-derived organic molecules binding to the mineral surfaces and preventing solid-state conversion to magnetite. Mössbauer spectroscopy revealed siderite contents of up to 17% after only 14 days of incubation at elevated temperature and pressure for all samples with synthetic Fe(III) minerals and biomass, whereas 6% of the initial Fe(III) was

  13. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La{sub 0.70}Sr{sub 0.30}Mn{sub O2.85}

    SciTech Connect

    Trukhanov, S. V. Trukhanov, A. V.; Vasiliev, A. N.; Szymczak, H.

    2010-08-15

    The magnetic and thermal properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite are investigated in wide temperature (4-350 K) range, including under hydrostatic pressure (0-1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T{sub f} of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value {approx}4.5 K/GPa, while the magnetic ordering T{sub MO} temperature dependence is characterized by derivative value {approx}13 K/GPa. The volume fraction of sample having ferromagnetic state is V{sub fer} {approx} 13% and it increases under a pressure of 1.1 GPa by {Delta}V{sub fer} {approx} 6%. Intensification of ferromagnetic properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.

  14. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage.

  15. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions.

  16. [Erythrocyte membrane abnormalities - hereditary elliptocytosis].

    PubMed

    Kvezereli-Kopadze, M; Kvezereli-Kopadze, A; Mtvarelidze, Z; Bubuteishvili, A

    2015-04-01

    This study was designed to investigate the 4 year old boy with Hereditary Elliptocitosis (HE). The diagnosis of this rare hemolytic anemia was based on detailed family history (positive in the 4-th generation), physical examination and Para-clinical data analyses. The vast majority of patients with HE are asymptomatic, severe forms are rare. The most important is examination of blood films, which is helpful to detect the morphology abnormalities of red cells. In case of HE a different approach is required. Positive family history and series of investigations should be conducted to determine the HE.

  17. Abnormalities of the erythrocyte membrane.

    PubMed

    Gallagher, Patrick G

    2013-12-01

    Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy.

  18. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  19. Medical management of abnormal pregnancy.

    PubMed

    Ratnam, S S; Prasad, R N

    1990-06-01

    Medical termination of abnormal pregnancy requires specific techniques since some conditions make therapy more effective, e.g., missed abortion intrauterine death and molar pregnancy, and others less so, e.g. anencephalic pregnancy. In all cases it is best to terminate the pregnancy as soon as possible to reduce anguish and risks of complications such as consumptive coagulopathy. Oxytocin is not consistently effective, but intraamniotic rivanol has oxytocic properties, and prostaglandins (PGs) are effective by several routes. Surgical methods are more popular in Japan and the US. A diagnostic flow chart is included and described. For missed abortion and fetal death vacuum aspiration or dilatation and evacuation are appropriate for early pregnancy, or PGs are used for later pregnancy, unless there are medical contraindications. Anencephalic pregnancy, usually diagnoses in 2nd or 3rd trimester, is resistant to medical therapy and must often be terminated by cesarean section. Molar pregnancy can be managed with vacuum aspiration at any length of gestation, but must be completed by curettage. Intraamniotic PGs are not advised for mole or fetal death. PG analogs can be administered intramuscularly, or vaginally in gel form. Other types of abnormal pregnancy that can be managed with PGs are spina bifida, hydrocephalus, hydrops fetalis, Dandy-Walker syndrome and Down's syndrome. Tubal pregnancy can be evacuated with intratubally administered PGs under laparoscopic control, thereby preserving tubal integrity. PMID:2225605

  20. Abnormal polarity of thunderclouds grown from negatively charged air.

    PubMed

    Moore, C B; Vonnegut, B; Rolan, T D; Cobb, J W; Holden, D N; Hignight, R T; McWilliams, S M; Cadwell, G W

    1986-09-26

    Experiments were carried out in New Mexico to determine whether the electrification processes that lead to the formation of lightning in clouds are influenced by the polarity of the charges in the air from which the clouds grow. The normal, positive space charge in the sub-cloud air was reversed by negative charge released from an electrified wire, suspended across a 2-kilometer-wide canyon. On more than four occasions when the clouds over the wire grew and became electrified, they were of abnormal polarity with dominant positive charges instead of the usual negative charges in the lower part of the cloud. The formation of these abnormally electrified clouds suggests both that the electrification process in thunderclouds can be initiated and that its polarity may be determined by the small charges that are present in the atmosphere.

  1. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    NASA Astrophysics Data System (ADS)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  2. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  3. Formation of Mg[sub 3]BN[sub 3] under high pressures and temperatures in the system Mg[sub 3]N[sub 2]-hBN

    SciTech Connect

    Lorenz, H. ); Orgzall, I. ); Hinze, E. ); Kremmler, J. )

    1993-04-15

    Magnesium boron nitride is a well known and often applied catalyst for the transformation from hexagonal boron nitride (hBN) to its cubic polymorph cBN. Recently published results of structural investigations contributed to a better understanding of the catalytic properties of this compound and its high pressure-high temperature phase diagram. Its normal pressure crystal structure was analyzed by x-ray powder methods and structural refinements by Hiraguchi et al. while several phase transitions to high pressure-high temperature polymorphs were observed in situ using a multi-anvil high pressure device. The Mg[sub 3]BN[sub 3] starting material for these experiments was prepared by chemical procedures. But as already was pointed out Mg[sub 3]BN[sub 3] also arises as an intermediate phase in the Mg[sub 3]N[sub 2]-BN system at high pressures and temperatures. therefore, in the following, the specific formation conditions in this system shall be investigated and, especially, relation to the phase behavior of magnesium nitride will be examined.

  4. Adiposity and Insufficient MVPA Predict Cardiometabolic Abnormalities in Adults

    PubMed Central

    Peterson, Mark D.; Snih, Soham Al; Stoddard, Jonathan; McClain, James; Lee, IMin

    2014-01-01

    Objectives To compare the extent to which different combinations of objectively measured sedentary behavior (SB) and physical activity contribute to cardiometabolic health. Design and Methods A population representative sample of 5,268 individuals, aged 20-85 years, was included from the combined 2003-2006 NHANES datasets. Activity categories were created on the combined basis of objectively measured SB and moderate-to-vigorous physical activity (MVPA) tertiles. Cardiometabolic abnormalities included elevated blood pressure, levels of triglycerides, fasting plasma glucose, C-reactive protein, homeostasis model assessment (HOMA) of insulin resistance value, and low HDL-cholesterol level. BMI, and DXA-derived percent body fat (% BF) and android adiposity were also compared across groups. Predictors for a metabolically abnormal phenotype (≥3 cardiometabolic abnormalities, or insulin resistance) were determined. Results Adults with the least SB and greatest MVPA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest MVPA were older and had elevated risk. Time spent in SB was not a predictor of the metabolically abnormal phenotype when MVPA was accounted for. Adults with the highest MVPA across SB tertiles did not differ markedly in prevalence of obesity, adiposity, and/or serum cardiometabolic risk factors; however, less MVPA was associated with substantial elevations of obesity and cardiometabolic risk. Android adiposity (per kilogram) was independently associated with the metabolically abnormal phenotype in both men (OR: 2.36 [95% CI, 1.76-3.17], p<0.001) and women (OR: 2.00 [95% CI, 1.63-2.45], p<0.001). Among women, greater SB, and less lifestyle moderate activity and MVPA were each independently associated with the metabolically abnormal phenotype, whereas only less MVPA was associated with it in men. Conclusions MVPA is a strong predictor of cardiometabolic health among adults, independent of time spent in SB. PMID

  5. Method of fracturing a geological formation

    DOEpatents

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  6. Pressure-Induced Amorphization of Small Pore Zeolites—the Role of Cation-H2O Topology and Anti-glass Formation

    PubMed Central

    Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A.; Vogt, Thomas; Lee, Yongjae

    2015-01-01

    Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li+, Na+, K+, Rb+, Cs+ allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced—this opens a new way to form anti-glass structures. PMID:26455345

  7. Adults with Chromosome 18 Abnormalities.

    PubMed

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child.

  8. Submarine rescue decompression procedure from hyperbaric exposures up to 6 bar of absolute pressure in man: effects on bubble formation and pulmonary function.

    PubMed

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  9. Submarine Rescue Decompression Procedure from Hyperbaric Exposures up to 6 Bar of Absolute Pressure in Man: Effects on Bubble Formation and Pulmonary Function

    PubMed Central

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  10. Submarine rescue decompression procedure from hyperbaric exposures up to 6 bar of absolute pressure in man: effects on bubble formation and pulmonary function.

    PubMed

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  11. Pressure dependence of the irreversibility line in Bi2Sr2CaCu2O(8+delta): role of anisotropy in flux-line formation

    PubMed

    Raphael; Reeves; Skelton; Kendziora

    2000-02-14

    One of the important problems of high-temperature superconductivity is to understand and ultimately to control fluxoid motion. Here we present data on the pressure dependence of the irreversibility line measured up to 2.5 GPa. We observe that the application of pressure changes the interplanar coupling by decreasing the c-axis length, without significantly disturbing the intraplanar superconductivity. Our results directly show the relationship between lattice spacing and the irreversibility line in Bi(2)Sr(2)CaCu(2)O(8+delta), and demonstrate the potential for a dramatic reduction in the flux motion.

  12. The role of nonlocal electron energy transport in the formation of spatial distributions of the two-chamber plasma density of ICP discharge at change of gas pressure

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Serditov, Konstantin

    2012-10-01

    2D simulations of the two-chamber ICP source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber is performed. Depending on pressure two main scenarios of plasma density and its spatial distribution behavior were identified. The first case of higher pressure is characterized by localization of plasma in small driver chamber where power is deposed and corresponds to small thermal conductivity length compared with diffusion length. The second case of lower pressure represents diffusion chamber as a main source of plasma with maximum of electron density with greater thermal conductivity length compared with diffusion length. The differences in spatial distribution are caused by local or non-local behavior of energy transport in discharge volume due to the different characteristic scale of heat transfer with electronic conductivity. As a result changing of geometrics and gas pressure gives the possibility to set ratio between diffusion and thermal conductivity characteristic lengths. Thus, one can control heat input and, in turn, obtain several types of plasma profiles.

  13. Ultrafine aerosol size distributions and sulfuric acid vapor pressures: Implications for new particle formation in the atmosphere. Year 2 progress report

    SciTech Connect

    McMurry, P.H.

    1993-07-01

    This project has two components: (1) measurement of H{sub 2}SO{sub 4} vapor pressures in air under temperature/relative humidity conditions similar to atmospheric, and (2) measurement of ultrafine aerosol size distributions. During Year 2, more effort was put on size distribution measurements. 4 figs.

  14. Association of Traditional Cardiovascular Risk Factors With Development of Major and Minor Electrocardiographic Abnormalities: A Systematic Review.

    PubMed

    Healy, Caroline F; Lloyd-Jones, Donald M

    2016-01-01

    Electrocardiographic (ECG) abnormalities are prevalent in middle aged and are associated with risk of adverse cardiovascular events. It is unclear whether and to what extent traditional risk factors are associated with the development of ECG abnormalities. To determine whether traditional cardiovascular risk factors are associated with the presence or development of ECG abnormalities, we performed a systematic review of the English-language literature for cross-sectional and prospective studies examining associations between traditional cardiovascular risk factors and ECG abnormalities, including major and minor ECG abnormalities, isolated nonspecific ST-segment and T-wave abnormalities, other ST-segment and T-wave abnormalities, QT interval, Q waves, and QRS duration. Of the 202 papers initially identified, 19 were eligible for inclusion. We examined data analyzing risk factor associations with ECG abnormalities in individuals free of cardiovascular disease. For composite major or minor ECG abnormalities, black race, older age, higher blood pressure, use of antihypertensive medications, higher body mass index, diabetes, smoking, and evidence of left ventricular hypertrophy or higher left ventricular mass are the factors most commonly associated with prevalence and incidence. Risk factor associations differ somewhat according to types of specific ECG abnormalities. Because major and minor ECG abnormalities have important and independent prognostic significance, understanding the groups at risk for their development may inform prevention strategies focused on modifiable risk factors to reduce the burden of ECG abnormalities, which may in turn promote CVD prevention. PMID:27054606

  15. High-pressure transitions and thermochemistry of MGeO3 ( M=Mg, Zn and Sr) and Sr-silicates: systematics in enthalpies of formation of A2+B4+O3 perovskites

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Kojitani, H.; Yusa, H.; Yamamoto, R.; Kido, M.; Koyama, K.

    2005-12-01

    Phase transitions in MgGeO3 and ZnGeO3 were examined up to 26 GPa and 2,073 K to determine ilmenite-perovskite transition boundaries. In both systems, the perovskite phases were converted to lithium niobate structure on release of pressure. The ilmenite-perovskite boundaries have negative slopes and are expressed as P(GPa)=38.4-0.0082 T(K) and P(GPa)=27.4-0.0032 T(K), respectively, for MgGeO3 and ZnGeO3. Enthalpies of SrGeO3 polymorphs were measured by high-temperature calorimetry. The enthalpies of SrGeO3 pseudowollasonite-walstromite and walstromite-perovskite transitions at 298 K were determined to be 6.0±8.6 and 48.9±5.8 kJ/mol, respectively. The calculated transition boundaries of SrGeO3, using the measured enthalpy data, were consistent with the boundaries determined by previous high-pressure experiments. Enthalpy of formation (Δ H f°) of SrGeO3 perovskite from the constituent oxides at 298 K was determined to be -73.6±5.6 kJ/mol by calorimetric measurements. Thermodynamic analysis of the ilmenite-perovskite transition boundaries in MgGeO3 and ZnGeO3 and the boundary of formation of SrSiO3 perovskite provided transition enthalpies that were used to estimate enthalpies of formation of the perovskites. The Δ H f° of MgGeO3, ZnGeO3 and SrSiO3 perovskites from constituent oxides were 10.2±4.5, 33.8±7.2 and -3.0±2.2 kJ/mol, respectively. The present data on enthalpies of formation of the above high-pressure perovskites were combined with published data for A2+B4+O3 perovskites stable at both atmospheric and high pressures to explore the relationship between Δ H f° and ionic radii of eightfold coordinated A2+ ( R A) and sixfold coordinated B4+ ( R B) cations. The results show that enthalpy of formation of A2+B4+O3 perovskite increases with decreasing R A and R B. The relationship between the enthalpy of formation and tolerance factor ( t = {left( {R_{{text{A}}} + R_{{text{o}}} } right)}/{sqrt {text{2}} }{left( {R_{{text{B}}} + R_{{text{o}}} } right)}, R

  16. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  17. Analysis of the fluid-pressure responses of the Rustler Formation at H-16 to the construction of the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site

    SciTech Connect

    Alvis, J.D.; Saulnier, G.J. Jr.

    1990-03-01

    The construction of the air-intake shaft (AIS) at the Waste Isolation Pilot Plant (WIPP) site in 1987 and 1988 initiated fluid-pressure responses which were used to estimate the hydrologic properties of the Culebra Dolomite, Magenta Dolomite, and Forty-niner Members of the Rustler Formation. Fluid-pressure responses were monitored with downhole transducers. The AIS pilot hole,remained open and draining to the underground facility for about three months. The pilot hole was then upreamed from the underground facility to land surface. The pilot hole was drilled and reamed using a bentonite-mud-based brine as a drilling fluid. The well-test simulator GTFM was used to analyze the fluid-pressure responses of the Culebra and Magenta dolomites and the Forty-niner claystone. A cement-invasion skin was used in simulating the Culebra dolomite's drilling/reaming period. A mud-filter-cake skin was used to create reduced wellbore pressures in simulating the pilot-hole drilling/reaming periods of the Magenta dolomite and Forty-niner claystone. 26 refs., 70 figs., 10 tabs.

  18. Phenotypic abnormalities: terminology and classification.

    PubMed

    Merks, Johannes H M; van Karnebeek, Clara D M; Caron, Hubert N; Hennekam, Raoul C M

    2003-12-15

    Clinical morphology has proved essential for the successful delineation of hundreds of syndromes and as a powerful instrument for detecting (candidate) genes (Gorlin et al. [2001]; Syndromes of the Head and Neck; Oxford: Oxford University Press. 1 p]. The major approach to reach this has been careful clinical evaluations of patients, focused on congenital anomalies. A similar careful physical examination performed in patients, who have been treated for childhood cancer, may allow detection of concurrent patterns of anomalies and provide clues for causative genes. In the past, several studies were performed describing the prevalence of anomalies in patients with cancer. However, in most studies, it was not possible to indicate the biologic relevance of the recorded anomalies, or to judge their relative importance. Are the detected anomalies common variants, and should they thus be regarded as normal, or are they minor anomalies or true abnormalities, indicating a possible developmental cause? Classification of items in the categories of common variants (disturbances of phenogenesis with a prevalence >4%), minor anomalies (disturbances of phenogenesis with a prevalence abnormal physical findings by a nomenclature for errors of morphogenesis detectable on surface examination, and secondly a uniform classification system. This should allow investigators to evaluate systematically the presence of patterns in phenotypic anomalies, in the general population, and in patients with various disorders, suspected to be a developmental anomaly. Also

  19. Marfan syndrome: abnormal alpha 2 chain in type I collagen.

    PubMed Central

    Byers, P H; Siegel, R C; Peterson, K E; Rowe, D W; Holbrook, K A; Smith, L T; Chang, Y H; Fu, J C

    1981-01-01

    Cells in culture from a woman with a variety of the Marfan syndrome produce two species of the alpha 2 chains of type I collagen. One alpha 2 chain appears normal; the abnormal chain has a higher apparent molecular weight than normal and migrates more slowly during electrophoresis in sodium dodecyl sulfate/polyacrylamide gels. A similar change in electrophoretic behavior is seen in the prepro alpha 2 chain and the pN alpha 2 chain (which contains the amino-terminal extension). Asymmetric cleavage of the pepsin-treated procollagens with a fibroblast collagenase locates the abnormal segment amino terminal to the cleavage site, and analysis of cyanogen bromide peptides of collagenase cleavage peptides and of whole collagens indicates that the abnormal segment is in either the alpha 2CB3 peptide or the short segment of alpha 2CB5 amino terminal to the collagenase site of the altered alpha 2 chain. The higher apparent molecular weight is consistent with the insertion of a small peptide fragment of approximately 20 amino acids. This alteration in chain size has marked effects on crosslinking because collagen from the patient's skin was 5-10 times more extractable in nondenaturing solvents than that from control skins. Although the abnormal chain was not found in several other individuals with the Marfan syndrome, these findings suggest that the phenotype may be the expression of a variety of primary structure alterations in the chains of type I collagen that interfere with normal crosslink formation. Images PMID:6950413

  20. Coagulation abnormalities in the cirrhotic patient.

    PubMed

    Muciño-Bermejo, Jimena; Carrillo-Esper, Raúl; Uribe, Misael; Méndez-Sánchez, Nahum

    2013-01-01

    The clotting process is a dynamic array of multiple processes which can be described in four phases: platelet plug initiation and formation, clotting process propagation by the coagulation cascade, clotting termination by antithrombotic mechanisms and clot removal by fibrinolysis. The liver plays a central role in each of these phases of clotting process, as it synthesizes the majority of coagulation factors and proteins involved in fibrinolysis as well as thrombopoeitin, which is responsible for platelet production from megakaryocytes. Many pathological processes associated with cirrhosis, such as portal hypertension and endothelial dysfunction, as well as co-morbid conditions, may also alter the coagulation process. Consequently, patients with liver disease have a disturbed balance of procoagulant and anti-coagulant factors which deviates from the normal coagulation cascade. This situation poses an additional problem in the diagnostic and therapeutic approach to this group of patients, since traditional coagulation test may not be reliable for assessing bleeding or thrombotic risk and traditional transfusional strategies may not be applicable in cirrhotic patients. In this article, we review the pathophysiological bases of coagulation abnormalities, in cirrhotic patients, the diagnostic therapeutic strategies to be followed and its impact on the clinical outcome in the cirrhotic patient.

  1. Boundary pressure of inter-connection of Fe-Ni-S melt in olivine based on in-situ X-ray tomography: Implication to core formation in asteroids

    NASA Astrophysics Data System (ADS)

    Terasaki, H.; Urakawa, S.; Uesugi, K.; Nakatsuka, A.; Funakoshi, K.; Ohtani, E.

    2011-12-01

    Interconnectivity of Fe-alloy melt in crystalline silicates is important property for the core formation mechanism in planetary interior. In previous studies, the interconnectivity of Fe-alloy melt has been studied based on textural observation of recovered samples from high pressure and temperature. However, there is no observation under high pressure and temperature. We have developed 80-ton uni-axial press for X-ray computed micro-tomography (X-CT) and performed X-CT measurement under high pressure (Urakawa et al. 2010). Here we report X-CT measurement of Fe-Ni-S melt in crystalline olivine and interconnectivity of the melt up to 3.5 GPa and 1273 K. X-CT measurements were carried out at BL20B2 beamline, SPring-8 synchrotron facility. The sample was powder mixture of Fe-Ni-S and olivine, which was enclosed in graphite capsule. Heating was performed using a cylindrical graphite furnace. Pressure was generated using opposed toroidal-shape WC anvil. The uni-axial press was set on the rotational stage and X-ray radiography image of the sample was collected using CCD camera from 0°to 180°with 0.3° step. 3-D image of the sample was obtained by reconstructing the 2-D radiography image. The 3-D CT image shows that the size of the Fe-Ni-S melt increased significantly compared to that before melting below 2.5 GPa, suggesting that the melt was interconnected in olivine crystals. On the other hand, 3-D texture of the sample at 3.5 GPa did not show difference from that before melting. Therefore, the boundary of inter-connection of Fe-Ni-S melt is likely to locate between 2.5 and 3.5 GPa. This result is important application for the core formation mechanism especially in small bodies, such as differentiated asteroids.

  2. Radiologic atlas of pulmonary abnormalities in children

    SciTech Connect

    Singleton, E.B.; Wagner, M.L.; Dutton, R.V.

    1988-01-01

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.

  3. [Renal abnormalities in ankylosing spondylitis].

    PubMed

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease. PMID:22520483

  4. [Renal abnormalities in ankylosing spondylitis].

    PubMed

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.

  5. The XXXXY Sex Chromosome Abnormality

    PubMed Central

    Barr, M. L.; Carr, D. H.; Pozsonyi, J.; Wilson, R. A.; Dunn, H. G.; Jacobson, T. S.; Miller, J. R.; Chown, B.

    1962-01-01

    The most common sex chromosome complex in sex chromatin-positive males with Klinefelter's syndrome is XXY. When the complex is XXYY or XXXY, the clinical findings do not seem to differ materially from those seen in XXY subjects, although more patients with these intersexual chromosome complements need to be studied to establish possible phenotypical expressions of the chromosomal variants. Two male children with an XXXXY sex chromosome abnormality are described. The data obtained from the study of these cases and five others described in the literature suggest that the XXXXY patient is likely to have congenital defects not usually seen in the common form of the Klinefelter syndrome. These include a triad of (1) skeletal anomalies (including radioulnar synostosis), (2) hypogenitalism (hypoplasia of penis and scrotum, incomplete descent of testes and defective prepubertal development of seminiferous tubules), and (3) greater risk of severe mental deficiency. That the conclusions are based on data from a small number of patients is emphasized, together with the need for a cytogenetic survey of a large control or unselected population. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10 PMID:13969480

  6. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  7. Pressure ulcer prevention.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Woodard, Charles R; Buschbacher, Ralph M; Long, William B; Gebhart, Jocelynn H; Ma, Eva K

    2004-01-01

    The purpose of this collective review is to outline the predisposing factors in the development of pressure ulcers and to identify a pressure ulcer prevention program. The most frequent sites for pressure ulcers are areas of skin overlying bony prominences. There are four critical factors contributing to the development of pressure ulcers: pressure, shearing forces, friction, and moisture. Pressure is now viewed as the single most important etiologic factor in pressure ulcer formation. Prolonged immobilization, sensory deficit, circulatory disturbances, and poor nutrition have been identified as important risk factors in the development of pressure ulcer formation. Among the clinical assessment scales available, only two, the Braden Scale and Norton Scale, have been tested extensively for reliability and/or validity. The most commonly used risk assessment tools for pressure ulcer formation are computerized pressure monitoring and measurement of laser Doppler skin blood flow. Pressure ulcers can predispose the patient to a variety of complications that include bacteremia, osteomyelitis, squamous cell carcinoma, and sinus tracts. The three components of pressure ulcer prevention that must be considered in any patient include management of incontinence, nutritional support, and pressure relief. The pressure relief program must be individualized for non-weight-bearing individuals as well as those that can bear weight. For those that can not bear weight and passively stand, the RENAISSANCE Mattress Replacement System is recommended for the immobile patient who lies supine on the bed, the stretcher, or operating room table. This alternating pressure system is unique because it has three separate cells that are not interconnected. It is specifically designed so that deflation of each individual cell will reach a ZERO PRESSURE during each alternating pressure cycle. The superiority of this system has been documented by comprehensive clinical studies in which this system

  8. Fuel structure and pressure effects on the formation of soot particles in diffusion flames. Annual technical report, 15 January 1988-15 January 1989

    SciTech Connect

    Santoro, R.J.

    1989-02-15

    Studies emphasizing the effects of fuel molecular structure on soot formation processes in laminar-diffusion flames were investigated. Particular attention was given to the particle inception and surface growth processes for a series of fuels. Studies of butane, 1-butene, and 1,3 butadiene have revealed that fuel structure strongly affects the soot-particle-inception process. However, subsequent surface-growth processes are largely determined by the available surface area. Thus, the surface growth process is independent of the fuel molecular structure following the initial particle-inception stage. Studies of the particle-inception region indicate that increased soot formation is strongly correlated with visible-fluorescence measurements attributed to large polynuclear aromatic hydrocarbon species in the flame.

  9. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  10. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE PAGES

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  11. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    SciTech Connect

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are used as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.

  12. Abundant molecular gas and inefficient star formation in intracluster regions: ram pressure stripped tail of the Norma galaxy ESO137-001

    SciTech Connect

    Jáchym, Pavel; Combes, Françoise; Cortese, Luca; Sun, Ming; Kenney, Jeffrey D. P.

    2014-09-01

    For the first time, we reveal large amounts of cold molecular gas in a ram-pressure-stripped tail, out to a large 'intracluster' distance from the galaxy. With the Actama Pathfinder EXperiment (APEX) telescope, we have detected {sup 12}CO(2-1) emission corresponding to more than 10{sup 9} M {sub ☉} of H{sub 2} in three Hα bright regions along the tail of the Norma cluster galaxy ESO 137-001, out to a projected distance of 40 kpc from the disk. ESO 137-001 has an 80 kpc long and bright X-ray tail associated with a shorter (40 kpc) and broader tail of numerous star forming H II regions. The amount of ∼1.5 × 10{sup 8} M {sub ☉} of H{sub 2} found in the most distant region is similar to molecular masses of tidal dwarf galaxies, though the standard Galactic CO-to-H{sub 2} factor could overestimate the H{sub 2} content. Along the tail, we find the amount of molecular gas to drop, while masses of the X-ray-emitting and diffuse ionized components stay roughly constant. Moreover, the amounts of hot and cold gas are large and similar, and together nearly account for the missing gas from the disk. We find a very low SFE (τ{sub dep} > 10{sup 10} yr) in the stripped gas in ESO 137-001 and suggest that this is due to a low average gas density in the tail, or turbulent heating of the interstellar medium that is induced by a ram pressure shock. The unprecedented bulk of observed H{sub 2} in the ESO 137-001 tail suggests that some stripped gas may survive ram pressure stripping in the molecular phase.

  13. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOEpatents

    Mao, Ho-kwang; Mao, Wendy L.

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  14. Immune Abnormalities in Patients with Autism.

    ERIC Educational Resources Information Center

    Warren, Reed P.; And Others

    1986-01-01

    A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…

  15. An Abnormal Psychology Community Based Interview Assignment

    ERIC Educational Resources Information Center

    White, Geoffry D.

    1977-01-01

    A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…

  16. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  17. Nail abnormalities in patients with vitiligo*

    PubMed Central

    Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa

    2016-01-01

    Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738

  18. Skeletal Muscle Abnormalities in Heart Failure.

    PubMed

    Kinugawa, Shintaro; Takada, Shingo; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2015-01-01

    Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure. PMID:26346520

  19. Investigation of hydrate formation in the system H2-CH4-H2O at a pressure up to 250 MPa.

    PubMed

    Skiba, Sergei S; Larionov, Eduard G; Manakov, Andrey Y; Kolesov, Boris A; Kosyakov, Viktor I

    2007-09-27

    Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.

  20. Modeling and three-dimensional simulation of the neutral dynamics in an air discharge confined in a microcavity. I. Formation and free expansion of the pressure waves

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Yousfi, M.; Bayle, P.; Jugroot, M.

    1998-11-01

    A three-dimensional numerical analysis of the neutral dynamics is performed in the case of a short-gap (0.5 mm) spark discharge in air confined in microcavities at atmospheric pressure (760 Torr) and ambient temperature (293 K). This work is undertaken in the framework of silicon microsystems bearing a micropump actuated by pressure waves which result from a discharge. The short-gap discharge characteristics are taken from experimental results namely 470 ns for the duration and 13.5 W for the maximum injected power. The neutral gas evolution is described by the classical transport equations and solved by a powerful numerical monotonic upstream-centered scheme for conversion laws. The gas-solid interaction occurring in thermal and hydrodynamic boundary layers is taken into account assuming that the microcavity temperature remains invariant (293 K). This article (part I) is devoted to the first evolution phase of the neutral dynamics whose the duration corresponds to the discharge time. Our results clearly show that the first phase can again be split into a neutral inertia phase (during which the thermal energy transferred is stored in the ionized channel) followed by a free expansion one where this thermal energy is dissipated in the microcavity volume. The latter phase is analyzed before the neutral heterogeneities reach the microcavity's walls. We also discuss the specific gas behaviors of the gas nearby the electrode surfaces, following heat exchanges and viscous stress.

  1. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  2. Raman scattering studies of pressure-induced phase transitions in perovskite formates [(CH3)2NH2][Mg(HCOO)3] and [(CH3)2NH2][Cd(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, M.; Almeida da Silva, T.; Paraguassu, W.; Pereira da Silva, K.

    2016-03-01

    Pressure-dependent Raman studies were preformed on two dimethylammonium metal formates, [(CH3)2NH2][Mg(HCOO)3] (DMMg) and [(CH3)2NH2][Cd(HCOO)3] (DMCd). They revealed three pressure-induced transitions in the DMMg near 2.2, 4.0 and 5.6 GPa. These transitions are associated with significant distortion of the anionic framework and the phase transition at 5.6 GPa has also great impact on the DMA+ cation. The DMCd undergoes two pressure-induced phase transitions. The first transition occurred between 1.2 and 2.0 GPa and the second one near 3.6 GPa. The first transition leads to subtle structural changes associated with distortion of anionic framework and the later leads to significant distortion of the framework. In contrast to the DMMg, the third transition associated with distortion of DMA+ cation is not observed for the DMCd up to 7.8 GPa. This difference can be most likely associated with larger volume of the cavity occupied by DMA+ cation in the DMCd and thus weaker interactions between anionic framework and DMA+ cations.

  3. Stability and breakdown of Ca{sup 13}CO{sub 3} melt associated with formation of {sup 13}C-diamond in static high pressure experiments up to 43 GPa and 3900 K

    SciTech Connect

    Spivak, A.V.; Litvin, Yu.A.; Ovsyannikov, S.V.; Dubrovinskaia, N.A.; Dubrovinsky, L.S.

    2012-07-15

    Melting of calcium carbonate Ca{sup 13}CO{sub 3}, stability of the melt and its decomposition were studied in static high pressure experiments at pressures of 11-43 GPa and temperatures of 1600-3900 K using diamond anvil cell technique with laser heating. We observed formation of {sup 13}C-graphite (below 16 GPa) and {sup 13}C-diamond (between 16 and 43 GPa) on decomposition of the Ca{sup 13}CO{sub 3} melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. The experimental results were applied to construction of the phase diagram of CaCO{sub 3} up to 43 GPa and 3900 K focusing at the melting curve of calcium carbonate and the decomposition phase boundary of CaCO{sub 3} melt. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Phase states of CaCO{sub 3} were studied at P=11-43 GPa and T=1600-3900 K. Black-Right-Pointing-Pointer {sup 13}C-diamond easily crystallizes in carbonate-carbon (Ca{sup 13}CO{sub 3-}{sup 13}C-graphite) melt-solutions. Black-Right-Pointing-Pointer Ca-carbonate melts congruently that was observed in experiments in DAC with laser heating. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} melt, indicated by formation of graphite and/or diamond. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} was observed at temperatures above 3400 K in the pressure interval studied.

  4. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance.

    PubMed

    Shimozawa, Nobuhiro; Sotomaru, Yusuke; Eguchi, Natsuko; Suzuki, Shuzo; Hioki, Kyoji; Usui, Toshimi; Kono, Tomohiro; Ito, Mamoru

    2006-09-01

    Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line. PMID:16940284

  5. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    PubMed

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

  6. Micro-pattern formation of extracellular matrix (ECM) layers by atmospheric-pressure plasmas and cell culture on the patterned ECMs

    NASA Astrophysics Data System (ADS)

    Ando, Ayumi; Asano, Toshifumi; Urisu, Tsuneo; Hamaguchi, Satoshi

    2011-12-01

    A new patterning technique for the extracellular matrix (ECM) deposited on a Si substrate was developed with the use of a low-frequency atmospheric-pressure plasma and a metal stencil mask. The development of such a patterning technique for cell arrangement is a crucial step for the development of future cell chips. In this study, optimal process conditions for ECM patterning over the size of a typical single chip (about 1 cm2) were achieved and the obtained ECM patterns were directly observed by fluorescence labelling. It was also demonstrated that HEK293 cells (human embryo kidney cells) attach to and proliferate on the ECM layer patterned by this technique, arranging themselves on the Si substrate in the mask pattern.

  7. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    NASA Technical Reports Server (NTRS)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  8. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  9. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  10. Porewater pressure control on subglacial soft sediment remobilization and tunnel valley formation: A case study from the Alnif tunnel valley (Morocco)

    NASA Astrophysics Data System (ADS)

    Ravier, Edouard; Buoncristiani, Jean-François; Guiraud, Michel; Menzies, John; Clerc, Sylvain; Goupy, Bastien; Portier, Eric

    2014-05-01

    In the eastern part of the Moroccan Anti-Atlas Mountains, the Alnif area exposes a buried Ordovician glacial tunnel valley (5 km wide, 180 m deep) cut into preglacial marine sediments. The preglacial sedimentary sequence, deposited in a marine environment, is characterized by a typical "layer-cake" configuration of permeable (sand) and impermeable (clays and early-cemented sandstones) layers. At the base of the tunnel valley, a discontinuous and fan-shaped glacial conglomeratic unit 10 to 15 m thick occurs, erosively deposited over preglacial marine sediments. The conglomeratic unit is composed of preglacial intraclasts embedded within a sandy matrix. Both preglacial and glacial sediments display soft-sediment deformation structures related to fluctuating porewater pressure and strain rates, including ball structures, clastic dykes, fluted surfaces, turbate structures, folds and radial extensional normal faults. Kinematics and relative chronology of these deformation structures allow the role of porewater pressure in the process of tunnel valley genesis on soft beds to be understood. The tunnel valley formed through multi-phased episodes of intense hydrofracturing of the preglacial bed due to overpressure development promoted by ice sheet growth over the study area, and configuration of the substratum. Transport of the resulting conglomerate composed of preglacial intraclasts and fluidized sand occurred through subglacial pipes. The brecciated material is deposited in subglacial cavities, forming fans of massive sandy conglomerate infilling the base of the tunnel valley. The conglomeratic unit is partially reworked by meltwater and exhibits intense soft-sediment deformations, due to episodes of ice-bed coupling and decoupling.

  11. Reactions of NO2 with BaO/Pt(111) Model Catalysts: The Effects of BaO Film Thickness and NO2 Pressure on the Formation of Ba(NOx)2 Species

    SciTech Connect

    Mudiyanselage, Kumudu; Yi, Cheol-Woo; Szanyi, Janos

    2011-05-31

    The adsorption and reaction of NO2 on BaO (<1, ~3, and >20 monolayer equivalent (MLE))/Pt(111) model systems were studied with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS) under ultra-high vacuum (UHV) as well as elevated pressure conditions. NO2 reacts with sub-monolayer BaO (<1 MLE) to form nitrites only, whereas the reaction of NO2 with BaO (~3 MLE)/Pt(111) produces mainly nitrites and a small amount of nitrates under UHV conditions (PNO2 ~ 1.0 × 10-9 Torr) at 300 K. In contrast, a thick BaO(>20 MLE) layer on Pt(111) reacts with NO2 to form nitrite-nitrate ion pairs under the same conditions. At elevated NO2 pressures (≥ 1.0 × 10-5 Torr), however, BaO layers at all these three coverages convert to amorphous barium nitrates at 300 K. Upon annealing to 500 K, these amorphous barium nitrate layers transform into crystalline phases. The thermal decomposition of the thus-formed Ba(NOx)2 species is also influenced by the coverage of BaO on the Pt(111) substrate: at low BaO coverages, these species decompose at significantly lower temperatures in comparison with those formed on thick BaO films due to the presence of Ba(NOx)2/Pt interface where the decomposition can proceed at lower temperatures. However, the thermal decomposition of the thick Ba(NO3)2 films follows that of bulk nitrates. Results obtained from these BaO/Pt(111) model systems under UHV and elevated pressure conditions clearly demonstrate that both the BaO film thickness and the applied NO2 pressure are critical in the Ba(NOx)2 formation and subsequent thermal decomposition processes.

  12. Effect of ramipril therapy on abnormal left atrial appendage function.

    PubMed

    Asker, M; Timucin, O B; Asker, S; Karadag, M F

    2011-01-01

    This study investigated whether ramipril treatment has a beneficial effect on left atrial appendage (LAA) function in patients with systemic hypertension in sinus rhythm. Patients with untreated systemic hypertension and normal left ventricular systolic function in sinus rhythm (n = 20; six males/14 females; age 35 - 69 years, mean ± SD 52.8 ± 8.9 years) were evaluated using transthoracic and transoesophageal echocardiography at baseline and after 6 months of treatment with 5 mg/day ramipril. Mean systolic and diastolic blood pressures decreased significantly after ramipril therapy. Baseline LAA emptying velocity was below the age-related reference value for this parameter, indicating abnormal LAA function. There were significant increases in the LAA filling and emptying velocities after ramipril treatment. It is concluded that the decrease in blood pressure and haemodynamic improvements brought about by ramipril therapy resulted in improved LAA function in hypertensive patients with normal left ventricular systolic function in sinus rhythm.

  13. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  14. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  15. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy

    SciTech Connect

    Cannon, R.O. 3d.; Dilsizian, V.; O'Gara, P.T.; Udelson, J.E.; Schenke, W.H.; Quyyumi, A.; Fananapazir, L.; Bonow, R.O. )

    1991-05-01

    Exercise-induced abnormalities during thallium-201 scintigraphy that normalize at rest frequently occur in patients with hypertrophic cardiomyopathy. However, it is not known whether these abnormalities are indicative of myocardial ischemia. Fifty patients with hypertrophic cardiomyopathy underwent exercise {sup 201}Tl scintigraphy and, during the same week, measurement of myocardial lactate metabolism and hemodynamics during pacing stress. Thirty-seven patients (74%) had one or more {sup 201}Tl abnormalities that completely normalized after 3 hours of rest; 26 had regional myocardial {sup 201}Tl defects, and 26 had apparent left ventricular cavity dilatation with exercise, with 15 having coexistence of these abnormal findings. Of the 37 patients with reversible {sup 201}Tl abnormalities, 27 (73%) had metabolic evidence of myocardial ischemia during rapid atrial pacing compared with four of 13 patients (31%) with normal {sup 201}Tl scans (p less than 0.01). Eleven patients had apparent cavity dilatation as their only {sup 201}Tl abnormality; their mean postpacing left ventricular end-diastolic pressure was significantly higher than that of the 13 patients with normal {sup 201}Tl studies (33 +/- 5 versus 21 +/- 10 mm Hg, p less than 0.001). There was no correlation between the angiographic presence of systolic septal or epicardial coronary arterial compression and the presence or distribution of {sup 201}Tl abnormalities. Patients with ischemic ST segment responses to exercise had an 80% prevalence rate of reversible {sup 201}Tl abnormalities and a 70% prevalence rate of pacing-induced ischemia. However, 69% of patients with nonischemic ST segment responses had reversible {sup 201}Tl abnormalities, and 55% had pacing-induced ischemia. Reversible {sup 201}Tl abnormalities during exercise stress are markers of myocardial ischemia in hypertrophic cardiomyopathy and most likely identify relatively underperfused myocardium.

  16. Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose

    PubMed Central

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.

    2015-01-01

    The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal, and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca2+ levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer), and of irregular, incomplete cell walls. In these events, Ca2+ may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca2+ and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis. PMID:26635844

  17. Skeletal abnormalities of tricho-rhino-phalangeal syndrome type I.

    PubMed

    de Barros, Guilherme Monteiro; Kakehasi, Adriana Maria

    2016-01-01

    The tricho-rhino-phalangeal syndrome (TRPS) type I is a rare genetic disorder related to the TRPS1 gene mutation in chromosome 8, characterized by craniofacial abnormalities and disturbances in formation and maturation of bone matrix. The hallmarks are sparse and brittle hair, tendency to premature baldness, bulbous nose called pear-shaped, long and flat filter and low ear implantation. The most noticeable skeletal changes are clinodactyly, phalangeal epiphyses of the hands appearing as cone-shaped, short stature and hip joint malformations. We report a case of a teenager boy diagnosed with TRPS and referred for rheumatologic evaluation due to joint complaints. PMID:27267340

  18. Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant - 13183

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Schonewill, P.P.; Bontha, J.R.; Blanchard, J.; Kurath, D.E.; Daniel, R.C.; Song, C.

    2013-07-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate, and the release fraction which is the ratio of generation rate to spray flow rate, of droplets suspended in a test chamber and droplet size distribution from prototypic sprays. A novel test method was developed to allow measurement of sprays from small to large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the release fraction decreases with increasing orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 μm and increases the release fraction below this droplet size. (authors)

  19. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    PubMed

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils. PMID:26974637

  20. Induced abnormality in Mir- and Earth grown Super Dwarf wheat

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Stieber, J.; Campbell, W. F.; Salisbury, F. B.; Levinski, M.; Sytchev, V.; Podolsky, I.; Chernova, L.; Pdolsky, I.

    2003-01-01

    Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  1. Induced abnormality in Mir- and earth grown super dwarf wheat

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Stieber, J.; Campbell, W. F.; Salisbury, F. B.; Levinski, M.; Sytchev, V.; Pdolsky, I.; Chernova, L.

    Super-dwarf wheat grown on the Mir space station using the Svet ``Greenhouse'' exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of `Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing `Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.

  2. Four families with immunodeficiency and chromosome abnormalities.

    PubMed Central

    Candy, D C; Hayward, A R; Hughes, D T; Layward, L; Soothill, J F

    1979-01-01

    Six children, with severe deficiency of some or all of the immunoglobulins and minor somatic abnormalities, had chromosomal abnormalities: (1) 45,XY,t(13q/18q), (2) 46,XY,21ps +, (3) two brothers 46,XY (inv. 7) (4) 45,X,t(11p/10p)/46X,iXq,t(11p/10p) and, (5) in addendum, 45,XX,-18;46,XX, r18. The chromosome abnormalities were detected in B- as well as T-lymphocytes (as evidenced by using both PHA- and PWM-stimulated cultures) in all probands, but one was mosaic in PHA culture, although all his PWM-stimulated cells were abnormal. Chromosomal variants were also detected in relatives of three and immunodeficiency in relatives of two. Images Fig. 1 Fig. 3 PMID:314782

  3. Abnormal Uterine Bleeding (Beyond the Basics)

    MedlinePlus

    ... Approach to abnormal uterine bleeding in nonpregnant reproductive-age women Differential diagnosis of genital tract bleeding in women Postmenopausal uterine bleeding The following organizations also provide reliable health information. ● National Library of Medicine ( www.nlm.nih.gov/ ...

  4. Low-set ears and pinna abnormalities

    MedlinePlus

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... The outer ear or "pinna" forms when the baby is growing in the mother's womb. The growth of this ear part ...

  5. Electrocardiography series. Electrocardiographic T wave abnormalities.

    PubMed

    Lin, Weiqin; Teo, Swee Guan; Poh, Kian Keong

    2013-11-01

    The causes of abnormal T waves on electrocardiography are multiple and varied. Careful clinical history taking and physical examination are necessary for accurate identification of the cause of such abnormalities. Subsequent targeted specialised cardiac investigations, such as echocardiography or coronary angiography, may be of importance in the diagnosis of the underlying cardiac pathology. We present two cases of T wave inversions with markedly different aetiologies.

  6. Prevalence of asymptomatic urinary abnormalities among adolescents.

    PubMed

    Fouad, Mohamed; Boraie, Maher

    2016-05-01

    To determine the prevalence of asymptomatic urinary abnormalities in adolescents, first morning clean mid-stream urine specimens were obtained from 2500 individuals and examined by dipstick and light microscopy. Adolescents with abnormal screening results were reexamined after two weeks and those who had abnormal results twice were subjected to systemic clinical examination and further clinical and laboratory investigations. Eight hundred and three (32.1%) individuals had urinary abnormalities at the first screening, which significantly decreased to 345 (13.8%) at the second screening, (P <0.001). Hematuria was the most common urinary abnormalities detected in 245 (9.8%) adolescents who had persistent urine abnormalities; 228 (9.1%) individuals had non glomerular hematuria. The hematuria was isolated in 150 (6%) individuals, combined with leukocyturia in 83 (3.3%) individuals, and combined with proteinuria in 12 (0.5%) individuals. Leukocyturia was detected in 150 (6%) of all studied adolescents; it was isolated in 39 (1.6%) individuals and combined with proteinuria in 28 (1.1%) of them. Asymptomatic bacteriuria was detected in 23 (0.9%) of all studied adolescents; all the cases were females. Proteinuria was detected in 65 (2.6%) of all the studied adolescents; 45 (1.8%) individuals had <0.5 g/day and twenty (0.8%) individuals had 0.5-3 g/day. Asymptomatic urinary abnormalities were more common in males than females and adolescents from rural than urban areas (P <0.01) and (P <0.001), respectively. The present study found a high prevalence of asymptomatic urinary abnormalities among adolescents in our population.

  7. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  8. Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: Implications for redox conditions during diamond formation in the lower mantle

    NASA Astrophysics Data System (ADS)

    Otsuka, Kazuhiko; Longo, Micaela; McCammon, Catherine A.; Karato, Shun-ichiro

    2013-03-01

    We investigated the ferric iron (Fe3+) concentration in (Mg,Fe)O ferropericlase using the flank method applied to Mg-Fe interdiffusion couples of ferropericlase. Diffusion couples with Mg/(Mg+Fe) in the range 0.44 to 1 were annealed at temperatures of 1673-1873 K and pressures of 5-24 GPa over a wide range of oxygen fugacities. Oxygen fugacity was controlled by Fe, Ni, Mo, and Re metal capsules and their corresponding oxide phases. Based on our results and available experimental data, we derived an equation for the Fe3+ solubility in ferropericlase applicable to depths at the top of the lower mantle: [Fe3+]=C (XFe4fO2)m exp{-((1-XFe)E*Mg+XFeE*Fe+PV*)/RT}, where C=2.6(1)×10-3, m=0.114(3), E*Mg=-35(3) [kJ/mol], E*Fe=-98(2) [kJ/mol], and V*=2.09(3) [cm3/mol]. The value of the oxygen fugacity exponent m implies that Fe3+ mostly occupies tetrahedral sites under these conditions, which is consistent with the results of previously reported Mössbauer spectroscopy studies. Based on this relationship, we calculated the redox conditions of ferropericlase inclusions in diamonds believed to have come from the lower mantle. The estimated oxygen fugacities are close to the upper stability limit of diamond in mantle peridotite at the top of the lower mantle at adiabatic or slightly superadiabatic temperatures, which suggests that ferropericlase inclusions recorded and preserved the conditions at which diamond was precipitated from carbonates or carbonatite melts near the top of the lower mantle.

  9. Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop - Kinetics and reaction product formation.

    PubMed

    Semitsoglou-Tsiapou, Sofia; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Martijn, Bram J; Royce, Alan; Kruithof, Joop C

    2016-03-15

    The degradation kinetics of three pesticides - metaldehyde, clopyralid and mecoprop - by ultraviolet photolysis and hydroxyl radical oxidation by low pressure ultraviolet hydrogen peroxide (LP-UV/H2O2) advanced oxidation was determined. Mecoprop was susceptible to both LP-UV photolysis and hydroxyl radical oxidation, and exhibited the fastest degradation kinetics, achieving 99.6% (2.4-log) degradation with a UV fluence of 800 mJ/cm(2) and 5 mg/L hydrogen peroxide. Metaldehyde was poorly degraded by LP-UV photolysis while 97.7% (1.6-log) degradation was achieved with LP-UV/H2O2 treatment at the maximum tested UV fluence of 1000 mJ/cm(2) and 15 mg/L hydrogen peroxide. Clopyralid was hardly susceptible to LP-UV photolysis and exhibited the lowest degradation by LP-UV/H2O2 among the three pesticides. The second-order reaction rate constants for the reactions between the pesticides and OH-radicals were calculated applying a kinetic model for LP-UV/H2O2 treatment to be 3.6 × 10(8), 2.0 × 10(8) and 1.1 × 10(9) M(-1) s(-1) for metaldehyde, clopyralid and mecoprop, respectively. The main LP-UV photolysis reaction product from mecoprop was 2-(4-hydroxy-2-methylphenoxy) propanoic acid, while photo-oxidation by LP-UV/H2O2 treatment formed several oxidation products. The photo-oxidation of clopyralid involved either hydroxylation or dechlorination of the ring, while metaldehyde underwent hydroxylation and produced acetic acid as a major end product. Based on the findings, degradation pathways for the three pesticides by LP-UV/H2O2 treatment were proposed.

  10. Equation of state of quartz glass and cerium in their abnormal compressibility range

    NASA Astrophysics Data System (ADS)

    Molodets, A. M.

    2016-09-01

    In this work, the semiempirical equation of state of quartz glass and polycrystalline γ-cerium are plotted and verified at the compressive pressures to 3 GPa. The proposed equations are shown to uniformly describe the thermophysical and physicomechanical properties of quartz glass and polycrystalline γ-cerium at their abnormal compressibility in compression. The room isotherms of these materials are discussed, as well.

  11. Mud Volcanoes Formation And Occurrence

    NASA Astrophysics Data System (ADS)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  12. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Blundy, Jon D.; Brooker, Richard A.

    2016-07-01

    Piston cylinder experiments are used to investigate the effect of oxygen fugacity (ƒO2) on sulphur speciation and phase relations in arc magmas at 0.5-1.5 GPa and 840-950 °C. The experimental starting composition is a synthetic trachyandesite containing 6.0 wt% H2O, 2880 ppm S, 1500 ppm Cl and 3800 ppm C. Redox conditions ranging from 1.7 log units below the Ni-NiO buffer (NNO - 1.7) to NNO + 4.7 were imposed by solid-state buffers: Co-CoO, Ni-NiO, Re-ReO2 and haematite-magnetite. All experiments are saturated with a COH fluid. Experiments produced crystal-bearing trachydacitic melts (SiO2 from 60 to 69 wt%) for which major and volatile element concentrations were measured. Experimental results demonstrate a powerful effect of oxidation state on phase relations. For example, plagioclase was stable above NNO, but absent at more reduced conditions. Suppression of plagioclase stability produces higher Al2O3 and CaO melts. The solid sulphur-bearing phases and sulphur speciation in the melt are strong functions of ƒO2, as expected, but also of pressure. At 0.5 GPa, the anhydrite stability field is intersected at NNO ≥ +2, but at 1.0 and 1.5 GPa, experiments at the same ƒO2 produce sulphides and the stability field of sulphate moves towards higher ƒO2 by ~1 log unit at 1.0 GPa and ~1.5 log units at 1.5 GPa. As a result, models that appeal to high oxidation state as an important control on the mobility of Cu (and other chalcophiles) during crustal differentiation must also consider the enhanced stability of sulphide in deep- to mid-crustal cumulates even for relatively oxidized (NNO + 2) magmas. Experimental glasses reproduce the commonly observed minimum in sulphur solubility between the S2- and S6+ stability fields. The solubility minimum is not related to the Fe content (Fe2+/Fe3+ or total) of the melt. Instead, we propose this minimum results from an unidentified, but relatively insoluble, S-species of intermediate oxidation state.

  13. Thermodynamic, electrochemical, high-pressure kinetic, and mechanistic studies of the formation of oxo Fe(IV)-TAML species in water.

    PubMed

    Popescu, Delia-Laura; Vrabel, Melanie; Brausam, Ariane; Madsen, Peter; Lente, Gabor; Fabian, Istvan; Ryabov, Alexander D; van Eldik, Rudi; Collins, Terrence J

    2010-12-20

    Stopped-flow kinetic studies of the oxidation of Fe(III)-TAML catalysts, [ F e{1,2-X(2)C(6)H(2)-4,5-( NCOCMe(2) NCO)(2)CMe(2)}(OH(2))](-) (1), by t-BuOOH and H(2)O(2) in water affording Fe(IV) species has helped to clarify the mechanism of the interaction of 1 with primary oxidants. The data collected for substituted Fe(III)-TAMLs at pH 6.0-13.8 and 17-45 °C has confirmed that the reaction is first order both in 1 and in peroxides. Bell-shaped pH profiles of the effective second-order rate constants k(I) have maximum values in the pH range of 10.5-12.5 depending on the nature of 1 and the selected peroxide. The "acidic" part is governed by the deprotonation of the diaqua form of 1 and therefore electron-withdrawing groups move the lower pH limit of the reactivity toward neutral pH, although the rate constants k(I) do not change much. The dissection of k(I) into individual intrinsic rate constants k(1) ([FeL(OH(2))(2)](-) + ROOH), k(2) ([FeL(OH(2))OH)](2-) + ROOH), k(3) ([FeL(OH(2))(2)](-) + ROO(-)), and k(4) ([FeL(OH(2))OH)](2-) + ROO(-)) provides a model for understanding the bell-shaped pH-profiles. Analysis of the pressure and substituent effects on the reaction kinetics suggest that the k(2) pathway is (i) more probable than the kinetically indistinguishable k(3) pathway, and (ii) presumably mechanistically similar to the induced cleavage of the peroxide O-O bond postulated for cytochrome P450 enzymes. The redox titration of 1 by Ir(IV) and electrochemical data suggest that under basic conditions the reduction potential for the half-reaction [Fe(IV)L(=O)(OH(2))](2-) + e(-) + H(2)O → [Fe(III)L(OH)(OH(2))](2-) + OH(-) is close to 0.87 V (vs NHE). PMID:21086984

  14. Powder formation in SiH{sub 4}-H{sub 2} discharge in large area capacitively coupled reactors: A study of the combined effect of interelectrode distance and pressure

    SciTech Connect

    Strahm, B.; Hollenstein, Ch.

    2010-01-15

    One of the main challenges for silicon thin film deposition for solar cell applications is to achieve high rate deposition in order to reduce the manufacturing costs. However, when silane and hydrogen are used as precursor gas in parallel plate plasma-enhanced chemical vapor deposition, high rate deposition is generally synonymous of powdery discharge. In this work, time- and space-resolved light scattering experiments are presented. These were performed in an industrial-type large area reactor with a variable interelectrode distance. Results show that with a standard 25 mm interelectrode distance, the fraction of silane transformed into powder can be as high as 50% and that reducing the interelectrode distance shifts to higher pressure the appearance of powder in the discharge. From a standard 25 mm interelectrode distance to a 10 mm narrow gap reactor, the threshold pressure was increased from 2 to 7 mbars. More generally, it is proposed that the onset of powder formation depends mainly on the product of the interelectrode distance and the gas residence time in the discharge.

  15. Modeling the effects of EGR and injection pressure on soot formation in a High-Speed Direct-Injection (HSDI) diesel engine using a multi-step phenomenological soot model.

    SciTech Connect

    Reitz, Rolf D.; Choi, Dae; Liu, Yi.; RempleEwert, Bret H.; Foster, David.; Miles, Paul; Tao, Feng

    2005-01-01

    Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-{var_epsilon} turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process. A low-load (IMEP=3 bar) operating condition was considered and the predicted in-cylinder pressures and heat release rates were compared with measurements. Predicted soot mass, soot particle size, soot number density distributions and other relevant quantities are presented and discussed. The effects of variable EGR rate (0-68%), injection pressure (600-1200 bar), and injection timing were studied. The predictions demonstrate that both EGR and retarded injection are beneficial for reducing NO{sub x} emissions, although the former has a more pronounced effect. Additionally, higher soot emissions are typically predicted for the higher EGR rates. However, when the EGR rate exceeds a critical value (over 65% in this study), the soot emissions decrease. Reduced soot emissions are also predicted when higher injection pressures or retarded injection timings are employed. The reduction in soot with retarded injection is less than what is observed experimentally, however.

  16. GLOBAL STAR FORMATION REVISITED

    SciTech Connect

    Silk, Joseph; Norman, Colin E-mail: norman@stsci.edu

    2009-07-20

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  17. The p in p-T is for pressure: Movement of the gas hydrate stability field during glacial sealevel lowering and its possible link to pockmark formation on the Chatham Rise, New Zealand (Invited)

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Davy, B. W.; Wood, R.; Carter, L.; Gohl, K.

    2010-12-01

    The discussion on a possible destabilization of gas hydrates caused by climate fluctuations has in recent years focused on the role of a sub-seafloor temperature increase following bottom-water warming. We here revisit the scenario that a pressure drop during glacial sealevel lowering could lead to gas hydrate dissociation. A >20,000 km2 field of seafloor depressions that we interpret as pockmarks has been identified on the southern flanks of the Chatham Rise. Three classes of pockmarks are present in two distinct water-depth ranges. The shallowest class of pockmarks with a diameter of ~150 m are present in a water-depth range of 500-700 m, close to the current top of the gas hydrate stability field. Sub-bottom profiler data show evidence for a bottom simulating reflection making it likely that gas hydrates are present beneath the seafloor. Furthermore, buried pockmarks are identified on horizons that we correlate with sealevel lowstands suggesting that pockmark formation is linked to sealevel lowering. Assuming constant bottom-water temperatures, a glacial sealevel drop by 120 m would move much of the seafloor that is covered with these pockmarks out of the gas hydrate stability field. We therefore suggest these pockmarks were formed by gas from dissociating gas hydrate due to depressurization following sealevel lowering. Two larger classes of pockmarks with diameters of 1-5 and ~10 km, respectively, are present in water depths of 800-1100 m. Here, the seafloor has probably remained within the gas hydrate stability field during sealevel lowstands. However, the associated pressure drop has moved the base of gas hydrate stability upwards by ~30 m. It is unclear whether bottom-water temperatures have changed significantly in our study area during glacial cycles - changes of 1-3° C would be required to have a similar effect on gas hydrate stability as sealevel fluctuations. The boundary between warmer subtropical and cold subantarctic waters, the subtropical front

  18. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    González-Curbelo, Miguel Ángel; Lehotay, Steven J; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel

    2014-09-01

    The "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) approach to sample preparation is widely applied in pesticide residue analysis, but the use of magnesium sulfate and other nonvolatile compounds for salting out in the method is not ideal for mass spectrometry. In this study, we developed and evaluated three new different versions of the QuEChERS method using more volatile salts (ammonium chloride and ammonium formate and acetate buffers) to induce phase separation and extraction of 43 representative pesticide analytes of different classes. Fast low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS) and liquid chromatography (LC)-MS/MS were used for analysis. The QuEChERS AOAC Official Method 2007.01 was also tested for comparison purposes. Of the studied methods, formate buffering using 7.5g of ammonium formate and 15mL of 5% (v/v) formic acid in acetonitrile for the extraction of 15g of sample (5g for wheat grain) provided the best performance and practical considerations. Method validation was carried out with and without the use of dispersive solid-phase extraction for cleanup, and no significant differences were observed for the majority of pesticides. The method was demonstrated in quantitative analysis for GC- and LC-amenable pesticides in 4 representative food matrices (apple, lemon, lettuce, and wheat grain). With the typical exceptions of certain pH-dependent and labile pesticides, 90-110% recoveries and <10% RSD were obtained. Detection limits were mostly <5ng/g, which met the general need to determine pesticide concentrations as low as 10ng/g for monitoring purposes in food applications. PMID:25047819

  19. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    González-Curbelo, Miguel Ángel; Lehotay, Steven J; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel

    2014-09-01

    The "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) approach to sample preparation is widely applied in pesticide residue analysis, but the use of magnesium sulfate and other nonvolatile compounds for salting out in the method is not ideal for mass spectrometry. In this study, we developed and evaluated three new different versions of the QuEChERS method using more volatile salts (ammonium chloride and ammonium formate and acetate buffers) to induce phase separation and extraction of 43 representative pesticide analytes of different classes. Fast low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS) and liquid chromatography (LC)-MS/MS were used for analysis. The QuEChERS AOAC Official Method 2007.01 was also tested for comparison purposes. Of the studied methods, formate buffering using 7.5g of ammonium formate and 15mL of 5% (v/v) formic acid in acetonitrile for the extraction of 15g of sample (5g for wheat grain) provided the best performance and practical considerations. Method validation was carried out with and without the use of dispersive solid-phase extraction for cleanup, and no significant differences were observed for the majority of pesticides. The method was demonstrated in quantitative analysis for GC- and LC-amenable pesticides in 4 representative food matrices (apple, lemon, lettuce, and wheat grain). With the typical exceptions of certain pH-dependent and labile pesticides, 90-110% recoveries and <10% RSD were obtained. Detection limits were mostly <5ng/g, which met the general need to determine pesticide concentrations as low as 10ng/g for monitoring purposes in food applications.

  20. Chromosomal abnormalities in the newborn period.

    PubMed

    Seashore, M R

    1993-10-01

    Chromosomal abnormalities account for a significant percentage of congenital malformations in the neonate. While some of the syndromes can be suspected on clinical grounds, the clinician will need to have a high index of suspicion based on the presence of multiple abnormalities that cannot be accounted for by other causes. Chromosome analysis should be performed promptly in these cases. Cultured lymphocytes are the standard preparation at present. However, new non-isotopic hybridization techniques are becoming available that allow analysis of interphase cells, and these may become more widely used as clinical experience with them is gained. Prognosis can usually be better defined once the chromosome analysis is complete. The information acquired may also be used to provide risk estimates for chromosomal abnormalities in future pregnancies of the parents of the affected infant and for other relatives. Empathetic counseling of the parents and family must be provided once the diagnosis is known. It must take into account the knowledge the chromosome analysis provides, be respectful of the parent's need for support, and be accurate as to prognosis of the condition diagnosed. When Down syndrome and Turner syndrome have been diagnosed, care must be taken to emphasize the positive aspects of the prognosis. When a chromosomal abnormality with an extremely poor prognosis is identified, support for withdrawal of medical intervention must be sensitively provided. The diagnosis and care of an infant with a chromosomal abnormality will challenge all of the pediatrician's diagnostic, therapeutic, and communication skills.

  1. Dysmorphometrics: the modelling of morphological abnormalities

    PubMed Central

    2012-01-01

    Background The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. Methods A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. Results We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. Conclusion The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research. PMID:22309623

  2. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  3. [Abnormalities of the penis in boys].

    PubMed

    Peycelon, M; Parmentier, B; Raquillet, C; Boubnova, J; Chouikh, T; Grosos, C; Honart, J-F; Pichon, A; Auber, F; Larroquet, M; Audry, G

    2012-12-01

    Abnormalities of the male genitalia have increased in the last 2 decades in numerous developed countries and remain a frequent reason of consultation in pediatric surgery. The diagnostic spectrum is wide, and surgeons should pay particular attention to these abnormalities because of their potential psychological effect. Anatomically, these abnormalities can affect one of three parts of the penis. First, the foreskin may not be fully retracted. This is normal at birth and can be caused by prepuce adherents that can continue until adolescence. Today, true phimosis is treated with topical corticoids from the age of 3 years. If medical treatment fails, a surgical procedure is required. Second, the urethra can be affected by hypospadia, which is the most frequent abnormality of the urethra. It is associated with ectopic urethral meatus, hypoplastic foreskin, and penis curvature. Its pathogenic background is not clearly understood. Surgery options differ according to the type of hypospadia and according to the surgeon's experience. It is sometimes hard to deal with, especially in a perineal form, where genetic and hormonal studies are recommended. These interventions can lead to complications ranging from stenosis to fistula. Therefore, parents have to be informed of the benefits and risks of the surgical procedures. Epispadias is rare but more serious because of the increasing risk of urinary incontinence. Finally, abnormalities of the corpora cavernosa - often associated with hypospadias - can include penis curvature and micropenis, for which an endocrinological analysis is essential. PMID:23121902

  4. The effect of the anti-allergic agent avil on abnormal scar fibroblasts.

    PubMed

    Venugopal, J; Ramakrishnan, M; Habibullah, C M; Babu, M

    1999-05-01

    Abnormal wound healing in humans leads to the formation of hypertrophic scar and keloids. These abnormal scars accumulate excessive extracellular matrix proteins through increased synthesis as well as decreased degradation. In order to find a therapeutic control for scar formation, we investigated the effect of avil (pheniramine maleate) on fibroblasts cultured from abnormal scars in comparison to normal skin. We observed a decrease in the proliferation rate in cells from normal skin (39%), hypertrophic scar (44%), keloid (63%) and in DNA synthesis in cells from normal skin (50%), hypertrophic scar (55%) and keloid (63%) treated with 8 mM avil (72 h). The rate of decrease in collagen synthesis in normal skin (44%), hypertrophic scar (74%) and keloid fibroblast (73%) correlated with changes in DNA synthesis.

  5. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  6. [Nutritional abnormalities in chronic obstructive pulmonary disease].

    PubMed

    Gea, Joaquim; Martínez-Llorens, Juana; Barreiro, Esther

    2014-07-22

    Nutritional abnormalities are associated with chronic obstructive pulmonary disease with a frequency ranging from 2 to 50%, depending on the geographical area and the study design. Diagnostic tools include anthropometry, bioelectrical impedance, dual energy radioabsortiometry and deuterium dilution, being the body mass and the lean mass indices the most frequently used parameters. While the most important consequences of nutritional abnormalities are muscle dysfunction and exercise limitation, factors implicated include an imbalance between caloric intake and consumption, and between anabolic and catabolic hormones, inflammation, tobacco smoking, poor physical activity, hypoxemia, some drugs and aging/comorbidities. The most important molecular mechanism for malnutrition associated with chronic obstructive pulmonary disease appears to be the mismatching between protein synthesis and breakdown. Among the therapeutic measures proposed for these nutritional abnormalities are improvements in lifestyle and nutritional support, although the use of anabolic drugs (such as secretagogues of the growth hormone) offers a new therapeutic strategy.

  7. Laparoscopy for resolving Müllerian abnormalities.

    PubMed

    Motashaw, N D; Dastur, A; Vaidya, R A; Aloorkar, M

    1978-07-01

    One hundred thirty-five patients with various müllerian abnormalities underwent laparoscopy. At a glance the precise malformation was diagnosed correctly: 44 patients revealed a complete absence of the müllerian system; 35 were found to have a transverse ridge across the pelvis, the lateral ends of which were well developed; 33 patients had rudimentary uteri; 7, a median müllerian nodule; 5 belonged to the group with the testicular feminization syndrome; 4 were classified as having a bicornuate uterus; 3 had unicornuate uteri; and 3, septate uteri. One rare variety of müllerian abnormality is also described. Laparoscopy was found to be invaluable in the diagnosis of müllerian abnormalities.

  8. [Nutritional abnormalities in chronic obstructive pulmonary disease].

    PubMed

    Gea, Joaquim; Martínez-Llorens, Juana; Barreiro, Esther

    2014-07-22

    Nutritional abnormalities are associated with chronic obstructive pulmonary disease with a frequency ranging from 2 to 50%, depending on the geographical area and the study design. Diagnostic tools include anthropometry, bioelectrical impedance, dual energy radioabsortiometry and deuterium dilution, being the body mass and the lean mass indices the most frequently used parameters. While the most important consequences of nutritional abnormalities are muscle dysfunction and exercise limitation, factors implicated include an imbalance between caloric intake and consumption, and between anabolic and catabolic hormones, inflammation, tobacco smoking, poor physical activity, hypoxemia, some drugs and aging/comorbidities. The most important molecular mechanism for malnutrition associated with chronic obstructive pulmonary disease appears to be the mismatching between protein synthesis and breakdown. Among the therapeutic measures proposed for these nutritional abnormalities are improvements in lifestyle and nutritional support, although the use of anabolic drugs (such as secretagogues of the growth hormone) offers a new therapeutic strategy. PMID:24054776

  9. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  10. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  11. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  12. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  13. Endocrine Abnormalities in Townes–Brocks Syndrome

    PubMed Central

    Lawrence, Cara; Hong-McAtee, Irene; Hall, Bryan; Hartsfield, James; Rutherford, Andrew; Bonilla, Tracy; Bay, Carolyn

    2016-01-01

    Townes–Brocks syndrome is a recognizable variable pattern of malformation caused by mutations to the SALL1 gene located on chromosome 16q12.1. Only three known cases of Townes–Brocks syndrome with proven SALL1 gene mutation and concurrent endocrine abnormalities have been previously documented to our knowledge [Kohlhase et al., 1999; Botzenhart et al., 2005; Choi et al., 2010]. We report on two unrelated patients with Townes–Brocks syndrome who share an identical SALL1 mutation (c.3414_3415delAT), who also have endocrine abnormalities. Patient 1 appears to be the first known case of growth hormone deficiency, and Patient 2 extends the number of documented mutation cases with hypothyroidism to four. We suspect endocrine abnormalities, particularly treatable deficiencies, may be an underappreciated component to Townes–Brocks syndrome. PMID:23894113

  14. Echocardiographic abnormalities in the mucopolysaccharide storage diseases.

    PubMed

    Gross, D M; Williams, J C; Caprioli, C; Dominguez, B; Howell, R R

    1988-01-01

    The mucopolysaccharide storage diseases express themselves clinically with a wide variety of abnormalities, including growth and mental retardation, skeletal abnormalities, clouded corneas, nerve compression syndromes, upper airway obstruction and cardiovascular involvement, to name the most common. In most cases the cause of early death is cardiorespiratory failure secondary to cardiovascular involvement and upper airway obstruction. The findings of cardiac ultrasound examination in 29 children, adolescents and young adults are presented. In addition to the previously well-described abnormalities of the mitral and aortic valves in several types of mucopolysaccharide storage disease, we report patchy involvement in some cases, 3 instances of asymmetric septal hypertrophy not previously reported in mucopolysaccharide storage diseases, cardiac involvement in half of our patients with Sanfilippo syndrome and a lack of age-related severity of cardiac involvement even within the specific syndromes. PMID:3122547

  15. Visual perceptual abnormalities: hallucinations and illusions.

    PubMed

    Norton, J W; Corbett, J J

    2000-01-01

    Visual perceptual abnormalities may be caused by diverse etiologies which span the fields of psychiatry and neurology. This article reviews the differential diagnosis of visual perceptual abnormalities from both a neurological and a psychiatric perspective. Psychiatric etiologies include mania, depression, substance dependence, and schizophrenia. Common neurological causes include migraine, epilepsy, delirium, dementia, tumor, and stroke. The phenomena of palinopsia, oscillopsia, dysmetropsia, and polyopia among others are also reviewed. A systematic approach to the many causes of illusions and hallucinations may help to achieve an accurate diagnosis, and a more focused evaluation and treatment plan for patients who develop visual perceptual abnormalities. This article provides the practicing neurologist with a practical understanding and approach to patients with these clinical symptoms.

  16. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  17. Abnormal Head Position in Infantile Nystagmus Syndrome

    PubMed Central

    Noval, Susana; González-Manrique, Mar; Rodríguez-Del Valle, José María; Rodríguez-Sánchez, José María

    2011-01-01

    Infantile nystagmus is an involuntary, bilateral, conjugate, and rhythmic oscillation of the eyes which is present at birth or develops within the first 6 months of life. It may be pendular or jerk-like and, its intensity usually increases in lateral gaze, decreasing with convergence. Up to 64% of all patients with nystagmus also present strabismus, and even more patients have an abnormal head position. The abnormal head positions are more often horizontal, but they may also be vertical or take the form of a tilt, even though the nystagmus itself is horizontal. The aim of this article is to review available information about the origin and treatment of the abnormal head position associated to nystagmus, and to describe our treatment strategies. PMID:24533187

  18. Schizophrenia and abnormal brain network hubs.

    PubMed

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  19. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  20. Nonpathologizing trauma interventions in abnormal psychology courses.

    PubMed

    Hoover, Stephanie M; Luchner, Andrew F; Pickett, Rachel F

    2016-01-01

    Because abnormal psychology courses presuppose a focus on pathological human functioning, nonpathologizing interventions within these classes are particularly powerful and can reach survivors, bystanders, and perpetrators. Interventions are needed to improve the social response to trauma on college campuses. By applying psychodynamic and feminist multicultural theory, instructors can deliver nonpathologizing interventions about trauma and trauma response within these classes. We recommend class-based interventions with the following aims: (a) intentionally using nonpathologizing language, (b) normalizing trauma responses, (c) subjectively defining trauma, (d) challenging secondary victimization, and (e) questioning the delineation of abnormal and normal. The recommendations promote implications for instructor self-reflection, therapy interventions, and future research.

  1. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  2. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  3. Nonpathologizing trauma interventions in abnormal psychology courses.

    PubMed

    Hoover, Stephanie M; Luchner, Andrew F; Pickett, Rachel F

    2016-01-01

    Because abnormal psychology courses presuppose a focus on pathological human functioning, nonpathologizing interventions within these classes are particularly powerful and can reach survivors, bystanders, and perpetrators. Interventions are needed to improve the social response to trauma on college campuses. By applying psychodynamic and feminist multicultural theory, instructors can deliver nonpathologizing interventions about trauma and trauma response within these classes. We recommend class-based interventions with the following aims: (a) intentionally using nonpathologizing language, (b) normalizing trauma responses, (c) subjectively defining trauma, (d) challenging secondary victimization, and (e) questioning the delineation of abnormal and normal. The recommendations promote implications for instructor self-reflection, therapy interventions, and future research. PMID:26460794

  4. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. PMID:11859192

  5. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.

  6. Abnormal thallium 201 scintigraphy during low-dose vasopressin infusions

    SciTech Connect

    Davison, R.; Kaplan, K.; Bines, A.; Spies, S.; Reed, M.T.; Lesch, M.

    1986-12-01

    Thallium 201 (/sup 201/Tl) myocardial scans were obtained in 16 patients just prior to the discontinuation of a vasopressin infusion (.1 to .2 units/min) administered for the treatment of upper gastrointestinal bleeding. Repeat scintigraphy was performed two to three hours after the vasopressin was stopped. Eleven of the 16 patients (69 percent) demonstrated areas of decreased myocardial /sup 201/Tl uptake that resolved after the infusion was stopped. Heart rate-blood pressure product was significantly lower at the time of the second scan. Autopsies were secured in three of 11 scan-positive patients: one had severe coronary artery obstruction, one nonsignificant disease, and another had normal coronary arteries. Vasopressin, even at low doses, can induce abnormalities in myocardial perfusion that are probably mediated by a direct effect on the coronary circulation. They are usually not detectable by routine monitoring techniques and conceivably form the basis for the cardiovascular morbidity associated with the use of this agent.

  7. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD

    ERIC Educational Resources Information Center

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman

    2006-01-01

    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  8. Schizophrenogenic Parenting in Abnormal Psychology Textbooks.

    ERIC Educational Resources Information Center

    Wahl, Otto F.

    1989-01-01

    Considers the treatment of family causation of schizophrenia in undergraduate abnormal psychology textbooks. Reviews texts published only after 1986. Points out a number of implications for psychologists which arise from the inclusion in these texts of the idea that parents cause schizophrenia, not the least of which is the potential for…

  9. Teaching Abnormal Psychology in a Multimedia Classroom.

    ERIC Educational Resources Information Center

    Brewster, JoAnne

    1996-01-01

    Examines the techniques used in teaching an abnormal psychology class in a multimedia environment with two computers and a variety of audiovisual equipment. Students respond anonymously to various questions via keypads mounted on their desks, then immediately view and discuss summaries of their responses. (MJP)

  10. Psychology Faculty Perceptions of Abnormal Psychology Textbooks

    ERIC Educational Resources Information Center

    Rapport, Zachary

    2011-01-01

    The problem. The purpose of the current study was to investigate the perceptions and opinions of psychology professors regarding the accuracy and inclusiveness of abnormal psychology textbooks. It sought answers from psychology professors to the following questions: (1) What are the expectations of the psychology faculty at a private university of…

  11. Abnormal interhemispheric connectivity in male psychopathic offenders

    PubMed Central

    Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.

    2014-01-01

    Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798

  12. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  13. Pathways to abnormal revenge and forgiveness.

    PubMed

    Barclay, Pat

    2013-02-01

    The target article’s important point is easily misunderstood to claim that all revenge is adaptive. Revenge and forgiveness can overstretch (or understretch) the bounds of utility due to misperceptions, minimization of costly errors, a breakdown within our evolved revenge systems, or natural genetic and developmental variation. Together, these factors can compound to produce highly abnormal instances of revenge and forgiveness. PMID:23211704

  14. Abnormal Saccadic Eye Movements in Autistic Children.

    ERIC Educational Resources Information Center

    Kemner, C.; Verbaten, M. N.; Cuperus, J. M.; Camfferman, G.; van Engeland, H.

    1998-01-01

    The saccadic eye movements, generated during a visual oddball task, were compared for 10 autistic children, 10 children with attention deficit hyperactivity disorder, 10 dyslexic children, and 10 typically developing children. Several abnormal patterns of saccades were found in the autistic group. (DB)

  15. Behavioral abnormalities in captive nonhuman primates.

    PubMed

    Mallapur, Avanti; Choudhury, B C

    2003-01-01

    In this study, we dealt with 11 species of nonhuman primates across 10 zoos in India. We recorded behavior as instantaneous scans between 9 a.m. and 5 p.m. In the study, we segregated behaviors for analyses into abnormal, undesirable, active, and resting. The 4 types of abnormal behavior exhibited included floating limb, self-biting, self-clasping, and stereotypic pacing. In the study, we recorded 2 types of undesirable behavior: autoerotic stimulation and begging. Langurs and group-housed macaques did not exhibit undesirable behaviors. A male lion-tailed macaque and a male gibbon exhibited begging behavior. autoerotic stimulation and self-biting occurred rarely. Males exhibited higher levels of undesirable behavior than did females. Animals confiscated from touring zoos, circuses, and animal traders exhibited higher levels of abnormal behaviors than did animals reared in larger, recognized zoos. The stump-tailed macaque was the only species to exhibit floating limb, autoerotic stimulation, self-biting, and self-clasping. Our results show that rearing experience and group composition influence the proportions of abnormal behavior exhibited by nonhuman primates in captivity. The history of early social and environmental deprivation in these species of captive nonhuman primates probably is critical in the development of behavioral pathologies. Establishing this will require further research.

  16. Familial Precocious Fetal Abnormal Cortical Sulcation.

    PubMed

    Frassoni, Carolina; Avagliano, Laura; Inverardi, Francesca; Spaccini, Luigina; Parazzini, Cecilia; Rustico, Maria Angela; Bulfamante, Gaetano; Righini, Andrea

    2016-08-01

    The development of the human cerebral cortex is a complex and precisely programmed process by which alterations may lead to morphological and functional neurological abnormalities. We report familial cases of prenatally diagnosed abnormal brain, characterized by aberrant symmetrical mesial oversulcation of the parietooccipital lobes, in fetuses affected by abnormal skeletal features. Fetal brain anomalies were characterized by prenatal magnetic resonance imaging at 21 weeks of gestation and histologically evaluated at 22 weeks. Histological examination added relevant information showing some focal cortical areas of micropoligyria and heterotopic extension of the cortical plate into the marginal zone beneath the cortical surface. Genetic analysis of the fetuses excluded FGFR3 mutations known to be related to skeletal dysplasia and aberrant symmetrical oversulcation in other brain areas (temporal lobes). Hence, the present report suggests the existence of a class of rare syndromes of skeleton and brain development abnormality unrelated to FGFR3 mutations or related to other not described FGFR3 gene defects. Using magnetic resonance imaging, histopathology and molecular characterization we provide an example of a translational study of a rare and unreported brain congenital malformation. PMID:27177044

  17. Abnormal Cervical Cancer Screening Test Results

    MedlinePlus

    ... LEEP) —A thin wire loop that carries an electric current is used to remove abnormal areas of the ... the cervix using a thin wire loop and electric energy. Pap ... this document sets forth current information and opinions related to women’s health. The ...

  18. Pancreatic abnormalities and AIDS related sclerosing cholangitis.

    PubMed Central

    Teare, J P; Daly, C A; Rodgers, C; Padley, S P; Coker, R J; Main, J; Harris, J R; Scullion, D; Bray, G P; Summerfield, J A

    1997-01-01

    OBJECTIVES: Biliary tract abnormalities are well recognised in AIDS, most frequently related to opportunistic infection with Cryptosporidium, Microsporidium, and cytomegalovirus. We noted a high frequency of pancreatic abnormalities associated with biliary tract disease. To define these further we reviewed the clinical and radiological features in these patients. METHODS: Notes and radiographs were available from two centres for 83 HIV positive patients who had undergone endoscopic retrograde cholangiopancreatography for the investigation of cholestatic liver function tests or abdominal pain. RESULTS: 56 patients had AIDS related sclerosing cholangitis (ARSC); 86% of these patients had epigastric or right upper quadrant pain and 52% had hepatomegaly. Of the patients with ARSC, 10 had papillary stenosis alone, 11 had intra- and extrahepatic sclerosing cholangitis alone, and 35 had a combination of the two. Ampullary biopsies performed in 24 patients confirmed an opportunistic infection in 16. In 15 patients, intraluminal polyps were noted on the cholangiogram. Pancreatograms were available in 34 of the 45 patients with papillary stenosis, in which 29 (81%) had associated pancreatic duct dilatation, often with associated features of chronic pancreatitis. In the remaining 27 patients, final diagnoses included drug induced liver disease, acalculous cholecystitis, gall bladder empyema, chronic B virus hepatitis, and alcoholic liver disease. CONCLUSION: Pancreatic abnormalities are commonly seen with ARSC and may be responsible for some of the pain not relieved by biliary sphincterotomy. The most frequent radiographic biliary abnormality is papillary stenosis combined with ductal sclerosis. Images PMID:9389948

  19. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  20. Gastric emptying abnormal in duodenal ulcer

    SciTech Connect

    Holt, S.; Heading, R.C.; Taylor, T.V.; Forrest, J.A.; Tothill, P.

    1986-07-01

    To investigate the possibility that an abnormality of gastric emptying exists in duodenal ulcer and to determine if such an abnormality persists after ulcer healing, scintigraphic gastric emptying measurements were undertaken in 16 duodenal ulcer patients before, during, and after therapy with cimetidine; in 12 patients with pernicious anemia, and in 12 control subjects. No difference was detected in the rate or pattern of gastric emptying in duodenal ulcer patients before and after ulcer healing with cimetidine compared with controls, but emptying of the solid component of the test meal was more rapid during treatment with the drug. Comparison of emptying patterns obtained in duodenal ulcer subjects during and after cimetidine treatment with those obtained in pernicious anemia patients and controls revealed a similar relationship that was characterized by a tendency for reduction in the normal differentiation between the emptying of solid and liquid from the stomach. The similarity in emptying patterns in these groups of subjects suggests that gastric emptying of solids may be influenced by changes in the volume of gastric secretion. The failure to detect an abnormality of gastric emptying in duodenal ulcer subjects before and after ulcer healing calls into question the widespread belief that abnormally rapid gastric emptying is a feature with pathogenetic significance in duodenal ulcer disease.