Sample records for abnormal intestinal permeability

  1. Small intestinal function and dietary status in dermatitis herpetiformis.

    PubMed Central

    Gawkrodger, D J; McDonald, C; O'Mahony, S; Ferguson, A

    1991-01-01

    Small intestinal morphology and function were assessed in 82 patients with dermatitis herpetiformis, 51 of whom were taking a normal diet and 31 a gluten free diet. Methods used were histopathological evaluation of jejunal mucosal biopsy specimens, quantitation of intraepithelial lymphocytes, cellobiose/mannitol permeability test, tissue disaccharidase values, serum antigliadin antibodies, and formal assessment of dietary gluten content by a dietician. There was no correlation between dietary gluten intake and the degree of enteropathy in the 51 patients taking a normal diet, whereas biopsy specimens were normal in 24 of the 31 patients on a gluten free diet, all previously having been abnormal. Eighteen patients on gluten containing diets had normal jejunal histology and in seven of these all tests of small intestinal morphology and function were entirely normal. Intestinal permeability was abnormal and serum antigliadin antibodies were present in most patients with enteropathy. Studies of acid secretion in seven patients showed that hypochlorhydria or achlorhydria did not lead to abnormal permeability in the absence of enteropathy. This study shows that a combination of objective tests of small intestinal architecture and function will detect abnormalities in most dermatitis herpetiformis patients, including some with histologically normal jejunal biopsy specimens. Nevertheless there is a small group in whom all conventional intestinal investigations are entirely normal. PMID:2026337

  2. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  3. Cyclophosphamide priming reduces intestinal damage in man following high dose melphalan chemotherapy.

    PubMed Central

    Selby, P. J.; Lopes, N.; Mundy, J.; Crofts, M.; Millar, J. L.; McElwain, T. J.

    1987-01-01

    A small pre-treatment 'priming' dose of cyclophosphamide will reduce gut damage due to high dose i.v. melphalan in mice and sheep but efforts to demonstrate this effect in man have been hampered by difficulty in the measurement of gut damage. We have evaluated the 51CR EDTA absorption test, a new method for measuring intestinal permeability, as a means of assessing damage due to high dose melphalan. The test was reliable, with a narrow normal range, easy to use and well tolerated. It detected an increase in intestinal permeability after high dose melphalan with a maximum occurring between 9 and 15 days after treatment and subsequently returning to normal. It was shown in 19 patients that a pre-treatment dose of cyclophosphamide was capable of significantly reducing the abnormalities in intestinal permeability which resulted from high dose melphalan. PMID:3111515

  4. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  5. Abnormal Barrier Function in Gastrointestinal Disorders.

    PubMed

    Farré, Ricard; Vicario, María

    2017-01-01

    There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.

  6. Environmental enteric dysfunction is associated with carnitine deficiency and altered fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Environmental enteric dysfunction (EED), a condition characterized by small intestine inflammation and abnormal gut permeability, is widespread in children in developing countries and a major cause of growth failure. The pathophysiology of EED remains poorly understood. We measured serum metabolite...

  7. Autistic enterocolitis: fact or fiction?

    PubMed

    Galiatsatos, Polymnia; Gologan, Adrian; Lamoureux, Esther

    2009-02-01

    Autism spectrum disorder refers to syndromes of varying severity, typified by impaired social interactions, communicative delays and restricted, repetitive behaviours and interests. The prevalence of autism spectrum disorders has been on the rise, while the etiology remains unclear and most likely multifactorial. There have been several reports of a link between autism and chronic gastrointestinal symptoms. Endoscopy trials have demonstrated a higher prevalence of nonspecific colitis, lymphoid hyperplasia and focally enhanced gastritis compared with controls. Postulated mechanisms include aberrant immune responses to some dietary proteins, abnormal intestinal permeability and unfavourable gut microflora. Two autism spectrum disorder patients with chronic intestinal symptoms and abnormal endoscopic findings are described, followed by a review of this controversial topic.

  8. Perturbed zinc homeostasis in rural 3-5-y-old Malawian children is associated with abnormalities in intestinal permeability attributed to tropical enteropathy

    USDA-ARS?s Scientific Manuscript database

    Tropical enteropathy and zinc deficiency are major public health problems worldwide. Tropical enteropathy is characterized by reduced mannitol absorption with normal or increased lactulose absorption when a dual sugar absorption test is administered, the results of which are reported as the lactulos...

  9. Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences

    PubMed Central

    Purohit, Vishnudutt; Bode, J. Christian; Bode, Christiane; Brenner, David A.; Choudhry, Mashkoor A.; Hamilton, Frank; Kang, Y. James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R. Balfour; Swanson, Christine; Turner, Jerrold R.

    2008-01-01

    This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram negative bacteria in the intestine which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, L-glutamine, oats supplementation, or zinc thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram negative bacteria and preserving intestinal permeability to endotoxin may attenuate alcoholic liver and other organ injuries. PMID:18504085

  10. Intestinal permeability and nutritional status in developmental disorders.

    PubMed

    Souza, Nilian Carla Silva; Mendonca, Jacqueline Nakau; Portari, Guilherme Vannucchi; Jordao Junior, Alceu Afonso; Marchini, Julio Sergio; Chiarello, Paula Garcia

    2012-01-01

    Autism is a developmental disorder with a possible connection between dietary components and triggering or worsening of symptoms. An altered intestinal permeability might allow absorption of incompletely digested peptides (gluten and casein) that could produce opioid-like activity on the brain, causing significant changes in behavior. To assess the intestinal permeability and nutritional status of participants with developmental disorders to determine if changes in the intestinal mucosal barrier and/or injury to the intercellular junctions have occurred that might justify application of further dietary modifications. To assess intestinal permeability, the research team analyzed participants urine under fasting conditions, using gas chromatography to determine chromatographic peaks. To assess nutritional status, the team determined participants heights and weights and performed a bioelectric bioimpedance examination at least 4 hours after their most recent meal. In addition, the team determined food intake using three diet diaries. They asked participants and caregivers to register each food consumed during 2 nonconsecutive weekdays and 1 weekend day. The study occurred at the Ribeirao Preto School of Medicine, Sao Paulo University. Seven participants aged 9 to 23 years with developmental disorders (the developmental group, DG) completed the study. The research team recruited them through the Association of Friends of the Autistic Persons of Ribeirao Preto in Ribeirao Preto, Brazil. The control group (CG) consisted of nonsmoking healthy volunteers in the general population who were similar in age to the experimental group and did not suffer from diseases that potentially could influence nutritional status and intestinal function. To assess intestinal permeability, participants ingested 150 mL of an isosmolar solution of the sugars mannitol (2 g) and lactulose (7.5 g) under fasting conditions and the researchers collected all voided urine over a period of 5 hours. Using chromatographic peaks, the research team quantified the mannitol and lactulose in participants urine by calculating the percentage excreted in relation to the ingested amounts of sugar. This calculation gave them the lactulose-to-mannitol ratio (L/M). To evaluate nutritional status, they used data regarding bioimpedance resistance, heights, and weights to estimate lean mass and body water (in liters). They classified adults and adolescents using the body mass index (BMI). For children (2-10 y), they classified participants height-to-age and weight-to-height ratios. The research team used food intake to examine the macronutrient interval, the mean added sugar consumption, and the quantity of protein, in g/kg weight. Participants with developmental disorders (n = 7) were more likely to be overweight. Their usual diet revealed a high intake of lipids (%) and proteins (g/kg) (compared to reference values) and a high intake of calories (kcal) and carbohydrates (%) (compared to CG) as well as a high intake of food sources that are important contributors of casein and gluten. The DGs (n = 7) mean mannitol excretion was lower, and their L/M higher than the CGs (n = 7) (P < .05). Their increased L/M may indicate atrophy of the intestinal-mucosa surface and/or injury to the intercellular junctions or the effect of some other abnormality. The small number of participants, however, prevented more complex statistical analysis. Researchers need to complete additional studies to confirm the existence of abnormalities in autistic individuals intestines and to justify the use of dietary restrictions on gluten and casein to improve the symptoms of autism.

  11. [Relationship between alcoholic liver injury and endotoxin leakage from gut and intervention effect of jianpi liqi huoxue decoction].

    PubMed

    Fang, Zhi-hong; Hu, Yi-yang; Cui, Jian-wei

    2006-09-01

    To study the effects and mechanisms of Jianpi Liqi Huoxue Decoction (JLHD) in anti-alcoholic liver injury (ALI) through the pathological relation of ALI with changes of intestinal permeability and endotoxin leakage. The liver injury model induced by Lieber-DeCarli alcoholic forage was established. Altogether 42 male SD rats were randomly divided into 4 groups, the normal group (n=6), the control group fed with non-alcohol diet (n=12), the model group fed with alcoholic diet (n=12) and the treated group fed with alcoholic diet and treated with JLHD (n=12). The medicine or distilled water was administered by gavage from the 3rd week to the end of the 6th week. Then after fasting for 5 h all the rats except those in the normal group were given lipopolysaccharide (LPS) 10 mg/kg by gavage, and the blood plasma from portal vein, serum from inferior cava vein as well as tissues of liver and intestine were prepared for detection of plasma LPS level in the portal vein to observe the change of intestinal permeability through LPS content in portal vein blood plasma, the pathological and ultrastructural changes of the small intestine by HE staining, the pathological change of liver and triglyceride (TG) content and gamma glutamyl transpeptidase (GGT) activity in liver, the changes of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, and plasma tumor necrosis factor-alpha (TNF-alpha) level. In rats after modeling, there were obvious fatty degeneration, significant increase of hepatic TG content and GGT activity, serum ALT and AST activity, as well as plasma TNF-alpha level, with high plasma LPS level indicating increased intestinal permeability, and seriously injured mucosa microvilla of small intestine. However, all the above abnormal changes were milder in the treated group than those in the model group. Meanwhile, the TNF-alpha content, endotoxin level and ALT activity were found to be positively correlated. JLHD could alleviate liver injury through inhibiting the alcohol induced increased intestinal permeability and lessening endotoxin leakage.

  12. Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion.

    PubMed

    Lozoya-Agullo, Isabel; Zur, Moran; Beig, Avital; Fine, Noa; Cohen, Yael; González-Álvarez, Marta; Merino-Sanjuán, Matilde; González-Álvarez, Isabel; Bermejo, Marival; Dahan, Arik

    2016-12-30

    Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R 2 =0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high P eff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    PubMed

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  14. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  15. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  16. Intestinal Membrane Permeability and Hypersensitivity In the Irritable Bowel Syndrome

    PubMed Central

    Zhou, QiQi; Zhang, Buyi; Verne, G. Nicholas

    2009-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the underlying pathophysiology is poorly understood; however, increased intestinal permeability in diarrhea-predominant IBS patients has been reported. Here we demonstrate diarrhea-predominant IBS patients (D-IBS) that display increased intestinal permeability. We have also found that increased intestinal membrane permeability is associated with visceral and thermal hypersensitivity in this subset of D-IBS patients. We evaluated 54 D-IBS patients and 22 controls for intestinal membrane permeability using the lactulose / mannitol method. All subjects ingested 5 g laclulose and 2 g mannitol in 100 ml of water after which their urine was collected. We also evaluated the mean mechanical visual analogue (MVAS) pain rating to nociceptive thermal and visceral stimulation in all subjects. All study participants also completed the FBDSI scale. Approximately 39% of diarrhea-predominant IBS patients have increased intestinal membrane permeability as measured by the lactulose / mannitol ratio. These IBS patients also demonstrated higher M-VAS pain intensity reading scale. Interestingly, the IBS patients with hypersensitivity and increased intestinal permeability had a higher FBDSI score (100.8±5.4) compared to IBS patients with normal membrane permeability and sensitivity (51.6±12.7) and controls (6.1 ± 5.6) (p<0.001). A subset of D-IBS patients have increased intestinal membrane permeability that is associated with an increased FBDSI score and increased hypersensitivity to visceral and thermal nociceptive pain stimuli. Thus, increased intestinal membrane permeability in D-IBS patients may lead to more severe IBS symptoms and hypersensitivity to somatic and visceral stimuli. PMID:19595511

  17. Alterations in Intestinal Permeability After Thermal Injury,

    DTIC Science & Technology

    1992-01-01

    intestinal permeability has been documented in the infected group. Our finding of increased intestinal many clinical states, including celiac disease ...Crohn’s permeability before the episode of infection suggests, but disease , and other intestinal mucosal disorders.6,7 It was does not prove, a causal...permeability to sugars in patients with Crohn’s disease ofresult in endotoxemia only in those patients who develop the terminal ileus and colon. Digestion

  18. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    PubMed

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Oral (99m)Tc-DTPA simultaneous determination of duodenobiliary reflux and intestinal permeability in patients after choledocholithotomy plus T-tube drainage.

    PubMed

    Sun, Shao-Long; Wu, Shuo-Dong; Zhang, Xiao-Bo

    2005-11-01

    The high choledocholithiasis recurrence rate after choledocholithotomy plus T-tube drainage is related to biliary bacterial infection. These bacteria are from the intestine, either via the major duodenal papilla, or the penetrating intestinal mucosa. It is therefore possible that duodenobiliary reflux and increased intestinal permeability exist in patients who have undergone choledocholithotomy. This study was undertaken to find the evidence of duodenobiliary reflux and to assess intestinal permeability in these patients. Twenty-one patients who underwent choledocholithotomy plus T-tube drainage 2 months ago, and 11 healthy volunteers (controls) took orally 185MBq of (99m)Tc-DTPA. The patients' bile was collected in the next 2 hours via a T-tube and the (99m)Tc-DTPA radioactivity in the bile was counted. Intestinal permeability was evaluated by measuring the 24-hour urinary excretion rate of ingested (99m)Tc-DTPA in both patients and controls. In 6 of the 21 patients, radioactivity in the bile was detected. The intestinal permeability was significantly higher in patients (11.45%+/-6.16%) than that in controls (3.61%+/-1.63%, t=3.28, P<0.05). Duodenobiliary reflux exists in patients who have undergone choledocholithotomy plus T-tube drainage. The intestinal permeability is higher in these patients than in healthy subjects. Duodenobiliary reflux and increased intestinal permeability may be factors of cholelithiasis recurrence.

  20. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease?

    PubMed

    Büning, Carsten; Geissler, Nora; Prager, Matthias; Sturm, Andreas; Baumgart, Daniel C; Büttner, Janine; Bühner, Sabine; Haas, Verena; Lochs, Herbert

    2012-10-01

    A disturbed epithelial barrier could play a pivotal role in ulcerative colitis (UC). We performed a family-based study analyzing in vivo gastrointestinal permeability in patients with UC, their healthy relatives, spouses, and controls. In total, 89 patients with UC in remission, 35 first-degree relatives (UC-R), 24 nonrelated spouses (UC-NR), and 99 healthy controls (HC) were studied. Permeability was assessed by a sugar-drink test using sucrose (gastroduodenal permeability), lactulose/mannitol (intestinal permeability), and sucralose (colonic permeability). Data were correlated with clinical characteristics including medical treatment. Increased intestinal permeability was detected significantly more often in UC patients in remission (25/89, 28.1%) compared with HC (6/99, 6.1%; P < 0.001). Similar results were obtained in UC-R (7/35, 20.0%; P = 0.01 compared with HC) regardless of sharing the same household with the patients or not. No difference was found between UC-NR (3/24, 12.5%) and HC. Notably, in UC patients increased intestinal permeability was found in 12/28 patients (42.9%) with pancolitis, 7/30 (23.3%) patients with left-sided colitis, and in 2/19 (10.5%) patients with proctitis (P = 0.04). Gastroduodenal and colonic permeability were similar in all groups. Among patients on azathioprine, increased intestinal permeability was only seen in 1/18 (5.6%) patients. In contrast, in 24/70 (34.3%) patients without azathioprine, an increased intestinal permeability was found (P = 0.005). An increased intestinal but not colonic permeability was found in UC patients in clinical remission that could mark a new risk factor for extensive disease location. Similar findings in healthy relatives but not spouses suggest that this barrier defect is genetically determined. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.

  1. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    PubMed

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  2. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice

    PubMed Central

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-01-01

    AIM: To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. METHODS: Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. RESULTS: Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. CONCLUSION: Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function. PMID:22416180

  3. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  4. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery.

    PubMed

    Larregieu, Caroline A; Benet, Leslie Z

    2014-04-07

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug-drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption.

  5. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting that it is nearly completely absorbed in the first part of the intestine where the pH is about 5.4. Conclusions The AM deconvolution method provides an accurate estimate of the human intestinal permeability. The results for these 90 drugs should provide a useful benchmark for evaluating QSAR models. PMID:23800230

  6. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels in this region.

  7. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  8. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    PubMed

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  9. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

    PubMed

    Edogawa, Shoko; Peters, Stephanie A; Jenkins, Gregory D; Gurunathan, Sakteesh V; Sundt, Wendy J; Johnson, Stephen; Lennon, Ryan J; Dyer, Roy B; Camilleri, Michael; Kashyap, Purna C; Farrugia, Gianrico; Chen, Jun; Singh, Ravinder J; Grover, Madhusudan

    2018-06-13

    Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

  10. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches.

    PubMed

    Lozoya-Agullo, Isabel; Zur, Moran; Wolk, Omri; Beig, Avital; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik

    2015-03-01

    Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the single-pass intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Intestinal permeability defects: Is it time to treat?

    PubMed Central

    Odenwald, Matthew A.; Turner, Jerrold R.

    2013-01-01

    An essential role of the intestinal epithelium is to separate luminal contents from the interstitium, a function primarily determined by the integrity of the epithelium and the tight junction that seals the paracellular space. Intestinal tight junctions are selectively-permeable, and intestinal permeability can be increased physiologically in response to luminal nutrients or pathologically by mucosal immune cells and cytokines, the enteric nervous system, and pathogens. Compromised intestinal barrier function is associated with an array of clinical conditions, both intestinal and systemic. While most available data are correlative, some studies support a model where cycles of increased intestinal permeability, intestinal immune activation, and subsequent immune-mediated barrier loss contribute to disease progression. This model is applicable to intestinal and systemic diseases. However, it has not been proven and both mechanistic and therapeutic studies are ongoing. Nevertheless, the correlation between increased intestinal permeability and disease has caught the attention of the public, leading to a rise in popularity of the diagnosis of “leaky gut syndrome,” which encompasses a range of systemic disorders. Proponents claim that barrier restoration will cure underlying disease, but this has not been demonstrated in clinical trials. Moreover, human and mouse studies show that intestinal barrier loss alone is insufficient to initiate disease. It is therefore uncertain if increased permeability in these patients is a cause or effect of the underlying disorder. Although drug targets that may mediate barrier restoration have been proposed, none have been proven effective. As such, current treatments for barrier dysfunction should target the underlying disease. PMID:23851019

  12. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    PubMed Central

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  13. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders.

    PubMed

    Mujagic, Z; Ludidi, S; Keszthelyi, D; Hesselink, M A M; Kruimel, J W; Lenaerts, K; Hanssen, N M J; Conchillo, J M; Jonkers, D M A E; Masclee, A A M

    2014-08-01

    Intestinal permeability has been studied in small groups of IBS patients with contrasting findings. To assess intestinal permeability at different sites of the GI tract in different subtypes of well-characterised IBS patients and healthy controls (HC), and to assess potential confounding factors. IBS patients and HC underwent a multi-sugar test to assess site-specific intestinal permeability. Sucrose excretion and lactulose/rhamnose ratio in 0-5 h urine indicated gastroduodenal and small intestinal permeability, respectively. Sucralose/erythritol ratio in 0-24 h and 5-24 h urine indicated whole gut and colonic permeability, respectively. Linear regression analysis was used to assess the association between IBS groups and intestinal permeability and to adjust for age, sex, BMI, anxiety or depression, smoking, alcohol intake and use of medication. Ninety-one IBS patients, i.e. 37% IBS-D, 23% IBS-C, 33% IBS-M and 7% IBS-U and 94 HC were enrolled. Urinary sucrose excretion was significantly increased in the total IBS group [μmol, median (Q1;Q3): 5.26 (1.82;11.03) vs. 2.44 (0.91;5.85), P < 0.05], as well as in IBS-C and IBS-D vs. HC. However, differences attenuated when adjusting for confounders. The lactulose/rhamnose ratio was increased in IBS-D vs. HC [0.023 (0.013;0.038) vs. 0.014 (0.008;0.025), P < 0.05], which remained significant after adjustment for confounders. No difference was found in 0-24 and 5-24 h sucralose/erythritol ratio between groups. Small intestinal permeability is increased in patients with IBS-D compared to healthy controls, irrespective of confounding factors. Adjustment for confounders is necessary when studying intestinal permeability, especially in a heterogeneous disorder such as IBS. © 2014 John Wiley & Sons Ltd.

  14. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    PubMed

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Shwachman-Diamond syndrome with autoimmune-like liver disease and enteropathy mimicking celiac disease.

    PubMed

    Veropalumbo, Claudio; Campanozzi, Angelo; De Gregorio, Fabiola; Correra, Antonio; Raia, Valeria; Vajro, Pietro

    2015-02-01

    Liver abnormalities that normalize during infancy as well an enteropathy are reported in Shwachman-Diamond syndrome (SDS). The pathogenesis of both conditions is unknown. We report two SDS cases with autoimmune-like (antismooth muscle and/or antinuclear antibody positivity) liver disease and antigliadin antibody positive inflammatory enteropathy. Hypertransaminasemia did not resolve after immunosuppressive therapy and/or a gluten-free diet. These transient autoimmune phenomena and gut-liver axis perturbations may have played a role in transient SDS hepatopathy and enteropathy. Our report may stimulate other studies to define the relationship between the SDS genetic defect and intestinal permeability as the pathogenic mechanism underlying SDS related liver and intestinal inflammation. Copyright © 2014. Published by Elsevier Masson SAS.

  16. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat.

    PubMed

    Somasundaram, S; Sigthorsson, G; Simpson, R J; Watts, J; Jacob, M; Tavares, I A; Rafi, S; Roseth, A; Foster, R; Price, A B; Wrigglesworth, J M; Bjarnason, I

    2000-05-01

    The pathogenesis of NSAID-induced gastrointestinal damage is believed to involve a nonprostaglandin dependent effect as well as prostaglandin dependent effects. One suggestion is that the nonprostaglandin mechanism involves uncoupling of mitochondrial oxidative phosphorylation. To assess the role of uncoupling of mitochondrial oxidative phosphorylation in the pathogenesis of small intestinal damage in the rat. We compared key pathophysiologic events in the small bowel following (i) dinitrophenol, an uncoupling agent (ii) parenteral aspirin, to inhibit cyclooxygenase without causing a 'topical' effect and (iii) the two together, using (iv) indomethacin as a positive control. Dinitrophenol altered intestinal mitochondrial morphology, increased intestinal permeability and caused inflammation without affecting gastric permeability or intestinal prostanoid levels. Parenteral aspirin decreased mucosal prostanoids without affecting intestinal mitochondria in vivo, gastric or intestinal permeability. Aspirin caused no inflammation or ulcers. When dinitrophenol and aspirin were given together the changes in intestinal mitochondrial morphology, permeability, inflammation and prostanoid levels and the macro- and microscopic appearances of intestinal ulcers were similar to indomethacin. These studies allow dissociation of the contribution and consequences of uncoupling of mitochondrial oxidative phosphorylation and cyclooxygenase inhibition in the pathophysiology of NSAID enteropathy. While uncoupling of enterocyte mitochondrial oxidative phosphorylation leads to increased intestinal permeability and low grade inflammation, concurrent decreases in mucosal prostanoids appear to be important in the development of ulcers.

  17. Crystal-liquid Fugacity Ratio as a Surrogate Parameter for Intestinal Permeability.

    PubMed

    Zakeri-Milani, Parvin; Fasihi, Zohreh; Akbari, Jafar; Jannatabadi, Ensieh; Barzegar-Jalali, Mohammad; Loebenberg, Raimar; Valizadeh, Hadi

    We assessed the feasibility of using crystal-liquid fugacity ratio (CLFR) as an alternative parameter for intestinal permeability in the biopharmaceutical classification (BCS) of passively absorbed drugs. Dose number, fraction of dose absorbed, intestinal permeability, and intrinsic dissolution rate were used as the input parameters. CLFR was determined using thermodynamic parameters i.e., melting point, molar fusion enthalpy, and entropy of drug molecules obtained using differential scanning calorimetry. The CLFR values were in the range of 0.06-41.76 mole percent. There was a close relationship between CLFR and in vivo intestinal permeability (r > 0.8). CLFR values of greater than 2 mole percent corresponded to complete intestinal absorption. Applying CLFR versus dose number or intrinsic dissolution rate, more than 92% of tested drugs were correctly classified with respect to the reported classification system on the basis of human intestinal permeability and solubility. This investigation revealed that the CLFR might be an appropriate parameter for quantitative biopharmaceutical classification. This could be attributed to the fact that CLFR could be a measure of solubility of compounds in lipid bilayer which was found in this study to be directly proportional to the intestinal permeability of compounds. This classification enables researchers to define characteristics for intestinal absorption of all four BCS drug classes using suitable cutoff points for both intrinsic dissolution rate and crystal-liquid fugacity ratio. Therefore, it may be used as a surrogate for permeability studies. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  18. 13C Mannitol as a Novel Biomarker for Measurement of Intestinal Permeability

    PubMed Central

    Grover, Madhusudan; Camilleri, Michael; Hines, Jolaine; Burton, Duane; Ryks, Michael; Wadhwa, Akhilesh; Sundt, Wendy; Dyer, Roy; Singh, Ravinder J.

    2016-01-01

    Background Gastrointestinal (GI) and non-GI disorders are associated with altered intestinal permeability, which can be measured in vivo by urinary excretion after oral lactulose and mannitol ingestion. Inadvertent dietary consumption of 12Carbon (12C, regular) mannitol in food or from other sources may interfere with the test’s interpretation. 13Carbon (13C) constitutes 1% of carbon in nature and 13C mannitol is a stable isotope. Our aim was to determine performance of 13C mannitol for measurement of intestinal permeability. Methods Ten healthy volunteers underwent intestinal permeability assay using co-administered 12C mannitol, 13C mannitol and lactulose, followed by timed urine collections. Urinary sugar concentrations were measured using tandem high performance liquid chromatography-mass spectrometry. Key Results We found that 13C mannitol can be distinguishable from 12C mannitol on tandem mass spectrometry. Additionally, 13C mannitol had ~20-fold lower baseline contamination compared to 12C mannitol. We describe here the 13C mannitol assay method for measurement of intestinal permeability. Conclusions & Inferences In conclusion, 13C mannitol is superior to 12C mannitol for measurement of intestinal permeability. It avoids issues with baseline contamination and erratic excretions during the testing period. PMID:26914765

  19. (13) C mannitol as a novel biomarker for measurement of intestinal permeability.

    PubMed

    Grover, M; Camilleri, M; Hines, J; Burton, D; Ryks, M; Wadhwa, A; Sundt, W; Dyer, R; Singh, R J

    2016-07-01

    Gastrointestinal (GI) and non-GI disorders are associated with altered intestinal permeability, which can be measured in vivo by urinary excretion after oral lactulose and mannitol ingestion. Inadvertent dietary consumption of (12) Carbon ((12) C, regular) mannitol in food or from other sources may interfere with the test's interpretation. (13) Carbon ((13) C) constitutes 1% of carbon in nature and (13) C mannitol is a stable isotope. Our aim was to determine the performance of (13) C mannitol for measurement of intestinal permeability. Ten healthy volunteers underwent intestinal permeability assay using coadministered (12) C mannitol, (13) C mannitol and lactulose, followed by timed urine collections. Urinary sugar concentrations were measured using tandem high performance liquid chromatography-mass spectrometry. We found that (13) C mannitol can be distinguishable from (12) C mannitol on tandem mass spectrometry. In addition, (13) C mannitol had ~20-fold lower baseline contamination compared to (12) C mannitol. We describe here the (13) C mannitol assay method for the measurement of intestinal permeability. In conclusion, (13) C mannitol is superior to (12) C mannitol for measurement of intestinal permeability. It avoids issues with baseline contamination and erratic excretions during the testing period. © 2016 John Wiley & Sons Ltd.

  20. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    PubMed

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the permeability criteria for BCS high permeability classification.

  1. The effect of Saccharomyces boulardii in patients eligible for liver transplantation.

    PubMed

    Liboredo, Juliana Costa; Ferrari, Maria de Lourdes Abreu; Vilela, Eduardo Garcia; Lima, Agnaldo Soares; Correia, Maria Isabel Toulson Davisson

    2014-09-12

    The aim of this study was to evaluate the influence of Saccharomyces boulardii on the intestinal permeability, laboratory parameters and MELD and Child-Pugh severity scores in cirrhotic patients eligible for liver transplantation. Eighteen patients followed in a Transplant Outpatient Clinic were evaluated immediately before the beginning of treatment, after a 30-day period of treatment period with probiotics and at the end of the second study month (after a thirty-day period without probiotics). Fifteen healthy controls also underwent the intestinal permeability test (lactulose/mannitol). Before the probiotic, the median lactulose/ mannitol ratio was greater in the cirrhotic patients (0.0209, range 0.0012-0.1984) compared to the healthy controls (0.0030, range 0.0020-0.0013) (p < 0.05). Eight of fifteen patients, half of whom had ascites, showed increased intestinal permeability above the higher value observed in the controls. No significant association was found between the severity scores for liver disease, age, presence of ascites and intestinal permeability immediately before the beginning of study. After treatment with S. boulardii, there was no improvement in intestinal permeability or significant differences in the laboratory parameters for the three evaluations. Patients eligible for liver transplants presented with increased intestinal permeability compared to healthy controls. A thirty-day treatment with S. boulardii did not improve this intestinal permeability or the severity scores, nor did it impact the laboratory parameters. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    PubMed

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability.

    PubMed

    Mangell, Peter; Nejdfors, Pernilla; Wang, Mei; Ahrné, Siv; Weström, Bjorn; Thorlacius, Henrik; Jeppsson, Bengt

    2002-03-01

    The purpose of this work was to investigate whether a probiotic bacterium, Lactobacillus plantarum 299v, could affect Escherichia coli-induced passage of mannitol across the intestinal wall. Sprague-Dawley rats were pretreated for one week by either tube feeding with L. plantarum 299v twice daily, free access to L. plantarum 299v by adding the bacterium in the drinking water, or negative control receiving regular feeding. Intestinal segments were mounted in Ussing chambers and the mucosa was exposed to control medium, E. coli, and L. plantarum 299v (alone or together). [14C]Mannitol was added as a marker of intestinal permeability and samples were taken from the serosal side. E. coli exposure induced a 53% increase in mannitol passage across the intestinal wall (P < 0.05). One week of pretreatment with L. plantarum 299v in the drinking water abolished the E. coli-induced increase in permeability. Tube feeding for one week or short-term addition of L. plantarum 299v in the Ussing chambers had no effect on the permeability provoked by E. coli challenge. Notably, L. plantanum 299v itself did not change the intestinal passage of mannitol. These data demonstrate that pretreatment with L. plantarum 299v, which is a probiotic bacterium, protects against E. coli-induced increase in intestinal permeability, and that L. plantarum 299v alone has no influence on the intestinal permeability. Thus, this study supports the concept that probiotics may exert beneficial effects in the gastrointestinal tract.

  4. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes.

    PubMed

    Hałasa, Maciej; Maciejewska, Dominika; Baśkiewicz-Hałasa, Magdalena; Machaliński, Bogusław; Safranow, Krzysztof; Stachowska, Ewa

    2017-04-08

    Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  5. Transmural Intestinal Wall Permeability in Severe Ischemia after Enteral Protease Inhibition

    PubMed Central

    Altshuler, Angelina E.; Lamadrid, Itze; Li, Diana; Ma, Stephanie R.; Kurre, Leena; Schmid-Schönbein, Geert W.; Penn, Alexander H.

    2014-01-01

    In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases) and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein) in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP) inhibitors (doxycycline, GM 6001), and serine protease inhibitor (tranexamic acid) in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation) for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid) did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen across the wall and enteral proteolytic inhibition attenuates tissue breakdown. These combined interventions ameliorate lesion formation in the small intestine after hemorrhagic shock. PMID:24805256

  6. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    PubMed

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  7. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting.

  8. Protective effect of metronidazole on uncoupling mitochondrial oxidative phosphorylation induced by NSAID: a new mechanism.

    PubMed

    Leite, A Z; Sipahi, A M; Damião, A O; Coelho, A M; Garcez, A T; Machado, M C; Buchpiguel, C A; Lopasso, F P; Lordello, M L; Agostinho, C L; Laudanna, A A

    2001-02-01

    The pathogenesis of non-steroidal anti-inflammatory drug (NSAID) enteropathy is complex. It involves uncoupling of mitochondrial oxidative phosphorylation which alters the intercellular junction and increases intestinal permeability with consequent intestinal damage. Metronidazole diminishes the inflammation induced by indomethacin but the mechanisms remain speculative. A direct effect on luminal bacteria has traditionally been thought to account for the protective effect of metronidazole. However, a protective effect of metronidazole on mitochondrial oxidative phosphorylation has never been tested. To assess the protective effect of metronidazole on mitochondrial uncoupling induced by indomethacin and also on the increased intestinal permeability and macroscopic damage. The protective effect of metronidazole was evaluated in rats given indomethacin; a macroscopic score was devised to quantify intestinal lesions, and intestinal permeability was measured by means of (51)Cr-ethylenediaminetetraacetic acid. The protective effect of metronidazole against mitochondrial uncoupling induced by indomethacin was assessed using isolated coupled rat liver mitochondria obtained from rats pretreated with metronidazole or saline. Metronidazole significantly reduced the macroscopic intestinal damage and increase in intestinal permeability induced by indomethacin; furthermore, at the mitochondrial level, it significantly reduced the increase in oxygen consumption in state 4 induced by indomethacin and caused less reduction of the respiratory control rate. Our study confirmed the beneficial effects of metronidazole on intestinal damage and intestinal permeability, and demonstrated, for the first time, a direct protective effect of metronidazole on uncoupling of mitochondrial oxidative phosphorylation caused by NSAIDs.

  9. Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids.

    PubMed

    Hill, David R; Huang, Sha; Tsai, Yu-Hwai; Spence, Jason R; Young, Vincent B

    2017-12-18

    Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.

  10. The utility of rat jejunal permeability for biopharmaceutics classification system.

    PubMed

    Zakeri-Milani, Parvin; Valizadeh, Hadi; Tajerzadeh, Hosnieh; Islambulchilar, Ziba

    2009-12-01

    The biopharmaceutical classification system has been developed to provide a scientific approach for classifying drug compounds based on their dose/solubility ratio and human intestinal permeability. Therefore in this study a new classification is presented, which is based on a correlation between rat and human intestinal permeability values. In situ technique in rat jejunum was used to determine the effective intestinal permeability of tested drugs. Then three dimensionless parameters--dose number, absorption number, and dissolution number (D(o), A(n), and D(n))--were calculated for each drug. Four classes of drugs were defined, that is, class I, D(0) < 0.5, P(eff(rat)) > 5.09 x 10(-5) cm/s; class II, D(o) > 1, P(eff(rat)) > 5.09 x 10( -5) cm/s; class III, D(0) < 0.5, P(eff(rat)) < 4.2 x 10(-5) cm/s; and class IV, D(o) > 1, P(eff(rat)) < 4.2 x 10(-5) cm/s. A region of borderline drugs (0.5 < D(o) < 1, 4.2 x 10(-5) < P(eff(rat)) < 5.09 x 10(-5) cm/s) was also defined. According to obtained results and proposed classification for drugs, it is concluded that drugs could be categorized correctly based on dose number and their intestinal permeability values in rat model using single-pass intestinal perfusion technique. This classification enables us to remark defined characteristics for intestinal absorption of all four classes using suitable cutoff points for both dose number and rat effective intestinal permeability values.

  11. Effect of permeability enhancers on paracellular permeability of acyclovir.

    PubMed

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  12. Protective effect of aged garlic extract on the small intestinal damage of rats induced by methotrexate administration.

    PubMed

    Horie, T; Matsumoto, H; Kasagi, M; Sugiyama, A; Kikuchi, M; Karasawa, C; Awazu, S; Itakura, Y; Fuwa, T

    1999-08-01

    The methotrexate (MTX) administration to rats causes the damage of small intestine. The small intestinal damage was evaluated by measuring the intestinal permeability of the poorly absorbable compound, fluorescein isothiocyanate (FITC)-labeled dextran (average molecular weight, 4,400) (FD-4) using the in vitro everted intestine technique and by determining the FD-4 that appeared in plasma using the in situ closed loop intestine technique. The MTX administration to rats fed with the standard laboratory diet increased the small intestinal permeability of FD-4 due to the damage of the small intestine. Interestingly, the permeability of FD-4, when MTX was administered to rats fed with the aged garlic extract containing diet, was depressed almost to the level of control rats without the MTX treatment. The present study showed that the aged garlic extract protected the small intestine from the damage induced by the action of MTX on the crypt cells.

  13. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    PubMed

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with changes in intestinal microbiota composition and metabolism. Prestress intestinal microbiota composition and changes in fecal concentrations of metabolites linked to the microbiota were associated with increased intestinal permeability. Findings suggest that targeting the intestinal microbiota could provide novel strategies for mitigating increases in intestinal permeability during stress.

  14. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation.

    PubMed

    Zur, Moran; Hanson, Allison S; Dahan, Arik

    2014-09-30

    While the solubility parameter is fairly straightforward when assigning BCS classification, the intestinal permeability (Peff) is more complex than generally recognized. In this paper we emphasize this complexity through the analysis of codeine, a commonly used antitussive/analgesic drug. Codeine was previously classified as a low-permeability compound, based on its lower LogP compared to metoprolol, a marker for the low-high permeability class boundary. In contrast, high fraction of dose absorbed (Fabs) was reported for codeine, which challenges the generally recognized Peff-Fabs correlation. The purpose of this study was to clarify this ambiguity through elucidation of codeine's BCS solubility/permeability class membership. Codeine's BCS solubility class was determined, and its intestinal permeability throughout the small intestine was investigated, both in vitro and in vivo in rats. Codeine was found to be unequivocally a high-solubility compound. All in vitro studies indicated that codeine's permeability is higher than metoprolol's. In vivo studies in rats showed similar permeability for both drugs throughout the entire small-intestine. In conclusion, codeine was found to be a BCS Class I compound. No Peff-Fabs discrepancy is involved in its absorption; rather, it reflects the risk of assigning BCS classification based on merely limited physicochemical characteristics. A thorough investigation using multiple experimental methods is prudent before assigning a BCS classification, to avoid misjudgment in various settings, e.g., drug discovery, formulation design, drug development and regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Gluten-induced symptoms in diarrhea-predominant irritable bowel syndrome are associated with increased myosin light chain kinase activity and claudin-15 expression

    PubMed Central

    Wu, Richard Licheng; Vazquez-Roque, Maria; Carlson, Paula; Burton, Duane; Grover, Madhusudan; Camilleri, Michael; Turner, Jerrold R.

    2016-01-01

    The mechanisms underlying diarrhea-predominant irritable bowel syndrome (IBS-D) are poorly understood, but increased intestinal permeability is thought to contribute to symptoms. A recent clinical trial of gluten-free diet (GFD) demonstrated symptomatic improvement, relative to gluten-containing diet (GCD), that was associated with reduced intestinal permeability in non-celiac disease IBS-D patients. The aim of this study was to characterize intestinal epithelial tight junction composition in IBS-D before and after dietary gluten challenge. Biopsies from 27 IBS-D patients (13 GFD; 14 GCD) were examined by H&E staining and semi-quantitative immunohistochemistry for phosphorylated myosin II regulatory light chain (MLC), MLC kinase, claudin-2, claudin-8, and claudin-15. Diet-induced changes were assessed and correlated with urinary mannitol excretion (after oral administration). In the small intestine, epithelial MLC phosphorylation was increased or decreased by GCD or GFD, respectively, and this correlated with increased intestinal permeability (P < 0.03). Colonocyte expression of the paracellular Na+ channel claudin-15 was also markedly augmented following GCD challenge (P < 0.05). Conversely, colonic claudin-2 expression correlated with reduced intestinal permeability (P < 0.03). Claudin-8 expression was not affected by dietary challenge. These data show that alterations in MLC phosphorylation and claudin-15 and claudin-2 expression are associated with gluten-induced symptomatology and intestinal permeability changes in IBS-D. The results provide new insight into IBS-D mechanisms and can explain permeability responses to gluten challenge in these patients. PMID:27869798

  16. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed Central

    van Wijck, Kim; Bessems, Babs AFM; van Eijk, Hans MH; Buurman, Wim A; Dejong, Cornelis HC; Lenaerts, Kaatje

    2012-01-01

    Background Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Methods Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Results Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Conclusion Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting. PMID:22888267

  17. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.

  18. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice

    USDA-ARS?s Scientific Manuscript database

    Objective: Microbial dysbiosis and increased intestinal permeability is a target for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO); however, it is not known whether decreased intestinal permeability is necessary or sufficient for weight loss. Prebiotic milk oligos...

  19. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  20. Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown.

    PubMed

    Yang, Xuekang; Chen, Ji; Bai, Hua; Tao, Ke; Zhou, Qin; Hou, Hongyi; Hu, Dahai

    2013-12-01

    Severe burns initiate an inflammatory cascade within the gut, which leads to intestinal mucosal injury. Although Na(+)/H(+) exchanger 1 (NHE1) is recognised as a pivotal player in several inflammatory processes, its role in burn-induced intestinal injury is relatively unknown. We hypothesised that NHE1 might be involved in the increased intestinal permeability and barrier breakdown after severe burns. Thus, we here investigate whether the inhibition of NHE1 has a protective effect on burn-induced intestinal injury. Mice were subjected to a 30% total body surface area (TBSA) full-thickness steam burn. Cariporide was used to assess the function of NHE1 in mice with burn-induced intestinal injury by fluorescence spectrophotometry, Western blotting and enzyme linked immunosorbent assay (ELISA). We found that severe burn increased intestinal permeability, associated with the up-regulation of NHE1 and raised inflammatory cytokine levels. Mice treated with the NHE1 inhibitor cariporide had significantly attenuated burn-induced intestinal permeability and a reduced inflammatory response. NHE1 inhibition also reduced nuclear factor-κB (NF-κB) activation and attenuated p38 mitogen-activated protein kinase (MAPK) phosphorylation. Our study suggests that NHE1 plays an important role in burn-induced intestinal permeability through the regulation of the inflammatory response. Inhibition of NHE1 may be adopted as a potential therapeutic strategy for attenuating intestinal barrier breakdown. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  1. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid.

    PubMed

    Xie, Yehua; Hu, Yongjun; Smith, David E

    2016-01-01

    5-Aminolevulinic acid (5-ALA) has been widely used in photodynamic therapy and immunofluorescence of tumours. In the present study, the intestinal permeability and oral pharmacokinetics of 5-ALA were evaluated to probe the contribution of the proton-coupled oligopeptide transporter 1 (PEPT1) to the oral absorption and systemic exposure of this substrate. In situ single-pass intestinal perfusions and in vivo oral pharmacokinetic studies were performed in wildtype and Pept1 knockout mice. Perfusion studies were performed as a function of concentration dependence, specificity and permeability of 5-ALA in different intestinal segments. Pharmacokinetic studies were performed after 0.2 and 2.0 μmoL·g(-1) doses of 5-ALA. The permeability of 5-ALA was substantial in duodenal, jejunal and ileal regions of wildtype mice, but the residual permeability of 5-ALA in the small intestine from Pept1 knockout mice was only about 10% of that in wildtype animals. The permeability of 5-ALA in jejunum was specific for PEPT1 with no apparent contribution of other transporters, including the proton-coupled amino acid transporter 1 (PAT1). After oral dosing, the systemic exposure of 5-ALA was reduced by about twofold during PEPT1 ablation, and the pharmacokinetics were dose-proportional after the 0.2 and 2.0 µmol·g(-1) doses. PEPT1 had a minor effect on the disposition and peripheral tissue distribution of 5-ALA. Our findings suggested a major role of PEPT1 in the intestinal permeability and oral absorption of 5-ALA. In contrast, another proton-coupled transporter, PAT1, appeared to play a limited role, at best. © 2015 The British Pharmacological Society.

  2. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes.

    PubMed

    Maffeis, Claudio; Martina, Alessia; Corradi, Massimiliano; Quarella, Sara; Nori, Nicole; Torriani, Sandra; Plebani, Mario; Contreas, Giovanna; Felis, Giovanna E

    2016-10-01

    Pancreatic organ-specific autoimmunity in subjects at risk for type 1 diabetes (T1D) is associated with increased intestinal permeability and an aberrant gut microbiota, but these factors have not yet been simultaneously investigated in the same subjects. Thus, the aim of this study was to assess both intestinal permeability and gut microbiota composition in an Italian sample of children at risk for T1D. Ten Italian children with beta cell autoimmunity at risk for T1D and 10 healthy children were involved in a case-control study. The lactulose/mannitol test was used to assess intestinal permeability. Analysis of microbiota composition was performed using polymerase chain reaction followed by denaturing gradient gel electrophoresis, based on the 16S rRNA gene. Intestinal permeability was significantly higher in children at risk for T1D than in healthy controls. Moreover, the gut microbiota of the former differed from that of the latter group: Three microorganisms were detected - Dialister invisus, Gemella sanguinis and Bifidobacterium longum - in association with the pre-pathologic state. The results of this study validated the hypothesis that increased intestinal permeability together with differences in microbiota composition are contemporaneously associated with the pre-pathological condition of T1D in a sample of Italian children. Further studies are necessary to confirm the microbial markers identified in this sample of children as well as to clarify the involvement of microbiota modifications in the mechanisms leading to increased permeability and the autoimmune mechanisms that promote diabetes onset. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ Single-Pass Perfusion Studies in Wild-Type and Pept1 Knockout Mice

    PubMed Central

    Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun

    2010-01-01

    The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs. PMID:20660104

  4. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis

    PubMed Central

    Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas

    2015-01-01

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773

  5. Burns, inflammation, and intestinal injury: protective effects of an anti-inflammatory resuscitation strategy.

    PubMed

    Costantini, Todd W; Peterson, Carrie Y; Kroll, Lauren; Loomis, William H; Putnam, James G; Wolf, Paul; Eliceiri, Brian P; Baird, Andrew; Bansal, Vishal; Coimbra, Raul

    2009-12-01

    Intestinal barrier breakdown after severe burn can lead to intestinal inflammation, which may act as the source of the systemic inflammatory response. In vitro intestinal cell studies have shown that mitogen-activated protein kinase (MAPK) signaling is an important modulator of intestinal inflammation. We have previously observed that pentoxifylline (PTX) attenuates burn-induced intestinal permeability and tight junction breakdown. We hypothesized that PTX would limit intestinal barrier breakdown and attenuate inflammatory signaling via the MAPK pathway. Male balb/c mice underwent 30% total body surface area full-thickness steam burn. Immediately after burn, animals received an intraperitoneal injection of PTX (12.5 mg/kg) in normal saline or normal saline alone. In vivo intestinal permeability to 4 kDa fluorescein isothiocyanate-dextran was measured. Intestinal extracts were obtained to measure interleukin-6 by enzyme-linked immunosorbent assay, and phosphorylated p38 MAPK, p38 MAPK, phosphorylated extracellular signal-related kinase (1/2) (ERK (1/2)), and ERK (1/2) by immunoblotting. Acute lung injury was assessed by histology at 24 hours after burn. Administration of PTX immediately after injury attenuated burn-induced intestinal permeability. PTX also decreased the burn-induced phosphorylation of p38 MAPK and decreased phosphorylation of ERK (1/2) at 2 hours and 24 hours after injury. Animals given PTX had decreased intestinal interleukin-6 levels. A single dose of PTX also decreased histologic lung injury at 24 hours after burn. PTX attenuates burn-induced intestinal permeability and subsequent intestinal inflammation. Use of PTX after burn was also associated with decreased acute lung injury. Because of its compelling anti-inflammatory effects, PTX may be an ideal candidate for use as an immunomodulatory adjunct to resuscitation fluid.

  6. Does biological sex impact intestinal epithelial injury, small intestine permeability, gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress?

    PubMed

    Snipe, Rhiannon M J; Costa, Ricardo J S

    2018-05-23

    This study aimed to determine the influence of biological sex on intestinal injury, permeability, gastrointestinal symptoms, and systemic cytokine profile in response to exertional-heat stress. Male (n= 13) and eumenorrheic female (n= 11) endurance runners completed 2 h running at 60% V̇O 2max in 35°C. Blood samples were collected pre- and post-exercise and during recovery to determine plasma intestinal fatty-acid binding protein (I-FABP) and systemic cytokine profile. Urinary lactulose:L-rhamnose ratio was used to determine small intestine permeability. I-FABP increased 479% pre- to post-exercise (p< 0.001), with no difference between sexes (p= 0.432). No differences between sexes were observed for small intestine permeability (p= 0.808), gut discomfort, total, upper- and lower-gastrointestinal symptoms. However, males reported significantly higher flatulence (p= 0.049) and abdominal stitch (p= 0.025) compared to females. IL-6, IL-8, IL-10 and IL-1ra increased pre- to post-exercise (p< 0.05), with no difference between sexes. However, IL-1β increased post-exercise in males only, and was higher in males compared to females (p= 0.044). Findings suggest that when females are in the follicular phase of the menstrual cycle, biological sex has no effect on intestinal epithelial injury and permeability, and minimal effect on gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress.

  7. Possible Links between Intestinal Permeablity and Food Processing: A Potential Therapeutic Niche for Glutamine

    PubMed Central

    Rapin, Jean Robert; Wiernsperger, Nicolas

    2010-01-01

    Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic circulation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxidative stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes. PMID:20613941

  8. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  9. Effect of prostaglandin on indomethacin-induced increased intestinal permeability in man.

    PubMed

    Bjarnason, I; Smethurst, P; Clark, P; Menzies, I; Levi, J; Peters, T

    1989-01-01

    This study examines whether NSAID induced disruption of small intestinal integrity is preventable by concomitant prostaglandin administration, and whether prostaglandins themselves interfere with intestinal permeability and absorption. Twelve subjects underwent testing following treatment as indicated: baseline, no treatment rioprostil, 300 micrograms, at -9 and -1 h indomethacin, 75 mg and 50 mg, at -9 and -1 h respectively rioprostil plus indomethacin, regimen as above. At 0800 h (0 h) subjects drink a solution containing 51CrEDTA 100 microCi, L-rhamnose 0.5 g, D-xylose 0.5 g and 3-O-methyl-glucose 0.2 g; this is followed by a 5-h urine collection. The amount of test substance in the urine reflects non-mediated intercellular and transcellular permeability, and passive and active carrier mediated transport systems, respectively. Permeation of L-rhamnose, D-xylose and 3-O-methyl-glucose is unaffected by rioprostil and/or indomethacin. Indomethacin significantly increases intestinal permeability to 51CrEDTA; coadministration of rioprostil, however, significantly decreases this detrimental effect of indomethacin. These findings suggest that prostaglandins are essential for maintaining small intestinal integrity in man and lend further support to the suggestion that NSAIDs damage the small intestine by reducing mucosal prostaglandin synthesis.

  10. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.

    PubMed

    Hamilton, M Kristina; Ronveaux, Charlotte C; Rust, Bret M; Newman, John W; Hawley, Melissa; Barile, Daniela; Mills, David A; Raybould, Helen E

    2017-05-01

    Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. Copyright © 2017 the American Physiological Society.

  11. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice

    PubMed Central

    Ronveaux, Charlotte C.; Rust, Bret M.; Newman, John W.; Hawley, Melissa; Barile, Daniela; Mills, David A.

    2017-01-01

    Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. PMID:28280143

  12. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity.

    PubMed

    Foltz, Martin; van Buren, Leo; Klaffke, Werner; Duchateau, Guus S M J E

    2009-09-01

    Selected di- and tripeptides exhibit angiotensin-I converting enzyme (ACE) inhibitory activity in vitro. However, the efficacy in vivo is most likely limited for most peptides due to low bioavailability. The purpose of this study was to identify descriptors of intestinal stability, permeability, and ACE inhibitory activity of dipeptides. A total of 228 dipeptides were synthesized; intestinal stability was obtained by in vitro digestion, intestinal permeability using Caco-2 cells and ACE inhibitory activity by an in vitro assay. Databases were constructed to study the relationship between structure and activity, permeability, and stability. Quantitative structure-activity relationship (QSAR) modeling was performed based on computed models using partial least squares regression based on 400 molecular descriptors. QSAR modeling of dipeptide stability revealed high correlation coefficients (R > 0.65) for models based on Z and X scales. However, amino acid (AA) clustering showed the best results in describing stability of dipeptides. The N-terminal AA residues Asp, Gly, and Pro as well as the C-terminal residues Pro, Ser, Thr, and Asp stabilize dipeptides toward luminal enzymatic peptide hydrolysis. QSAR modeling did not reveal significant correlation models for intestinal permeability. 2D-fingerprint models were identified describing ACE inhibitory activity of dipeptides. The intestinal stability of 12 peptides was predicted. Peptides were synthesized and stability was confirmed in simulated digestion experiments. Based on the results, specific dipeptides can be designed to meet both stability and activity criteria. However, postabsorptive ACE inhibitory activities of dipeptides in vivo are most likely limited due to the very low intestinal permeability of dipeptides.

  13. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children.

    PubMed

    Gabriele, Stefano; Sacco, Roberto; Altieri, Laura; Neri, Cristina; Urbani, Andrea; Bravaccio, Carmela; Riccio, Maria Pia; Iovene, Maria Rosaria; Bombace, Francesca; De Magistris, Laura; Persico, Antonio M

    2016-07-01

    The uremic toxin p-cresol (4-methylphenol) is either of environmental origin or can be synthetized from tyrosine by cresol-producing bacteria present in the gut lumen. Elevated p-cresol amounts have been previously found in the urines of Italian and French autism spectrum disorder (ASD) children up until 8 years of age, and may be associated with autism severity or with the intensity of abnormal behaviors. This study aims to investigate the mechanism producing elevated urinary p-cresol in ASD. Urinary p-cresol levels were thus measured by High Performance Liquid Chromatography in a sample of 53 Italian ASD children assessed for (a) presence of Clostridium spp. strains in the gut by means of an in vitro fecal stool test and of Clostridium difficile-derived toxin A/B in the feces, (b) intestinal permeability using the lactulose/mannitol (LA/MA) test, (c) frequent use of antibiotics due to recurrent infections during the first 2 years of postnatal life, and (d) stool habits with the Bristol Stool Form Scale. Chronic constipation was the only variable significantly associated with total urinary p-cresol concentration (P < 0.05). No association was found with presence of Clostridium spp. in the gut flora (P = 0.92), augmented intestinal permeability (P = 0.18), or frequent use of antibiotics in early infancy (P = 0.47). No ASD child was found to carry C. difficile in the gut or to release toxin A/B in the feces. In conclusion, urinary p-cresol levels are elevated in young ASD children with increased intestinal transit time and chronic constipation. Autism Res 2016, 9: 752-759. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  14. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    PubMed

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted time to the maximal plasma concentration (tmax), consistent with clinical data. Conversely, desvenlafaxine absorption from the ERF appears rate-limited by dissolution due to the formulation, which tends to negate the influence of pH-dependent permeability on absorption. We suggest that desvenlafaxine Peff is mainly driven by transcellular diffusion of the unionized form. In the case of desvenlafaxine, poor metabolism does not imply low intestinal permeability, as indicated by the BDDCS, merely low duodenal/jejunal permeability. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets.

    PubMed

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0-0.2%) in diets. The high dose SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects.

  16. Toll-like receptor 4 increases intestinal permeability through up-regulation of membrane PKC activity in alcoholic steatohepatitis.

    PubMed

    Li, Xin; Wang, Chen; Nie, Jiao; Lv, Dong; Wang, Tianyi; Xu, Youqing

    2013-09-01

    Intestinal hyperpermeability is a causal factor for the development of alcoholic endotoxemia and steatohepatitis. However, the mechanisms governing this link remain unknown. The purpose of this study was to determine whether toll-like receptor 4 (TLR4) is involved in ethanol's deleterious effects on the intestinal barrier. Caco-2 cells were incubated in vitro with 1-10% ethanol. The results indicated that ethanol had a dose-dependent effect in increasing TLR4 expression and intercellular permeability. Then the effects of TLR4 on protein kinase C (PKC) and the intercellular junction protein occludin were assessed with and without pretreatment with a TLR4 inhibitor. The results indicated that TLR4 increased nonspecific PKC activity and reduced the expression of phosphorylated occludin in the membrane, which increased intercellular permeability. These effects were prevented by pretreatment with TLR4 mAb. Wild-type C57BL/6 mice were fed an ethanol or isocaloric liquid diet for 6 weeks. Hepatitis was diagnosed by the presence of an associated elevated blood endotoxin level. Chronic ethanol treatment significantly elevated blood endotoxin levels, intestinal permeability, and the expression of TLR4 in the ileum and colon. Moreover, ethanol exposure reduced the distribution of phosphorylated occludin in the intestinal epithelium because of PKC activation. In conclusion, chronic ethanol exposure induces a high response of TLR4 to lipopolysaccharide (LPS), and TLR4 increases intestinal permeability through down-regulation of phosphorylated occludin expression in the intestinal epithelial barrier, accompanied by membrane PKC hyperactivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI-IBS mice.

    PubMed

    Long, Y; Du, L; Kim, J J; Chen, B; Zhu, Y; Zhang, Y; Yao, S; He, H; Zheng, X; Huang, Z; Dai, N

    2018-04-11

    Alterations in intestinal permeability regulated by tight junctions (TJs) are associated with immune activation and visceral hypersensitivity in irritable bowel syndrome (IBS). Myosin light chain kinase (MLCK) is an important mediator of epithelial TJ. The aim of this study is to investigate the role of MLCK in the pathogenesis of IBS using a post infectious IBS (PI-IBS) mouse model. Trichinella spiralis-infected PI-IBS mouse model was used. Urine lactulose/mannitol ratio was measured to assess intestinal epithelial permeability. Western blotting was used to evaluate intestinal TJ protein (zonula occludens-1) and MLCK-associated protein expressions. Immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was determined by abdominal withdrawal reflex in response to colorectal distension. Eight weeks after inoculation with T. spiralis, PI-IBS mice developed decreased pain and volume thresholds during colorectal distention, increased urine lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and decreased zonula occludens-1 expression compared to the control mice. MLCK expression was dramatically elevated in the colonic mucosa of PI-IBS mice compared to the control mice, alongside increased pMLC/MLC and decreased MLCP expression. Administration of MLCK inhibitor and TJ blocker both reversed the increased intestinal permeability, visceral hypersensitivity, and Th1-dominant immune profile in PI-IBS mice. MLCK is a pivotal step in inducing increased intestinal permeability promoting low-grade intestinal immune activation and visceral hypersensitivity in PI-IBS mice. MLCK inhibitor may provide a potential therapeutic option in the treatment of IBS. © 2018 John Wiley & Sons Ltd.

  18. Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data.

    PubMed

    Buchman, A L

    2001-07-01

    Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.

  19. Methods to determine intestinal permeability and bacterial translocation during liver disease

    PubMed Central

    Wang, Lirui; Llorente, Cristina; Hartmann, Phillipp; Yang, An-Ming; Chen, Peng; Schnabl, Bernd

    2015-01-01

    Liver disease is often times associated with increased intestinal permeability. A disruption of the gut barrier allows microbial products and viable bacteria to translocate from the intestinal lumen to extraintestinal organs. The majority of the venous blood from the intestinal tract is drained into the portal circulation, which is part of the dual hepatic blood supply. The liver is therefore the first organ in the body to encounter not only absorbed nutrients, but also gut-derived bacteria and pathogen associated molecular patterns (PAMPs). Chronic exposure to increased levels of PAMPs has been linked to disease progression during early stages and to infectious complications during late stages of liver disease (cirrhosis). It is therefore important to assess and monitor gut barrier dysfunction during hepatic disease. We review methods to assess intestinal barrier disruption and discuss advantages and disadvantages. We will in particular focus on methods that we have used to measure increased intestinal permeability and bacterial translocation during experimental liver disease models. PMID:25595554

  20. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaButmore » was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.« less

  1. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury

    PubMed Central

    Wang, Yuhua; Liu, Yanlong; Sidhu, Anju; Ma, Zhenhua; McClain, Craig

    2012-01-01

    Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (109 colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury. PMID:22538402

  2. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    PubMed Central

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  3. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.

    PubMed

    Zur, Moran; Gasparini, Marisa; Wolk, Omri; Amidon, Gordon L; Dahan, Arik

    2014-05-05

    Although recognized as overly conservative, metoprolol is currently the common low/high BCS permeability class boundary reference compound, while labetalol was suggested as a potential alternative. The purpose of this study was to identify the various characteristics that the optimal marker should exhibit, and to investigate the suitability of labetalol as the permeability class reference drug. Labetalol's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Labetalol was found to be unequivocally a high-solubility compound. In the pH range throughout the small intestine (6.5-7.5), labetalol exhibited pH-dependent permeability, with higher permeability at higher pH values. While in vitro octanol-buffer partitioning (Log D) values of labetalol were significantly higher than those of metoprolol, the opposite was evident in the in vitro PAMPA permeability assay. The results of the in vivo perfusion studies in rats lay between the two contradictory in vitro studies; metoprolol was shown to have moderately higher rat intestinal permeability than labetalol. Theoretical distribution of the ionic species of the drugs was in corroboration with the experimental in vitro and the in vivo data. We propose three characteristics that the optimal permeability class reference drug should exhibit: (1) fraction dose absorbed in the range of 90%; (2) the optimal marker drug should be absorbed largely via passive transcellular permeability, with no/negligible carrier-mediated active intestinal transport (influx or efflux); and (3) the optimal marker drug should preferably be nonionizable. The data presented in this paper demonstrate that neither metoprolol nor labetalol can be regarded as optimal low/high-permeability class boundary standard. While metoprolol is too conservative due to its complete absorption, labetalol has been shown to be a substrate for P-gp-mediated efflux transport, and both drugs exhibit significant segmental-dependent permeability along the gastrointestinal tract. Nevertheless, the use of metoprolol as the marker compound does not carry a risk of bioinequivalence: Peff value similar to or higher than metoprolol safely indicates high-permeability classification. On the other hand, a more careful data analysis is needed if labetalol is used as the reference compound.

  4. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  5. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR-4 signal transduction pathway activation of FAK and MyD88

    PubMed Central

    Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.

    2015-01-01

    Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961

  6. Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats.

    PubMed

    Sato, Hirokazu; Zhang, Linda S; Martinez, Kristina; Chang, Eugene B; Yang, Qing; Wang, Fei; Howles, Philip N; Hokari, Ryota; Miura, Soichiro; Tso, Patrick

    2016-11-01

    The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism.

    PubMed

    Li, Yongmei; Shin, Young Geun; Yu, Chongwoo; Kosmeder, Jerome W; Hirschelman, Wendy H; Pezzuto, John M; van Breemen, Richard B

    2003-12-01

    The Caco-2 cell monolayer permeability assay has become a standard model of human intestinal absorption and transport. This paper reviews recent progress in increasing the throughput of Caco-2 cell monolayer assays and in expanding the scope of this assay to include modeling intestinal drug metabolism. The state-of-the-art in Caco-2 cell monolayer permeability assays combines multi-well plates fitted with semi-permeable inserts on which Caco-2 cells have been cultured with liquid chromatography-mass spectrometry (LC-MS) or LC-tandem mass spectrometry (LC-MS-MS) for the quantitative analysis of test compounds and the identification of their intestinal metabolites. After reviewing the progress in increasing the throughput of Caco-2 cell monolayer assays for both modeling human intestinal permeability or transport and the metabolism of xenobiotic compounds, we demonstrate the application of LC-MS and LC-MS-MS to the measurement of resveratrol permeability and metabolism in the Caco-2 model. trans-Resveratrol (trans-3,5,4'-trihydroxystilbene) is a polyphenolic compound occurring in grapes, peanuts and other food sources, that is under investigation as a cancer chemoprevention agent. The apparent permeability coefficient for apical (AP) to basolateral (BL) movement of resveratrol was 2.0 x 10(-5)cm/sec. Resveratrol was not a substrate for P-glycoprotein or the multi-drug resistance associated proteins (MRP). No phase I metabolites were observed, but the phase II conjugates resveratrol-3-glucuronide and resveratrol-3-sulfate was identified based on LC-MS and LC-MS-MS analysis and comparison with synthetic standards. Although these data indicate that resveratrol diffuses rapidly across the intestinal epithelium, extensive phase II metabolism during absorption might reduce resveratrol bioavailability.

  8. Intestinal fatty acid-binding protein and gut permeability responses to exercise.

    PubMed

    March, Daniel S; Marchbank, Tania; Playford, Raymond J; Jones, Arwel W; Thatcher, Rhys; Davison, Glen

    2017-05-01

    Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. Two-way repeated measures ANOVA revealed an arm × time interaction for L/R and I-FABP (P < 0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P < 0.001) and Col (148% of pre, P < 0.001) with post-exercise values significantly lower with Col (P < 0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P = 0.002) but not in the Col arm (107%, P = 0.862) with post-exercise values significantly lower with Col (P = 0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P = 0.044) but not visit two (P = 0.200) although overall plots/patterns do appear similar for each. These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute.

  9. Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets

    PubMed Central

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087

  10. Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect...

  11. Intestinal permeability in a patient with liver cirrhosis

    PubMed Central

    Aguirre Valadez, Jonathan Manuel; Rivera-Espinosa, Liliana; Méndez-Guerrero, Osvely; Chávez-Pacheco, Juan Luis; García Juárez, Ignacio; Torre, Aldo

    2016-01-01

    Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A “leaky gut” is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications. PMID:27920543

  12. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection.

    PubMed

    Dalton, Jane E; Cruickshank, Sheena M; Egan, Charlotte E; Mears, Rainy; Newton, Darren J; Andrew, Elizabeth M; Lawrence, Beth; Howell, Gareth; Else, Kathryn J; Gubbels, Marc-Jan; Striepen, Boris; Smith, Judith E; White, Stanley J; Carding, Simon R

    2006-09-01

    Intestinal epithelial integrity and permeability is dependent on intercellular tight junction (TJ) complexes. How TJ integrity is regulated remains unclear, although phosphorylation and dephosphorylation of the integral membrane protein occludin is an important determinant of TJ formation and epithelial permeability. We have investigated the role intestinal intraepithelial lymphocytes (iIELs) play in regulating epithelial permeability in response to infection. Recombinant strains of Toxoplasma gondii were used to assess intestinal epithelial barrier function and TJ integrity in mice with intact or depleted populations of iIELs. Alterations in epithelial permeability were correlated with TJ structure and the state of phosphorylation of occludin. iIEL in vivo reconstitution experiments were used to identify the iIELs required to maintain epithelial permeability and TJ integrity. In the absence of gammadelta+ iIELs, intestinal epithelial barrier function and the ability to restrict epithelial transmigration of Toxoplasma and the unrelated intracellular bacterial pathogen Salmonella typhimurium was severely compromised. Leaky epithelium in gammadelta+ iIEL-deficient mice was associated with the absence of phosphorylation of serine residues of occludin and lack of claudin 3 and zona occludens-1 proteins in TJ complexes. These deficiencies were attributable to the absence of a single subset of gammadelta T-cell receptor (TCR-Vgamma7+) iIELs that, after reconstituting gammadelta iIEL-deficient mice, restored epithelial barrier function and TJ complexes, resulting in increased resistance to infection. These findings identify a novel role for gammadelta+ iIELs in maintaining TJ integrity and epithelial barrier function that have implications for understanding the pathogenesis of intestinal inflammatory diseases associated with disruption of TJ complexes.

  13. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability.

    PubMed

    Zakeri-Milani, Parvin; Barzegar-Jalali, Mohammad; Azimi, Mandana; Valizadeh, Hadi

    2009-09-01

    The solubility and dissolution rate of active ingredients are of major importance in preformulation studies of pharmaceutical dosage forms. In the present study, passively absorbed drugs are classified based on their intrinsic dissolution rate (IDR) and their intestinal permeabilities. IDR was determined by measuring the dissolution of a non-disintegrating disk of drug, and effective intestinal permeability of tested drugs in rat jejunum was determined using single perfusion technique. The obtained intrinsic dissolution rate values were in the range of 0.035-56.8 mg/min/cm(2) for tested drugs. The minimum and maximum intestinal permeabilities in rat intestine were determined to be 1.6 x 10(-5) and 2 x 10(-4)cm/s, respectively. Four classes of drugs were defined: Category I: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR>1(mg/min/cm(2)), Category II: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)), Category III: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR>1 (mg/min/cm(2)) and Category IV: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)). According to the results obtained and proposed classification of drugs, it is concluded that drugs could be categorized correctly based on their IDR and intestinal permeability values.

  14. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon ( Salmo salar L.).

    PubMed

    Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne

    2008-07-01

    Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

  15. Pretreatment and Treatment With L-Arginine Attenuate Weight Loss and Bacterial Translocation in Dextran Sulfate Sodium Colitis.

    PubMed

    Andrade, Maria Emília Rabelo; Santos, Rosana das Graças Carvalho Dos; Soares, Anne Danieli Nascimento; Costa, Kátia Anunciação; Fernandes, Simone Odília Antunes; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Souza, Adna Luciana; Faria, Ana Maria Caetano; Cardoso, Valbert Nascimento

    2016-11-01

    Imbalances in a variety of factors, including genetics, intestinal flora, and mucosal immunity, can contribute to the development of ulcerative colitis and its side effects. This study evaluated the effects of pretreatment or treatment with arginine by oral administration on intestinal permeability, bacterial translocation (BT), and mucosal intestinal damage due to colitis. C57BL/6 mice were distributed into 4 groups: standard diet and water (C: control group), standard diet and dextran sodium sulfate (DSS) solution (Col: colitis group), 2% L-arginine supplementation for 7 days prior to DSS administration and during disease induction (PT: pretreated group), and 2% L-arginine supplementation during disease induction (T: treated group). Colitis was induced by administration of 1.5% DSS for 7 days. After 14 days, intestinal permeability and BT were evaluated; colons were collected for histologic analysis and determination of cytokines; feces were collected for measurement of immunoglobulin A (IgA). The Col group showed increased intestinal permeability (C vs Col: P < .05) and BT (C vs Col: P < .05). In the arginine-supplemented groups (PT and T), this amino acid tended to decrease intestinal permeability. Arginine decreased BT to liver during PT (P < .05) and to blood, liver, spleen, and lung during T (P < .05). Histologic analysis showed that arginine preserved the intestinal mucosa and tended to decreased inflammation. Arginine attenuates weight loss and BT in mice with colitis. © 2015 American Society for Parenteral and Enteral Nutrition.

  16. Do the recommended standards for in vitro biopharmaceutic classification of drug permeability meet the "passive transport" criterion for biowaivers?

    PubMed

    Žakelj, Simon; Berginc, Katja; Roškar, Robert; Kraljič, Bor; Kristl, Albin

    2013-01-01

    BCS based biowaivers are recognized by major regulatory agencies. An application for a biowaiver can be supported by or even based on "in vitro" measurements of drug permeability. However, guidelines limit the application of biowaivers to drug substances that are transported only by passive mechanisms. Regarding published permeability data as well as measurements obtained in our institution, one can rarely observe drug substances that conform to this very strict criterion. Therefore, we measured the apparent permeability coefficients of 13 drugs recommended by FDA's Guidance to be used as standards for "in vitro" permeability classification. The asymmetry of permeability data determined for both directions (mucosal-to-serosal and serosalto- mucosal) through the rat small intestine revealed significant active transport for four out of the nine high-permeability standards and for all four low-permeability standard drugs. As could be expected, this asymmetry was abolished at 4°C on rat intestine. The permeability of all nine high-permeability, but none of the low permeability standards, was also much lower when measured with intestinal tissue, Caco-2 cell monolayers or artificial membranes at 4°C compared to standard conditions (37°C). Additionally, concurrent testing of several standard drugs revealed that membrane transport can be affected by the use of internal permeability standards. The implications of the results are discussed regarding the regulatory aspects of biopharmaceutical classification, good practice in drug permeability evaluation and regarding the general relevance of transport proteins with broad specificity in drug absorption.

  17. Intestinal alkaline phosphatase deficiency leads to dysbiosis and bacterial translocation in the newborn intestine.

    PubMed

    Fawley, Jason; Koehler, Shannon; Cabrera, Susan; Lam, Vy; Fredrich, Katherine; Hessner, Martin; Salzman, Nita; Gourlay, David

    2017-10-01

    Intestinal alkaline phosphatase (IAP) has been shown to help maintain intestinal homeostasis. Decreased expression of IAP has been linked with pediatric intestinal diseases associated with bacterial overgrowth and subsequent inflammation. We hypothesize that the absence of IAP leads to dysbiosis, with increased inflammation and permeability of the newborn intestine. Sprague-Dawley heterozygote IAP cross-matches were bred. Pups were dam fed ad lib and euthanized at weaning. The microbiotas of terminal ileum (TI) and colon was determined by quantitative real-time polymerase chain reaction (qRT-PCR) of subphylum-specific bacterial 16S ribosomal RNA. RT-PCR was performed on TI for inflammatory cytokines. Intestinal permeability was quantified by fluorescein isothiocyanate-dextran permeability and bacterial translocation by qRT-PCR for bacterial 16S ribosomal RNA in mesenteric lymph nodes. Statistical analysis was done by chi-square analysis. All three genotypes had similar concentrations of bacteria in the TI and colon. However, IAP knockout (IAP-KO) had significantly decreased diversity of bacterial species in their colonic stool compared with heterozygous and wild-type (WT). IAP-KO pups had a nonstatistically significant 3.9-fold increased inducible nitric oxide synthase messenger RNA expression compared with WT (IAP-KO, 3.92 ± 1.36; WT, 1.0 ± 0.27; P = 0.03). IAP-KO also had significantly increased bacterial translocation to mesenteric lymph nodes occurred in IAP-KO (IAP-KO, 7625 RFU/g ± 3469; WT, 4957 RFU/g ± 1552; P = 0.04). Furthermore, IAP-KO had increased permeability (IAP-KO, 0.297 mg/mL ± 0.2; WT, 0.189 mg/mL ± 0.15 P = 0.07), but was not statistically significant. Deficiency of IAP in the newborn intestine is associated with dysbiosis and increased inflammation, permeability, and bacterial translocation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation

    PubMed Central

    Allam, Ossama; Samarani, Suzanne; Mehraj, Vikram; Jenabian, Mohammad-Ali; Tremblay, Cecile; Routy, Jean-Pierre; Amre, Devendra

    2018-01-01

    Interleukin-18 (IL-18) is a pleiotropic cytokine of the IL-1 family with multiple context dependent functions. We and others have shown that HIV infection is accompanied by increased circulating levels of IL-18 along with decreased levels of its antagonist, Interleukin-18 Binding Protein (IL-18BP). The infection is also accompanied by intestinal inflammation and decreased intestinal integrity as measured by intestinal permeability, regeneration and repair. However, little is known concerning the relation between high level of IL-18 associated with the viral infection and intestinal permeability. Here we demonstrate that HIV treatment increases production of IL-18 and decreases that of IL-18BP production in human intestinal epithelial cell (IEC) lines. IL-18 causes apoptosis of the IEC by activating caspase-1 and caspase-3. It induces epithelial barrier hyperpermeability by decreasing and disrupting both tight and adherens junction proteins, occludin, claudin 2 and beta-catenin. Disorganization of F-actin was also observed in the IEC that were exposed to the cytokine. Moreover IL-18 decreases transepithelial electrical resistance (TEER) in Caco-2 and increases permeability in HT29 monolayers. The cells’ treatment with IL-18 causes an increase in the expression of phosphorylated myosin II regulatory light-chain (p-MLC) and myosin light-chain kinase (MLCK), and a decrease in phosphorylated Signal Transducer and Activator of Transcription (p-STAT)-5. This increase in p-MLC is suppressed by a Rho-kinase (ROCK)-specific inhibitor. Interestingly, the levels of the cytokine correlate with those of LPS in the circulation in three different categories of HIV infected patients (HAART-naïve and HAART-treated HIV-infected individuals, and Elite controls) as well as in healthy controls. Collectively, these results suggest that the HIV-induced IL-18 plays a role in increased intestinal permeability and microbial translocation observed in HIV-infected individuals. PMID:29601578

  19. Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?

    PubMed Central

    Johnson, Richard J; Rivard, Chris; Lanaspa, Miguel A.; Otabachian-Smith, Silvia; Ishimoto, Takuji; Cicerchi, Christina; Cheeke, Peter R.; MacIntosh, Bridgett; Hess, Tanja

    2012-01-01

    Fructose is a simple sugar present in honey and fruit, but can also exist as a polymer (fructans) in pasture grasses. Mammals are unable to metabolize fructans, but certain gram positive bacteria contain fructanases and can convert fructans to fructose in the gut. Recent studies suggest that fructose generated from bacteria, or directly obtained from the diet, can induce both increased intestinal permeability and features of metabolic syndrome, especially the development of insulin resistance. The development of insulin resistance is driven in part by the metabolism of fructose by fructokinase C in the liver, which results in oxidative stress in the hepatocyte. Similarly, the metabolism of fructose in the small bowel by intestinal fructokinase may lead to increased intestinal permeability and endotoxemia. While speculative, these observations raise the possibility that the mechanism by which fructans induce laminitis could involve intestinal and hepatic fructokinase. Further studies are indicated to determine the role of fructanases, fructose and fructokinase in equine metabolic syndrome and laminitis. PMID:23439477

  20. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability.

    PubMed

    Ghouzali, Ibtissem; Lemaitre, Caroline; Bahlouli, Wafa; Azhar, Saïda; Bôle-Feysot, Christine; Meleine, Mathieu; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2017-01-01

    Intestinal hyperpermeability has been reported in several intestinal and non-intestinal disorders. We aimed to investigate the role of the ubiquitin proteasome system in gut barrier regulation in two mice models: the water avoidance stress model (WAS) and a post-inflammatory model (post-TNBS). Both models were applied in C57BL/6 male mice (n=7-8/group); Proteasome was targeted by injection of a selective proteasome inhibitor or by using knock-out mice for β2i proteasome subunit. Finally, glutamine supplementation was evaluated. In both models (WAS at day 10, post-TNBS at day 28), we observed an increase in proteasome trypsin-like activity and in inducible β2/constitutive β2 subunit protein expression ratio, associated with an increase in intestinal permeability. Moreover, intestinal hyperpermeability was blunted by intraperitoneal injection of selective proteasome inhibitor in WAS and post-TNBS mice. Of note, knock-out mice for the β2i subunit exhibited a significant decrease in intestinal permeability and fecal pellet output during WAS. Glutamine supplementation also improved colonic permeability in both models. In conclusion, the proteasome system is altered in the colonic mucosa of WAS and post-TNBS mice with increased trypsin-like activity. Associated intestinal hyperpermeability was blunted by immunoproteasome inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  2. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin.

    PubMed

    Togami, Kohei; Hayashi, Yoshiaki; Chono, Sumio; Morimoto, Kazuhiro

    2014-09-01

    The involvement of intestinal permeability in the oral absorption of clarithromycin (CAM), a macrolide antibiotic, and telithromycin (TEL), a ketolide antibiotic, in the presence of efflux transporters was examined. In order independently to examine the intestinal and hepatic availability, CAM and TEL (10 mg/kg) were administered orally, intraportally and intravenously to rats. The intestinal and hepatic availability was calculated from the area under the plasma concentration-time curve (AUC) after administration of CAM and TEL via different routes. The intestinal availabilities of CAM and TEL were lower than their hepatic availabilities. The intestinal availability after oral administration of CAM and TEL increased by 1.3- and 1.6-fold, respectively, after concomitant oral administration of verapamil as a P-glycoprotein (P-gp) inhibitor. Further, an in vitro transport experiment was performed using Caco-2 cell monolayers as a model of intestinal epithelial cells. The apical-to-basolateral transport of CAM and TEL through the Caco-2 cell monolayers was lower than their basolateral-to-apical transport. Verapamil and bromosulfophthalein as a multidrug resistance-associated proteins (MRPs) inhibitor significantly increased the apical-to-basolateral transport of CAM and TEL. Thus, the results suggest that oral absorption of CAM and TEL is dependent on intestinal permeability that may be limited by P-gp and MRPs on the intestinal epithelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue

    PubMed Central

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L.

    2016-01-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylenedioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1 and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about two times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a nine times enhanced apparent permeability (Papp) in Caco-2 cells compared to the parent drug. Both diastereomer exhibited high effective permeability (Peff ) in mice, 6.32±3.12 and 5.20±2.81 x10−5 cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs prior to absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. PMID:26869437

  4. Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner

    PubMed Central

    Zheng, Gen; Wu, Shu-Pei; Hu, Yongjun; Smith, David E; Wiley, John W.; Hong, Shuangsong

    2012-01-01

    Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORT-injected rats demonstrated a 3-fold increase in permeability for PEG-400 (MW) in colon but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4,000 and PEG-35,000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low-molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium. PMID:23336591

  5. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability

    PubMed Central

    Alhamoruni, A; Wright, KL; Larvin, M; O'Sullivan, SE

    2012-01-01

    BACKGROUND AND PURPOSE Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion and intestinal motility. The ability to modulate intestinal permeability in inflammation may be important in therapy aimed at maintaining epithelial barrier integrity. The aim of the present study was to determine whether cannabinoids modulate the increased permeability associated with inflammation in vitro. EXPERIMENTAL APPROACH Confluent Caco-2 cell monolayers were treated for 24 h with IFNγ and TNFα (10 ng·mL−1). Monolayer permeability was measured using transepithelial electrical resistance and flux measurements. Cannabinoids were applied either apically or basolaterally after inflammation was established. Potential mechanisms of action were investigated using antagonists for CB1, CB2, TRPV1, PPARγ and PPARα. A role for the endocannabinoid system was established using inhibitors of the synthesis and degradation of endocannabinoids. KEY RESULTS Δ9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability. Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated, the increased permeability associated with inflammation. CONCLUSIONS AND IMPLICATIONS These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal permeability associated with inflammation. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21745190

  6. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.

    PubMed

    Cani, P D; Possemiers, S; Van de Wiele, T; Guiot, Y; Everard, A; Rottier, O; Geurts, L; Naslain, D; Neyrinck, A; Lambert, D M; Muccioli, G G; Delzenne, N M

    2009-08-01

    Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.

  7. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats.

    PubMed

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y; Owyang, Chung

    2014-02-01

    Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction (PCR) and 454 pyrosequencing were used to analyze bacterial 16S ribosomal RNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model.

    PubMed

    Luo, C C; Chen, H M; Chiu, C H; Lin, J N; Chen, J C

    2001-07-01

    Subclinical intestinal ischemia-reperfusion injury (IRI) causes an increase in mucosal permeability and may represent an early event in the pathogenesis of necrotizing enterocolitis in premature infants. Previous studies suggested that continuous, endogenous formation of nitric oxide (NO) maintains the mucosal integrity of the intestine, thus protecting the gut from injuries from blood-borne toxins and tissue-destructive mediators. This study was undertaken to assess whether the inhibition of NO production causes an increase in intestinal permeability in rats following IRI. Sprague-Dawley rats weighing 200-300 g were divided into 4 groups: (1) untreated group (normal control); (2) ischemia-reperfusion group; (3) early N(G)-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of NO production, treatment group, and (4) late L-NAME treatment group. Transient IRI was induced by 30-min occlusion, followed by reperfusion of the isolated ileal loop. The L-NAME was administered 15 min before and after mesenteric ischemia as a 25-mg/kg bolus. Fluorescein isothiocyanate-dextran (FITC-D) was used to quantitatively assess the alteration in mucosal permeability of the intestine. There was no significant increase in the portal vein FITC-D level among normal controls, ischemia-reperfusion group and late L-NAME-treated group, but there was an approximately 6-fold increase in the early L-NAME treatment group. The pathological features of the intestine following IRI include denudation of the villus epithelium and reduction of villus height, associated with marked inflammatory cell infiltration over the lamina propria. These results suggest that endogenous NO may play a role in the protecting intestinal integrity after IRI. Copyright 2001 S. Karger AG, Basel

  9. Study on Biopharmaceutics Classification and Oral Bioavailability of a Novel Multikinase Inhibitor NCE for Cancer Therapy

    PubMed Central

    Yang, Yang; Fan, Chun-Mei; He, Xuan; Ren, Ke; Zhang, Jin-Kun; He, Ying-Ju; Yu, Luo-Ting; Zhao, Ying-Lan; Gong, Chang-Yang; Zheng, Yu; Song, Xiang-Rong; Zeng, Jun

    2014-01-01

    Specific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (Peff) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations. Theophylline (high permeability) and ranitidine (low permeability) were also applied to access the permeability of NCE as reference compounds. The bioavailability after intragastrical and intravenous administration was measured in beagle dogs. The solubility of NCE in tested phosphate buffers was quite low with the maximum solubility of 81.73 μg/mL at pH 1.0. The intrinsic dissolution ratio of NCE was 1 × 10−4 mg·min−1·cm−2. The Peff value of NCE in all intestinal segments was more proximate to the high-permeability reference theophylline. Therefore, NCE was classified as class II drug according to Biopharmaceutics Classification System due to its low solubility and high intestinal permeability. In addition, concentration-dependent permeability was not observed in all the segments, indicating that there might be passive transportation for NCE. The absolute oral bioavailability of NCE in beagle dogs was 26.75%. Therefore, dissolution promotion will be crucial for oral formulation development and intravenous administration route will also be suggested for further NCE formulation development. All the data would provide a reference for biopharmaceutics classification research of other novel drug candidates. PMID:24776763

  10. Study on biopharmaceutics classification and oral bioavailability of a novel multikinase inhibitor NCE for cancer therapy.

    PubMed

    Yang, Yang; Fan, Chun-Mei; He, Xuan; Ren, Ke; Zhang, Jin-Kun; He, Ying-Ju; Yu, Luo-Ting; Zhao, Ying-Lan; Gong, Chang-Yang; Zheng, Yu; Song, Xiang-Rong; Zeng, Jun

    2014-04-25

    Specific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (P(eff)) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations. Theophylline (high permeability) and ranitidine (low permeability) were also applied to access the permeability of NCE as reference compounds. The bioavailability after intragastrical and intravenous administration was measured in beagle dogs. The solubility of NCE in tested phosphate buffers was quite low with the maximum solubility of 81.73 μg/mL at pH 1.0. The intrinsic dissolution ratio of NCE was 1 × 10⁻⁴ mg·min⁻¹·cm⁻². The P(eff) value of NCE in all intestinal segments was more proximate to the high-permeability reference theophylline. Therefore, NCE was classified as class II drug according to Biopharmaceutics Classification System due to its low solubility and high intestinal permeability. In addition, concentration-dependent permeability was not observed in all the segments, indicating that there might be passive transportation for NCE. The absolute oral bioavailability of NCE in beagle dogs was 26.75%. Therefore, dissolution promotion will be crucial for oral formulation development and intravenous administration route will also be suggested for further NCE formulation development. All the data would provide a reference for biopharmaceutics classification research of other novel drug candidates.

  11. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol.

    PubMed

    Rahman, Khalidur; Desai, Chirayu; Iyer, Smita S; Thorn, Natalie E; Kumar, Pradeep; Liu, Yunshan; Smith, Tekla; Neish, Andrew S; Li, Hongliang; Tan, Shiyun; Wu, Pengbo; Liu, Xiaoxiong; Yu, Yuanjie; Farris, Alton B; Nusrat, Asma; Parkos, Charles A; Anania, Frank A

    2016-10-01

    There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Cell permeability beyond the rule of 5.

    PubMed

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alanyl-glutamine dipeptide-supplemented parenteral nutrition improves intestinal metabolism and prevents increased permeability in rats.

    PubMed Central

    Haque, S M; Chen, K; Usui, N; Iiboshi, Y; Okuyama, H; Masunari, A; Cui, L; Nezu, R; Takagi, Y; Okada, A

    1996-01-01

    OBJECTIVE: The authors determined the effects of alanyl-glutamine-supplemented total parenteral nutrition (TPN) on mucosal metabolism, integrity, and permeability of the small intestine in rats. METHODS: Male Sprague-Dawley rats were randomized to receive TPN supplemented with a conventional amino acids mixture (STD group) or the same solution supplemented with alanyl-glutamine; both solutions were isocaloric and isonitrogenous. On the seventh day of TPN, D-xylose and fluorescein isothiocyanate (FITC)-dextran were administered orally. One hour later, superior mesenteric vein (SMV) D-xylose and plasma FITC-dextran concentration were measured. Intestinal blood flow and calculated intestinal substrates flux were measured with ultrasonic transit time flowmetery. RESULTS: Plasma FITC-dextran increased significantly in the STD group. Intestinal blood flow and SMV D-xylose concentration did not differ between the groups. Mucosa weight, villus height, mucosal wall thickness, mucosal protein, and DNA and RNA content in jejunal mucosa were significantly increased in the alanyl-glutamine group. Jejunal mucosal glutaminase activity and net intestinal uptake of glutamine (glutamine flux) were significantly higher in the alanyl-glutamine group as compared with the STD group. CONCLUSION: Addition of alanyl-glutamine dipeptide to the TPN solution improves intestinal glutamine metabolism and prevents mucosal atrophy and deterioration of permeability. PMID:8604914

  14. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.

    PubMed

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-01-01

    Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in 2 different media (fasted state simulated/human intestinal fluids [FaSSIF/FaHIF]), were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction model to induce intestinal permeability in broiler chickens.

    PubMed

    Maguey-Gonzalez, Jesús A; Michel, Matias A; Baxter, Mikayla F A; Tellez, Guillermo; Moore, Philip A; Solis-Cruz, Bruno; Hernández-Patlan, Daniel; Merino-Guzman, Rubén; Hernandez-Velasco, Xochitl; Latorre, Juan D; Hargis, Billy M; Gomez-Rosales, Sergio; Tellez-Isaias, Guillermo

    2018-04-30

    The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction (FR) model to induce intestinal permeability in chickens. One-day-old male Cobb-Vantress broilers were randomly allocated to one of two groups (n = 25 chickens), with or without 0.2% of isolated HA from worm-compost, and placed in brooder batteries. Chicks had ad libitum access to water and feed for 14 days. Intestinal permeability was induced by 24 hr FR starting at 14 days. At 15 days of age, chickens in both groups were given an appropriate dose of fluorescein isothiocyanate dextran (FITC-d) by oral gavage. Intestine and liver samples were also collected to evaluate viscosity and bacterial translocation (BT), respectively. An increase (p < .05) in intestinal viscosity was observed in the experimental group consuming 0.2% of HA and was confirmed in a published in vitro digestion model that simulates the chemical and physical conditions of the crop, proventriculus and intestine of chickens. Furthermore, the treated group also showed a significant reduction in FITC-d, liver BT and ammonia in the manure. These results suggest that HA have a positive impact in intestinal integrity in chickens. © 2018 Japanese Society of Animal Science.

  16. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue.

    PubMed

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L

    2016-02-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier-mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylene-dioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1, and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about 2 times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a 9 times-enhanced apparent permeability (P(app)) in Caco-2 cells compared with the parent drug. Both diastereomer exhibited high effective permeability (P(eff)) in mice, 6.32 ± 3.12 and 5.20 ± 2.81 × 10(-5) cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val, seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs before absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis

    PubMed Central

    Farhadi, Ashkan; Gundlapalli, Sushama; Shaikh, Maliha; Frantzides, Constantine; Harrell, Laura; Kwasny, Mary M.; Keshavarzian, Ali

    2014-01-01

    Introduction One of the proposed second hit mechanisms in the pathophysiology of non-alcoholic steatohepatitis (NASH) is hepatic oxidative stress triggered by elevated levels of endotoxin. We investigated one possible mechanism for the endotoxaemia – disruption of intestinal barrier integrity. Methods We enrolled 16 subjects with fatty liver (10 NASH; 6 steatosis) and 12 healthy subjects. Steatosis and NASH were diagnosed by liver biopsy using the Brunt criteria. Gastrointestinal permeability was measured using urinary excretion of 5-h lactulose/mannitol (L/M) ratio and 24-h sucralose. Permeability testing was repeated after aspirin challenge. Results Groups had similar baseline urinary 0–5 h L/M ratio (small bowel permeability) and 0–24 h sucralose (whole-gut permeability). Aspirin increased 0–5 h urinary L/M in most subjects. In contrast, aspirin significantly increased whole-gut permeability only in NASH subjects. In fact, the major increase in the urinary sucralose occurred in the 6–24 h samples, which points towards the colon as the major site responsible for aspirin-induced leakiness in NASH patients. Serum endotoxin levels were significantly higher in NASH subjects. Discussion Our findings suggest that aspirin acts on the colon to unmask a susceptibility to gut leakiness in patients with NASH. This effect may be the underlying mechanism for increased serum endotoxin, which is the second hit (after altered lipid metabolism) that is required to initiate a necroinflammatory cascade in hepatocytes which are already primed with obesity-induced abnormal lipid homoeostasis. PMID:18397235

  18. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease.

    PubMed

    Lerner, Aaron; Matthias, Torsten

    2015-06-01

    The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression. Copyright © 2015. Published by Elsevier B.V.

  19. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.

  20. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats.

    PubMed

    Beutheu, Stéphanie; Ouelaa, Wassila; Guérin, Charlène; Belmonte, Liliana; Aziz, Moutaz; Tennoune, Naouel; Bôle-Feysot, Christine; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse

    2014-08-01

    Increased intestinal permeability occurs during chemotherapy-induced intestinal mucositis. Previous data suggest that glutamine and arginine may have additive or synergic effects to limit intestinal damage. The present study aimed to evaluate the effects of glutamine and arginine, each alone or in combination, on gut barrier function during methotrexate (MTX)-induced mucositis in rats. Eighty Sprague Dawley rats received during 7 days (d) standard chow supplemented with protein powder (PP), glutamine (G, 2%), arginine (A, 1.2%) or glutamine plus arginine (GA). All diets were isonitrogenous. Rats received subcutaneous injections of MTX (2.5 mg/kg) from d0 to d2. The intestinal permeability and tight junction proteins were assessed at d4 and d9 in the jejunum by FITC-dextran and by western blot and immunohistochemistry, respectively. At d4, intestinal permeability was increased in MTX-PP, MTX-A and MTX-GA rats compared with controls but not in MTX-G rats. The expression of claudin-1, occludin and ZO-1 was decreased in MTX-PP group compared with controls but was restored in MTX-G and MTX-A rats. In MTX-GA rats, occludin expression remained decreased. These effects could be explained by an increase of erk phosphorylation and a decrease of IκBα expression in MTX-PP and MTX-GA rats. At d9, Intestinal permeability remained higher only in MTX-GA rats. This was associated with a persistent decrease of occludin expression. Glutamine prevents MTX-induced gut barrier disruption by regulating occludin and claudin-1 probably through erk and NF-κB pathways. In contrast, combined glutamine and arginine has no protective effect in this model. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    PubMed

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (P<0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese, compared with lean (P<0.05), and these levels related negatively to plasma AEA (P<0.05). The iAUC for AEA was positively related to iAUC GIP (r=0.384, P=0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP, in comparison to lean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  2. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure.

    PubMed

    Soares, Anne D N; Costa, Kátia A; Wanner, Samuel P; Santos, Rosana G C; Fernandes, Simone O A; Martins, Flaviano S; Nicoli, Jacques R; Coimbra, Cândido C; Cardoso, Valbert N

    2014-11-28

    Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.

  3. Human Intestinal Barrier Function in Health and Disease

    PubMed Central

    König, Julia; Wells, Jerry; Cani, Patrice D; García-Ródenas, Clara L; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed. PMID:27763627

  4. Protective effects of Lactobacillus plantarum against epithelial barrier dysfunction of human colon cell line NCM460

    PubMed Central

    Liu, Zhi-Hua; Shen, Tong-Yi; Zhang, Peng; Ma, Yan-Lei; Moyer, Mary Pat; Qin, Huan-Long

    2010-01-01

    AIM: To investigate the effects of Lactobacillus plantarum (L. plantarum) in the intestinal permeability and expression of tight junction (TJ) using the normal human colon cell line NCM460. METHODS: Paracellular permeability of NCM460 monolayers was determined by transepithelial electrical resistance and dextran permeability. Expression of TJ proteins in NCM460 cell monolayers was detected by Western blotting and quantitative real-time polymerase chain reaction. RESULTS: L. plantarum played an important role in increasing transepithelial electrical resistance and decreasing the permeability to macromolecules of NCM460 monolayers against the disruption caused by enteropathogenic Escherichia coli (E. coli) or enteroinvasive E. coli. L. plantarum also prevented the decrease in the expression of TJ proteins and F-actin in NCM460 cells. CONCLUSION: L. plantarum can protect against dysfunction of NCM460 intestinal epithelial barrier caused by enteropathogenic E. coli or enteroinvasive E. coli, and thus can be a potential candidate of therapeutic agents for the treatment of intestinal diseases. PMID:21128328

  5. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification.

    PubMed

    Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L

    2013-03-04

    The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum) and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33 ± 0.11 × 10(-4) vs 0.38 ± 0.06 × 10(-4) and 0.57 ± 0.17 × 10(-4) vs 0.64 ± 0.30 × 10(-4) cm/s, respectively) and in the jejunum of mouse (0.55 ± 0.05 × 10(-4) vs 0.59 ± 0.13 × 10(-4) cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental-dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration-dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96 ± 1.96 × 10(-6) vs 9.44 ± 3.44 × 10(-6) and 15.9 ± 2.2 × 10(-6) vs 23.2 ± 7.1 × 10(-6) cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7 ± 6.5 × 10(-6) vs 14.2 ± 1.5 × 10(-6) cm/s). The P-gp inhibitor, verapamil, significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration-dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification.

  6. Use of Methacrylic Acid-Containing Hydrogels to Increase Protein Transport Across the Intestinal Epithelium

    NASA Astrophysics Data System (ADS)

    Blanchette, James; Lopez, Jennifer; Park, Kinam; Peppas, Nicholas

    2002-03-01

    Oral protein delivery requires protection from the harsh environment of the stomach, release in the small intestine and passage from the intestinal lumen into the circulation. Hydrogels that swell in response to the pH change when passing from the stomach to the small intestine can accomplish the first two points. The ability to enhance the permeability of intestinal epithelial cells is currently under investigation. Methacrylic acid-containing hydrogels have shown the ability to bind calcium ions that decreases the concentration of free extracellular calcium for these epithelial cells. This change triggers a number of intracellular events including rearrangement of the cytoskeleton leading to increased permeability. Studies done on Caco-2 cells (human colon adenocarcinoma) measuring changes in transepithelial resistance are used to assess the effect of the polymer-cell interactions on the integrity of intestinal epithelial cell monolayers.

  7. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.

    PubMed

    Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E

    2009-09-18

    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.

  8. RIP3 AND pMLKL promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells.

    PubMed

    Negroni, Anna; Colantoni, Eleonora; Pierdomenico, Maria; Palone, Francesca; Costanzo, Manuela; Oliva, Salvatore; Tiberti, Antonio; Cucchiara, Salvatore; Stronati, Laura

    2017-11-01

    Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). The aim of this study is to examine in depth in vitro and ex vivo the contribution of necroptosis to intestinal inflammation. In vitro: we used an intestinal cell line, HCT116RIP3, produced in our laboratory and overexpressing RIP3. Ex vivo: intestinal mucosal biopsies were taken from patients with inflammatory bowel disease (IBD) (20 with Crohn's disease; 20 with ulcerative colitis) and from 20 controls. RIP3-induced necroptosis triggers MLKL activation, increases cytokine/alarmin expression (IL-8, IL-1β, IL-33, HMGB1), NF-kBp65 translocation and NALP3 inflammasome assembly. It also affects membrane permeability by altering cell-cell junctional proteins (E-cadherin, Occludin, Zonulin-1). Targeting necroptosis through Necrostatin-1 significantly reduces intestinal inflammation in vitro and in cultured intestinal explants from IBD. We show for the first time in vitro and ex vivo that RIP3-driven necroptosis seriously affects intestinal inflammation by increasing pMLKL, activating different cytokines and alarmins, and altering epithelial permeability. The inhibition of necroptosis causes a significant decrease of all these effects. These data strongly support the view that targeting necroptosis may represent a promising new option for the treatment of inflammatory enteropathies. Copyright © 2017. Published by Elsevier Ltd.

  9. Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock.

    PubMed

    Kistler, Erik B; Alsaigh, Tom; Chang, Marisol; Schmid-Schönbein, Geert W

    2012-08-01

    In bowel ischemia, impaired mucosal integrity may allow intestinal pancreatic enzyme products to become systemic and precipitate irreversible shock and death. This can be attenuated by pancreatic enzyme inhibition in the small-bowel lumen. It is unresolved, however, whether ischemically mediated mucosal disruption is the key event allowing pancreatic enzyme products systemic access and whether intestinal digestive enzyme activity in concert with increased mucosal permeability leads to shock in the absence of ischemia. To test this possibility, the small intestinal lumen of nonischemic rats was perfused for 2 h with either digestive enzymes, a mucin disruption strategy (i.e., mucolytics) designed to increase mucosal permeability, or both, and animals were observed for shock. Digestive enzymes perfused included trypsin, chymotrypsin, elastase, amylase, and lipase. Control (n = 6) and experimental animals perfused with pancreatic enzymes only (n = 6) or single enzymes (n = 3 for each of the five enzyme groups) maintained stable hemodynamics. After mucin disruption using a combination of enteral N-acetylcysteine, atropine, and increased flow rates, rats (n = 6) developed mild hypotension (P < 0.001 compared with groups perfused with pancreatic enzymes only after 90 min) and increased intestinal permeability to intralumenally perfused fluorescein isothiocyanate-dextran 20 kd (P < 0.05) compared with control and enzyme-only groups, but there were no deaths. All animals perfused with both digestive enzymes and subjected to mucin disruption (n = 6) developed hypotension and increased intestinal permeability (P < 0.001 after 90 min). Pancreatic enzymes were measured in the intestinal wall of both groups subjected to mucin disruption, but not in the enzyme-only or control groups. Depletion of plasma protease inhibitors was found only in animals perfused with pancreatic enzymes plus mucin disruption, implicating increased permeability and intralumenal pancreatic enzyme egress in this group. These experiments demonstrate that increased bowel permeability via mucin disruption in the presence of pancreatic enzymes can induce shock and increase systemic protease activation in the absence of ischemia, implicating bowel mucin disruption as a key event in early ischemia. Digestive enzymes and their products, if allowed to penetrate the gut wall, may trigger multiorgan failure and death.

  10. IMPAIRED SMALL BOWEL BARRIER INTEGRITY IN THE PRESENCE OF LUMENAL PANCREATIC DIGESTIVE ENZYMES LEADS TO CIRCULATORY SHOCK

    PubMed Central

    Kistler, Erik B.; Alsaigh, Tom; Chang, Marisol; Schmid-Schönbein, Geert W.

    2012-01-01

    In bowel ischemia, impaired mucosal integrity may allow intestinal pancreatic enzyme products to become systemic and precipitate irreversible shock and death. This can be attenuated by pancreatic enzyme inhibition in the small bowel lumen. It is unresolved, however, whether ischemically-mediated mucosal disruption is the key event allowing pancreatic enzyme products systemic access, and whether intestinal digestive enzyme activity in concert with increased mucosal permeability leads to shock in the absence of ischemia. To test this possibility, the small intestinal lumen of non-ischemic rats was perfused for two hours with either digestive enzymes, a mucin disruption strategy (i.e., mucolytics) designed to increase mucosal permeability, or both, and animals were observed for shock. Digestive enzymes perfused included trypsin, chymotrypsin, elastase, amylase and lipase. Control (n=6) and experimental animals perfused with pancreatic enzymes only (n=6) or single enzymes (n=3 for each of the five enzyme groups) maintained stable hemodynamics. After mucin disruption using a combination of enteral N-acetylcysteine, atropine, and increased flow rates, rats (n=6) developed mild hypotension (p<0.001 compared to groups perfused with pancreatic enzymes only after 90 minutes) and increased intestinal permeability to intralumenally perfused FITC-dextrans-20kD (p<0.05) compared to control and enzyme-only groups, but there were no deaths. All animals perfused with both digestive enzymes and subjected to mucin disruption (n=6) developed hypotension and increased intestinal permeability (p<0.001 after 90 minutes). Pancreatic enzymes were measured in the intestinal wall of both groups subjected to mucin disruption, but not in the enzyme-only or control groups. Depletion of plasma protease inhibitors was found only in animals perfused with pancreatic enzymes plus mucin disruption, implicating increased permeability and intralumenal pancreatic enzyme egress in this group. These experiments demonstrate that increased bowel permeability via mucin disruption in the presence of pancreatic enzymes can induce shock and increase systemic protease activation in the absence of ischemia, implicating bowel mucin disruption as a key event in early ischemia. Digestive enzymes and their products, if allowed to penetrate the gut wall may trigger multiorgan failure and death. PMID:22576000

  11. Dietary management of acute diarrhoea in children: effect of fermented and amylase-digested weaning foods on intestinal permeability.

    PubMed

    Willumsen, J F; Darling, J C; Kitundu, J A; Kingamkono, R R; Msengi, A E; Mduma, B; Sullivan, K R; Tomkins, A M

    1997-03-01

    There is a strong relationship between diarrhoea, malnutrition, and intestinal integrity. To investigate the effect of different dietary-treatment on intestinal permeability during acute diarrhoea, 87 Tanzanian children aged 6-25 months were recruited to this study when admitted to hospital. Children with acute diarrhoea were rehydrated and then randomly assigned to one of three dietary treatment groups: a conventional low-energy density porridge, a high-energy density amylase digested porridge (AMD), or a high-energy density amylase digested and then fermented porridge (FAD). Lactulose/mannitol permeability tests were performed on admission, at 3 days, and at follow-up 2 and 4 weeks after discharge. The lactulose/mannitol (L/M) ratios were compared between dietary treatment groups and to a group of age-matched, healthy control subjects. Children with diarrhoea had higher L/M ratios (geometric mean 0.85, 95% CI 0.68-1.05) compared with control subjects (0.14, 0.12-0.17) on admission. There was a significant difference in the change in L/M ratio between admission and 3 days between dietary treatment groups in favour of the FAD group (p < 0.05). Dietary treatment and intestinal damage at admission explain 13.5% of the variation in L/M ratio, but when age at admission and age at weaning are included as covariants, 21.9% is explained. FAD porridge seems to be more effective in the treatment of intestinal permeability than AMD or conventional porridge. Urinary lactose concentrations in spot urine samples taken prior to the permeability test were also measured. There was a significant correlation with the L/M ratio (correlation coefficient = 0.62, p < 0.001).

  12. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics

    PubMed Central

    Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Forsyth, Christopher; Fogg, Louis; Burgess, Helen J.; Keshavarzian, Ali

    2015-01-01

    Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = −0.39, P = 0.03; urinary sucralose, r = −0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia. PMID:25907689

  13. Increased intestinal macromolecular permeability and urine nitrite excretion associated with liver cirrhosis with ascites.

    PubMed

    Lee, Soong; Son, Seung-Cheol; Han, Moon-Jong; Kim, Woo-Jin; Kim, Soo-Hyun; Kim, Hye-Ran; Jeon, Woo-Kyu; Park, Ki-Hong; Shin, Myung-Geun

    2008-06-28

    To determine intestinal permeability, the serum tumor necrosis factor (TNF)-alpha level and urine nitric oxide (NO) metabolites are altered in liver cirrhosis (LC) with or without ascites. Fifty-three patients with LC and 26 healthy control subjects were enrolled in the study. The intestinal permeability value is expressed as the percentage of polyethylene glycol (PEG) 400 and 3350 retrieval in 8-h urine samples as determined by high performance liquid chromatography. Serum TNF-alpha concentrations and urine NO metabolites were determined using an enzyme-linked immunosorbent assay (ELISA) and Greiss reaction method, respectively. The intestinal permeability index was significantly higher in patients with LC with ascites than in healthy control subjects or patients with LC without ascites (0.88 +/- 0.12 vs 0.52 +/- 0.05 or 0.53 +/- 0.03, P < 0.05) and correlated with urine nitrite excretion (r = 0.98). Interestingly, the serum TNF-alpha concentration was significantly higher in LC without ascites than in control subjects or in LC with ascites (198.9 +/- 55.8 pg/mL vs 40.9 +/- 12.3 pg/mL or 32.1 +/- 13.3 pg/mL, P < 0.05). Urine nitrite excretion was significantly higher in LC with ascites than in the control subjects or in LC without ascites (1170.9 +/- 28.7 micromol/L vs 903.1 +/- 55.1 micromol/L or 956.7 +/- 47.7 micromol/L, P < 0.05). Increased intestinal macromolecular permeability and NO is probably of importance in the pathophysiology and progression of LC with ascites, but the serum TNF-alpha concentration was not related to LC with ascites.

  14. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    PubMed

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (P<0.05) in HS compared with TN pigs, while jejunum TER decreased 30% (P<0.05) and LPS APP increased 2-fold (P<0.01). Furthermore, d 7 HS pigs tended (P=0.06) to have increased LPS APP (41%) compared with PFTN controls. Lysozyme and alkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.

  15. Biowaiver or Bioequivalence: Ambiguity in Sildenafil Citrate BCS Classification.

    PubMed

    Miranda, Claudia; Pérez-Rodríguez, Zenia; Hernández-Armengol, Rosario; Quiñones-García, Yaidel; Betancourt-Purón, Tania; Cabrera-Pérez, Miguel Ángel

    2018-05-01

    The aim of the present study is to contribute to the scientific characterization of sildenafil citrate according to the Biopharmaceutics Classification System, following the World Health Organization (WHO) guidelines for biowaivers. The solubility and intestinal permeability data of sildenafil citrate were collected from literature; however, the experimental solubility studies are inconclusive and its "high permeability" suggests an API in the borderline of BCS Class I and Class II. The pH-solubility profile was determined using the saturation shake-flask method over the pH range of 1.2-6.8 at a temperature of 37 °C in aqueous media. The intestinal permeability was determined in rat by a closed-loop in situ perfusion method (the Doluisio technique). The solubility of sildenafil citrate is pH-dependent and at pH 6.8 the dose/solubility ratio obtained does not meet the WHO criteria for "high solubility." The high permeability values obtained by in situ intestinal perfusion in rat reinforce the published permeability data for sildenafil citrate. The experimental results obtained and the data available in the literature suggest that sildenafil citrate is clearly a Class II of BCS, according to the current biopharmaceutics classification system and WHO guidance.

  16. Mechanisms of intestinal barrier dysfunction in sepsis

    PubMed Central

    Yoseph, Benyam P.; Klingensmith, Nathan J.; Liang, Zhe; Breed, Elise R.; Burd, Eileen M.; Mittal, Rohit; Dominguez, Jessica A.; Petrie, Benjamin; Ford, Mandy L.; Coopersmith, Craig M.

    2016-01-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 hours later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at six to 12 hours. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13 and 15, JAM-A, occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 hours after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 hour after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A and occludin although model-specific differences in ZO-1 were also identified. PMID:27299587

  17. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    PubMed

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.

  18. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2010-02-15

    We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.

  19. The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    PubMed Central

    Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2011-01-01

    Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243

  20. Assessment of the Intestinal Barrier with Five Different Permeability Tests in Healthy C57BL/6J and BALB/cJ Mice.

    PubMed

    Volynets, Valentina; Reichold, Astrid; Bárdos, Gyöngyi; Rings, Andreas; Bleich, André; Bischoff, Stephan C

    2016-03-01

    Intestinal permeability is thought to be of major relevance for digestive and nutrition-related diseases, and therefore has been studied in numerous mouse models of disease. However, it is unclear which tools are the preferable ones, and how normal values should be defined. To compare different in vivo permeability tests in healthy mice of commonly used genetic backgrounds. We assessed the intestinal barrier in male and female C57BL/6J and BALB/cJ mice of different ages, using four orally administered permeability markers, FITC-dextran 4000 (FITC-D4000) and ovalbumin (OVA) measured in plasma, and polyethylene glycol (PEG) and lactulose/mannitol (Lac/Man) measured in urine, and by assessing lipopolysaccharide (LPS) in portal vein plasma. After gavage, FITC-D4000, OVA, Lac/Man, and PEG400, but not PEG4000, were detectable in plasma or urine. Female mice tended to have a higher permeability according to the FITC-D4000, OVA, and PEG400 tests, but the Lac/Man ratio was higher in males. No significant differences between the two mouse strains of young and old mice were observed except for mannitol recovery, which was higher in BALB/cJ mice compared to C57BL/6J mice (p < 0.05). Virtually no LPS was detected in healthy mice. For all markers, normal values have been defined based on 5th-95th percentile ranges of our data. Selected oral permeability tests, such as FITC-D4000, OVA, PEG400, and Lac/Man, as well as LPS measurements in portal vein plasma, could be suitable for the evaluation of the intestinal barrier in mice, if used in a standardized way.

  1. c-Kit mutation reduce intestinal epithelial cell proliferation and migration, but not influence intestinal permeability stimulated by lipopolysaccharide.

    PubMed

    Xue, Hong; Wang, Feng Yun; Kang, Qian; Tang, Xu Dong

    2018-06-20

    The proto-oncogene c-kit, as a marker of interstitial cells of Cajal (ICCs) in the gastrointestinal tract, plays an important role in the ICCs. Although limited evidences showed c-kit is present in the colonic epithelium but its roles remain unclear. In the present study, we aimed to investigate the expression, location and function of c-kit in the intestinal epithelium. Immunofluorescence, western blotting, and RT-PCR were performed to detect the expression and location of c-kit in the intestinal mucosa of WT mice. We investigated intestinal epithelial proliferation and migration in vivo by performing 5-Bromodeoxyuridine (BrdU) incorporation and Ki-67 staining in WT and Wads m/m mice. An Ussing chamber with fluorescein-isothiocyanate dextran 4000 was used to detect the transepithelial electric resistance (TER), short circuit current (ISC) and permeability across ex vivo colon segments under control and endotoxaemia conditions. We demonstrated that c-kit was located and expressed in the gut crypt compartment in WT mice, which was demonstrated in the c-kit mutant mice (Wads m/m ). In addition, both the number of proliferating cells and the percentage of the distance migrated were lower in the Wads m/m mice than those in the WT mice. Moreover, the intestinal permeability, TER and tight junction were unaltered in the Wads m/m mice under endotoxic conditions compared with those in both the control condition and the WT mice. Altogether, these observations imply that the expression of c-kit in the colonic epithelium is involved in the proliferation and permeability of the colonic epithelium. Copyright © 2018. Published by Elsevier GmbH.

  2. Effects of Mesalamine Treatment on Gut Barrier Integrity Following Burn Injury

    PubMed Central

    Cannon, Abigail R.; Akhtar, Suhail; Hammer, Adam M.; Morris, Niya L.; Javorski, Mike J.; Li, Xiaoling; Kennedy, Richard H.; Gamelli, Richard L.; Choudhry, Mashkoor A.

    2016-01-01

    Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, we examined whether therapeutic intervention with mesalamine (5-ASA), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an ~20% total body surface area dorsal scald burn and resuscitated with either 1mL normal saline or 100mg/kg of 5-ASA dissolved in saline. We examined intestinal transit and permeability along with levels of small intestine epithelial cell pro-inflammatory cytokines and tight junction protein expression one day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed one day after burn injury, which accompanied a significant increase in gut permeability. We found a substantial increase in the levels of IL-6 (by ~1.5 fold) and IL-18 (by ~2.5 fold) in small intestine epithelial cells one day after injury. Furthermore, burn injury decreases expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn induced increase in permeability, partially restored normal intestinal transit, normalized levels of the pro-inflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin to that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury. PMID:27388883

  3. Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury.

    PubMed

    Cannon, Abigail R; Akhtar, Suhail; Hammer, Adam M; Morris, Niya L; Javorski, Michael J; Li, Xiaoling; Kennedy, Richard H; Gamelli, Richard L; Choudhry, Mashkoor A

    2016-01-01

    Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, the authors examined whether therapeutic intervention with mesalamine (5-aminosalicylic acid [5-ASA]), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an approximately 20% TBSA dorsal scald burn and resuscitated with either 1 ml normal saline or 100 mg/kg of 5-ASA dissolved in saline. The authors examined intestinal transit and permeability along with the levels of small intestine epithelial cell proinflammatory cytokines and tight junction protein expression 1 day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed 1 day after burn injury, which accompanied a significant increase in gut permeability. The authors found a substantial increase in the levels of interleukin (IL)-6 (by ~1.5-fold) and IL-18 (by ~2.5-fold) in the small intestine epithelial cells 1 day after injury. Furthermore, burn injury decreases the expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn-induced increase in permeability, partially restored normal intestinal transit, normalized the levels of the proinflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin compared with that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury.

  4. Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Kenji; Kato, Ryuji; Myotoku, Michiaki; Umeda, Takashi; Ijiri, Yoshio; Tanaka, Kazuhiko

    2008-09-01

    Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated intestinal mucosal damage and barrier function in epithelial cells are not yet fully clarified. The aim of this study was to investigate whether Lf can reduce the cellular injury and alter epithelial hyperpermeability caused by LPS in human intestinal Caco-2 cells. When cell viability was measured by a WST-1 assay (tetrazolium salt-based assay), the protective effects against LPS-induced damage to Caco-2 cells were observed at doses of 800 and 1000 microg/ml Lf. The barrier function of Caco-2 monolayer tight junctions was assessed by measuring transepithelial electrical resistance (TEER) and permeability of FITC-labeled dextran 4000 (FD-4). The treatment of Caco-2 cells with Lf at doses of 400 and 1000 microg/ml significantly increased TEER as compared to treatment with LPS alone for 2 h (p<0.05). Further, at doses of 400 and 1000 microg/ml, Lf inhibited the enhancement of LPS-mediated permeability in Caco-2 cell monolayer. The results of this study suggest that Lf may have protective effects against LPS-mediated intestinal mucosal damage and impairment of barrier function in intestinal epithelial cells.

  5. Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins.

    PubMed

    Delrivo, Alicia; Aloisio, Carolina; Longhi, Marcela R; Granero, Gladys

    2018-04-01

    We propose an in vitro permeability assay by using a modified lipid membrane to predict the in vivo intestinal passive permeability of drugs. Two conditions were tested, one with a gradient pH (pH 5.5 donor/pH 7.4 receptor) and the other with an iso-pH 7.4. The predictability of the method was established by correlating the obtained apparent intestinal permeability coefficients (P app ) and the oral dose fraction absorbed in humans (f a ) of 16 drugs with different absorption properties. The P app values correlated well with the absorption rates under the two conditions, and the method showed high predictability and good reproducibility. On the other hand, with this method, we successfully predicted the transport characteristics of oral sulfadiazine (SDZ). Also, the tradeoff between the increase in the solubility of SDZ by its complex formation with cyclodextrins and/or aminoacids and its oral permeability was assessed. Results suggest that SDZ is transported through the gastrointestinal epithelium by passive diffusion in a pH-dependent manner. These results support the classification of SDZ as a high/low borderline permeability compound and are in agreement with the Biopharmaceutics Classification Systems (BCS). This conclusion is consistent with the in vivo pharmacokinetic properties of SDZ.

  6. Comparison of the Permeability of Metoprolol and Labetalol in Rat, Mouse and Caco-2 Cells: Use as a Reference Standard for BCS Classification

    PubMed Central

    Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L.

    2013-01-01

    The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum), and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33±0.11 ×10−4 vs. 0.38±0.06 ×10−4 and 0.57±0.17 ×10−4 vs. 0.64±0.30 ×10−4 cm/s, respectively) and in the jejunum of mouse (0.55±0.05 ×10−4 vs. 0.59±0.13 ×10−4 cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96±1.96 ×10−6 vs. 9.44±3.44 ×10−6 and 15.9±2.2 ×10−6 vs. 23.2±7.1 ×10−6 cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7±6.5 ×10−6 vs. 14.2±1.5 ×10−6 cm/s). The P-gp inhibitor, verapamil significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification. PMID:23327720

  7. Brief Report: Normal Intestinal Permeability at Elevated Platelet Serotonin Levels in a Subgroup of Children with Pervasive Developmental Disorders in Curacao (The Netherlands Antilles)

    ERIC Educational Resources Information Center

    Kemperman, Ramses F. J.; Muskiet, Fred D.; Boutier, A. Inge; Kema, Ido P.; Muskiet, Frits A. J.

    2008-01-01

    This study investigated the relationship between platelet (PLT) serotonin (5-HT) and intestinal permeability in children with pervasive developmental disorders (PDD). Differential sugar absorption and PLT 5-HT were determined in 23 children with PDD. PLT 5-HT (2.0-7.1 nmol/10[to the ninth power] PLT) was elevated in 4/23 patients. None exhibited…

  8. How to Catch a Smurf? - Ageing and Beyond… In vivo Assessment of Intestinal Permeability in Multiple Model Organisms.

    PubMed

    Martins, Raquel R; McCracken, Andrew W; Simons, Mirre J P; Henriques, Catarina M; Rera, Michael

    2018-02-05

    The Smurf Assay (SA) was initially developed in the model organism Drosophila melanogaster where a dramatic increase of intestinal permeability has been shown to occur during aging (Rera et al. , 2011). We have since validated the protocol in multiple other model organisms (Dambroise et al. , 2016) and have utilized the assay to further our understanding of aging (Tricoire and Rera, 2015; Rera et al. , 2018). The SA has now also been used by other labs to assess intestinal barrier permeability (Clark et al. , 2015; Katzenberger et al. , 2015; Barekat et al. , 2016; Chakrabarti et al. , 2016; Gelino et al. , 2016). The SA in itself is simple; however, numerous small details can have a considerable impact on its experimental validity and subsequent interpretation. Here, we provide a detailed update on the SA technique and explain how to catch a Smurf while avoiding the most common experimental fallacies.

  9. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    PubMed

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  10. Enhanced Oral Bioavailability of Diltiazem by the Influence of Gallic Acid and Ellagic Acid in Male Wistar Rats: Involvement of CYP3A and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-09-01

    The oral bioavailability of diltiazem is very low due to rapid first pass metabolism in liver and intestine. The purpose of the study was to investigate the effect of gallic acid and ellagic acid on intestinal transport and oral bioavailability of diltiazem in rats. The intestinal transport and permeability of diltiazem was evaluated by in vitro non-everted sac method and in situ single pass intestinal perfusion study. The oral pharmacokinetics was evaluated by conducting oral bioavailability study. The intestinal transport and apparent permeability of diltiazem were significantly enhanced in duodenum, jejunum, and ileum of gallic and ellagic acid-treated groups. The effective permeability of diltiazem was significantly enhanced in ileum part of gallic and ellagic acid-treated groups. When compared with control group, the presence of these two phytochemicals significantly enhanced the area under plasma concentration-time curve and the peak plasma concentration of diltiazem (C max ). Gallic acid and ellagic acid significantly increased the bioavailability of diltiazem due to the inhibition of both CYP3A-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver. Based on these results, the clinical experiments are warranted for the confirmation to reduce the dose of diltiazem when concomitantly administered with these phytochemicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats

    PubMed Central

    Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi

    2014-01-01

    AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600

  12. [Gut barrier in the critically ill patient: facts and trends].

    PubMed

    Velasco, Nicolás

    2006-08-01

    The disturbances of gut barrier in critically ill patients may influence their outcome and prognosis. Experiments in animals show that fasting and stress collaborate to produce intestinal atrophy and translocation of microorganisms and toxins. This fact is one of the main arguments to promote the use of early enteral feeding in critically ill patients. However, the intestinal barrier behaves differently in humans than in animals. The human enteral cells have a good tolerance to fasting and stress, mucosal atrophy is mild and it is not always associated with changes in intestinal permeability. Moreover, the relationship between intestinal permeability with sepsis and bacterial translocation is controversial. This last phenomenon also happens in normal subjects and may be a mechanism to build immunological memory. One of the most important factors that influence bacterial translocation is the microorganism, that under stress conditions can adhere to the intestinal cell and penetrate the intestinal barrier. Splanchnic ischemia and reperfusion is one of the main pathogenic factors in the failure of intestinal barrier. Finally, the fact that the small bowel is an inflammatory target of extra intestinal injuries, explains several clinical situations. The pathophysiology of the intestinal barrier definitely requires more research.

  13. (51Cr)EDTA intestinal permeability in children with cow's milk intolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.

    1990-02-01

    Making use of ({sup 51}Cr)EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. ({sup 51}Cr)EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that themore » ({sup 51}Cr)EDTA test can be helpful for the diagnosis of cow's milk intolerance.« less

  14. The autodigestion hypothesis: Proteolytic receptor cleavage in rheological and cardiovascular cell dysfunction1

    PubMed Central

    Schmid-Schönbein, Geert W.

    2017-01-01

    Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737

  15. [Persistence [corrected] of onphalomesenteric duct as intestinal obstruction cause in a adult. Report of a case in the Hipolito Unanue Nacional Hospital].

    PubMed

    Gutiérrez Ccencho, C; Luna Cydejko, Jc; Gutierrez De Aranguren, Cf; Revoredo, Fernando; Soto Tarazona, A; Olazábal Ramírez, V

    2008-01-01

    The persistence of the onphalomesenteric duct has been reported in several pediatric publications either through the appearance of Meckel diverticulum that are commonest, or by the appearance of segments with partial or total permeability of itself. Sporadic cases have appeared where this anomaly has originated episodes of intestinal obstruction in infants and children specially under the form of a fibrous band. However, adult presentations extremely infrequent. The case presented in this report shows compatible findings with a onphalomesenteric conduit with partial permeability, that I originate an intestinal picture of obstruction in a young adult.

  16. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  17. Visceral adipose tissue and leptin increase colonic epithelial tight junction permeability via a RhoA-ROCK-dependent pathway.

    PubMed

    Le Dréan, Gwenola; Haure-Mirande, Vianney; Ferrier, Laurent; Bonnet, Christian; Hulin, Philippe; de Coppet, Pierre; Segain, Jean-Pierre

    2014-03-01

    Proinflammatory cytokines produced by immune cells play a central role in the increased intestinal epithelial permeability during inflammation. Expansion of visceral adipose tissue (VAT) is currently considered a consequence of intestinal inflammation. Whether VAT per se plays a role in early modifications of intestinal barrier remains unknown. The aim of this study was to demonstrate the direct role of adipocytes in regulating paracellular permeability of colonic epithelial cells (CECs). We show in adult rats born with intrauterine growth retardation, a model of VAT hypertrophy, and in rats with VAT graft on the colon, that colonic permeability was increased without any inflammation. This effect was associated with altered expression of tight junction (TJ) proteins occludin and ZO-1. In coculture experiments, adipocytes decreased transepithelial resistance (TER) of Caco-2 CECs and induced a disorganization of ZO-1 on TJs. Intraperitoneal administration of leptin to lean rats increased colonic epithelial permeability and altered ZO-1 expression and organization. Treatment of HT29-19A CECs with leptin, but not adiponectin, dose-dependently decreased TER and altered TJ and F-actin cytoskeleton organization through a RhoA-ROCK-dependent pathway. Our data show that adipocytes and leptin directly alter TJ function in CECs and suggest that VAT could impair colonic epithelial barrier.

  18. Self dispersing mixed micelles forming systems for enhanced dissolution and intestinal permeability of hydrochlorothiazide.

    PubMed

    Sultan, Amal A; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2017-01-01

    Mixed micelles provide promising strategy for enhancing dissolution and permeability of drugs. However, their fluid nature limited the stability of the loaded drug and hindered the development of stable oral dosage form. Accordingly, the objective was to develop solid self dispersing mixed micelle forming systems (MMFS) for enhanced dissolution and intestinal permeability of hydrochlorothiazide. Pseudoternary phase diagrams were constructed using sodium cholate, lecithin with either poloxamer 407 or PEG 4000 to determine the composition of MMFS. Both polymer free and poloxamer or PEG containing MMFS were prepared as homogenous matrices or as solid self dispersing powder. The later was developed by adsorption of MMFS on avicel-aerosil mixture. Differential scanning calorimetry provided an evidence for existence of hydrochlorothiazide as molecular dispersion in the MMFS. Dispersing polymer free, PEG 4000 or poloxamer based MMFS in aqueous medium produced micelles having size values of 119, 52.6 and 28nm, respectively. The zeta potential values were -61.8, -59.5 and -19.5mV for the same systems, respectively. Preparation of solid self dispersing MMFS enhanced the dissolution rate of hydrochlorothiazide. The intestinal absorption of hydrochlorothiazide from its aqueous solution and polymer incorporating mixed micellar systems was monitored using in situ rabbit intestinal perfusion technique. The permeability results showed a clear trend for enhanced membrane transport of the drug after being incorporated into poloxamer containing mixed micellar system. The study thus introduced a versatile easily formulated solid self dispersing system with high potential for solving the dissolution and permeability problems of class IV drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Labrasol® and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae.

    PubMed

    Heade, Joanne; Maher, Sam; Bleiel, Sinead B; Brayden, David J

    2018-06-01

    In addition to their solubilizing properties, excipients used in lipid-based formulations can improve intestinal permeability of macromolecules. We determined whether admixing of medium-chain fatty acid (MCFA) permeation enhancers with a lipoidal excipient (Labrasol ® ) could potentiate transepithelial flux of a poorly permeable macromolecule (fluorescein isothiocyanate dextran 4 kDa [FD4]) across rat intestinal mucosae mounted in Ussing chambers. Low concentrations of sodium caprate (C 10 ), sodium undecylenate (C 11:1 ), or sodium laurate (C 12 ) combined with Labrasol ® increased the apparent permeability coefficient (P app ) of FD4 to values typically seen with higher concentrations of MCFAs or Labrasol ® alone. For example, combination of C 11:1 (0.5 mg/mL) with Labrasol ® (1 mg/mL) increased the P app of FD4 by 10- and 11-fold over the respective individual agents at the same concentrations where no enhancement was evident. The increased enhancement ratios seen with the combinations were associated with some perturbation in intestinal histology and with attenuation of an epithelial functional measure, carbachol-stimulated inward short-circuit current. In conclusion, combining three MCFAs separately with Labrasol ® increased the P app of FD4 to values greater than those seen for MCFAs or Labrasol ® alone. Ultimately, this may permit lower concentrations of MCFA to be used in combination with other excipients in oral formulations of poorly permeable molecules. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Chronic inflammatory disorders of the gastrointestinal tract of companion animals.

    PubMed

    Cave, N J

    2003-12-01

    In the inflammatory bowel diseases (IBD) that affect dogs and cats there appears to be dysregulation of normal mucosal immunity, characterised by polyclonal lymphocytic infiltrates which are presumably specific for luminal antigens. There is an absence of a classical polarisation of either T-helper (Th) 1 or Th2 cytokine responses, although increased expression of mRNA for interleukin (IL) 2 and IL-12p40 and a shift towards mucosal immunoglobulin (Ig) G production are consistent findings, whilst variable responses are seen in tumour necrosis factor-alpha (TNF-alpha), IL-1, IL-4, IL-6, and interferon-gamma (IFN-gamma). Increased mucosal permeability and deranged intestinal motility are common sequelae. Despite obvious similarities with Crohn's disease and ulcerative colitis in humans, important differences exist. Of these, the diffuse superficial nature but with no Th1 or Th2 bias, and the prevalence of proximal small intestinal disease are notable. Potential hypotheses for these disparities include specific differences in the types or locations of agonistic gut flora, diffuse abnormalities in microbial-host interactions, a greater importance of diet, or anatomical or cellular differences in mucosal immune responses. Although specific pathogens and genetic susceptibilities may be involved, quantitative or qualitative changes in the normal flora or abnormal responses to a normal flora are more likely to be involved in the immunopathogenesis. Dietary influences include a large source of antigen, promotion of abnormal microbial growth through Maillard compounds within canned diets, and specific macro- and micronutrient deficiencies. Although dependent on a histopathological diagnosis, limitations of biopsies procured endoscopically, lack of histopathological standardisation and difficulty distinguishing inflammation from neoplasia remain significant problems. Clinician-pathologist dialogue, immunohistochemistry, cytokine profiling and lymphocyte clonality assessment may lead to more accurate diagnoses, a deeper understanding of the immunopathogenesis, and ultimately to new therapies or prevention of disease induction.

  1. My gut feeling says rest: Increased intestinal permeability contributes to chronic diseases in high-intensity exercisers.

    PubMed

    Van Houten, Jason M; Wessells, Robert J; Lujan, Heidi L; DiCarlo, Stephen E

    2015-12-01

    Chronic diseases are the leading cause of death and disability worldwide, and many of these conditions are linked to chronic inflammation. One potential cause of chronic inflammation is an increased intestinal epithelial permeability. Recent studies have demonstrated that parasympathetic stimulation via the efferent abdominal vagus nerve increases the expression and proper localization of tight junction proteins and decreases intestinal epithelial permeability. This finding may provide a novel approach for treating and preventing many chronic conditions. Importantly, physical activity is associated with increased resting parasympathetic (vagal) activity and lower risk of chronic diseases. However, high intensity long duration exercise can be harmful to overall health. Specifically, individuals who frequently exercise strenuously and for longer time intervals have the same mortality rates as sedentary individuals. This may be explained, in part, by longer periods of reduced vagal activity as vagal activity is markedly reduced both during and after intense exercise. We hypothesize that one mechanism by which exercise provides its health benefits is by increasing resting vagal activity and decreasing intestinal epithelial permeability, thus decreasing chronic inflammation. Additionally, we hypothesize that long periods of reduced vagal activity in individuals who exercise at high intensities and for longer durations, decrease the integrity of the intestinal barrier, putting them at greater risk of chronic inflammation and a host of chronic diseases. Thus, this hypothesis provides a conceptual link between the well-established benefits of frequent exercise and the paradoxical deleterious effects of prolonged, high-intensity exercise without adequate rest. Copyright © 2015. Published by Elsevier Ltd.

  2. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  3. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals.

    PubMed

    Rial, Sabri Ahmed; Karelis, Antony D; Bergeron, Karl-F; Mounier, Catherine

    2016-05-12

    Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota.

  4. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals

    PubMed Central

    Rial, Sabri Ahmed; Karelis, Antony D.; Bergeron, Karl-F.; Mounier, Catherine

    2016-01-01

    Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota. PMID:27187452

  5. Artificial sweetener saccharin disrupts intestinal epithelial cells' barrier function in vitro.

    PubMed

    Santos, P S; Caria, C R P; Gotardo, E M F; Ribeiro, M L; Pedrazzoli, J; Gambero, A

    2018-06-25

    Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-κB (NF-κB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-κB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.

  6. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    PubMed

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  7. Simultaneous administration of lactulose and 51Cr-ethylenediaminetetraacetic acid. A test to distinguish colonic from small-intestinal permeability change.

    PubMed

    Jenkins, A P; Nukajam, W S; Menzies, I S; Creamer, B

    1992-09-01

    In normal adults intestinal permeation of ingested 51Cr-ethylenediaminetetraacetic acid (EDTA) is greater than that of lactulose. This difference is abolished in patients with ileostomies, suggesting that it results from colonic permeation of 51Cr-EDTA, which, unlike lactulose, resists bacterial degradation. To investigate the effect of an increase in colonic permeability on absorption of the two molecules, lactulose (5 g) and 51Cr-EDTA (50 microCi) were given orally in isosmolar solution to 11 patients with colitis, and their 24-h urinary excretion measured. By comparison the effect of an increase in small-intestinal permeability induced by ingestion of a hyperosmolar solution (4240 mosm/l) was measured in 10 healthy adults. Hyperosmolar stress increased the 24-h urinary excretion of 51Cr-EDTA above the normal mean + 2 standard deviations (3.31%) in all 10 healthy subjects, and in all of these excretion of lactulose was also increased (greater than 1.06%). In contrast, although seven colitics had a urinary excretion of 51Cr-EDTA above the normal mean + 2 SD, in only two of these patients was recovery of lactulose increased. This suggests that simultaneous administration of lactulose and 51Cr-EDTA may enable permeability changes affecting the colon alone to be distinguished from those involving the small intestine.

  8. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    PubMed

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  9. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhilash, P.A.; Harikrishnan, R.; Indira, M., E-mail: indiramadambath@gmail.com

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4 g/kg b.wt for 90 days. After 90 days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250 mg/kg b.wt) and AA (250 mg/kg b.wt) supplemented groups and maintained for 30more » days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β{sub 1} and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α{sub 1} (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. - Highlights: • Alcohol increases intestinal bacterial overgrowth and permeability of endotoxin. • Endotoxin mediated inflammation plays a major role in alcoholic liver fibrosis. • Ascorbic acid reduces endotoxemia, NF-κB activation and proinflammatory cytokines. • AA's action is by inhibition of SIBO, IKKβ and alteration of intestinal permeability. • This might have led to suppression of HSCs activation and liver fibrosis.« less

  10. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    PubMed

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient could be offset by changes in another. In an analysis of the effects of different dietary components and the gut microbiota on mice with and without DSS-induced colitis, we found complex mixtures of nutrients affect intestinal permeability, gut microbial density, and development of intestinal inflammation. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation.

    PubMed

    Kim, D Y; Kam, Y; Koo, S K; Joe, C O

    1999-02-26

    The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.

  12. Intestinal lymphangiectasia in adults.

    PubMed

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited.

  13. Intestinal lymphangiectasia in adults

    PubMed Central

    Freeman, Hugh James; Nimmo, Michael

    2011-01-01

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and “secondary” changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple’s disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn’s disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial diagnosis of intestinal lymphangiectasia. Treatment has been historically defined to include a low fat diet with medium-chain triglyceride supplementation that leads to portal venous rather than lacteal uptake. A number of other pharmacological measures have been reported or proposed but these are largely anecdotal. Finally, rare reports of localized surgical resection of involved areas of small intestine have been described but follow-up in these cases is often limited. PMID:21364842

  14. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.

    PubMed

    Clark, Jessica A; Gan, Heng; Samocha, Alexandr J; Fox, Amy C; Buchman, Timothy G; Coopersmith, Craig M

    2009-09-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.

  15. Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: impact of mucus structure and extracellular DNA.

    PubMed

    Macierzanka, Adam; Mackie, Alan R; Bajka, Balazs H; Rigby, Neil M; Nau, Françoise; Dupont, Didier

    2014-01-01

    The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.

  16. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats.

    PubMed

    Li, Hewei; Dong, Ling; Liu, Yang; Wang, Guopeng; Wang, Gang; Qiao, Yanjiang

    2014-05-15

    The present study was conducted to characterize the biopharmaceutics classification system (BCS) category of puerarin in terms of intrinsic dissolution rate (IDR) and rat intestinal permeability and to investigate the poor intestinal absorption probably related to the drug metabolism in the gut wall of rats. Equilibrium solubility of puerarin was determined in various phosphate buffers and water, and IDR was estimated by measuring the dissolution of a non-disintegrating compact. Intestinal permeability (Peff and Pblood) of puerarin was determined using the technology of in situ single-pass intestinal perfusion (SPIP) and intestinal perfusion with venous sampling (IPVS) in fasted rats. Metabolism of puerarin in intestinal tissue was tested by S9 incubation in vitro. The aqueous solubility of puerarin in phosphate buffers and water was good with a maximum solubility of 7.56 mg/mL at pH 7.4. Obtained IDR values of puerarin were in the range of 0.360-1.088 mg/min/cm(2), with maximum and minimum IDR value of pH 7.4 and pH 4.0, respectively. The Peff was 1.252 × 10(-5)cm/s determined by SPIP and the Pblood was 0.068×10(-5)cm/s by IPVS in jejunum at puerarin 80 μg/mL. The metabolism rate of puerarin determined by the intestinal S9 fraction indicated that the gut wall metabolism of puerarin is one cause of poor absorption. According to the proposed classification of drugs and the results obtained from equilibrium solubility, IDR, Peff and Pblood, it is concluded that puerarin could be categorized IV drug of the BCS based on its low solubility and low intestinal permeability values. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Intestinal permeability to (/sup 51/Cr)EDTA in children with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq-Foucart, J.; Forget, P.; Sodoyez-Goffaux, F.

    1986-05-01

    Intestinal permeability was investigated in 14 children with cystic fibrosis making use of (/sup 51/Cr)EDTA as probe molecule. Ten normal young adults and 11 children served as controls. After oral administration of (/sup 51/Cr)EDTA, 24 h urine was collected. Urinary radioactivity was calculated and results expressed as percentage of oral dose excreted in 24 h urine. Mean and SEM were as follows: 2.51 +/- 0.21, 2.35 +/- 0.24, and 13.19 +/- 1.72 for control children, normal adults, and cystic fibrosis patients, respectively. The permeability differences between cystic fibrosis patients and either control children or control adults are significant (p lessmore » than 0.001).« less

  18. Short communication: Promotion of glucagon-like peptide-2 secretion in dairy calves with a bioactive extract from Olea europaea.

    PubMed

    Morrison, S Y; Pastor, J J; Quintela, J C; Holst, J J; Hartmann, B; Drackley, J K; Ipharraguerre, I R

    2017-03-01

    Diarrhea episodes in dairy calves involve profound alterations in the mechanism controlling gut barrier function that ultimately compromise intestinal permeability to macromolecules, including pathogenic bacteria. Intestinal dysfunction models suggest that a key element of intestinal adaptation during the neonatal phase is the nutrient-induced secretion of glucagon-like peptide (GLP)-2 and associated effects on mucosal cell proliferation, barrier function, and inflammatory response. Bioactive molecules found in Olea europaea have been shown to induce the release of regulatory peptides from model enteroendocrine cells. The ability to enhance GLP-2 secretion via the feeding of putative GLP-2 secretagogues is untested in newborn calves. The objectives of this study were to determine whether feeding a bioactive extract from Olea europaea (OBE) mixed in the milk replacer (1) can stimulate GLP-2 secretion beyond the response elicited by enteral nutrients and, thereby, (2) improve intestinal permeability and animal growth as well as (3) reduce the incidence of diarrhea in preweaning dairy calves. Holstein heifer calves (n = 60) were purchased, transported to the research facility, and blocked by body weight and total serum protein and assigned to 1 of 3 treatments. Treatments were control (CON), standard milk replacer (MR) and ad libitum starter; CON plus OBE added into MR at 30 mg/kg of body weight (OBE30); and CON plus OBE added into MR at 60 mg/kg of body weight (OBE60). The concentration of GLP-2 was measured at the end of wk 2. Intestinal permeability was measured at the onset of the study and the end of wk 2 and 6, with lactulose and d-mannitol as markers. Treatments did not affect calf growth and starter intake. Compared with CON, administration of OBE60 increased the nutrient-induced response in GLP-2 by about 1 fold and reduced MR intake during the second week of study. Throughout the study, however, all calves had compromised intestinal permeability and a high incidence of diarrhea. The GLP-2 response elicited by OBE60 did not improve intestinal permeability (lactulose-to-d-mannitol ratio) and incidence of diarrhea over the course of the preweaning period. The response in GLP-2 secretion to the administration of OBE reported herein warrants further research efforts to investigate the possibility of improving intestinal integrity through GLP-2 secretion in newborn calves. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. A prospective randomised trial of probiotics in critically ill patients.

    PubMed

    McNaught, Clare E; Woodcock, Nicholas P; Anderson, Alexander D G; MacFie, John

    2005-04-01

    Probiotics exert a beneficial effect on the host through modulation of gastrointestinal microflora. The aim of this study was to investigate the effect of the probiotic Lactobacillus plantarum 299v on gut barrier function and the systemic inflammatory response in critically ill patients. One hundred and three critically ill patients were randomised to receive an oral preparation containing L. plantarum 299v (ProViva) in addition to conventional therapy (treatment group, n = 52) or conventional therapy alone (control group, n = 51). Serial outcome measures included gastric colonisation, intestinal permeability (lactulose/rhamnose dual-sugar probe technique), endotoxin exposure (IgM EndoCAb), C-reactive protein and Interleukin 6 levels. L. plantarum had no identifiable effect on gastric colonisation, intestinal permeability, endotoxin exposure or serum CRP levels. There were no differences between the groups in terms of septic morbidity or mortality. On day 15 serum IL-6 levels were significantly lower in the treatment group compared to controls. The enteral administration of L. plantarum 299v to critically ill patients was associated with a late attenuation of the systemic inflammatory response. This was not accompanied by any significant changes in the intestinal microflora, intestinal permeability, endotoxin exposure, septic morbidity or mortality.

  20. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    PubMed

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  1. Acute exercises induce disorders of the gastrointestinal integrity in a murine model.

    PubMed

    Gutekunst, Katrin; Krüger, Karsten; August, Christian; Diener, Martin; Mooren, Frank-Christoph

    2014-03-01

    Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.

  2. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-04

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  3. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  4. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles.

    PubMed

    Garg, Anuj; Bhalala, Kripal; Tomar, Devendra Singh; Wahajuddin

    2017-01-10

    The present investigation aims to develop lumefantrine loaded binary solid lipid nanoparticles (LF-SLNs) to improve its poor and variable oral bioavailability. The oral bioavailability of LF is poor and variable due to its limited aqueous solubility and P-gp mediated efflux occurring in small intestine. LF-SLNs were prepared using binary lipid mixture of stearic acid and caprylic acid stabilized with TPGS (D-alpha tocopheryl polyethylene glycol 1000 succinate) and Poloxamer 188. Developed LF-SLNs were characterized for particle size distribution, zeta potential, entrapment efficiency, solid state properties and biopharmaceutical properties including in situ intestinal permeability and oral bioavailability. The particle size distribution, zeta potential and entrapment efficiency of optimized batch (LF-SLN7) was found to be 357.7±43.27nm, 25.29±1.15mV and 97.35±0.30%, respectively. DSC thermographs showed loss of crystalline nature of lumefantrine in LF-SLNs. In situ single pass intestinal permeability study (SPIP) study indicated significant enhancement in the effective intestinal permeability of LF from LF-SLN7 as compared to that of control. Pharmacokinetic study also showed significant increase in Cmax and area under curve (AUC0- ∞ ) from LF-SLN7 (3860±521ng/mL and 43181±2557h×ng/mL, respectively) as compared to that of LF-control suspension (1425±563ng/mL and 19586±1537h×ng/mL, respectively). Thus, developed LF-SLNs can be promising to overcome P-gp efflux pump and enhance the oral bioavailability of lumefantrine. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms.

    PubMed

    Pugh, Jamie N; Impey, Samuel G; Doran, Dominic A; Fleming, Simon C; Morton, James P; Close, Graeme L

    2017-09-01

    The purpose of this study was to investigate the effects of high-intensity interval running on markers of gastrointestinal (GI) damage and permeability alongside subjective symptoms of GI discomfort. Eleven male runners completed an acute bout of high-intensity interval training (HIIT) (eighteen 400-m runs at 120% maximal oxygen uptake) where markers of GI permeability, intestinal damage, and GI discomfort symptoms were assessed and compared with resting conditions. Compared with rest, HIIT significantly increased serum lactulose/rhamnose ratio (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047; 95% confidence interval (CI) = 0.006 to 0.036) and sucrose concentrations (0.388 ± 0.217 vs. 0.137 ± 0.148 mg·L -1 ; p < 0.001; 95% CI = 0.152 to 0.350). In contrast, urinary lactulose/rhamnose (0.032 ± 0.005 vs. 0.030 ± 0.005; p = 0.3; 95% CI = -0.012 to 0.009) or sucrose concentrations (0.169% ± 0.168% vs. 0.123% ± 0.120%; p = 0.54; 95% CI = -0.199 to 0.108) did not differ between HIIT and resting conditions. Plasma intestinal-fatty acid binding protein (I-FABP) was significantly increased (p < 0.001) during and in the recovery period from HIIT whereas no changes were observed during rest. Mild symptoms of GI discomfort were reported immediately and at 24 h post-HIIT, although these symptoms did not correlate to GI permeability or I-FABP. In conclusion, acute HIIT increased GI permeability and intestinal I-FABP release, although these do not correlate with symptoms of GI discomfort. Furthermore, by using serum sampling, we provide data showing that it is possible to detect changes in intestinal permeability that is not observed using urinary sampling over a shorter time-period.

  6. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  7. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss mice subjected to physical exercise under environmental heat stress.

    PubMed

    Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Wanner, Samuel Penna; Santos, Rosana das Graças Carvalho dos; Fernandes, Simone Odília Antunes; Martins, Flaviano dos Santos; Nicoli, Jacques Robert; Coimbra, Cândido Celso; Cardoso, Valbert Nascimento

    2014-02-01

    Dietary supplementation with l-arginine has been shown to improve the intestinal barrier in many experimental models. This study investigated the effects of arginine supplementation on the intestinal permeability and bacterial translocation (BT) induced by prolonged physical exercise under heat stress. Under anesthesia, male Swiss mice (5-wk-old) were implanted with an abdominal sensor to record their core body temperature (T(core)). After recovering from surgery, the mice were divided into 3 groups: a non-supplemented group that was fed the standard diet formulated by the American Institute of Nutrition (AIN-93G; control), a non-supplemented group that was fed the AIN-93G diet and subjected to exertional hyperthermia (H-NS), and a group supplemented with l-arginine at 2% and subjected to exertional hyperthermia (H-Arg). After 7 d of treatment, the H-NS and H-Arg mice were forced to run on a treadmill (60 min, 8 m/min) in a warm environment (34°C). The control mice remained at 24°C. Thirty min before the exercise or control trials, the mice received a diethylenetriamine pentaacetic acid (DTPA) solution labeled with technetium-99m ((99m)Tc-DTPA) or (99m)Tc-Escherichia coli by gavage to assess intestinal permeability and BT, respectively. The H-NS mice terminated the exercise with T(core) values of ∼40°C, and, 4 h later, presented a 12-fold increase in the blood uptake of (99m)Tc-DTPA and higher bacterial contents in the blood and liver than the control mice. Although supplementation with arginine did not change the exercise-induced increase in T(core), it prevented the increases in intestinal permeability and BT caused by exertional hyperthermia. Our results indicate that dietary l-arginine supplementation preserves the integrity of the intestinal epithelium during exercise under heat stress, acting through mechanisms that are independent of T(core) regulation.

  9. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis.

    PubMed

    Gómez-Hurtado, Isabel; Moratalla, Alba; Moya-Pérez, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-10-01

    Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Association of enteric parasitic infections with intestinal inflammation and permeability in asymptomatic infants of São Tomé Island.

    PubMed

    Garzón, Marisol; Pereira-da-Silva, Luis; Seixas, Jorge; Papoila, Ana Luísa; Alves, Marta; Ferreira, Filipa; Reis, Ana

    2017-05-01

    The cumulative effect of repeated asymptomatic enteric infections on intestinal barrier is not fully understood in infants. We aimed to evaluate the association between previous enteric parasitic infections and intestinal inflammation and permeability at 24-months of age, in asymptomatic infants of São Tomé Island. A subset of infants from a birth cohort, with intestinal parasite evaluations in at least four points of assessment, was eligible. Intestinal inflammatory response and permeability were assessed using fecal S100A12 and alpha-1-antitrypsin (A1AT), respectively. The cutoff <-1SD for weight-for-length and length-for-age was used to define wasting and stunting. Multivariable linear regression analysis explored if cumulative enteric parasitic infections explained variability of fecal biomarkers, after adjusting for potential confounders. Eighty infants were included. Giardia duodenalis and soil-transmitted helminths (STH) were the most frequent parasites. The median (interquartile range) levels were 2.87 μg/g (2.41-3.92) for S100A12 and 165.1 μg/g (66.0-275.6) for A1AT. Weak evidence of association was found between S100A12 levels and G. duodenalis (p = 0.080) and STH infections (p = 0.089), and between A1AT levels and parasitic infection of any etiology (p = 0.089), at 24-months of age. Significant associations between A1AT levels and wasting (p = 0.006) and stunting (p = 0.044) were found. Previous parasitic infections were not associated with fecal biomarkers at 24 months of age. To summarize, previous asymptomatic parasitic infections showed no association with intestinal barrier dysfunction. Notwithstanding, a tendency toward increased levels of the inflammatory biomarker was observed for current G. duodenalis and STH infections, and increased levels of the permeability biomarker were significantly associated with stunting and wasting.

  11. Intestinal permeability and Ménière's disease.

    PubMed

    Di Berardino, F; Zanetti, D; Ciusani, E; Caccia, C; Leoni, V; De Grazia, U; Filipponi, E; Elli, L

    Ménière disease (MD) is a multifactorial chronic disabling condition characterized by episodic vertigo, ear fullness, and hearing loss. MD patients often complain of aspecific gastrointestinal symptoms associated with autonomic dysregulation, frequently outweighed by the otological manifestations. Dietary modifications have been reported to improve the typical MD symptoms in some cases. Our purpose was to test the urinary levels of lactulose and mannitol (double sugar test) and the fecal calprotectin, both markers of altered intestinal permeability, in subjects with definite MD in an active and inactive stage. Twenty-six with definite unilateral MD were studied: 14 patients were symptomatic for at least 3months with moderate to severe vertigo spells and a functional level ≥4; 12 patients had been asymptomatic (no vertigo spells) for at least 3months and had a functional level=1 at the time of testing. Twenty healthy volunteers were recruited as "control group". Lactulose and mannitol absorption was significantly increased in the symptomatic M patients compared to the asymptomatic group (p<0.02 and p<0.004, respectively) and to the controls. FC were also higher than normal only in the symptomatic group. (p<0.01). An altered intestinal permeability, according to the two assays, was found only in symptomatic MD patients. The rationale for a possible relationship between MD and intestinal permeability is forwarded. The double-sugar test and FC quantification might be implemented in the MD diagnostic workup. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A double-blind, placebo-controlled, glutamine-supplementation trial in growth-faltering Gambian infants.

    PubMed

    Williams, Elizabeth A; Elia, Marinos; Lunn, Peter G

    2007-08-01

    Growth faltering during infancy is a characteristic of life in developing countries. Previous studies have shown that small-intestine mucosal enteropathy, accompanied by endotoxemia and a persistent systemic inflammatory response, accounts for up to 64% of the growth faltering in Gambian infants. The objective was to test whether glutamine, with its putative trophic effects on enterocytes, immune cells, and intestinal integrity, can accelerate the repair of the intestine, lower immunostimulation, and reduce growth faltering. Ninety-three infants aged 4-10 mo from the West Kiang region of The Gambia were studied in a double-blind, double-placebo, controlled trial. Glutamine (0.25 mg/kg body wt) or a placebo that contained an isonitrogenous, isoenergetic mix of nonessential amino acids was orally administered twice daily throughout the 5-mo rainy season. Anthropometric measurements were made monthly during the supplementation period and for 6 mo after supplementation. Intestinal permeability was measured monthly (by determining the ratio of lactulose to mannitol), and finger-prick blood samples were collected for the analysis of plasma proteins on 3 occasions. Gambian infants showed a seasonal deterioration in growth and persistently elevated acute phase protein concentrations and intestinal permeability. Oral supplementation with glutamine did not improve growth (x +/- SE: weight gain, 60 +/- 19 and 69 +/- 20 g/mo; length gain, 1.01 +/- 0.05 and 0.95 +/- 0.03 cm/mo) or intestinal permeability [lactulose:mannitol ratio: 0.29 (95% CI: 0.23, 0.35) and 0.26 (95% CI: 0.21, 0.32)] in the glutamine and placebo groups, respectively. It also had no effect on infant morbidity or on plasma concentrations of immunoglobulins or acute phase proteins. Glutamine supplementation failed to improve growth or intestinal status in malnourished Gambian infants.

  13. Intestinal alkaline phosphatase is protective to the preterm rat pup intestine.

    PubMed

    Heinzerling, Nathan P; Liedel, Jennifer L; Welak, Scott R; Fredrich, Katherine; Biesterveld, Ben E; Pritchard, Kirkwood A; Gourlay, David M

    2014-06-01

    Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown that enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNFα, IL-6 and iNOS and permeability and cytokine expression after LPS exposure. There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Intestinal Alkaline Phosphatase Is Protective to the Preterm Rat Pup Intestine

    PubMed Central

    Heinzerling, Nathan P.; Liedel, Jennifer L.; Welak, Scott R.; Fredrich, Katherine; Biesterveld, Ben E.; Pritchard, Kirkwood A.; Gourlay, David M.

    2014-01-01

    Background Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Methods Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNF-a, IL-6 and iNOS and permeability and cytokine expression after LPS. exposure. Results There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Conclusions Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. PMID:24888842

  15. Alternative functional in vitro models of human intestinal epithelia

    PubMed Central

    Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.

    2013-01-01

    Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534

  16. Alternative functional in vitro models of human intestinal epithelia.

    PubMed

    Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J

    2013-01-01

    Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  17. Intestinal Rotation Abnormalities and Midgut Volvulus.

    PubMed

    Langer, Jacob C

    2017-02-01

    Rotation abnormalities may be asymptomatic or may be associated with obstruction caused by bands, midgut volvulus, or associated atresia or web. The most important goal of clinicians is to determine whether the patient has midgut volvulus with intestinal ischemia, in which case an emergency laparotomy should be done. If the patient is not acutely ill, the next goal is to determine whether the patient has a narrow-based small bowel mesentery. In general, the outcomes for children with a rotation abnormality are excellent, unless there has been midgut volvulus with significant intestinal ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction.

    PubMed

    Wang, Wei-Wei; Zhang, Yu; Huang, Xiao-Bing; You, Nan; Zheng, Lu; Li, Jing

    2017-10-14

    To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl 4 )-induced acute hepatic dysfunction. A rat model of HE was established with CCl 4 . Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was examined. FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating pro-inflammatory factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.

  19. Optimization of the Caco-2 permeability assay to screen drug compounds for intestinal absorption and efflux.

    PubMed

    Press, Barry

    2011-01-01

    In vitro permeability assays are a valuable tool for scientists during lead compound optimization. As a majority of discovery projects are focused on the development of orally bioavailable drugs, correlation of in vitro permeability data to in vivo absorption results is critical for understanding the structural-physicochemical relationship (SPR) of drugs exhibiting low levels of absorption. For more than a decade, the Caco-2 screening assay has remained a popular, in vitro system to test compounds for both intestinal permeability and efflux liability. Despite advances in artificial membrane technology and in silico modeling systems, drug compounds still benefit from testing in cell-based epithelial monolayer assays for lead optimization. This chapter provides technical information for performing and optimizing the Caco-2 assay. In addition, techniques are discussed for dealing with some of the most pressing issues surrounding in vitro permeability assays (i.e., low aqueous solubility of test compounds and low postassay recovery). Insights are offered to help researchers avoid common pitfalls in the interpretation of in vitro permeability data, which can often lead to the perception of misleading results for correlation to in vivo data.

  20. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats.

    PubMed

    Tamura, Shigeki; Ohike, Atsuo; Ibuki, Rinta; Amidon, Gordon L; Yamashita, Shinji

    2002-03-01

    The objective of this study is to investigate the role of P-glycoprotein (P-gp), a membrane efflux pump associated with multidrug resistance (MDR) and a known substrate for tacrolimus, in determining the regional intestinal permeability of tacrolimus in rats. Thus, isolated segments of rat jejunum, ileum, or colon were perfused with tacrolimus solutions containing polyethoxylated hydrogenated castor oil 60 surfactant, and with or without verapamil, a P-gp substrate used to reverse the MDR phenotype. The results indicated that the intrinsic permeability of tacrolimus in the jejunum, calculated on the basis of the concentration of non-micellized free tacrolimus, was quite high ( approximately 1.4 x 10(-4) cm/s). The apparent permeability (P(app)) in the jejunum was unaffected by the presence of verapamil; however, the P(app) in the ileum and the colon increased significantly in the presence of verapamil and were similar to the values observed in the jejunum. The results suggest that systemic absorption of tacrolimus from the gastrointestinal tract could be significantly affected by P-gp efflux mechanisms. It is also possible that differences in P-gp function at various intestinal sites in a subject or at a given intestinal site in various subjects could lead to large intra- and interindividual variability in bioavailability of tacrolimus following oral administration. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association .

  1. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    PubMed

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    PubMed

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (<17 wk of gestation; median: 13 wk). Serum zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (<46.4 ng/mL) and "high" (≥46.4 ng/mL) serum zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P < 0.05) in the low zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P < 0.05) in women in the low zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT01922791. © 2016 American Society for Nutrition.

  3. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  4. Clinical Research Abstracts of the British Equine Veterinary Association Congress 2015.

    PubMed

    Koskinen, M J; Hewetson, M; Pöytäkangas, M R

    2015-09-01

    Infiltrative disease of the intestine is an important cause of weight loss in the horse. Infiltration of inflammatory or neoplastic cells into the intestinal wall and intestinal fibrosis cause changes in the integrity of the intestinal wall. This may lead to altered intestinal permeability which can be measured using the contrast medium iohexol. To determine if iohexol intestinal permeability, as evaluated by serum iohexol concentration, could be used to differentiate between healthy horses and horses with infiltrative disease of the large colon. Prospective non-randomised controlled clinical trial. Six healthy adult horses and 4 horses with chronic infiltrative disease of the large colon were used in the study. Infiltrative disease was confirmed on post mortem in all cases, and included alimentary lymphoma and mycobacterial granulomatous enterocolitis. Following a 16-h fast, each horse was dosed with 1.0 ml/kg bwt of iohexol as a 10% solution via nasogastric intubation. Blood samples were collected at 0, 30, 60, 120, 180, 240, 300, 360, 420 and 480 min after dosing. Iohexol concentration was determined using HPLC-UV and the differences between the groups were analysed with a repeated measures ANOVA. There was a statistically significant difference in iohexol serum concentration between the diseased and nondiseased horses (P = 0.001). The overall difference in the mean iohexol concentration between the 2 groups was 6.07 (95% CI 3.19-8.96) μg/ml, however there appeared to be a trend towards increasing difference at later time points (240, 300, 360 min). The iohexol permeability test has potential as a diagnostic tool for estimation of intestinal permeability in horses with infiltrative intestinal disease. Further studies are warranted to determine whether the test can be used to determine the site of intestinal pathology, predict the prognosis and potentially evaluate the response to treatment. The authors thank Professor Riitta-Mari Tulamo and Professor Thomas Spillmann and the staff of Equine College Ypäjä and the University of Helsinki Equine Teaching Hospital. The cooperation of horse owners is gratefully acknowledged. Ethical animal research: The study protocol was approved by the National Animal Experiment Board of Finland (Eläinkoelautakunta ELLA, Request for Animal Experiments, ref. no. ESAVI-2010-06567/Ym-23). For client-owned animals, owner informed consent was obtained. This study was funded by the Faculty of Veterinary Medicine, University of Helsinki, Finland. Competing interests: None declared. © 2015 The Author(s). Equine Veterinary Journal © 2015 EVJ Ltd.

  5. Glutamine Supplementation of Parenteral Nutrition Does Not Improve Intestinal Permeability, Nitrogen Balance, or Outcome in Newborns and Infants Undergoing Digestive-Tract Surgery

    PubMed Central

    Albers, Marcel J. I. J.; Steyerberg, Ewout W.; Hazebroek, Frans W. J.; Mourik, Marjan; Borsboom, Gerard J. J. M.; Rietveld, Trinet; Huijmans, Jan G. M.; Tibboel, Dick

    2005-01-01

    Objective: To assess the effect of isocaloric isonitrogenous parenteral glutamine supplementation on intestinal permeability and nitrogen loss in newborns and infants after major digestive-tract surgery. Summary Background Data: Glutamine supplementation in critically ill and surgical adults may normalize intestinal permeability, attenuate nitrogen loss, improve survival, and lower the incidence of nosocomial infections. Previous studies in critically ill children were limited to very-low-birthweight infants and had equivocal results. Methods: Eighty newborns and infants were included in a double-blind, randomized trial comparing standard parenteral nutrition (sPN; n = 39) to glutamine-supplemented parenteral nutrition (GlnPN; glutamine target intake, 0.4 g kg−1 day−1; n = 41), starting on day 2 after major digestive-tract surgery. Primary endpoints were intestinal permeability, as assessed by the urinary excretion ratio of lactulose and rhamnose (weeks 1 through 4); nitrogen balance (days 4 through 6), and urinary 3-methylhistidine excretion (day 5). Secondary endpoints were mortality, length of stay in the ICU and the hospital, number of septic episodes, and usage of antibiotics and ICU resources. Results: Glutamine intake plateaued at 90% of the target on day 4. No differences were found between patients assigned sPN and patients assigned GlnPN regarding any of the endpoints. Glutamine supplementation was not associated with adverse effects. Conclusions: In newborns and infants after major digestive-tract surgery, we did not identify beneficial effects of isonitrogenous, isocaloric glutamine supplementation of parenteral nutrition. Glutamine supplementation in these patients therefore is not warranted until further research proves otherwise. PMID:15798461

  6. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    PubMed

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  7. Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside

    PubMed Central

    Zhang, Lei; Song, Jun; Hou, Xiaohua

    2016-01-01

    Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder since it lacks demonstrable pathological abnormalities. However, in recent years, low grade inflammatory infiltration, often rich in mast cells, in both the small and large bowel, has been observed in some patients with IBS. The close association of mast cells with major intestinal functions, such as epithelial secretion and permeability, neuroimmune interactions, visceral sensation, and peristalsis, makes researchers and gastroenterologists to focus attention on the key roles of mast cells in the pathogenesis of IBS. Numerous studies have been carried out to identify the mechanisms in the development, infiltration, activation, and degranulation of intestinal mast cells, as well as the actions of mast cells in the processes of mucosal barrier disruption, mucosal immune dysregulation, visceral hypersensitivity, dysmotility, and local and central stress in IBS. Moreover, therapies targeting mast cells, such as mast cell stabilizers (cromoglycate and ketotifen) and antagonists of histamine and serotonin receptors, have been tried in IBS patients, and have partially exhibited considerable efficacy. This review focuses on recent advances in the role of mast cells in IBS, with particular emphasis on bridging experimental data with clinical therapeutics for IBS patients. PMID:26755686

  8. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    PubMed

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The effect of abnormal hemoglobins on the membrane regulation of cell hydration.

    PubMed

    Clark, M R; Shohet, S B

    Several hemoglobinopathies are associated with abnormalities in the permeability of the red cell membrane, in some cases leading to permanent alterations of the intracellular milieu. Homozygous sickle cell disease is the most thoroughly studied example. Deoxygenation of sickle cells causes a transient increase in the permeability to monovalent cations and Ca; prolonged deoxygenation can lead to a permanent accumulation of Ca and loss of total cations and water. Although the mechanisms for the permeability changes are not yet defined, mechanical stress on the membrane, with subsequent damages by excess Ca or membrane-associated hemoglobin have been suggested to play a role. Loss of cell water and increase in mean cell hemoglobin concentration causes massive reduction of cell deformability in the oxygenated state and makes the hemoglobin more likely to undergo sickling because of the strong concentration dependence of the sickling process. Limited evidence suggests the occurrence of permeability defects in other hemoglobinopathies and the thalassemias. The suggested alterations range from a slight increase in K permeability of incubated thalassemia cells to substantial dehydration of cells from patients with homozygous hemoglobin C disease. Oxidative damage to the membrane, involving an abnormal hemoglobin-membrane association, may underly the permeability changes in these cells.

  10. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  11. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    PubMed

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Is Moderate Red Wine Consumption Safe in Inactive Inflammatory Bowel Disease?

    PubMed Central

    Swanson, Garth R.; Tieu, Vanessa; Shaikh, Maliha; Forsyth, Chris; Keshavarzian, Ali

    2011-01-01

    Background Alcohol consumption is a potential trigger for inflammatory bowel disease (IBD) flare because of alcohol-induced oxidative stress and its deleterious effects on gut barrier function. Additionally, we have recently shown that alcohol consumption is associated with more symptoms in IBD. However, it is not known whether moderate daily alcohol consumption can modify IBD disease activity. To test what effects alcohol may have on patients with IBD, we evaluated the effect of moderate daily red wine for 1 week on two factors associated with recurrent IBD disease activity: intestinal permeability and stool calprotectin. Methods To assess the effects of moderate daily alcohol consumption on intestinal permeability and inflammation, we recruited 21 patients: 8 with inactive ulcerative colitis (UC), 6 with inactive Crohn's disease (CD), and 7 healthy controls. All participants with IBD completed a validated questionnaire on disease activity (Crohn's disease activity index or ulcerative colitis clinical activity index), to confirm they had inactive disease. All subjects then underwent a baseline assessment that included a blood draw, urine collection after sugar challenge, and stool collection. Subjects then consumed 1–3 glasses of red wine a day for 1 week (approx. 0.4 g EtOH/kg), and repeated the three measures. Results No subjects flared during the study. Moderate alcohol consumption did not significantly change either clinical disease activity scores or C-reactive protein. In contrast to healthy subjects, daily consumption of red wine significantly (1) decreased stool calprotectin in IBD subjects from baseline (p = 0.001) and (2) increased intestinal permeability as measured by urinary lactulose/mannitol excretion (marker of small bowel permeability) in CD (p = 0.028) or urinary sucralose secretion (marker of large bowel permeability) in UC (p = 0.012). Conclusions One week of moderate consumption of red wine in inactive IBD was associated with a significant decrease in stool calprotectin and a significant increase in intestinal permeability. Our data suggests that patients with inactive IBD who drink red wine daily may be at an increased long-term risk for disease relapse. PMID:21876358

  13. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis.

    PubMed

    Morris, Gerwyn; Reiche, Edna Maria Vissoci; Murru, Andrea; Carvalho, André F; Maes, Michael; Berk, Michael; Puri, Basant K

    2018-01-02

    Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.

  14. Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: A prospective randomized pilot study in healthy volunteers

    PubMed Central

    Honda, Yasushi; Kurita, Yusuke; Iwasaki, Akito; Sato, Takamitsu; Kessoku, Takaomi; Uchiyama, Shiori; Ogawa, Yuji; Ohkubo, Hidenori; Higurashi, Takuma; Yamanaka, Takeharu; Usuda, Haruki; Wada, Koichiro; Nakajima, Atsushi

    2017-01-01

    Background and aims The barrier function of the small intestinal mucosa prevents the introduction of undesired pathogens into the body. Breakdown of this barrier function increases intestinal permeability. This has been proposed to induce not only gastrointestinal diseases, including inflammatory bowel disease and irritable bowel syndrome, but also various other diseases, including allergies, diabetes mellitus, liver diseases, and collagen diseases, which are associated with this so called “leaky gut syndrome.” As such, a method to prevent leaky gut syndrome would have substantial clinical value. However, no drugs have been demonstrated to improve disturbed intestinal permeability in humans to date. Therefore, we investigated whether a drug used to treat chronic constipation, lubiprostone, was effective for this purpose. Methods Healthy male volunteers were treated with lubiprostone (24 μg/day) for 28 days. Intestinal permeability was evaluated by measuring the lactulose-mannitol ratio (LMR) after administration of diclofenac and compared with an untreated group. The examination was conducted three times in total, i.e., at baseline before diclofenac administration and after 14 and 28 days of lubiprostone treatment. Blood endotoxin activity was also evaluated at the same time points. Results The final analysis was conducted on 28 subjects (14 in the lubiprostone group and 14 in the untreated group). The LMR after 28 days of treatment was significantly lower in the lubiprostone group than that in the untreated group (0.017 vs. 0.028, respectively; 95% confidence interval, −0.022–−0.0001; p = 0.049). Blood endotoxin activity exhibited almost no change over time in the lubiprostone and untreated groups and displayed no significant differences at any time point of examination. Conclusions This study is the first to report an improvement in leaky gut using an available drug in humans. The result suggests that lubiprostone may prevent and ameliorate “leaky gut syndrome”. However, a pivotal trial is needed to confirm our finding. PMID:28410406

  15. Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: A prospective randomized pilot study in healthy volunteers.

    PubMed

    Kato, Takayuki; Honda, Yasushi; Kurita, Yusuke; Iwasaki, Akito; Sato, Takamitsu; Kessoku, Takaomi; Uchiyama, Shiori; Ogawa, Yuji; Ohkubo, Hidenori; Higurashi, Takuma; Yamanaka, Takeharu; Usuda, Haruki; Wada, Koichiro; Nakajima, Atsushi

    2017-01-01

    The barrier function of the small intestinal mucosa prevents the introduction of undesired pathogens into the body. Breakdown of this barrier function increases intestinal permeability. This has been proposed to induce not only gastrointestinal diseases, including inflammatory bowel disease and irritable bowel syndrome, but also various other diseases, including allergies, diabetes mellitus, liver diseases, and collagen diseases, which are associated with this so called "leaky gut syndrome." As such, a method to prevent leaky gut syndrome would have substantial clinical value. However, no drugs have been demonstrated to improve disturbed intestinal permeability in humans to date. Therefore, we investigated whether a drug used to treat chronic constipation, lubiprostone, was effective for this purpose. Healthy male volunteers were treated with lubiprostone (24 μg/day) for 28 days. Intestinal permeability was evaluated by measuring the lactulose-mannitol ratio (LMR) after administration of diclofenac and compared with an untreated group. The examination was conducted three times in total, i.e., at baseline before diclofenac administration and after 14 and 28 days of lubiprostone treatment. Blood endotoxin activity was also evaluated at the same time points. The final analysis was conducted on 28 subjects (14 in the lubiprostone group and 14 in the untreated group). The LMR after 28 days of treatment was significantly lower in the lubiprostone group than that in the untreated group (0.017 vs. 0.028, respectively; 95% confidence interval, -0.022--0.0001; p = 0.049). Blood endotoxin activity exhibited almost no change over time in the lubiprostone and untreated groups and displayed no significant differences at any time point of examination. This study is the first to report an improvement in leaky gut using an available drug in humans. The result suggests that lubiprostone may prevent and ameliorate "leaky gut syndrome". However, a pivotal trial is needed to confirm our finding.

  16. Intestinal "bioavailability" of solutes and water: we know how but not why.

    PubMed Central

    Charney, A. N.

    1996-01-01

    Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water. PMID:9273987

  17. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  18. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

    PubMed Central

    Shawahna, R.; Rahman, NU.

    2011-01-01

    Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645

  19. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-04-01

    To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP-BL and BL-AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6'-7'-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP-BL permeability was increased and BL-AP was decreased by GFJ in a concentration-dependent manner (IC(50) values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6'-7'-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL-AP secretion (IC(50) values of 90, 592 and 11.6 microM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.

  20. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier.

    PubMed

    Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M

    2012-04-15

    Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to subsequent disruption of epithelial barrier function.

  1. Improving permeability and oral absorption of mangiferin by phospholipid complexation.

    PubMed

    Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong

    2014-03-01

    Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Assessment of the capability of a gelling complex made of tara gum and the exopolysaccharides produced by the microorganism Streptococcus thermophilus ST10 to prospectively restore the gut physiological barrier: a pilot study.

    PubMed

    Del Piano, Mario; Balzarini, Marco; Carmagnola, Stefania; Pagliarulo, Michela; Tari, Roberto; Nicola, Stefania; Deidda, Francesca; Pane, Marco

    2014-01-01

    Leaky gut, or intestinal permeability, is the phenomenon of the gut wall exhibiting increased absorbency. It is pretty well recognised that an altered or damaged bowel lining or gut wall may result from unbalanced diet, parasites, infection, or medications and that this allows substances such as toxins, microbes, undigested food, or waste to leak through. As a natural consequence, this prompts the body to initiate an immune reaction leading to potentially severe health conditions. Different strategies may be used to improve, at least temporarily, the physiological intestinal barrier. The use of specific beneficial microorganisms, such as lactobacilli and bifidobacteria, has been suggested as an innovative tool to counteract an improper level of intestinal permeability. The association of bacteria with specific gelling agents, such as gums, may represent an improvement since these molecules are able to form hydrophilic gels that distribute uniformly over the inner intestinal surface. This pilot study was undertaken to evaluate intestinal permeability in subjects treated with a gelling complex, an association of tara gum and the microorganism Streptococcus thermophilus ST10 (DSM 25246), which has a well-demonstrated in vitro ability to synthesise and secrete exopolysaccharides (EPSs). Twenty-five healthy subjects were enrolled in this human intervention, double-blind, placebo-controlled, pilot trial (age between 21 and 57 y, mean 37.7±11.2). Subjects were then randomised into 2 groups: group A (13 subjects) was given an active formulation containing 250 mg of tara gum and 1 billion viable cells of S. thermophilus ST10, whereas group B (12 subjects) was given a placebo formulation. All the subjects participating in the study were directed to take 1 dose per day for 30 consecutive days. The presence and concentration of exopolysaccharides (EPSs) in the faeces was determined at time 0 (d0), after 30 days of treatment (d30), and at the end of the 2-week follow-up period (d45). The monosaccharide composition of EPSs was used to quantify the possible contribution of tara gum to the amount of polysaccharides detected in the faecal material. Intestinal permeability was evaluated at the same time by means of the lactitol/mannitol ratio (small intestine permeability) and sucralose concentration (colonic permeability) in urine specimens sampled after specified times. A statistical comparison was made between the concentration of EPSs, the lactulose/mannitol ratio, and the amount of excreted sucralose in the 2 groups at d0, d30, and d45. In the active group, supplementation with S. thermophilus ST10 and tara gum was able to significantly increase the faecal EPSs concentration compared with placebo (from 0.169 mg/g to 0.633 mg/g after 30 d, P<0.001). An interesting decrease in intestinal permeability, both of the small bowel and in the colon, was also recorded. The L/M ratio diminished from 0.021 in the active group to 0.014 and 0.015 after 30 and 45 days, respectively (P=0.045 and P=0.033 compared with placebo). The sucralose concentration decreased from 35.8 mg to 27.9 mg and 29.1 mg (P=0.038 and P=0.026 compared with placebo) at the end of the supplementation period and after the follow-up, respectively. No significant differences were recorded in the placebo after 30 days or at the end of the follow-up. The association of the EPSs produced by S. thermophilus ST10 and tara gum seems capable of significantly improving the intestinal functional barrier in healthy subjects. A wider study in subjects presenting impaired gut permeability would be useful in the future to confirm the positive results from this pilot trial. In any case, our findings are consistent with the parallel increase in exopolysaccharide concentration in the faecal material, thus suggesting the effective ability of the strain used to secrete EPSs in the gut lumen. An innovative approach of this type may be useful in helping to restore the physiological barrier by means of a merely natural and mechanical action.

  3. Intestinal absorption of forsythoside A in in situ single-pass intestinal perfusion and in vitro Caco-2 cell models

    PubMed Central

    Zhou, Wei; Di, Liu-qing; Wang, Juan; Shan, Jin-jun; Liu, Shi-jia; Ju, Wen-zheng; Cai, Bao-chang

    2012-01-01

    Aim: To investigate the mechanisms underlying the intestinal absorption of the major bioactive component forsythoside A (FTA) extracted from Forsythiae fructus. Methods: An in vitro Caco-2 cell model and a single-pass intestinal perfusion in situ model in SD rats were used. Results: In the in vitro Caco-2 cell model, the mean apparent permeability value (Papp-value) was 4.15×10-7 cm/s in the apical-to-basolateral (AP-BL) direction. At the concentrations of 2.6–10.4 μg/mL, the efflux ratio of FTA in the bi-directional transport experiments was approximately 1.00. After the transport, >96% of the apically loaded FTA was retained on the apical side, while >97% of the basolaterally loaded FTA was retained on the basolateral side. The Papp-values of FTA were inversely correlated with the transepithelial electrical resistance. The paracellular permeability enhancers sodium caprate and EDTA, the P-gp inhibitor verapamil and the multidrug resistance related protein (MRP) inhibitors cyclosporine and MK571 could concentration-dependently increase the Papp-values, while the uptake (OATP) transporter inhibitors diclofenac sodium and indomethacin could concentration-dependently decrease the Papp-values. The intake transporter SGLT1 inhibitor mannitol did not cause significant change in the Papp-values. In the in situ intestinal perfusion model, both the absorption rate constant (Ka) and the effective permeability (Peff-values) following perfusion of FTA 2.6, 5.2 and 10.4 μg/mL via the duodenum, jejunum and ileum had no significant difference, although the values were slightly higher for the duodenum as compared to those in the jejunum and ileum. The low, medium and high concentrations of verapamil caused the largest increase in the Peff-values for duodenum, jejunum and ileum, respectively. Sodium caprate, EDTA and cyclosporine resulted in concentration-dependent increase in the Peff-values. Diclofenac sodium and indomethacin caused concentration-dependent decrease in the Peff-values. Mannitol did not cause significant change in the Papp-values for the duodenum, jejunum or ileum. Conclusion: The results suggest that the intestinal absorption of FTA may occur through passive diffusion, and the predominant absorption site may be in the upper part of small intestine. Paracellular transport route is also involved. P-gp, MRPs and OATP may participate in the absorption of FTA in the intestine. The low permeability of FTA contributes to its low oral bioavailability. PMID:22773077

  4. An in vitro methodology for forecasting luminal concentrations and precipitation of highly permeable lipophilic weak bases in the fasted upper small intestine.

    PubMed

    Psachoulias, Dimitrios; Vertzoni, Maria; Butler, James; Busby, David; Symillides, Moira; Dressman, Jennifer; Reppas, Christos

    2012-12-01

    To develop an in vitro methodology for prediction of concentrations and potential precipitation of highly permeable, lipophilic weak bases in fasted upper small intestine based on ketoconazole and dipyridamole luminal data. Evaluate usefulness of methodology in predicting luminal precipitation of AZD0865 and SB705498 based on plasma data. A three-compartment in vitro setup was used. Depending on the dosage form administered in in vivo studies, a solution or a suspension was placed in the gastric compartment. A medium simulating the luminal environment (FaSSIF-V2plus) was initially placed in the duodenal compartment. Concentrated FaSSIF-V2plus was placed in the reservoir compartment. In vitro ketoconazole and dipyridamole concentrations and precipitated fractions adequately reflected luminal data. Unlike luminal precipitates, in vitro ketoconazole precipitates were crystalline. In vitro AZD0865 data confirmed previously published human pharmacokinetic data suggesting that absorption rates are not affected by luminal precipitation. In vitro SB705498 data predicted that significant luminal precipitation occurs after a 100 mg or 400 mg but not after a 10 mg dose, consistent with human pharmacokinetic data. An in vitro methodology for predicting concentrations and potential precipitation in fasted upper small intestine, after administration of highly permeable, lipophilic weak bases in fasted upper small intestine was developed and evaluated for its predictability in regard to luminal precipitation.

  5. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux.

    PubMed

    Jain, Ritesh; Agarwal, Sheetal; Mandava, Nanda Kishore; Sheng, Ye; Mitra, Ashim K

    2008-10-01

    Saquinavir (SQV), the first protease inhibitor approved by FDA to treat HIV-1 infection. This drug is a well-known substrate for multidrug resistance protein-2 (MRP-2). The objective of this study was to investigate whether derivatization of SQV to dipeptide prodrugs, valine-valine-saquinavir (Val-Val-SQV) and glycine-valine-saquinavir (Gly-Val-SQV), targeting peptide transporter can circumvent MRP-2 mediated efflux. Uptake and transport studies were carried out across MDCKII-MRP2 cell monolayers to investigate the interaction of SQV and its prodrugs with MRP-2. In situ single pass intestinal perfusion experiments in rat jejunum were performed to calculate intestinal absorption rate constants and permeabilities of SQV, Val-Val-SQV and Gly-Val-SQV. Uptake studies demonstrated that the prodrugs have significantly lower interaction with MRP-2 relative to SQV. Transepithelial transport of Val-Val-SQV and Gly-Val-SQV across MDCKII-MRP2 cells exhibited an enhanced absorptive flux and reduced secretory flux as compared to SQV. Intestinal perfusion studies revealed that synthesized prodrugs have higher intestinal permeabilities relative to SQV. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. In the presence of MK-571, a MRP family inhibitor, there was a significant increase in the permeabilities of SQV and Gly-Val-SQV indicating that these compounds are probably substrates for MRP-2. However, there was no change in the permeability of Val-Val-SQV with MK-571 indicating lack of any interaction of Val-Val-SQV with MRP-2. In conclusion, peptide transporter targeted prodrug modification of MRP-2 substrates may lead to shielding of these drug molecules from MRP-2 efflux pumps.

  6. Postoperative symbiotic in patients with head and neck cancer: a double-blind randomised trial.

    PubMed

    Lages, Priscilla C; Generoso, Simone V; Correia, Maria Isabel T D

    2018-01-01

    Studies on the 'gut origin of sepsis' have suggested that stressful insults, such as surgery, can affect intestinal permeability, leading to bacterial translocation. Symbiotics have been reported to be able to improve gut permeability and modulate the immunologic system, thereby decreasing postoperative complications. Therefore we aimed to evaluate the postoperative use of symbiotics in head and neck cancer surgical patients for intestinal function and permeability, as well as the postoperative outcomes. Patients were double-blind randomised into the symbiotic (n 18) or the control group (n 18). Samples were administered twice a day by nasoenteric tube, starting on the 1st postoperative day until the 5th to 7th day, and comprised 109 colony-forming units/ml each of Lactobacillus paracasei, L. rhamnosus, L. acidophilus, and Bifidobacterium lactis plus 6 g of fructo-oligosaccharides, or a placebo (6 g of maltodextrin). Intestinal function (day of first evacuation, total stool episodes, stool consistency, gastrointestinal tract symptoms and gut permeability by diamine oxidase (DAO) enzyme) and postoperative complications (infectious and non-infectious) were assessed. Results of comparison of the pre- and postoperative periods showed that the groups were similar for all outcome variables. In all, twelve patients had complications in the symbiotic group v. nine in the control group (P>0·05), and the preoperative-postoperative DAO activity ranged from 28·5 (sd 15·4) to 32·7 (sd 11·0) ng/ml in the symbiotic group and 35·2 (sd 17·7) to 34·1 (sd 12·0) ng/ml in the control group (P>0·05). In conclusion, postoperative symbiotics did not impact on intestinal function and postoperative outcomes of head and neck surgical patients.

  7. DENTAL ABNORMALITIES OF EIGHT WILD QINLING GIANT PANDAS (AILUROPODA MELANOLEUCA QINLINGENSIS), SHAANXI PROVINCE, CHINA.

    PubMed

    Jin, Yipeng; Chen, Si; Chao, Yanqiao; Pu, Tianchun; Xu, Hongqian; Liu, Xiaobin; Zhao, Kaihui; Nie, Yonggang; Wei, Wei; Lin, Degui

    2015-10-01

    Eight adult (six male and two female) wild Qinling giant pandas (Ailuropoda melanoleuca qinlingensis) from China National Foping Nature Reserve were tracked, and their dental data collected and recorded from October 2010 to April 2014. Each panda had dental abnormalities of varying severity. Dental wear and fracture were the most common conditions. Absent teeth were common, with premolars missing most often. Mild caries were present in five molar teeth between two animals. Different degrees of dental plaque and calculus occurred in all animals but without severe periodontal disease. Two animals with severe dental abnormalities died due to intestinal problems. Large segments of bamboo were found in their intestinal tracts, and intestinal perforation and ulcers were evident, indicating dental abnormalities can be an important factor in the health of wild giant pandas and may lead to death. Further research with larger sample sizes of wild and captive giant pandas will be required to substantiate the relationship between dental abnormalities and mortality in giant pandas.

  8. BowelScope: Accuracy of Detection Using ENdocuff Optimisation of Mucosal Abnormalities

    ClinicalTrials.gov

    2017-05-05

    Colorectal Neoplasms; Colonic Polyp; Adenoma; Neoplasia GI; Digestive System Neoplasms; Intestinal Neoplasms; Neoplasms, Glandular and Epithelial; Digestive Disease; Intestinal Diseases; Colonic Diseases; Rectal Diseases; Intestinal Polyps; Polyps; Pathological Conditions, Anatomical

  9. Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease.

    PubMed

    Utzeri, Erika; Usai, Paolo

    2017-06-14

    The use of non-steroidal anti-inflammatory drugs (NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of non-alcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress.

  10. Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease

    PubMed Central

    Utzeri, Erika; Usai, Paolo

    2017-01-01

    The use of non-steroidal anti-inflammatory drugs (NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of non-alcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress. PMID:28652650

  11. Dai-Huang-Fu-Zi-Tang Alleviates Intestinal Injury Associated with Severe Acute Pancreatitis by Regulating Mitochondrial Permeability Transition Pore of Intestinal Mucosa Epithelial Cells

    PubMed Central

    Kang, Xin; Liang, Zhengkai; Zhan, Libin; Song, Jianbo; Wang, Yi; Yang, Yilun; Fan, Zhiwei; Bai, Lizhi

    2017-01-01

    Objective The aim of the present study was to examine whether Dai-Huang-Fu-Zi-Tang (DHFZT) could regulate mitochondrial permeability transition pore (MPTP) of intestinal mucosa epithelial cells for alleviating intestinal injury associated with severe acute pancreatitis (SAP). Methods A total of 72 Sprague-Dawley rats were randomly divided into 3 groups (sham group, SAP group, and DHFZT group, n = 24 per group). The rats in each group were divided into 4 subgroups (n = 6 per subgroup) accordingly at 1, 3, 6, and 12 h after the operation. The contents of serum amylase, D-lactic acid, diamine oxidase activity, and degree of MPTP were measured by dry chemical method and enzyme-linked immunosorbent assay. The change of mitochondria of intestinal epithelial cells was observed by transmission electron microscopy. Results The present study showed that DHFZT inhibited the openness of MPTP at 3, 6, and 12 h after the operation. Meanwhile, it reduced the contents of serum D-lactic acid and activity of diamine oxidase activity and also drastically relieved histopathological manifestations and epithelial cells injury of intestine. Conclusion DHFZT alleviates intestinal injury associated SAP via reducing the openness of MPTP. In addition, DHFZT could also decrease the content of serum diamine oxidase activity and D-lactic acid after SAP. PMID:29403537

  12. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat.

    PubMed

    Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M

    2012-08-01

    Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    PubMed Central

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  14. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging

    NASA Astrophysics Data System (ADS)

    Reitan, Nina Kristine; Thuen, Marte; Goa, Pa˚L. Erik; de Lange Davies, Catharina

    2010-05-01

    Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Dextran (40 kDa) and Gadomer were used as molecular tracers for CLSM and DCE-MRI, respectively. A significant correlation was found between permeability indicators. The extravasation rate Ki as measured by CLSM correlated positively with DCE-MRI parameters, such as the volume transfer constant Ktrans and the initial slope of the contrast agent concentration-time curve. This demonstrates that these two techniques give complementary information. Extravasation was further related to microvascular structure and was found to correlate with the fractal dimension and vascular density. The structural parameter values that were obtained from CLSM images were higher for abnormal tumor vasculature than for normal vessels.

  16. "Green" synthesized and coated nanaosilver alters the membrance permeability of barrier (intestinal, brain, endothelial) cells and stimulates oxidative stress pathways in neurons.

    EPA Science Inventory

    Nanosilver's (nanoAg) use in medical applications and consumer products is increasing. Because of this, its "green" synthesis and surface modification with beneficial coatings are desirable. Given nanoAg's potential exposure routes (e.g., dermal, intestin...

  17. Oral Delivery of Lipophilic Drugs: The Tradeoff between Solubility Increase and Permeability Decrease When Using Cyclodextrin-Based Formulations

    PubMed Central

    Beig, Avital; Agbaria, Riad; Dahan, Arik

    2013-01-01

    The purpose of this study was to investigate the impact of oral cyclodextrin-based formulation on both the apparent solubility and intestinal permeability of lipophilic drugs. The apparent solubility of the lipophilic drug dexamethasone was measured in the presence of various HPβCD levels. The drug’s permeability was measured in the absence vs. presence of HPβCD in the rat intestinal perfusion model, and across Caco-2 cell monolayers. The role of the unstirred water layer (UWL) in dexamethasone’s absorption was studied, and a simplified mass-transport analysis was developed to describe the solubility-permeability interplay. The PAMPA permeability of dexamethasone was measured in the presence of various HPβCD levels, and the correlation with the theoretical predictions was evaluated. While the solubility of dexamethasone was greatly enhanced by the presence of HPβCD (K1∶1 = 2311 M−1), all experimental models showed that the drug’s permeability was significantly reduced following the cyclodextrin complexation. The UWL was found to have no impact on the absorption of dexamethasone. A mass transport analysis was employed to describe the solubility-permeability interplay. The model enabled excellent quantitative prediction of dexamethasone’s permeability as a function of the HPβCD level. This work demonstrates that when using cyclodextrins in solubility-enabling formulations, a tradeoff exists between solubility increase and permeability decrease that must not be overlooked. This tradeoff was found to be independent of the unstirred water layer. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. PMID:23874557

  18. Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn's disease.

    PubMed

    Dastych, Milan; Dastych, Milan; Novotná, Hana; Cíhalová, J

    2008-10-01

    The purpose of this study was to investigate and compare the specificity, sensitivity, and area under curve (AUC) of the lactulose/mannitol ratio, lactulose/creatinine ratio, and lactulose recovery and their diagnostic value for intestinal permeability assessment within the absorption lactulose/mannitol (L/M) test. The value of the lactulose/mannitol ratio, lactulose/creatinine ratio, and the percentage of lactulose recovery in Crohn's disease (0.0763 +/- 0.0369; 99.62 +/- 67.87; 1.0478 +/- 0.6148) and in liver cirrhosis (0.0517 +/- 0.0365; 54.65 +/- 53.26; 0.838 +/- 0.929) were significantly different from the values measured in the control group (0.0123 +/- 0.0081; 10.95 +/- 7.07; 0.2438 +/- 0.1568), P < 0.0001-0.002). In Crohn's disease, specificity, sensitivity, and AUC were 100%, 89.5%, and 0.987, respectively, of the lactulose/mannitol ratio at a cut-off level of 0.022. In liver cirrhosis, the test characteristics were 88.5%, 84.2%, and 0.910 at a cut-off level of 0.018. The lactulose/mannitol ratio was evaluated to have the highest diagnostic value to assess intestinal permeability.

  19. Development and in vitro-in vivo evaluation of a water-in-oil microemulsion formulation for the oral delivery of troxerutin.

    PubMed

    Xu, Man; Yu, Qing; Zhao, Qianru; Chen, Wei; Lin, Yuanjie; Jin, Yong

    2016-01-01

    The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability. The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7 mg/kg) in male Wistar rats. The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20 nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution. These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.

  20. [Study on biopharmaceutics classification system for Chinese materia medica of extract of Huanglian].

    PubMed

    Liu, Yang; Yin, Xiu-Wen; Wang, Zi-Yu; Li, Xue-Lian; Pan, Meng; Li, Yan-Ping; Dong, Ling

    2017-11-01

    One of the advantages of biopharmaceutics classification system of Chinese materia medica (CMMBCS) is expanding the classification research level from single ingredient to multi-components of Chinese herb, and from multi-components research to holistic research of the Chinese materia medica. In present paper, the alkaloids of extract of huanglian were chosen as the main research object to explore their change rules in solubility and intestinal permeability of single-component and multi-components, and to determine the biopharmaceutical classification of extract of Huanglian from holistic level. The typical shake-flask method and HPLC were used to detect the solubility of single ingredient of alkaloids from extract of huanglian. The quantitative research of alkaloids in intestinal absorption was measured in single-pass intestinal perfusion experiment while permeability coefficient of extract of huanglian was calculated by self-defined weight coefficient method. Copyright© by the Chinese Pharmaceutical Association.

  1. Physiological barriers to the oral delivery of curcumin.

    PubMed

    Berginc, K; Trontelj, J; Basnet, N Skalko; Kristl, A

    2012-06-01

    Curcumin, a principal component from Curcuma longa, with antioxidant and anti-inflammatory activities was proposed as a potential candidate for the preventation and/or treatment of cancer and chronic diseases. However, curcumin could not achieve its expected therapeutic outcome in clinical trials due to its low solubility and poor bioavailability. The actual intestinal physiological barriers limiting curcumin absorption after oral administration have not been fully investigated. To identify the main barriers curtailing its absorption, in vitro permeability of curcumin and flux of its glucuronide were monitored in rat jejunum and Transwell grown Caco-2 cells. Curcumin was more permeable under acidic conditions, but the permeability was substantially below the permeability of highly permeable standards. Its efflux could not be inhibited by specific Pgp and MRP inhibitors. BCRP was found to participate in curcumin transport, but the Organic Anion Transporting Polypeptide (OATP) did not. The permeability of curcumin significantly increased when the structure of mucus was compromised. The inhibitor of curcumin metabolism, piperin, failed to act as a permeability enhancer. Piperin inhibited Pgp and MRP transporters and decreased the amount of glucuronide transported back into the intestine. Inclusion of piperin in curcumin-containing formulations is highly recommended as to inhibit curcumin glucuronidation and to increase the transport of formed glucuronides into the plasma, therefore increasing the probability of glucuronide distribution into target tissue and inter-convertion to curcumin. It would also be beneficial, if curcumin delivery systems could reversibly compromise the mucous integrity to minimize the non-specific binding of curcumin to its constituents.

  2. Diabetes-induced mechanophysiological changes in the small intestine and colon

    PubMed Central

    Zhao, Mirabella; Liao, Donghua; Zhao, Jingbo

    2017-01-01

    The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients. PMID:28694926

  3. Tight junction gene expression in gastrointestinal tract of dairy calves with coccidiosis and treated with glucagon-like peptide-2

    USDA-ARS?s Scientific Manuscript database

    Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...

  4. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.

    1987-11-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered /sup 51/Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion ofmore » /sup 51/Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease.« less

  5. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets.

    PubMed

    Wang, Hao; Zhang, Chen; Wu, Guoyao; Sun, Yuli; Wang, Bin; He, Beibei; Dai, Zhaolai; Wu, Zhenlong

    2015-01-01

    Dysfunction of tight junction integrity is associated with decreased nutrient absorption and numerous gastrointestinal diseases in humans and piglets. Although l-glutamine has been reported to enhance intestinal-mucosal mass and barrier function under stressful conditions, in vivo data to support a functional role for l-glutamine on intestinal tight junction protein (TJP) expression in weanling mammals are limited. This study tested the hypothesis that glutamine regulates expression of TJPs and stress-related corticotropin-releasing factor (CRF) signaling in the jejunum of weanling piglets. Piglets were reared by sows or weaned at 21 d of age to a corn and soybean meal-based diet that was or was not supplemented with 1% l-glutamine for 7 d. Growth performance, intestinal permeability, TJP abundance, and CRF expression were examined. Weaning caused increases (P < 0.05) in intestinal permeability by 40% and in CRF concentrations by 4.7 times in association with villus atrophy (P < 0.05). Western blot analysis showed reductions (P < 0.05) in jejunal expression of occludin, claudin-1, zonula occludens (ZO) 2, and ZO-3, but no changes in the abundance of claudin-3, claudin-4, or ZO-1 in weanling piglets compared with age-matched suckling controls. Glutamine supplementation improved (P < 0.05) intestinal permeability and villus height, while reducing (P < 0.05) jejunal mRNA and protein levels for CRF and attenuating (P < 0.05) weanling-induced decreases in occludin, claudin-1, ZO-2, and ZO-3 protein abundances. Collectively, our results support an important role for l-glutamine in regulating expression of TJPs and CRF in the jejunum of weanling piglets. © 2015 American Society for Nutrition.

  6. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  7. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels

    PubMed Central

    Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A

    2017-01-01

    BACKGROUND Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. STUDY DESIGN The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). RESULTS Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP over-expression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. CONCLUSIONS Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. PMID:27106638

  8. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels.

    PubMed

    Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A

    2016-06-01

    Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP overexpression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. Copyright © 2016. Published by Elsevier Inc.

  9. Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice.

    PubMed

    Hu, Yongjun; Smith, David E

    2016-05-01

    PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability.

    PubMed

    Kim, Ye-Ryung; Volpert, Giora; Shin, Kyong-Oh; Kim, So-Yeon; Shin, Sun-Hye; Lee, Younghay; Sung, Sun Hee; Lee, Yong-Moon; Ahn, Jung-Hyuck; Pewzner-Jung, Yael; Park, Woo-Jae; Futerman, Anthony H; Park, Joo-Won

    2017-12-01

    Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long-chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very-long acyl chain ceramides with concomitant increase of long chain bases and C16-ceramides, were more susceptible to dextran sodium sulphate-induced colitis, and their survival rate was markedly decreased compared with that of wild-type littermates. Using mixed bone-marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule-A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. In vitro experiments using Caco-2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2-knockdown via CRISPR-Cas9 technology impaired barrier function. In vivo myriocin administration, which normalized long-chain bases and C16-ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC-dextran levels, indicating that altered SLs including deficiency of very-long-chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. In silico and in vitro prediction of gastrointestinal absorption from potential drug eremantholide C.

    PubMed

    Caldeira, Tamires G; Saúde-Guimarães, Dênia A; Dezani, André B; Serra, Cristina Helena Dos Reis; de Souza, Jacqueline

    2017-11-01

    Analysis of the biopharmaceutical properties of eremantholide C, sesquiterpene lactone with proven pharmacological activity and low toxicity, is required to evaluate its potential to become a drug. Preliminary analysis of the physicochemical characteristics of eremantholide C was performed in silico. Equilibrium solubility was evaluated using the shake-flask method, at 37.0 °C, 100 rpm during 72 h in biorelevant media. The permeability was analysed using parallel artificial membrane permeability assay, at 37.0 °C, 50 rpm for 5 h. The donor compartment was composed of an eremantholide C solution in intestinal fluid simulated without enzymes, while the acceptor compartment consisted of phosphate buffer. Physicochemical characteristics predicted in silico indicated that eremantholide C has a low solubility and high permeability. In-vitro data of eremantholide C showed low solubility, with values for the dose/solubility ratio (ml): 9448.82, 10 389.61 e 15 000.00 for buffers acetate (pH 4.5), intestinal fluid simulated without enzymes (pH 6.8) and phosphate (pH 7.4), respectively. Also, it showed high permeability, with effective permeability of 30.4 × 10 -6 cm/s, a higher result compared with propranolol hydrochloride (9.23 × 10 -6 cm/s). The high permeability combined with its solubility, pharmacological activity and low toxicity demonstrate the importance of eremantholide C as a potential drug candidate. © 2017 Royal Pharmaceutical Society.

  12. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability.

    PubMed

    Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik

    2017-05-01

    Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.

  13. The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells.

    PubMed

    Zuhl, Micah; Dokladny, Karol; Mermier, Christine; Schneider, Suzanne; Salgado, Roy; Moseley, Pope

    2015-01-01

    Chronic glutamine supplementation reduces exercise-induced intestinal permeability and inhibits the NF-κB pro-inflammatory pathway in human peripheral blood mononuclear cells. These effects were correlated with activation of HSP70. The purpose of this paper is to test if an acute dose of oral glutamine prior to exercise reduces intestinal permeability along with activation of the heat shock response leading to inhibition of pro-inflammatory markers. Physically active subjects (N = 7) completed baseline and exercise intestinal permeability tests, determined by the percent ratio of urinary lactulose (5 g) to rhamnose (2 g). Exercise included two 60-min treadmill runs at 70 % of VO2max at 30 °C after ingestion of glutamine (Gln) or placebo (Pla). Plasma levels of endotoxin and TNF-α, along with peripheral blood mononuclear cell (PBMC) protein expression of HSP70 and IκBα, were measured pre- and post-exercise and 2 and 4 h post-exercise. Permeability increased in the Pla trial compared to that at rest (0.06 ± 0.01 vs. 0.02 ± 0.018) and did not increase in the Gln trial. Plasma endotoxin was lower at the 4-h time point in the Gln vs. 4 h in the Pla (6.715 ± 0.046 pg/ml vs. 7.952 ± 1.11 pg/ml). TNF-α was lower 4 h post-exercise in the Gln vs. Pla (1.64 ± 0.09 pg/ml vs. 1.87 ± 0.12 pg/ml). PBMC expression of IkBα was higher 4 h post-exercise in the Gln vs. 4 h in the Pla (1.29 ± 0.43 vs. 0.8892 ± 0.040). HSP70 was higher pre-exercise and 2 h post-exercise in the Gln vs. Pla (1.35 ± 0.21 vs. 1.000 ± 0.000 and 1.65 ± 0.21 vs. 1.27 ± 0.40). Acute oral glutamine supplementation prevents an exercise-induced rise in intestinal permeability and suppresses NF-κB activation in peripheral blood mononuclear cells.

  14. In vivo analysis of intestinal permeability following hemorrhagic shock

    PubMed Central

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic shock may allow for systemic absorption of otherwise retained proteolytically-generated peptides, with consequent hemodynamic instability and remote organ failure. PMID:26557479

  15. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  16. Inflammatory parameters in Caco-2 cells: effect of stimuli nature, concentration, combination and cell differentiation.

    PubMed

    Van De Walle, Jacqueline; Hendrickx, Aurélie; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques

    2010-08-01

    Enterocytes regulate gut maintenance and defence by secreting and responding to inflammatory mediators and by modulating the intestinal epithelial permeability. In order to develop an in vitro model of the acute phase of intestinal inflammation, Caco-2 cells were exposed to the inflammatory mediators IL-1beta, TNF-alpha, IFN-gamma and LPS, and the importance of several experimental parameters, i.e. cell differentiation, stimulus nature, concentration and combination on the inflammatory response was assessed by measuring the production of IL-6, IL-8, PGE-2 and NO and by evaluating the monolayer permeability. A maximal increase in IL-8, IL-6 and PGE-2 production and monolayer permeability was observed when using the cytokines simultaneously at their highest level, but this relied mainly on IL-1beta. The effects of TNF-alpha on IL-8 and IL-6 or NO production were stronger upon combination with IL-1beta or IFN-gamma, respectively, whereas cells were unaffected by the presence of LPS. Although NO production, induced by IFN-gamma-containing combinations, was observed only in differentiated cells, general inflammatory response was higher in proliferating cells. The use of a mixture of IL-1beta, TNF-alpha and IFN-gamma thus accurately mimics intestinal inflammatory processes, but cell differentiation and stimuli combination are important parameters to take into account for in vitro studies on intestinal inflammation. Copyright (c) 2010. Published by Elsevier Ltd.

  17. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  18. Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults.

    PubMed

    Yang, Y; Latorre, J D; Khatri, B; Kwon, Y M; Kong, B W; Teague, K D; Graham, L E; Wolfenden, A D; Mahaffey, B D; Baxter, M; Hernandez-Velasco, X; Merino-Guzman, R; Hargis, B M; Tellez, G

    2018-02-01

    The present study evaluated the microbiological properties of three probiotic candidate strains of lactic acid bacteria (LAB) (128; 131; CE11_2), their effect on intestinal epithelial permeability, and their ability to reduce intestinal colonization of Salmonella Typhimurium (ST) individually or as a batch culture in neonatal turkey poults. Isolates were characterized morphologically and identified using 16S rRNA sequence analyses. Each isolate was evaluated for tolerance and resistance to acidic pH, high osmotic NaCl concentrations, and bile salts in broth medium. In vitro assessment of antimicrobial activity against different enteropathogenic bacteria was determined using an overlay technique. In vitro intestinal permeability was evaluated using a stressed Caco-2 cell culture assay treated with/without the probiotic candidates. The in vivo effect of the selected LAB strains on ST cecal colonization was determined in two independent trials with neonatal turkey poults. The results obtained in this study demonstrate the tolerance of LAB candidates to pH 3, a NaCl concentration of 6.5%, and high bile salts (0.6%). All strains evaluated exhibited in vitro antibacterial activity against Salmonella Enteritidis, ST, and Campylobacter jejuni. Candidates 128 and 131 exhibited a coccus morphology and were identified as Enterococcus faecium, and bacterial strain CE11_2 exhibited clusters of cocci-shaped cells and was identified as Pediococcus parvulus. All three candidate probiotics significantly (P < 0.05) increased transepithelial electrical resistance (TEER) in Caco-2 cells following a 3-h incubation period with hydrogen peroxide compared to control and blank groups. The combination of all three candidates as a batch culture exhibited significant efficacy in controlling intestinal colonization of ST in neonatal turkey poults. Evaluation of the combination of these selected LAB strains according to performance and intestinal health parameters of chickens and turkeys are currently in process. © 2017 Poultry Science Association Inc.

  19. Evaluation of the membrane permeability (PAMPA and skin) of benzimidazoles with potential cannabinoid activity and their relation with the Biopharmaceutics Classification System (BCS).

    PubMed

    Alvarez-Figueroa, M Javiera; Pessoa-Mahana, C David; Palavecino-González, M Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E

    2011-06-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P(oct) value <3.0. In contrast, transdermal permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).

  20. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol) and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    PubMed

    Sequeira, Ivana R; Lentle, Roger G; Kruger, Marlena C; Hurst, Roger D

    2015-01-01

    Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time. Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms. The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity. Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally precluded the identification of all but gross variation between treatments. The lack of any differences between treatments in either total small or large intestinal transit times indicates that the solutions administered in the lactulose mannitol test of permeability had no consistent influence on the temporal pattern of absorption. The negatively exponential profile and lack of any peaks in the frequency spectra of cyclic variation in gastric intraluminal pressure that were consistent with reported physiological frequencies of contractile activity profile suggests that the principal source of this variation is stochastic likely resulting from the effects of external events occasioned by normal daily activities on intra-abdominal pressure. Australian New Zealand Clinical Trials Registry ACTRN12615000596505.

  1. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).

    PubMed

    Petit, Charlotte; Bujard, Alban; Skalicka-Woźniak, Krystyna; Cretton, Sylvian; Houriet, Joëlle; Christen, Philippe; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2016-03-01

    At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products. Since natural products are usually ingested for medicinal use as components of complex extracts in traditional herbal preparations or as phytopharmaceuticals, the applicability of such an assay to study the constituents directly in medicinal crude plant extracts was further investigated. Three representative crude plant extracts with different natural product compositions were chosen for this study. The first extract was composed of furanocoumarins (Angelica archangelica), the second extract included alkaloids (Waltheria indica), and the third extract contained flavonoid glycosides (Pueraria montana var. lobata). For each medicinal plant, the effective passive permeability values Pe (cm/s) of the main natural products of interest were rapidly calculated thanks to a generic ultrahigh-pressure liquid chromatography-UV detection method and because Pe calculations do not require knowing precisely the concentration of each natural product within the extracts. The original parallel artificial membrane permeability assay through a hexadecane membrane was found to keep its predictive power when applied to constituents directly in crude plant extracts provided that higher quantities of the extract were initially loaded in the assay in order to ensure suitable detection of the individual constituents of the extracts. Such an approach is thus valuable for the high-throughput, cost-effective, and early evaluation of passive intestinal absorption of active principles in medicinal plants. In phytochemical studies, obtaining effective passive permeability values of pharmacologically active natural products is important to predict if natural products showing interesting activities in vitro may have a chance to reach their target in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  2. Helminths as an alternative therapy for intestinal diseases.

    PubMed

    Sipahi, Aytan Miranda; Baptista, Daniel Machado

    2017-09-07

    Animal models and clinical studies have shown that helminth infections exert immunomodulatory activity, altering intestinal permeability and providing a potential beneficial action on autoimmune and inflammatory disorders in human beings, such as inflammatory bowel disease (IBD) and celiac disease. This is consistent with the theory that intestinal microbiota is responsible for shaping human immunological responses. With the arrival of the immunobiologic era and the use of antibodies, we propose a distinctive pathway for treating patients with IBD and celiac disease. We have some evidence about the safety and tolerability of helminth use, but evidence about their impact on disease activity is lacking. Using worms to treat diseases could be a possible way to lower treatment costs, since the era of immunobiologic agents is responsible for a significant rise in expenses. Some questions remain to be investigated regarding the use of helminths in intestinal disease, such as the importance of the specific species of helminths used, appropriate dosing regimens, optimal timing of treatment, the role of host genetics, diet, environment, and the elucidation of the exact mechanisms of action. One promising approach is the use of helminth-derived anti-inflammatory molecules as drugs. Yet there are still many challenges with this method, especially with regard to safety. Studies on intestinal permeability point to Strongyloides stercoralis as a useful nematode for these purposes.

  3. Urinary excretion of polyethylene glycol 3350 during colonoscopy preparation.

    PubMed

    Rothfuss, K S; Bode, J C; Stange, E F; Parlesak, A

    2006-02-01

    Whole gut lavage with a polyethylene glycol electrolyte solution (PEG) is a common bowel cleansing method for diagnostic and therapeutic colon interventions. Absorption of orally administered PEG from the gastrointestinal tract in healthy human beings is generally considered to be poor. In patients with inflammatory bowel disease (IBD), intestinal permeability and PEG absorption were previously reported to be higher than in normal subjects. In the current study, we investigated the absorption of PEG 3350 in patients undergoing routine gut lavage. Urine specimens were collected for 8 hours in 24 patients undergoing bowel cleansing with PEG 3350 for colonoscopy. The urinary excretion of PEG 3350, measured by size exclusion chromatography, ranged between 0.01 and 0.51 % of the ingested amount, corresponding to 5.8 and 896 mg in absolute amounts, respectively. Mean PEG excretion in patients with impaired mucosa such as inflammation or ulceration of the intestine (0.24 % +/- 0.19, n = 11) was not significantly higher (p = 0.173) compared to that in subjects with macroscopically normal intestinal mucosa (0.13 % +/- 0.13, n = 13). The results indicate that intestinal absorption of PEG 3350 is higher than previously assumed and underlies a strong inter-individual variation. Inflammatory changes of the intestine do not necessarily lead to a significantly higher permeability of PEG.

  4. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    USDA-ARS?s Scientific Manuscript database

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  5. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy

    PubMed Central

    2013-01-01

    Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414

  6. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2010-08-02

    Antiviral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability antiviral agents zanamivir heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-naphthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K(11(aq))) of 388 M(-1) for ZHE-HNAP and 2.91 M(-1) for GO-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (P(app)) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial P(app) (0.8-3.0 x 10(-6) cm/s) was observed in the presence of 6-24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 P(app) versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (P(eff)) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 x 10(-5) cm/s with 10 mM HNAP, matching the P(eff) of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K(11(aq)) versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this work presents a novel approach to enable the oral delivery of highly polar antiviral drugs, and provides new insights into the underlying mechanisms governing the success or failure of the ion-pairing strategy to increase oral absorption.

  7. Pregnane X receptor agonists enhance intestinal epithelial wound healing and repair of the intestinal barrier following the induction of experimental colitis.

    PubMed

    Terc, Joshua; Hansen, Ashleigh; Alston, Laurie; Hirota, Simon A

    2014-05-13

    The intestinal epithelial barrier plays a key role in the maintenance of homeostasis within the gastrointestinal tract. Barrier dysfunction leading to increased epithelial permeability is associated with a number of gastrointestinal disorders including the inflammatory bowel diseases (IBD) - Crohn's disease and ulcerative colitis. It is thought that the increased permeability in patients with IBD may be driven by alterations in the epithelial wound healing response. To this end considerable study has been undertaken to identify signaling pathways that may accelerate intestinal epithelial wound healing and normalize the barrier dysfunction observed in IBD. In the current study we examined the role of the pregnane X receptor (PXR) in modulating the intestinal epithelial wound healing response. Mutations and reduced mucosal expression of the PXR are associated with IBD, and others have reported that PXR agonists can dampen intestinal inflammation. Furthermore, stimulation of the PXR has been associated with increased cell migration and proliferation, two of the key processes involved in wound healing. We hypothesized that PXR agonists would enhance intestinal epithelial repair. Stimulation of Caco-2 intestinal epithelial cells with rifaximin, rifampicin and SR12813, all potent agonists of the PXR, significantly increased wound closure. This effect was driven by p38 MAP kinase-dependent cell migration, and occurred in the absence of cell proliferation. Treating mice with a rodent specific PXR agonist, pregnenolone 16α-carbonitrile (PCN), attenuated the intestinal barrier dysfunction observed in the dextran sulphate sodium (DSS) model of experimental colitis, an effect that occurred independent of the known anti-inflammatory effects of PCN. Taken together our data indicate that the activation of the PXR can enhance intestinal epithelial repair and suggest that targeting the PXR may help to normalize intestinal barrier dysfunction observed in patients with IBD. Furthermore, our data provide additional insight into the potential mechanisms through which rifaximin elicits its clinical efficacy in the treatment of IBD. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of chronic hypo and hypervitaminosis C on the brush border enzymes and the intestinal uptake of glucose and alanine.

    PubMed

    Mahmood, A; Chauhan, V P; Lyall, V; Sarkar, A K

    1979-08-15

    Brush border sucrase and alkaline phosphatase activities are considerably enhanced in the intestine of ascorbic acid deficient guinea-pigs. Similar increase in the uptake of D-glucose and L-alanine also occurs in chronic vitamin C deficiency. However the permeability of D-glucose and L-alanine in the intestine of animals fed with large doses of vitamin C is severely depressed, with a reduction in the levels of sucrase and alkaline phosphatase activities.

  9. The obestatin/ghrelin ratio and ghrelin genetics in adult celiac patients before and after a gluten-free diet, in irritable bowel syndrome patients and healthy individuals.

    PubMed

    Russo, Francesco; Chimienti, Guglielmina; Linsalata, Michele; Clemente, Caterina; Orlando, Antonella; Riezzo, Giuseppe

    2017-02-01

    Ghrelin levels and obestatin/ghrelin ratio have been proposed as activity markers in ulcerative colitis, but no data are available in celiac disease (CD) and irritable bowel syndrome (IBS). Our aims were as follows: (a) to assess obestatin and ghrelin concentrations in adult active CD patients, diarrhea-predominant IBS (IBS-d), and healthy controls (HC) in relation to intestinal permeability; (b) to evaluate the ghrelin-obestatin profile in CD patients after a 1-year gluten-free diet (GFD); and (c) to establish the impact of ghrelin genetics. The study included 31 CD patients, 28 IBS-d patients, and 19 HC. Intestinal permeability, assayed by high-performance liquid chromatography determination of urinary lactulose (La)/mannitol (Ma), and circulating concentrations of obestatin, ghrelin, and their ratio were evaluated at enrollment and after GFD. The ghrelin single nucleotide polymorphisms Arg51Gln (rs34911341), Leu72Met (rs696217), and Gln90Leu (rs4684677) were analyzed. Intestinal permeability was impaired in CD patients and ameliorated after GFD. Ghrelin was significantly (P=0.048) higher and the obestatin/ghrelin ratio was significantly (P=0.034) lower in CD patients compared with both IBS-d and HC, and GFD reduced the peptide levels, but without reaching the concentrations in HC. Significant differences (P<0.05) were found in the Leu72Met polymorphism among groups, with the reduction of the GT genotype and the T allele in both CD and IBS-d patients compared with HC. Intestinal permeability is altered in CD, but not in IBS-d patients, and ghrelin levels increase in CD patients as observed in other inflammatory conditions. Moreover, a role for ghrelin genetics is hypothesized in sustaining the many pathogenetic components of these different pathologies, but with a similar symptom profile.

  10. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class

    PubMed Central

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa. PMID:26691591

  11. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    PubMed

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.

  12. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?

    PubMed Central

    Brandl, Katharina

    2016-01-01

    Changes in the intestinal microbiota composition contribute to the pathogenesis of many disorders including gastrointestinal and liver diseases. Recent studies have broadened our understanding of the “gut-liver” axis. Dietary changes, other environmental and genetic factors can lead to alterations in the microbiota. Dysbiosis can further disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In this article, the authors dissect the different steps involved in disease pathogenesis to further refine approaches for the medical management of liver diseases. The authors will specifically discuss the role of dysbiosis in inducing intestinal inflammation and increasing intestinal permeability. PMID:26088524

  13. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats

    PubMed Central

    Bradaric, Brinda D.; Dodiya, Hemraj B.; Ohene-Nyako, Michael; Forsyth, Christopher B.; Keshavarzian, Ali; Shaikh, Maliha; Napier, T. Celeste

    2018-01-01

    The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults. PMID:29293553

  14. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

    PubMed

    Persons, Amanda L; Bradaric, Brinda D; Dodiya, Hemraj B; Ohene-Nyako, Michael; Forsyth, Christopher B; Keshavarzian, Ali; Shaikh, Maliha; Napier, T Celeste

    2018-01-01

    The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.

  15. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking

    PubMed Central

    Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Kaminsky, Thomas; Van Den Berg, Jolice; Murphy, Terrence; Raeisi, Shohreh; Fogg, Louis; Vitaterna, Martha Hotz; Forsyth, Christopher; Turek, Fred; Burgess, Helen J.; Keshavarzian, Ali

    2016-01-01

    Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20–30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption. PMID:27198191

  16. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens.

    PubMed

    Prado-Rebolledo, Omar F; Delgado-Machuca, Jaime de Jesus; Macedo-Barragan, Rafael J; Garcia-Márquez, Luis J; Morales-Barrera, Jesus E; Latorre, Juan D; Hernandez-Velasco, Xochitl; Tellez, Guillermo

    2017-02-01

    Two experiments were conducted to evaluate the effect of a lactic acid bacteria-based probiotic (FloraMax-B11 ® ) against Salmonella enterica serovar Enteritidis intestinal colonization and intestinal permeability in broiler chickens. Experiment 1 consisted of two independent trials. In each trial, day-old broiler chicks were assigned to one of two groups: control + S. Enteritidis or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, haematology and caecal content were evaluated for S. Enteritidis colonization. In Experiment 2, day-old broiler chicks were assigned to one of four groups: negative control; probiotic; control + S. Enteritidis; or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, chickens in all groups were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). In both trials of Experiment 1, a significant reduction (P < 0.05) in colony-forming units/gram of S. Enteritidis in caecal content and a reduction in the incidence of S. Enteritidis enriched caecal samples were observed in probiotic + S. Enteritidis chickens. In addition, significant heterophilia and lymphopaenia were observed in control + S. Enteritidis chickens. In Experiment 2, a decrease in numbers of S. Enteritidis in caeca were observed in probiotic + S. Enteritidis chickens when compared to control + S. Enteritidis. Also, an increase in serum FITC-d concentration was detected in control + S. Enteritidis. These results suggest that early infection with S. Enteritidis can increase intestinal permeability, but the adverse effects can be prevented by the administration of the probiotic tested.

  17. Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition.

    PubMed

    Garas, Lydia C; Feltrin, Cristiano; Hamilton, M Kristina; Hagey, Jill V; Murray, James D; Bertolini, Luciana R; Bertolini, Marcelo; Raybould, Helen E; Maga, Elizabeth A

    2016-02-01

    Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of five worldwide. However, the underlying mechanisms are not well understood necessitating an appropriate animal model to answer fundamental questions and conduct translational research into optimal interventions. One potential intervention is milk from livestock that more closely mimics human milk by increased levels of bioactive components that can promote a healthy intestinal epithelium. We tested the ability of cow milk and milk from transgenic cows expressing human lactoferrin at levels found in human milk (hLF milk) to mitigate the effects of malnutrition at the level of the intestine in a pig model of malnutrition. Weaned pigs (3 weeks old) were fed a protein and calorie restricted diet for five weeks, receiving cow, hLF or no milk supplementation daily from weeks 3-5. After three weeks, the restricted diet induced changes in growth, blood chemistry and intestinal structure including villous atrophy, increased ex vivo permeability and decreased expression of tight junction proteins. Addition of both cow and hLF milk to the diet increased growth rate and calcium and glucose levels while promoting growth of the intestinal epithelium. In the jejunum hLF milk restored intestinal morphology, reduced permeability and increased expression of anti-inflammatory IL-10. Overall, this pig model of malnutrition mimics salient aspects of the human condition and demonstrates that cow milk can stimulate the repair of damage to the intestinal epithelium caused by protein and calorie restriction with hLF milk improving this recovery to a greater extent.

  18. Macrocyclic Prodrugs of a Selective Nonpeptidic Direct Thrombin Inhibitor Display High Permeability, Efficient Bioconversion but Low Bioavailability.

    PubMed

    Andersson, Vincent; Bergström, Fredrik; Brånalt, Jonas; Grönberg, Gunnar; Gustafsson, David; Karlsson, Staffan; Polla, Magnus; Bergman, Joakim; Kihlberg, Jan

    2016-07-28

    The only oral direct thrombin inhibitors that have reached the market, ximelagatran and dabigatran etexilat, are double prodrugs with low bioavailability in humans. We have evaluated an alternative strategy: the preparation of a nonpeptidic, polar direct thrombin inhibitor as a single, macrocyclic esterase-cleavable (acyloxy)alkoxy prodrug. Two homologous prodrugs were synthesized and displayed high solubilities and Caco-2 cell permeabilities, suggesting high absorption from the intestine. In addition, they were rapidly and completely converted to the active zwitterionic thrombin inhibitor in human hepatocytes. Unexpectedly, the most promising prodrug displayed only moderately higher oral bioavailability in rat than the polar direct thrombin inhibitor, most likely due to rapid metabolism in the intestine or the intestinal wall. To the best of our knowledge, this is the first in vivo ADME study of macrocyclic (acyloxy)alkoxy prodrugs, and it remains to be established if the modest increase in bioavailability is a general feature of this category of prodrugs or not.

  19. Helminths and intestinal barrier function

    PubMed Central

    McKay, Derek M.; Shute, Adam; Lopes, Fernando

    2017-01-01

    ABSTRACT Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease. PMID:28452686

  20. The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.

    PubMed

    Vetrano, Stefania; Danese, Silvio

    2009-05-01

    Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.

  1. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation ofmore » [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.« less

  2. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    PubMed

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  3. Dead bacteria reverse antibiotic-induced host defense impairment in burns.

    PubMed

    Chen, Lee-Wei; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei

    2014-10-01

    Burn patients can incur high rates of hospital-acquired infections. The mechanism of antibiotic exposure on inducing infection vulnerability has not been determined. This study aimed to examine the effects of antibiotic treatment on host defense mechanisms. First we treated C57/BL6 mice with combined antibiotic treatment after 30% to 35% total body surface area burn. Animals were sacrificed at 48 hours after sham or thermal injury treatment. Bacterial counts in intestinal lumen and mucosa were measured. Next, we treated animals with or without oral dead Escherichia coli or Staphylococcus aureus supplementation to stimulate Toll-like receptor in the intestinal mucosa. Toll-like receptor 4, antibacterial protein expression, nuclear factor (NF)-κB DNA-binding activity, and bacteria-killing activity in the intestinal mucosa; intestinal permeability; bacterial translocation to mesenteric lymph nodes; Klebsiella pneumoniae translocation; interleukin-6 in the blood; and phagocytic activity of alveolar macrophages, were assessed. Thermal injury increased microflora and NF-κB DNA-binding activity of the intestine. Systemic antibiotic treatment decreased gut microflora and increased bacterial translocation to mesenteric lymph nodes, intestinal permeability, and interleukin-6 levels in the blood. Antibiotic treatment also decreased bacteria-killing activity in intestinal mucosa and phagocytic activity of alveolar macrophages. Oral dead E coli and S aureus supplementation induced NF-κB DNA-binding activity, Toll-like receptor 4, and antibacterial protein expression of the intestinal mucosa. Taken together with the fact that dead bacteria reversed antibiotic-induced K pneumoniae translocation and intestinal and pulmonary defense impairment, we conclude that combined antibiotic treatment results in systemic host defense impairment in burns through the decrease in intestinal flora. We suggest that dead bacteria supplementation could induce nondefensin protein expression and reverse antibiotic-induced gut and lung defense impairment in burn patients. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Effect of Wild-Type Shigella Species and Attenuated Shigella Vaccine Candidates on Small Intestinal Barrier Function, Antigen Trafficking, and Cytokine Release

    PubMed Central

    Fiorentino, Maria; Levine, Myron M.

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363

  5. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    PubMed

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results indicate that EPA pretreatment is more effective than DHA pretreatment in attenuating heat-induced intestinal dysfunction and preventing TJ damage. Enhanced expression of TJ proteins that support the epithelial barrier integrity may be important for maintaining a functional intestinal barrier during heatstroke.

  6. FECAL MICROBIOTA TRANSPLANT RESTORES MUCOSAL INTEGRITY IN A MURINE MODEL OF BURN INJURY

    PubMed Central

    Kuethe, Joshua W.; Armocida, Stephanie M.; Midura, Emily F.; Rice, Teresa C.; Hildeman, David A.; Healy, Daniel P.; Caldwell, Charles C.

    2016-01-01

    The gut microbiome is a community of commensal organisms that are known to play a role in nutrient production as well as gut homeostasis. The composition of the gut flora can be affected by many factors; however, the impact of burn injury on the microbiome is not fully known. Here, we hypothesized that burn-induced changes to the microbiome would impact overall colon health. After scald-burn injury, cecal samples were analyzed for aerobic and anaerobic colony forming units, bacterial community, and butyrate levels. In addition, colon and total intestinal permeabilities were determined. These parameters were further determined in a germ-reduced murine model. Following both burn injury and germ reduction, we observed decreases in aerobic and anaerobic bacteria, increased colon permeability and no change to small intestinal permeability. After burn injury, we further observed a significant decrease in the butyrate producing bacteria R. Gnavus, C. Eutactus, and Roseburia species as well as decreases in colonic butyrate. Finally, in mice that underwent burn followed by fecal microbiota transplant, bacteria levels and mucosal integrity were restored. Altogether our data demonstrate that burn injury can alter the microbiome leading to decreased butyrate levels and increased colon permeability. Of interest, fecal microbiota transplant treatment was able to ameliorate the burn-induced changes in colon permeability. Thus, fecal transplantation may represent a novel therapy in restoring colon health after burn injury. PMID:26682948

  7. Permeability of rhynchophylline across human intestinal cell in vitro

    PubMed Central

    Ma, Bo; Wang, Jing; Sun, Jing; Li, Ming; Xu, Huibo; Sun, Guibo; Sun, Xiaobo

    2014-01-01

    Rhynchophylline (Rhy) is the major component of Uncaria species, which is used in Chinese traditional medicine for the treatment of central nervous system disorders. However, its oral bioavailability has not been known. This study aims to investigate the intestinal permeability and related mechanisms of Rhy using cultured human epithelial Caco-2 cells. The cytotoxicity of Rhy on Caco-2 cells was evaluated with MTT assay. The effect of Rhy on the integrity of Caco-2 cell monolayer was assayed with transepithelial electrical resistance. The permeability of Rhy across cell monolayer was assayed by measuring Rhy quantity in received side with HPLC. The effect of Rhy on the expression of P-glycoprotein and MDR1 was detected with Western blot and flow cytometry, respectively. In the concentration of Rhy, which did not produce toxicity on cell viability and integrity of Caco-2 cell monolayer, Rhy crossed the monolayer with velocity 2.76~5.57×10^-6 cm/sec and 10.68~15.66×10^-6 cm/sec from apical to basolateral side and from basolateral to apical side, respectively. The permeability of Rhy was increased by verapamil, a P-glycoprotein inhibitor, or rhodamine123, a P-glycoprotein substrate. Rhy revealed an induction effect on P-glycoprotein expression in Caco-2 cells. These results demonstrate the low permeability of Rhy in intro, and suggest that P-glycoprotein may underlie the mechanism. PMID:24966905

  8. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    PubMed

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  10. Significance of Peptide Transporter 1 in the Intestinal Permeability of Valacyclovir in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei

    2013-01-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (Peff) of 100 μM [3H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (Km = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir Peff was 2.4 × 10−4 cm/s in duodenum, 1.7 × 10−4 cm/s in jejunum, 2.1 × 10−4 cm/s in ileum, and 0.27 × 10−4 cm/s in colon. In Pept1 knockout mice, Peff values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir Peff was similar in the colon of both genotypes. There were no differences in valacyclovir Peff between any of the intestinal segments of PepT1 knockout mice. Valacyclovir Peff was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  11. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial

    PubMed Central

    Wilms, E.; Gerritsen, J.; Smidt, H.; Besseling-van der Vaart, I.; Rijkers, G. T.; Garcia Fuentes, A. R.; Masclee, A. A. M.; Troost, F. J.

    2016-01-01

    Background and Aims Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern. Design Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study. Intervention Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6) per day) or control supplements for two weeks. Outcomes Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention. Results Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025). Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005) and in the synbiotic group (P = 0.017). Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039) and higher compared to control intervention (P = 0.045). Conclusion Two weeks Ecologic® 825/FOS P6 supplementation increased stool frequency, but did not affect intestinal permeability neither under basal nor under indomethacin-induced stressed conditions, immune function or gastrointestinal symptoms in healthy adults. PMID:27936169

  12. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial.

    PubMed

    Wilms, E; Gerritsen, J; Smidt, H; Besseling-van der Vaart, I; Rijkers, G T; Garcia Fuentes, A R; Masclee, A A M; Troost, F J

    2016-01-01

    Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern. Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study. Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6) per day) or control supplements for two weeks. Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention. Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025). Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005) and in the synbiotic group (P = 0.017). Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039) and higher compared to control intervention (P = 0.045). Two weeks Ecologic® 825/FOS P6 supplementation increased stool frequency, but did not affect intestinal permeability neither under basal nor under indomethacin-induced stressed conditions, immune function or gastrointestinal symptoms in healthy adults.

  13. The Impact of Mild Heat Stress During Prolonged Running On Gastrointestinal Integrity, Gastrointestinal Symptoms, Systemic Endotoxin and Cytokine Profiles.

    PubMed

    Snipe, Rhiannon M J; Khoo, Anthony; Kitic, Cecilia M; Gibson, Peter R; Costa, Ricardo J S

    2018-02-07

    The study aimed to determine the effects of mild exertional heat stress on intestinal injury, permeability, gastrointestinal symptoms, and systemic endotoxin and cytokine responses. Ten endurance runners completed 2 h of running at 60% V̇O 2max in warm (WARM: 30°C) and temperate (TEMP: 22°C) ambient conditions. Rectal temperature (T re ) and gastrointestinal symptoms were recorded every 10 min during exercise. Blood samples were collected pre- and post-exercise, and during recovery to determine plasma intestinal fatty acid-binding protein (I-FABP) and cortisol concentrations, and systemic endotoxin and inflammatory cytokine profiles. Urinary lactulose:L-rhamnose ratio (L/R) was used to measure small intestine permeability. Compared with TEMP, WARM significantly increased T re from 50 min onwards (38.1±0.3°C vs. 38.4±0.5°C, respectively; p<0.01), gastrointestinal symptoms (p=0.017), post-exercise plasma cortisol (26% vs. 59%, respectively; p<0.001) and I-FABP (127% vs. 184%, respectively; p<0.001) concentrations. Circulatory anti-endotoxin antibodies increased post-exercise (p<0.001) on WARM (20%) and TEMP (28%). No differences were observed for plasma endotoxin concentration (6% vs. 5% increase, respectively) or small intestine permeability (L/R 0.026±0.010 and 0.025±0.015, respectively). Both pro- and anti-inflammatory cytokines increased post-exercise, with inflammatory response cytokines TNF-α (p=0.015) and IL-8 (p=0.044), and compensatory anti-inflammatory cytokines IL-10 (p=0.065), and IL-1ra higher on WARM than TEMP. Findings suggest that exposure to warm ambient conditions during prolonged submaximal running induces transient intestinal epithelial injury, increases gastrointestinal symptoms, and promotes greater perturbations to the systemic cytokine profile compared to running in temperate conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Standardising the Lactulose Mannitol Test of Gut Permeability to Minimise Error and Promote Comparability

    PubMed Central

    Sequeira, Ivana R.; Lentle, Roger G.; Kruger, Marlena C.; Hurst, Roger D.

    2014-01-01

    Background Lactulose mannitol ratio tests are clinically useful for assessing disorders characterised by changes in gut permeability and for assessing mixing in the intestinal lumen. Variations between currently used test protocols preclude meaningful comparisons between studies. We determined the optimal sampling period and related this to intestinal residence. Methods Half-hourly lactulose and mannitol urinary excretions were determined over 6 hours in 40 healthy female volunteers after administration of either 600 mg aspirin or placebo, in randomised order at weekly intervals. Gastric and small intestinal transit times were assessed by the SmartPill in 6 subjects from the same population. Half-hourly percentage recoveries of lactulose and mannitol were grouped on a basis of compartment transit time. The rate of increase or decrease of each sugar within each group was explored by simple linear regression to assess the optimal period of sampling. Key Results The between subject standard errors for each half-hourly lactulose and mannitol excretion were lowest, the correlation of the quantity of each sugar excreted with time was optimal and the difference between the two sugars in this temporal relationship maximal during the period from 2½-4 h after ingestion. Half-hourly lactulose excretions were generally increased after dosage with aspirin whilst those of mannitol were unchanged as was the temporal pattern and period of lowest between subject standard error for both sugars. Conclusion The results indicate that between subject variation in the percentage excretion of the two sugars would be minimised and the differences in the temporal patterns of excretion would be maximised if the period of collection of urine used in clinical tests of small intestinal permeability were restricted to 2½-4 h post dosage. This period corresponds to a period when the column of digesta column containing the probes is passing from the small to the large intestine. PMID:24901524

  15. [NEWS IN ETIOLOGY AND PATHOGENESIS OF IRRITATED BOWEL SYNDROME].

    PubMed

    Sheptulin, A A; Vize-Khripunova, M A

    2016-01-01

    The concept of irritated bowel syndrome as a complex of functional disorders that can not be explained by organic changes and are totally due to intestinal motility and visceral sensitivity needs revision. The development of this syndrome also depends on a number of pathogenetic and etiological factors, such as inflammation of intestinal mucosa, changes of its permeability, previous infection, altered microflora, gene polymorphism, and food hypersensitivity.

  16. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 h feed restriction model to induce intestinal permeability in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Humic acids (HA) are produced by biodegradation of organic matter that involves physical, chemical and microbiological processes, hence, HA are a complex mixture of many different acids containing carboxyl and phenolate groups. The purpose of this study was to evaluate the effect of HA on intestina...

  17. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    PubMed

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  18. [Intestinal lymphangiectasis secondary to cicatricial fibrosis of mesenteric nodes: a nosologic entity?].

    PubMed

    Molas, G; Ponsot, P; Amouyal, P; Vallin, J; Vitaux, J; Paolaggi, J A; Potet, F

    1990-01-01

    Exsudative enteropathy was suspected in a 27-year-old man with lower limb edema, hypoprotidemia and hypoalbuminemia. Gastrointestinal mucosa, kidney, liver, and heart were normal. Laparoscopy showed diffuse small intestine lymphangiectasia. This diagnosis was confirmed by the microscopic examination of several biopsies obtained at laparotomy. Pathological examination of peritoneal, lymph nodes, and liver biopsies showed fibrous thickening of the peritoneum and fibrosis of the lymph nodes. Our patient has been followed for 16 years. Substantial improvement of clinical symptoms was obtained by following a special salt-free diet containing short-chain triglycerides. However biochemical abnormalities have persisted. Exsudative enteropathy due to intestinal lymphangiectasia may be observed in heart and liver diseases as well as in malignant affections of mesenteric lymph nodes. If these conditions are excluded, intestinal lymphangiectasia may be considered as a primitive lymph vessel malformation. The discovery of primitive intestinal lymphangiectasia in an adult cannot be attributed to congenital abnormalities alone. Fibrosis encountered in some cases suggests that an inflammatory process of unknown origin may trigger the onset of intestinal lymphangiectasia.

  19. Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin.

    PubMed

    Araújo, Raquel Silva; Silveira, Ana Letícia Malheiros; de Sales E Souza, Éricka Lorenna; Freire, Rachel Horta; de Souza, Cristina Maria; Reis, Diego Carlos; Costa, Bruno Rocha Cordeiro; Sugimoto, Michelle Amantéa; Silveira, Josianne Nicácio; Dos Santos Martins, Flaviano; Cassali, Geovanni Dantas; Leite, Jacqueline Isaura Alvarez; Sousa, Lirlândia Pires; Ferreira, Adaliene Versiani Matos; Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2017-08-30

    Cisplatin (CDDP) is a chemotherapeutic agent widely used in several anticancer protocols for instance head and neck, testicle, ovarian, lung and peritoneal carcinomatosis. According to the literature, the use of CDDP is associated with several side effects; among them, we highlighted the mucositis. CDDP, when administered by IP, promoted significant intestinal epithelium alterations in an experimental model. Our research group has proposed that the incorporation of CDDP into long-circulating and pH-sensitive liposomes (SpHL-CDDP) could help to overcome some side effects induced by this drug. Thus, we evaluated signs of intestinal toxicity 24h and 72h after the administration of a single i.p dose of free CDDP or SpHL-CDDP to healthy Swiss mice. Twenty-four hours after administration of free CDDP, the mice showed signs of intestinal toxicity, principally weight loss, increased intestinal permeability associated with a decrease in expression of tight junctions, and histological damage with the presence of inflammatory infiltrates and activation of ERK1/2 and NF-κB. These changes persisted after 72h. While signs of intestinal toxicity were also observed 24h after administration of SpHL-CDDP, after 72h body weight and intestinal permeability of mice in this group were similar to those of mice in the control group. In comparison with the free CDDP treatment group, 72h after treatment mice in the SpHL-CDDP group showed better histological parameters, lower levels of inflammatory infiltrate with increased IL-10 and IgA levels, and less activation of caspase-3, ERK1/2 and NF-κB. These differences could account for the recovery of the intestinal epithelium observed in mice treated with SpHL-CDDP but not in mice treated with free CDDP. In conclusion, here we show that encapsulation of CDDP in SpHL lessens intestinal damage and that, as such, SpHL-CDDP is a promising candidate for clinical use. Copyright © 2017. Published by Elsevier B.V.

  20. Inhalation of methane preserves the epithelial barrier during ischemia and reperfusion in the rat small intestine.

    PubMed

    Mészáros, András T; Büki, Tamás; Fazekas, Borbála; Tuboly, Eszter; Horváth, Kitti; Poles, Marietta Z; Szűcs, Szilárd; Varga, Gabriella; Kaszaki, József; Boros, Mihály

    2017-06-01

    Methane is part of the gaseous environment of the intestinal lumen. The purpose of this study was to elucidate the bioactivity of exogenous methane on the intestinal barrier function in an antigen-independent model of acute inflammation. Anesthetized rats underwent sham operation or 45-min occlusion of the superior mesenteric artery. A normoxic methane (2.2%)-air mixture was inhaled for 15 min at the end of ischemia and at the beginning of a 60-min or 180-min reperfusion. The integrity of the epithelial barrier of the ileum was assessed by determining the lumen-to-blood clearance of fluorescent dextran, while microvascular permeability changes were detected by the Evans blue technique. Tissue levels of superoxide, nitrotyrosine, myeloperoxidase, and endothelin-1 were measured, the superficial mucosal damage was visualized and quantified, and the serosal microcirculation and mesenteric flow was recorded. Erythrocyte deformability and aggregation were tested in vitro. Reperfusion significantly increased epithelial permeability, worsened macro- and microcirculation, increased the production of proinflammatory mediators, and resulted in a rapid loss of the epithelium. Exogenous normoxic methane inhalation maintained the superficial mucosal structure, decreased epithelial permeability, and improved local microcirculation, with a decrease in reactive oxygen and nitrogen species generation. Both the deformability and aggregation of erythrocytes improved with incubation of methane. Normoxic methane decreases the signs of oxidative and nitrosative stress, improves tissue microcirculation, and thus appears to modulate the ischemia-reperfusion-induced epithelial permeability changes. These findings suggest that the administration of exogenous methane may be a useful strategy for maintaining the integrity of the mucosa sustaining an oxido-reductive attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking.

    PubMed

    Swanson, Garth R; Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Kaminsky, Thomas; Van Den Berg, Jolice; Murphy, Terrence; Raeisi, Shohreh; Fogg, Louis; Vitaterna, Martha Hotz; Forsyth, Christopher; Turek, Fred; Burgess, Helen J; Keshavarzian, Ali

    2016-07-01

    Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20-30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption. Copyright © 2016 the American Physiological Society.

  2. Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality During Polymicrobial Sepsis 1

    PubMed Central

    Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.

    2011-01-01

    Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897

  3. The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense.

    PubMed

    Luo, Beibei; Xiang, Dao; Nieman, David C; Chen, Peijie

    2014-07-01

    The purpose of this study was to examine the effect of moderate exercise on repeated restraint stress (RRS)-induced intestinal barrier dysfunction and explore possible mechanisms in a mouse model. Male Balb/c mice (6weeks) were randomized into 7 groups: CON functioned as controls with no intervention; RRS was subjected to 6h per day RRS for 7 consecutive days; RRS+SWIM received 30min per day of swimming prior to RRS; CON+SWIM only received 30min per day of swimming; and the other groups received one session of 30min swimming prior to sacrifice at 1-, 3- and 6h recovery. Intestinal permeability was quantified with FITC-dextran. Bacterial translocation was determined by quantification of bacterial colony forming units (CFUs) in cultured mesenteric lymph nodes (MLN), and with fluorescence in situ hybridization (FISH). Antimicrobial related gene expression at baseline and 1h after one session of 30min swimming was tested by quantitative real-time polymerase chain reaction (Q-PCR) in small intestinal segments. Protein expression of 5 genes with statistically significant increase was measured at baseline, and 1-, 3- and 6h post-swimming using enzyme-linked immunosorbent assay (ELISA). Thirty minutes per day of swimming before RRS attenuated bacterial translocations and maintained intestinal permeability. Gene expression and protein levels for four antimicrobial peptides (α-defensin 5, β-defensin 1, RegIIIβ and RegIIIγ) were significantly increased after one 30min swimming session. In conclusion, moderate exercise attenuated chronic stress-induced intestinal barrier dysfunction in mice, possibly due to augmentation of antimicrobial responses in the small intestine. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway.

    PubMed

    Li, Zhiling; Gao, Ming; Yang, Bingchang; Zhang, Huali; Wang, Kangkai; Liu, Zuoliang; Xiao, Xianzhong; Yang, Mingshi

    2018-07-01

    Sepsis is commonly associated with excessive stimulation of host immune system and result in multi-organ failure dysfunction. Naringin has been reported to exhibit a variety of biological effects. The present study aimed to investigate the protective effect of naringin on sepsis-induced injury of intestinal barrier function in vivo and in vitro. Mice were randomly divided into 4 groups named sham (n = 20), CLP + vehicle (n = 20), CLP + NG (30 mg/kg) (n = 20) and CLP + NG (60 mg/kg) (n = 20) groups. Sepsis was induced by cecal ligation and puncture (CLP). H&E staining and transmission electron microscopy (TEM) were performed to observe intestinal mucosal morphology. ELISA was used to determine the intestinal permeability and inflammatory response in vivo and in vitro. Western blot and RhoA activity assay were performed to determine the levels of tight junction proteins and the activation of indicated signaling pathways. MTT assay was used to determine cell viability. Naringin improved survival rate of CLP mice and alleviated sepsis-induced intestinal mucosal injury. Furthermore, naringin improved impaired intestinal permeability and inhibited the release of TNF-α and IL-6, while increased IL-10 level in CLP mice and lipopolysaccharide (LPS)-stimulated MODE-K cells in a dose-dependent manner. Naringin increased the expression of tight junction proteins ZO-1 and claudin-1 via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Naringin improved sepsis-induced intestinal injury via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis.

    PubMed

    Moratalla, Alba; Gómez-Hurtado, Isabel; Moya-Pérez, Ángela; Zapater, Pedro; Peiró, Gloria; González-Navajas, José M; Gómez Del Pulgar, Eva Maria; Such, José; Sanz, Yolanda; Francés, Rubén

    2016-02-01

    Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 and intestinal lymphocytes in mice with cirrhosis. Cirrhosis was induced by intragastrical administration of carbon tetrachloride in Balb/C mice. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10(7), 10(9) or 10(10) cfu/daily) or placebo. Chemokine receptor and cytokine expression were evaluated in intestinal lymphocytes. Gut permeability was studied by FITC-LPS recovery in vivo. Luminal antigens, inflammation and functional markers were evaluated in liver samples. Bifidobacterium pseudocatenulatum CECT7765 decreased the expression of pro-inflammatory chemokine receptors CCR6, CCR9, CXCR3 and CXCR6 in intestinal lymphocytes from cirrhotic mice in a concentration-dependent manner. The bifidobacterial strain induced a shift towards an anti-inflammatory cytokine profile in this cell subset. B. pseudocatenulatum CECT7765-induced inflammatory modulation was TLR2-mediated, as in vitro TLR2 blockade inhibited the reduction of TNF-alpha and its receptors and the increase of IL-10 and IL-10 receptor secretion. The recovery rate of administered fluorescence-labelled endotoxin was significantly and dose-dependently lowered with the bifidobacterial strain. The reduced intestinal permeability was associated with a decreased burden of bacterial antigens in the liver of mice treated with B. pseudocatenulatum CECT7765. Liver function and inflammation were improved with the use of the bifidobacterial strain at the highest dose tested (10(10) cfu). Bifidobacterium pseudocatenulatum CECT7765 improves gut homeostasis and prevents gut-derived complications in experimental chronic liver disease.

  6. Perioperative Alanyl-Glutamine-Supplemented Parenteral Nutrition in Chronic Radiation Enteritis Patients With Surgical Intestinal Obstruction: A Prospective, Randomized, Controlled Study.

    PubMed

    Yao, Danhua; Zheng, Lei; Wang, Jian; Guo, Mingxiao; Yin, Jianyi; Li, Yousheng

    2016-04-01

    A prospective, randomized, controlled study was performed to evaluate the effects of perioperative alanyl-glutamine-supplemented parenteral nutrition (PN) support on the immunologic function, intestinal permeability, and nutrition status of surgical patients with chronic radiation enteritis (CRE)-induced intestinal obstruction. Patients who received 0.4 g/kg/d alanyl-glutamine and isonitrogenous PN were assigned to an alanyl-glutamine-supplemented PN (Gln-PN) group and a control group, respectively. Serum levels of alanine aminotransferase and glutamine, body fat mass (FM), immunologic function, and intestinal permeability were measured before and after surgery. Serum glutamine levels of the Gln-PN group significantly exceeded that of the control group (P < .001; Gln-PN, baseline 460.7 ± 42.5 vs 523.3 ± 48.6 µmol/L on postoperative day 14 [POD14], P < .001; control, baseline 451.9 ± 44.0 vs 453.8 ± 42.3 µmol/L on POD14, P = .708). Lactulose/mannitol ratios of both groups decreased over time (Gln-PN, baseline 0.129 ± 0.0403 vs 0.024 ± 0.0107 on POD1 4; control, baseline 0.125 ± 0.0378 vs 0.044 ± 0.0126 on POD14, P < .001 in both groups). CD4/CD8-positive T-lymphocyte ratios significantly rose in both groups, with significant intergroup difference (P < .001; Gln-PN, baseline 1.36 ± 0.32 vs 1.82 ± 0.30 on POD14, P < .001; control, baseline 1.37 ± 0.25 vs 1.63 ± 0.31 on POD14, P < .001). In the Gln-PN group, FM increased from 3.68 ± 1.68 kg at baseline to 5.22 ± 1.42 kg on POD14 (P < .001). FM of control group increased from 3.84 ± 1.57 kg at baseline to 5.40 ± 1.54 kg on POD14 (P < .001). However, there were no significant intergroup differences (P = .614). Gln-PN significantly boosted the immune state and decreased the intestinal permeability of CRE patients. However, Gln-PN was not superior to standard PN in improving the nutrition state and intestinal motility of surgical patients with CRE-induced intestinal obstruction. © 2015 American Society for Parenteral and Enteral Nutrition.

  7. The intestinal lesion of autistic spectrum disorder.

    PubMed

    Jass, Jeremy R

    2005-08-01

    This editorial briefly reviews the significance of lymphoid nodular hyperplasia in the intestinal tract of children with autistic spectrum disorder. The distinction between physiological and pathological lymphoid hyperplasia of the intestinal tract is of importance in the context of a possible causative link with autism. A primary intestinal lesion may occur as part of the broad spectrum of immunological disorders to which autistic children are prone. This could result in increased intestinal permeability to peptides of dietary origin which may then lead to disruption of neuroregulatory mechanisms required for normal brain development. Alternatively, there could be a primary defect in the translocation and processing of factors derived from the intestinal lumen. These possibilities deserve further investigation and should not be lost in the fog of the controversy regarding the role of measles/mumps/rubella vaccination in the aetiology of autistic spectrum disorder.

  8. Cromolyn-mediated improvement of intestinal barrier function is associated with enhanced piglet performance after weaning.

    PubMed

    Mereu, Alessandro; Tedó, Gemma; Moeser, Adam J; Rimbach, Gerald; Ipharraguerre, Ignacio R

    2015-10-28

    Previous work showed that weaning stress causes gut barrier dysfunction partly by triggering the release of corticotropin releasing factor (CRF) and thereby inducing the degranulation of intestinal mast cell (MC). This study investigated the hypothesis that attenuating the weaning-induced activation of the CRF-MC axis via administration of a MC stabilizing agent (cromolyn) may improve gut permeability and piglet performance after weaning. To test the hypothesis twenty piglets were weaned (20 ± 1.0 d of age; 6.4 ± 0.4 kg of BW) and injected intraperitoneally with saline (control, n = 10) or 20 mg/kg BW of sodium cromolyn (cromolyn, n = 10) at - 0.5, 8 and 16 h relative to weaning. Piglets were housed individually and fed ad libitum a pre-starter diet from one to 15 d post-weaning followed by a starter diet until the end of the study on d 36. Cromolyn improved intestinal permeability as indicated by the reduced recovery of cobalt and mannitol in plasma samples. Cromolyn treated pigs consumed more feed (369 vs. 313 g/d; P < 0.009), gained more BW (283 vs. 238 g/d; P < 0.006), and grew more efficiently (0.60 vs. 0.40; P < 0.042) than their control counterparts. As a result, cromolyn treated pigs were 1.4 kg heavier than those in the control group by d 36 after weaning (16.5 vs. 17.9 kg; P < 0.002). In agreement with our hypothesis, present data indicate that the cromolyn-mediated improvement of intestinal permeability is associated with enhanced pig performance after weaning.

  9. Supplemental calcium attenuates the colitis-related increase in diarrhea, intestinal permeability, and extracellular matrix breakdown in HLA-B27 transgenic rats.

    PubMed

    Schepens, Marloes A A; Schonewille, Arjan J; Vink, Carolien; van Schothorst, Evert M; Kramer, Evelien; Hendriks, Thijs; Brummer, Robert-Jan; Keijer, Jaap; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2009-08-01

    We have shown in several controlled rat and human infection studies that dietary calcium improves intestinal resistance and strengthens the mucosal barrier. Reinforcement of gut barrier function may alleviate inflammatory bowel disease (IBD). Therefore, we investigated the effect of supplemental calcium on spontaneous colitis development in an experimental rat model of IBD. HLA-B27 transgenic rats were fed a purified high-fat diet containing either a low or high calcium concentration (30 and 120 mmol CaHPO4/kg diet, respectively) for almost 7 wk. Inert chromium EDTA (CrEDTA) was added to the diets to quantify intestinal permeability by measuring urinary CrEDTA excretion. Relative fecal wet weight was determined to quantify diarrhea. Colonic inflammation was determined histologically and by measuring mucosal interleukin (IL)-1beta. In addition, colonic mucosal gene expression of individual rats was analyzed using whole-genome microarrays. The calcium diet significantly inhibited the increase in intestinal permeability and diarrhea with time in HLA-B27 rats developing colitis compared with the control transgenic rats. Mucosal IL-1beta levels were lower in calcium-fed rats and histological colitis scores tended to be lower (P = 0.08). Supplemental calcium prevented the colitis-induced increase in the expression of extracellular matrix remodeling genes (e.g. matrix metalloproteinases, procollagens, and fibronectin), which was confirmed by quantitative real-time PCR and gelatin zymography. In conclusion, dietary calcium ameliorates several important aspects of colitis severity in HLA-B27 transgenic rats. Reduction of mucosal irritation by luminal components might be part of the mechanism. These results show promise for supplemental calcium as effective adjunct therapy for IBD.

  10. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    PubMed

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  11. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Zhao, Yunli; Li, Yiping; Wang, Dayong

    2014-09-01

    Both in vitro and in vivo studies have demonstrated the toxic effects of graphene oxide (GO). However, the molecular basis for the translocation and toxicity of GO is still largely unclear. In the present study, we employed an in vivo Caenorhabditis elegans assay system to identify molecular signals involved in the control of the translocation and toxicity of GO. We identified 7 genes whose mutations altered both the translocation and toxicity of GO. Mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused greater GO translocation into the body and toxic effects on both primary and secondary targeted organs compared with wild type; however, mutations of the isp-1 and clk-1 genes resulted in significantly decreased GO translocation into the body and toxicity on both primary and secondary targeted organs compared with wild-type. Moreover, mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused increased intestinal permeability and prolonged mean defecation cycle length in GO-exposed nematodes, whereas mutations of the isp-1 and clk-1 genes resulted in decreased intestinal permeability in GO-exposed nematodes. Therefore, for the underlying mechanism, we hypothesize that both intestinal permeability and defecation behavior may have crucial roles in controlling the functions of the identified molecular signals. The molecular signals may further contribute to the control of transgenerational toxic effects of GO. Our results provide an important insight into understanding the molecular basis for the in vivo translocation and toxicity of GO.Both in vitro and in vivo studies have demonstrated the toxic effects of graphene oxide (GO). However, the molecular basis for the translocation and toxicity of GO is still largely unclear. In the present study, we employed an in vivo Caenorhabditis elegans assay system to identify molecular signals involved in the control of the translocation and toxicity of GO. We identified 7 genes whose mutations altered both the translocation and toxicity of GO. Mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused greater GO translocation into the body and toxic effects on both primary and secondary targeted organs compared with wild type; however, mutations of the isp-1 and clk-1 genes resulted in significantly decreased GO translocation into the body and toxicity on both primary and secondary targeted organs compared with wild-type. Moreover, mutations of the hsp-16.48, gas-1, sod-2, sod-3, and aak-2 genes caused increased intestinal permeability and prolonged mean defecation cycle length in GO-exposed nematodes, whereas mutations of the isp-1 and clk-1 genes resulted in decreased intestinal permeability in GO-exposed nematodes. Therefore, for the underlying mechanism, we hypothesize that both intestinal permeability and defecation behavior may have crucial roles in controlling the functions of the identified molecular signals. The molecular signals may further contribute to the control of transgenerational toxic effects of GO. Our results provide an important insight into understanding the molecular basis for the in vivo translocation and toxicity of GO. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02688h

  12. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings.

    PubMed

    Hedin, Charlotte R; McCarthy, Neil E; Louis, Petra; Farquharson, Freda M; McCartney, Sara; Taylor, Kirstin; Prescott, Natalie J; Murrells, Trevor; Stagg, Andrew J; Whelan, Kevin; Lindsay, James O

    2014-10-01

    Crohn's disease (CD) is associated with intestinal dysbiosis, altered blood T cell populations, elevated faecal calprotectin (FC) and increased intestinal permeability (IP). CD-associated features present in siblings (increased risk of CD) but not in healthy controls, provide insight into early CD pathogenesis. We aimed to (1) Delineate the genetic, immune and microbiological profile of patients with CD, their siblings and controls and (2) Determine which factors discriminate between groups. Faecal microbiology was analysed by quantitative PCR targeting 16S ribosomal RNA, FC by ELISA, blood T cell phenotype by flow cytometry and IP by differential lactulose-rhamnose absorption in 22 patients with inactive CD, 21 of their healthy siblings and 25 controls. Subject's genotype relative risk was determined by Illumina Immuno BeadChip. Strikingly, siblings shared aspects of intestinal dysbiosis with patients with CD (lower concentrations of Faecalibacterium prausnitzii (p=0.048), Clostridia cluster IV (p=0.003) and Roseburia spp. (p=0.09) compared with controls). As in CD, siblings demonstrated a predominance of memory T cells (p=0.002) and elevated naïve CD4 T cell β7 integrin expression (p=0.01) compared with controls. FC was elevated (>50 μg/g) in 8/21 (38%) siblings compared with 2/25 (8%) controls (p=0.028); whereas IP did not differ between siblings and controls. Discriminant function analysis determined that combinations of these factors significantly discriminated between groups (χ(2)=80.4, df=20, p<0.001). Siblings were separated from controls by immunological and microbiological variables. Healthy siblings of patients with CD manifest immune and microbiological abnormalities associated with CD distinct from their genotype-related risk and provide an excellent model in which to investigate early CD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense

    PubMed Central

    Zeng, Qing; He, Xiaolong; Puthiyakunnon, Santhosh; Xiao, Hansen; Gong, Zelong; Boddu, Swapna; Chen, Lecheng; Tian, Huiwen; Huang, Sheng-He; Cao, Hong

    2017-01-01

    Escherichia coli (E. coli) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli. PMID:28979247

  14. Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense.

    PubMed

    Zeng, Qing; He, Xiaolong; Puthiyakunnon, Santhosh; Xiao, Hansen; Gong, Zelong; Boddu, Swapna; Chen, Lecheng; Tian, Huiwen; Huang, Sheng-He; Cao, Hong

    2017-01-01

    Escherichia coli ( E. coli ) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium , and Streptococcus thermophilus , LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli .

  15. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens

    PubMed Central

    Baxter, Mikayla F. A.; Merino-Guzman, Ruben; Latorre, Juan D.; Mahaffey, Brittany D.; Yang, Yichao; Teague, Kyle D.; Graham, Lucas E.; Wolfenden, Amanda D.; Hernandez-Velasco, Xochitl; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2017-01-01

    Fluorescein isothiocyanate dextran (FITC-d) is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR), resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg); shortening the collection time of blood samples (1 versus 2.5 h); using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results. PMID:28470003

  16. Preinduced intestinal HSP70 improves visceral hypersensitivity and abnormal intestinal motility in PI-IBS mouse model.

    PubMed

    Lan, Cheng; Sun, Xiao-Ning; Zhou, Xu-Chun; Yang, Bo; Huang, Bai-Li; Deng, Tao-Zhi; He, Zhou-Tao; Han, Xiang-Yang

    2016-03-01

    To investigate the impact of the preinduced intestinal heat shock protein 70 (HSP70) on the visceral hypersensitivity and abnormal intestinal motility in a post-infectious irritable bowel syndrome (PI-IBS) mouse model. Eighty-four female C57BL/6 mice were randomly assigned to four groups: control group (n = 21) and induction + PI-IBS group (n = 21), PI-IBS group (n = 21) and induction group (n = 21). The mice in PI-IBS group were infected in vivo with Trichinella spiralis by oral administration. The visceral hypersensitivity and intestinal motility were evaluated respectively with abdominal withdrawal reflex and colon transportation test. The intestinal HSP70 protein and mRNA level was measured by Western blot and real-time PCR. Meanwhile, the intestinal proinflammatory cytokines IL-10 and TNF-α level was detected by ELISA. Compared with their counterparts in PI-IBS group, the animals in the Induction + PI-IBS group show significantly increased intestinal level of HSP70 and obviously ameliorative clinical figures, including abdominal withdrawal reflex score, intestine transportation time and Bristol scores (P < 0.05). Meanwhile, the intestinal post-inflammatory cytokines remarkably changed, including increased IL-10 level and decreased TNF-α level (P < 0.05). Intestinal HSP70 may play a potential protective role through improving the imbalance between the intestinal post-inflammatory and anti-inflammatory cytokines in PI-IBS. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  17. Effect of cortisone treatment on the active transport of calcium by the small intestine.

    PubMed

    Kimberg, D V; Baerg, R D; Gershon, E; Graudusius, R T

    1971-06-01

    It is generally recognized that glucocorticoid administration may diminish calcium absorption in vivo as well as the active transport of calcium by the intestine in vitro. Recent studies by others have emphasized the possibility of an alteration in the metabolism of vitamin D to 25-hydroxycholecalciferol in accounting for the steroid effects on calcium absorption. The results obtained in the present studies fail to support this hypothesis. The present studies confirm that the administration of cortisone or other glucocorticoids to the rat interferes with the active transport of calcium by duodenal gut sacs in vitro. This abnormality is not due to an alteration in the permeability of the intestine to calcium, and it cannot be corrected by the administration of either massive doses of vitamin D(2) or modest doses of 25-hydroxycholecalciferol. Experiments concerned with the effects of cortisone on the level of the vitamin D-dependent duodenal calcium-binding protein, the amount of bioassayable vitamin D activity in the mucosa, and the distribution and metabolism of (3)H-vitamin D(3), did not provide evidence in favor of a harmone-related defect in either the localization of vitamin D or its metabolism to 25-hydroxycholecalciferol. Alterations in the transport of iron and D-galactose, not dependent on vitamin D, suggest that cortisone treatment may be responsible for more than a simple antagonism to the effects of vitamin D. The results of the present studies indicate that cortisone administration affects the cellular mechanisms mediating calcium transport in a manner that is opposite to the effects of vitamin D, but seems to be independent of any direct interaction with the parent vitamin or its metabolites. If a disorder in vitamin D metabolism is at all involved, it is at a step subsequent to 25-hydroxylation.

  18. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn's disease.

    PubMed

    Sivignon, Adeline; de Vallée, Amélie; Barnich, Nicolas; Denizot, Jérémy; Darcha, Claude; Pignède, Georges; Vandekerckove, Pascal; Darfeuille-Michaud, Arlette

    2015-02-01

    Adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of patients with Crohn's disease (CD), are able to adhere to and invade intestinal epithelial cells. Overexpression of the glycoprotein CEACAM6 on host cells favors AIEC attachment and inflammation. We investigated the ability of Saccharomyces cerevisiae CNCM I-3856 to inhibit AIEC adhesion and to reduce colitis. Adhesion experiments were performed on T84 cells and on enterocytes from patients with CD with AIEC LF82 in the presence of S. cerevisiae. Colonization and symptoms of colitis were assessed in LF82-infected transgenic CEABAC10 mice treated with live S. cerevisiae or S. cerevisiae derivatives. Proinflammatory cytokines were quantified by enzyme linked immunosorbent assay. Intestinal permeability was assessed by measuring the 4 kDa dextran-FITC flux in the serum. S. cerevisiae strongly inhibited LF82 adhesion to T84 cells and to the brush border of CD enterocytes. Yeasts decreased LF82 colonization and colitis in CEABAC10 mice and restored barrier function through prevention of the LF82-induced expression of pore-forming tight junction claudin-2 at the plasma membrane of intestinal epithelial cells. These effects were accompanied by a decrease in proinflammatory cytokines IL-6, IL-1β, and KC release by the gut mucosa. Yeast derivatives exerted similar effects on LF82 colonization and colitis demonstrating that yeast viability was not essential to exert beneficial effects. S. cerevisiae yeasts reduce colitis induced by AIEC bacteria in CEACAM6-expressing mice. Such a probiotic strategy could be envisaged in a subgroup of patients with CD abnormally expressing CEACAM6 at the ileal mucosa and therefore susceptible to being colonized by AIEC bacteria.

  19. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus).

    PubMed

    Takahashi, H; Sakamoto, T; Narita, K

    2006-06-01

    In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.

  20. [Advance in studies on food allergy mechanism based on gut barrier].

    PubMed

    Wang, Juan-hong; Li, Huan-zhou; Li, Meng; Pan, Su-hua

    2015-04-01

    Food allergies, as a type of adverse immune-mediated reactions to ingested food proteins, have become a serious public health issue that harms children and adults health, with increasing incidence year by year. However, without effective therapy for food allergies, doctors-have mostly advised to avoid allergens and provided symptomatic treatment. According to the findings of many studies, allergic diseases are correlated with intestinal barrier function injury, as evidenced by the significant increase in the intestinal permeability among patients with food allergies. In this paper, recent studies on correlations between food allergies and intestinal barrier functions, intestinal barrier function injury mechanisms of allergic foods and food allergy intervention strategies based on intestinal barrier functions were summarized to provide reference for laboratory researches and clinical treatment of food allergic diseases.

  1. Alcoholic liver disease: The gut microbiome and liver crosstalk

    PubMed Central

    Hartmann, Phillipp; Seebauer, Caroline T.; Schnabl, Bernd

    2015-01-01

    Alcoholic liver disease is a leading cause of morbidity and mortality worldwide. Alcoholic fatty liver disease can progress to steatohepatitis, alcoholic hepatitis, fibrosis, and cirrhosis. Patients with alcohol abuse show quantitative and qualitative changes in the composition of the intestinal microbiome. Furthermore, patients with alcoholic liver disease have increased intestinal permeability and elevated systemic levels of gut-derived microbial products. Maintaining eubiosis, stabilizing the mucosal gut barrier or preventing cellular responses to microbial products protect from experimental alcoholic liver disease. Therefore, intestinal dysbiosis and pathological bacterial translocation appear fundamental for the pathogenesis of alcoholic liver disease. This review highlights causes for intestinal dysbiosis and pathological bacterial translocation, their relationship and consequences for alcoholic liver disease. We also discuss how the liver affects the intestinal microbiota. PMID:25872593

  2. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  3. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    NASA Astrophysics Data System (ADS)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  4. Regulation of intestinal health by branched-chain amino acids.

    PubMed

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  5. Resolution of common dietary sugars from probe sugars for test of intestinal permeability using capillary column gas chromatography.

    PubMed

    Farhadi, Ashkan; Keshavarzian, Ali; Fields, Jeremy Z; Sheikh, Maliha; Banan, Ali

    2006-05-19

    The most widely accepted method for the evaluation of intestinal barrier integrity is the measurement of the permeation of sugar probes following an oral test dose of sugars. The most-widely used sugar probes are sucrose, lactulose, mannitol and sucralose. Measuring these sugars using a sensitive gas chromatographic (GC) method, we noticed interference on the area of the lactulose and mannitol peaks. We tested different sugars to detect the possible makeup of these interferences and finally detected that the lactose interferes with lactulose peak and fructose interferes with mannitol peak. On further developing of our method, we were able to reasonably separate these peaks using different columns and condition for our assay. Sample preparation was rapid and simple and included adding internal standard sugars, derivitization and silylation. We used two chromatographic methods. In the first method we used Megabore column and had a run time of 34 min. This resulted in partial separation of the peaks. In the second method we used thin capillary column and was able to reasonably separate the lactose and lactulose peaks and the mannitol and fructose peaks with run time of 22 min. The sugar probes including mannitol, sucrose, lactulose, sucralose, fructose and lactose were detected precisely, without interference. The assay was linear between lactulose concentrations of 0.5 and 40 g/L (r(2)=1.000, P<0.0001) and mannitol concentrations of 0.01 and 40 g/L (r(2)=1.000). The sensitivity of this method remained high using new column and assay condition. The minimum detectable concentration calculated for both methods was 0.5 mg/L for lactulose and 1 mg/L for mannitol. This is the first report of interference of commonly used sugars with test of intestinal permeability. These sugars are found in most of fruits and dairy products and could easily interfere with the result of permeability tests. Our new GC assay of urine sugar probes permits the simultaneous quantitation of sucralose, sucrose, mannitol and lactulose, without interference with lactose and fructose. This assay is a rapid, simple, sensitive and reproducible method to accurately measure intestinal permeability.

  6. Investigation of the intestinal permeability of ciclosporin using the in situ technique in rats and the relevance of P-glycoprotein.

    PubMed

    Zakeri-Milani, Parvin; Valizadeh, Hadi; Islambulchilar, Ziba; Damani, Sanaz; Mehtari, Maryam

    2008-01-01

    The primary endpoint of this study was to determine the intestinal permeability of ciclosporin (cyclosporine A, CsA, CAS 59865-13-3) using the single-pass intestinal perfusion technique (SPIP) and a range of concentrations in rats. The second objective was to assess the quantitative contribution of P-glycoprotein (P-gp)-mediated efflux in limiting the oral bioavailability of CsA using erythromycin (Ery, CAS 114-07-8) as an inhibitor of P-gp efflux transporter. A solution containing CsA and phenol red either in the presence or in the absence of Ery as a P-gp inhibitor was perfused through a cannulated jejunal segment in rats. Outlet samples were collected every 10 min in micro tubes up to 90 min. Samples were analyzed using a modified reverse phase HPLC method. The mean effective permeability coefficients (Peff) of CsA in concentrations of 5, 10, 15 and 20 micromol/L in the perfusion solution were found to be 2.21 (+/- 0.26) x 10(-4) cm/s, 3.34 (+/- 1.29) x 10(-4) cm/s, 3.12 (+/- 0.23) x 10(-4) cm/s and 2.73 (+/- 0.28) x 10(-4) cm/s, respectively. The corresponding values in the presence of Ery were found to be 3.96 (+/- 1.04) x 10(-4) cm/s, 5.34 (+/- 1.29) x 10(-4) cm/s, 3.72 (+/- 0.21) x 10(-4) cm/s and 4.41 (+/- 0.89) x 10(-4) cm/s, respectively. The two-tailed Student's t-test showed that the intestinal permeability of CsA was significantly increased by Ery in all four CsA concentrations used (P < 0.05). However, there was no significant difference between the Peff values of CsA in different concentrations, indicating that the CsA permeation was independent of the concentration. Therefore it is concluded that at least some part of the observed clinical interaction between Ery and CsA is due to the interaction in absorption level.

  7. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    PubMed

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs (high solubility-high permeability) relative to solubility at pH 7.4. The use of bio-relevant media simulating gastric and intestinal milieu for solubility measurements or increasing the dose volume to 500 ml did not provide for a better boundary for solubility classification. Based on the current definition of solubility, 15 of the 18 acidic NSAIDs in this study will be classified as Class II compounds as the solubility criteria applies to the entire pH range of 1.2 to 7.4, although the low solubility criteria does not hold true over the entire pH range. Whence, of the 18 acidic drugs, 15 can be classified as Class I based on the pH 7.4 solubility alone. This finding is intriguing because these drugs exhibit Class I behavior as their absorption does not seem to be dissolution or solubility limited. It could then be argued that for acidic drugs, the boundaries for solubility are too restrictive. Solubility at pH > 5 (pH in duodenum) may be more appropriate because most compounds are mainly absorbed in the intestinal region. Consideration for an intermediate solubility classification for highly permeable ionizable compounds that reflects physiological conditions seems warranted.

  8. Clinical and laboratory study of postvagotomy diarrhoea

    PubMed Central

    Browning, G. G.; Buchan, K. A.; Mackay, C.

    1974-01-01

    Thirty-two patients with diarrhoea, on average four years following truncal vagotomy and drainage, were studied. A comparison was made with 24 patients without postvagotomy diarrhoea. The incidence of bacterial colonization of the upper small intestine was no different in the two groups, though patients with a gastroenterostomy had a significantly higher incidence than those with a pyloroplasty. There was a higher incidence of `anaerobic colonization' in patients with diarrhoea, but statistical significance was not reached. Colonization was associated with significantly lower levels of gastric acid secretion. Though 13 patients with diarrhoea had an abnormal faecal fat excretion, no correlation could be found between this and the severity of the diarrhoea or bacterial colonization, either with an anaerobic or a coliform type flora. In patients with diarrhoea, no small intestinal mucosal abnormality was detected, the mean haematological and serum biochemistry values were within normal limits, and the body weight was similar to that before operation. Two patients with diarrhoea had abnormal haematological values five years following vagotomy and gastroenterostomy in association with `anaerobic colonization' of the upper small intestine. As the incidence of haematological abnormalities after gastric surgery increases with time, colonized patients might merit particularly close clinical observation. PMID:4608280

  9. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules.

    PubMed

    Dave, Vivek S; Gupta, Deepak; Yu, Monica; Nguyen, Phuong; Varghese Gupta, Sheeba

    2017-02-01

    The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.

  10. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    PubMed

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  11. Oral Supplementation with Non-Absorbable Antibiotics or Curcumin Attenuates Western Diet-Induced Atherosclerosis and Glucose Intolerance in LDLR−/− Mice – Role of Intestinal Permeability and Macrophage Activation

    PubMed Central

    Ghosh, Siddhartha S.; Bie, Jinghua; Wang, Jing; Ghosh, Shobha

    2014-01-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as Type 2 Diabetes and atherosclerosis) has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD) induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR−/− mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin) in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively) and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1). Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR−/− mice. Activation of macrophages by low levels of LPS (50 ng/ml) and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role of intestinal barrier function, but also identify oral supplementation with curcumin as a potential therapeutic strategy to improve intestinal barrier function and prevent the development of metabolic diseases. PMID:25251395

  12. ACF7 regulates colonic permeability.

    PubMed

    Liang, Yong; Shi, Chenzhang; Yang, Jun; Chen, Hongqi; Xia, Yang; Zhang, Peng; Wang, Feng; Han, Huazhong; Qin, Huanlong

    2013-04-01

    Colonic paracellular permeability is regulated by various factors, including dynamics of the cytoskeleton. Recently, ACF7 has been found to play a critical role in cytoskeletal dynamics as an essential integrator. To elucidate the physiological importance of ACF7 and paracellular permeability, we conditionally knocked out ACF7 in the intestinal mucosa of mice. Histopathological findings indicated that ACF7 deficiency resulted in significant interstitial proliferation and columnar epithelial cell rearrangement. Decreased colonic paracellular permeability was detected using a Ussing chamber and the FITC-inulin method. In order to clarify the underlying mechanism, we further analyzed the expression levels of three important tight junction proteins. Downregulation of ZO-1, occludin and claudin-1 was identified. Immunofluorescence provided strong evidence that ZO-1, occludin and claudin-1 were weakly stained. We hypothesized that ACF7 regulates cytoskeleton dynamics to alter mucosal epithelial arrangement and colonic paracellular permeability.

  13. Effect of lactobacilli on paracellular permeability in the gut.

    PubMed

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.

  14. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.

    PubMed

    Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C

    2010-02-01

    Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research.

    PubMed

    Bested, Alison C; Logan, Alan C; Selhub, Eva M

    2013-03-14

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract - its functional integrity and microbial residents - might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term 'autointoxication'. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota.

  16. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione.

    PubMed

    Carpentieri, A; Marchionatti, A; Areco, V; Perez, A; Centeno, V; Tolosa de Talamoni, N

    2014-02-01

    The intestinal Ca²⁺ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca²⁺ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca²⁺ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca²⁺ absorption in certain gut disorders that occur with oxidative stress and apoptosis.

  17. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    PubMed

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.

  18. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment.

    PubMed

    Da Silva, Stéphanie; Robbe-Masselot, Catherine; Ait-Belgnaoui, Afifa; Mancuso, Alessandro; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Gillet, Marion; Ferrier, Laurent; Loubière, Pascal; Dague, Etienne; Theodorou, Vassilia; Mercier-Bonin, Muriel

    2014-08-15

    Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening. Copyright © 2014 the American Physiological Society.

  19. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change.

    PubMed

    Do, Moon Ho; Lee, Eunjung; Oh, Mi-Jin; Kim, Yoonsook; Park, Ho-Young

    2018-06-13

    High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD) or high-fructose (HFrD) diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.

  20. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong

    2013-07-01

    The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.

  1. Effect of structural modification of α-aminoxy peptides on their intestinal absorption and transport mechanism.

    PubMed

    Ma, Bin; Zha, Huiyan; Li, Na; Yang, Dan; Lin, Ge

    2011-08-01

    A representative α-aminoxy peptide 1 has been demonstrated to have a potential for the treatment of human diseases associated with Cl(-) channel dysfunctions. However, its poor intestinal absorption was determined. The purpose of this study was to delineate the transport mechanism responsible for its poor absorption and also to prepare peptide analogues by structural modifications of 1 at its isobutyl side chains without changing the α-aminoxy core for retaining biological activity to improve the intestinal absorption. The poor intestinal absorption of 1 was proved to be due to the P-glycoprotein (P-gp) mediated efflux transport in Caco-2 cell monolayer, intestinal segments in Ussing chamber and rat single pass intestinal perfusion models. Four analogues with propionic acid (2), butanamine (3), methyl (4) and hydroxymethyl side chains (5) were synthesized and tested using the same models. Except for the permeability of 2, the absorbable permeability of the modified peptides in Caco-2 cell monolayer and their intestinal absorption in rats were significantly improved to 7-fold (3), 4-fold (4), 11-fold (5) and 36-fold (2), 42-fold (3), 55-fold (4), 102-fold (5), respectively, compared with 1 (P(app), 0.034 ± 0.003 × 10(-6) cm/s; P(blood), 1.61 ± 0.807 × 10(-6) cm/s). More interestingly, the structural modification remarkably altered transport mechanism of the peptides, leading to the conversion of the active transport via P-gp mediation (1, 2), to MRP mediation (3), MRP plus BCRP mediation (4) or a passive diffusion (5). Furthermore, P-gp mediated efflux transport of 1 and 2 was demonstrated to not alter the P-gp expression, while 1 but not 2 exhibited uncompetitive inhibitory effect on P-gp ATPase. The results demonstrated that intestinal absorption and transport mechanism of the α-aminoxy peptides varied significantly with different structures, and their absorption can be dramatically improved by structural modifications, which allow us to further design and prepare better α-aminoxy peptide candidates with appropriate pharmacokinetic fates, including intestinal absorption, for potential clinical use.

  2. Application of fluorescent tracer agent technology to point-of-care gastrointestinal permeability measurement

    NASA Astrophysics Data System (ADS)

    Dorshow, Richard B.; Shieh, Jeng-Jong; Rogers, Thomas E.; Hall-Moore, Carla; Shaikh, Nurmohammad; Talcott, Michael; Tarr, Phillip I.

    2016-03-01

    Gut dysfunction, often accompanied by increased mucosal permeability to gut contents, frequently accompanies a variety of human intestinal inflammatory conditions. These disorders include inflammatory bowel diseases (e.g., Crohn's Disease) and environmental enteropathy and enteric dysfunction, a condition strongly associated with childhood malnutrition and stunting in resource poor areas of the world. The most widely used diagnostic assay for gastrointestinal permeability is the lactulose to mannitol ratio (L:M) measurement. These sugars are administered orally, differentially absorbed by the gut, and then cleared from the body by glomerular filtration in the kidney. The amount of each sugar excreted in the urine is measured. The larger sugar, lactulose, is minimally absorbed through a healthy gut. The smaller sugar, mannitol, in contrast, is readily absorbed through both a healthy and injured gut. Thus a higher ratio of lactulose to mannitol reflects increased intestinal permeability. However, several issues prevent widespread use of the L:M ratio in clinical practice. Urine needs to be collected over time intervals of several hours, the specimen then needs to be transported to an analytical laboratory, and sophisticated equipment is required to measure the concentration of each sugar in the urine. In this presentation we show that fluorescent tracer agents with molecular weights similar to those of the sugars, selected from our portfolio of biocompatible renally cleared fluorophores, mimic the L:M ratio test for gut permeability. This fluorescent tracer agent detection technology can be used to overcome the limitations of the L:M assay, and is amenable to point-of-care clinical use.

  3. Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers.

    PubMed

    Qiang, Zhiyi; Ye, Zhong; Hauck, Cathy; Murphy, Patricia A; McCoy, Joe-Ann; Widrlechner, Mark P; Reddy, Manju B; Hendrich, Suzanne

    2011-10-11

    Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. To investigate the permeabilities of RA and UA as pure compounds and in Prunella vulgaris and Salvia officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. The permeabilities and phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. The apparent permeability coefficient (P(app)) for RA and RA in Prunella vulgaris extracts was 0.2 ± 0.05 × 10(-6)cm/s, significantly increased to 0.9 ± 0.2 × 10(-6)cm/s after β-glucuronidase/sulfatase treatment. P(app) for UA and UA in Salvia officinalis extract was 2.7 ± 0.3 × 10(-6)cm/s and 2.3 ± 0.5 × 10(-6)cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Permeability of Rosmarinic acid in Prunella vulgaris and Ursolic acid in Salvia officinalis Extracts across Caco-2 Cell Monolayers

    PubMed Central

    Qiang, Zhiyi; Ye, Zhong; Hauck, Cathy; Murphy, Patricia A.; McCoy, Joe-Ann; Widrlechner, Mark P.; Reddy, Manju B.; Hendrich, Suzanne

    2011-01-01

    Ethnopharmacological relevance Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. Aim of the study To investigate the permeabilities of RA and UA as pure compounds and in P. vulgaris and S. officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. Materials and methods The permeabilities and Phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. Results The apparent permeability coefficient (Papp) for RA and RA in P. vulgaris extracts was 0.2 ± 0.05 × 10−6 cm/s, significantly increased to 0.9 ± 0.2 × 10−6 cm/s after β-glucuronidase/sulfatase treatment. Papp for UA and UA in S. officinalis extract was 2.7 ± 0.3 × 10−6 cm/s and 2.3 ± 0.5 × 10−6 cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. Conclusion RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA. PMID:21798330

  5. Effect of Lactobacilli on Paracellular Permeability in the Gut

    PubMed Central

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077

  6. Measurement of intestinal edema using an impedance analyzer circuit.

    PubMed

    Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S

    2007-03-01

    Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.

  7. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery.

    PubMed

    Sgorla, Débora; Lechanteur, Anna; Almeida, Andreia; Sousa, Flávia; Melo, Eduardo; Bunhak, Élcio; Mainardes, Rubiana; Khalil, Najeh; Cavalcanti, Osvaldo; Sarmento, Bruno

    2018-03-01

    The oral route is widely accepted as the most physiological path for exogenous administration of insulin, as it closely mimic the endogenous insulin pathway. Thus, in this work it is proposed an innovative lipid-polymeric nanocarrier to delivery insulin orally. Areas covered: Nanoparticles were produced through a modified solvent emulsification-evaporation method, using ethyl palmitate and hydroxypropylmethylcellulose acetate succinate as matrix. Lipid-polymeric nanoparticles were around 300 nm in size, negatively charged (-20 mV) and associated insulin with efficiency higher than 80%. Differential scanning calorimetry suggested thermal stability of nanoparticles. In vitro release assays under simulated gastrointestinal conditions resulted in 9% and 14% of insulin released at pH 1.2 during 2 h and at pH 6.8 for 6 h, respectively, demonstrating the ability of those nanoparticles to protect insulin against premature degradation. Importantly, nanoparticles were observed to be safe at potential therapeutic concentrations as did not originate cytotoxicity to intestinal epithelial cells. Lastly, the permeability of nanoencapsulated insulin through Caco-2 monolayers and a triple Caco-2/HT29-MTX/Raji B cell model correlated well with slow release kinetics, and fosters the effectiveness of nanoparticles to promote intestinal absorption of peptidic drugs. Expert opinion: Lipid-polymeric nanoparticles were developed to encapsulate and carry insulin through intestine. Overall, nanoparticles provide insulin stability and intestinal permeability.

  9. Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?

    PubMed Central

    Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian

    2013-01-01

    The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037

  10. Animal Productivity and Health Responses to Hind-Gut Acidosis

    USDA-ARS?s Scientific Manuscript database

    Microbial fermentation of carbohydrates in the large intestine of dairy cattle is responsible for 5 to 10% of total tract carbohydrate digestion. When dietary, animal, and/or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates to the large intestine, hind-gut ac...

  11. [Research progress of relationship between diabetes and intestinal epithelial tight junction barrier and intervetion of berberine].

    PubMed

    Qin, Xin; Dong, Hui; Lu, Fu-Er

    2016-06-01

    Intestinal tight junction is an important part of the small intestinal mucosa barrier. It plays a very significant role in maintaining the intestinal mucosal permeability and integrity, preventing the bacterial endotoxin and toxic macromolecular substances into the body so as to keep a stable internal environment. Numerous studies have shown that intestinal mucosal barrier dysfunction is closely related to the development of diabetes. Therefore, protecting intestinal tight junction and maintaining the mucosal barrier have great significance in the prevention and treatment of diabetes. The effect of berberine in diabetes treatment is obvious. However, the pharmacological study found that the bioavailability of berberine is extremely low. Some scholars put forward that the major site of pharmaceutical action of berberine might be in the gut. Studies have shown that berberine could regulate the intestinal flora and intestinal hormone secretion, protect the intestinal barrier, inhibit the absorption of glucose, eliminate the intestinal inflammation and so on. Recently studies have found that the hypoglycemic effect of berberine is likely to relate with the influence on intestinal tight junction and the protection of mucosal barrier. Here is the review about the association between intestinal tight junction barrier dysfunction and diabetes, and the related hypoglycemic mechanism of berberine. Copyright© by the Chinese Pharmaceutical Association.

  12. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  13. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.

    PubMed

    Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M

    2017-08-01

    Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.

  14. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  15. Insulin in human milk and the prevention of type 1 diabetes.

    PubMed

    Shehadeh, N; Shamir, R; Berant, M; Etzioni, A

    2001-12-01

    Although controversial, exclusive breast milk feeding was shown to exert a protective effect in preventing type 1 diabetes. In contrast, an early introduction of cow's milk-based formula in young infants may enhance the risk of disease, especially in genetically susceptible children, presumably by an increase of intestinal permeability to macromolecules such as bovine serum albumin and beta-casein, which may arouse autoimmunity. We have shown that human milk contains insulin in substantial concentrations, while insulin is barely detectable (if at all) in infant formulas. Orally administered insulin was demonstrated to promote gut maturation and to reduce intestinal permeability to macromolecules. Furthermore, oral insulin may induce tolerance to insulin and protect against the development of type 1 diabetes. We herewith raise a hypothesis that human milk is protective against the development of type 1 diabetes by virtue of the effects of its substantial content of insulin.

  16. Influence of prophylactic probiotics and selective decontamination on bacterial translocation in patients undergoing pancreatic surgery: a randomized controlled trial.

    PubMed

    Diepenhorst, Gwendolyn M P; van Ruler, Oddeke; Besselink, Marc G H; van Santvoort, Hjalmar C; Wijnandts, Paul R; Renooij, Willem; Gouma, Dirk J; Gooszen, Hein G; Boermeester, Marja A

    2011-01-01

    Bacterial translocation (BT) is suspected to play a major role in the development of infections in surgical patients. However, the clinical association between intestinal barrier dysfunction, BT, and septic morbidity has remained unconfirmed. The objective of this study was to study BT in patients undergoing major abdominal surgery and the effects of probiotics, selective decontamination of the digestive tract (SDD), and standard treatment on intestinal barrier function. In a randomized controlled setting, 30 consecutive patients planned for elective pylorus-preserving pancreaticoduodenectomy (PPPD) were allocated to receive perioperatively probiotics, SDD, or standard treatment. To assess intestinal barrier function, intestinal fatty acid-binding protein (mucosal damage) and polyethylene glycol recovery (intestinal permeability) in urine were measured perioperatively. BT was assessed by real-time polymerase chain reaction and multiplex ligation-dependent probe amplification (MLPA) in mesenteric lymph nodes (MLNs) harvested early (baseline control) and at the end of surgery ("end-of-surgery" MLNs, after 3h in PPPD patients). Polymerase chain reaction detected bacterial DNA in 18 of 27 end-of-surgery MLNs and in 13 of 23 control MLNs (P = 0.378). Probiotics and SDD had no significant effect on the number of positive MLNs or the change in bacterial DNA during operation. Multiplex ligation-dependent probe amplification analysis showed significantly increased expression of only 4 of 30 inflammatory mediator-related genes in end-of-surgery compared with early sampled MLN (P < 0.05). Polyethylene glycol recovery was unaffected by operation, probiotics and SDD as compared with standard treatment. Intestinal fatty acid-binding protein levels were increased shortly postoperatively only in patients treated with SDD (P = 0.02). Probiotics and SDD did not influence BT, intestinal permeability, or inflammatory mediator expression. Bacterial translocation after abdominal surgery may be part of normal antigen-sampling processes of the gut.

  17. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2004-03-01

    Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay.

  18. Notch inhibition counteracts Paneth cell death in absence of caspase-8.

    PubMed

    Jeon, M K; Kaemmerer, E; Schneider, U; Schiffer, M; Klaus, C; Hennings, J; Clahsen, T; Ackerstaff, T; Niggemann, M; Schippers, A; Longerich, T; Sellge, G; Trautwein, C; Wagner, N; Liedtke, C; Gassler, N

    2018-05-16

    Opposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8 ∆int ) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity. Here, we found that pharmacological Notch inhibition with dibenzazepine (DBZ) is able to essentially rescue the loss of Paneth cells, deescalate the inflammatory phenotype, and reduce intestinal permeability in casp8 ∆int mice. The secretory cell metaplasia in DBZ-treated casp8 ∆int animals is proliferative, indicating for Notch activities partially insensitive to gamma-secretase inhibition in a casp8 ∆int background. Our data suggest that casp8 acts in the intestinal Notch network.

  19. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice.

    PubMed

    Maioli, Tatiani Uceli; de Melo Silva, Brenda; Dias, Michelle Nobre; Paiva, Nivea Carolina; Cardoso, Valbert Nascimento; Fernandes, Simone Odilia; Carneiro, Cláudia Martins; Dos Santos Martins, Flaviano; de Vasconcelos Generoso, Simone

    2014-04-11

    The antimetabolite chemotherapy 5-Fluorouracil is one of the most commonly prescribed drugs in clinical cancer treatment. Although this drug is not specific for cancer cells and also acts on healthy cells, it can cause mucositis, a common collateral effect. Dysbiosis has also been described in 5-fluorouracil-induced mucositis and is likely to contribute to the overall development of mucositis. In light of this theory, the use of probiotics could be a helpful strategy to alleviate mucositis. So the aim of this study was evaluate the impact of the probiotic Saccharomyces boulardii in a model of mucositis. After induced of mucositis, mice from the Mucositis groups showed a decrease in food consumption (p < 0.05) and therefore had a greater weight loss (p < 0.05). The treatment with Saccharomyces boulardii did not reverse this effect (p > 0.05). Mucositis induced an increase in intestinal permeability and intestinal inflammation (p < 0.05). There were no differences in mucosal lesions, intestinal permeability and sIgA secretion (p > 0.05) in mice pretreated with S. boulardii. S. boulardii was not able to prevent the effects of experimental mucositis induced by 5- Fluorouracil.

  20. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice

    PubMed Central

    2014-01-01

    Background The antimetabolite chemotherapy 5-Fluorouracil is one of the most commonly prescribed drugs in clinical cancer treatment. Although this drug is not specific for cancer cells and also acts on healthy cells, it can cause mucositis, a common collateral effect. Dysbiosis has also been described in 5-fluorouracil-induced mucositis and is likely to contribute to the overall development of mucositis. In light of this theory, the use of probiotics could be a helpful strategy to alleviate mucositis. So the aim of this study was evaluate the impact of the probiotic Saccharomyces boulardii in a model of mucositis. Results After induced of mucositis, mice from the Mucositis groups showed a decrease in food consumption (p < 0.05) and therefore had a greater weight loss (p < 0.05). The treatment with Saccharomyces boulardii did not reverse this effect (p > 0.05). Mucositis induced an increase in intestinal permeability and intestinal inflammation (p < 0.05). There were no differences in mucosal lesions, intestinal permeability and sIgA secretion (p > 0.05) in mice pretreated with S. boulardii. Conclusions S. boulardii was not able to prevent the effects of experimental mucositis induced by 5- Fluorouracil. PMID:24721659

  1. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    PubMed Central

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  2. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression.

    PubMed

    Zuhl, Micah N; Lanphere, Kathryn R; Kravitz, Len; Mermier, Christine M; Schneider, Suzanne; Dokladny, Karol; Moseley, Pope L

    2014-01-15

    The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation.

  3. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    PubMed

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1.

    PubMed

    Hou, Qiuke; Huang, Yongquan; Zhu, Shuilian; Li, Peiwu; Chen, Xinlin; Hou, Zhengkun; Liu, Fengbin

    2017-01-01

    Irritable bowel syndrome with diarrhoea (IBS-D) is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs) are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i) identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii) verify in vitro whether occludin (OCLN) and zonula occludens 1 (ZO1/TJP1) were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii) determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs) and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further studies confirmed that OCLN and ZO1 were direct targets of miR-144. Additionally, intestinal hyperpermeability was enhanced by miR-144 up-regulation and attenuated by miR-144 down-regulation in IBS-D rat colonic epithelial cells. Moreover, rescue experiments showed that overexpression of OCLN and ZO1 significantly eliminated the inhibitory effect of miR-144, which showed a stronger effect on the attenuation of intestinal hyperpermeability. Up-regulation of miR-144 could promote intestinal hyperpermeability and impair the protective effect of the epithelial barrier by directly targeting OCLN and ZO1. miR-144 is likely a key regulator of intestinal hyperpermeability and could be a potential therapeutic target for IBS-D. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research

    PubMed Central

    2013-01-01

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract – its functional integrity and microbial residents – might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term ‘autointoxication’. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota. PMID:23497633

  6. Translational safety biomarkers of colonic barrier integrity in the rat.

    PubMed

    Erkens, Tim; Bueters, Ruud; van Heerden, Marjolein; Cuyckens, Filip; Vreeken, Rob; Goeminne, Nick; Lammens, Lieve

    2018-05-20

    The intestinal barrier controls intestinal permeability, and its disruption has been associated with multiple diseases. Therefore, preclinical safety biomarkers monitoring barrier integrity are essential during the development of drugs targeting the intestines, particularly if starting treatment early after onset of disease. Classical toxicology endpoints are not sensitive enough and therefore our objective was to identify non-invasive markers enabling early in vivo detection of colonic barrier perturbation. Male Sprague-Dawley rats were dosed intracolonically via the rectum, using sodium caprate or ibuprofen as tool compounds to alter barrier integrity. Several potentially translational biomarkers and probe molecules related to permeability, inflammation or tissue damage were evaluated, using various analytical platforms, including immunoassays, targeted metabolomics and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry. Several markers were identified that allow early in vivo detection of colonic barrier integrity changes, before histopathological evidence of tissue damage. The most promising permeability markers identified were plasma fluorescein isothiocyanate-dextran 4000 and a lactulose/mannitol/sucralose mixture in urine. These markers showed maximum increases over 100-fold or approximately 10-50-fold, respectively. Intracolonic administration of the above probe molecules outperformed oral administration and inflammatory or other biomarkers, such as α 2 -macroglobulin, calprotectin, cytokines, prostaglandins and a panel of metabolic molecules to identify early and subtle changes in barrier integrity. However, optimal timing of probe administration and sample collection is important for all markers evaluated. Inclusion of these probe molecules in preclinical toxicity studies might aid in risk assessment and the design of a clinical biomarker plan, as several of these markers have translational potential. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro.

    PubMed

    Bijlsma, P B; van Raaij, M T; Dobbe, C J; Timmerman, A; Kiliaan, A J; Taminiau, J A; Groot, J A

    2001-05-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.

  8. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia.

    PubMed

    Moreira, Ana Paula Boroni; Texeira, Tatiana Fiche Salles; Ferreira, Alessandra Barbosa; Peluzio, Maria do Carmo Gouveia; Alfenas, Rita de Cássia Gonçalves

    2012-09-01

    Lipopolysaccharide (LPS) may play an important role in chronic diseases through the activation of inflammatory responses. The type of diet consumed is of major concern for the prevention and treatment of these diseases. Evidence from animal and human studies has shown that LPS can diffuse from the gut to the circulatory system in response to the intake of high amounts of fat. The method by which LPS move into the circulatory system is either through direct diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Considering the impact of metabolic diseases on public health and the association between these diseases and the levels of LPS in the circulatory system, this review will mainly discuss the current knowledge about high-fat diets and subclinical inflammation. It will also describe the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance. Although the majority of the studies published so far have assessed the effects of dietary fat, additional studies are necessary to deepen the understanding of how the amount, the quality and the structure of the fat may affect endotoxaemia. The potential of food combinations to reduce the negative effects of fat intake should also be considered in future studies. In these studies, the effects of flavonoids, prebiotics and probiotics on endotoxaemia should be investigated. Thus, it is essential to identify dietetic strategies capable of minimising endotoxaemia and its postprandial inflammatory effects.

  9. Starring role of toll-like receptor-4 activation in the gut-liver axis

    PubMed Central

    Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio

    2015-01-01

    Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967

  10. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications

    PubMed Central

    Tsiaoussis, Georgios I; Assimakopoulos, Stelios F; Tsamandas, Athanassios C; Triantos, Christos K; Thomopoulos, Konstantinos C

    2015-01-01

    The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet. PMID:26301048

  11. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  12. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis

    PubMed Central

    Czaja, Albert J

    2016-01-01

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415

  13. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  14. Metabolic alterations in children with environmental enteric dysfunction

    USDA-ARS?s Scientific Manuscript database

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increa...

  15. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  16. Bile acid malabsorption caused by gastrointestinal motility dysfunction? An investigation of gastrointestinal disturbances in familial amyloidosis with polyneuropathy.

    PubMed

    Suhr, O; Danielsson, A; Steen, L

    1992-01-01

    Gastrointestinal dysfunction due to autonomous neuropathy is a complication described in various diseases such as diabetes mellitus, multiple sclerosis, and familial amyloidosis with polyneuropathy. We present the results of a prospective investigation of bile acid malabsorption in 17 patients with familial amyloidosis by means of 75Se-labelled homocholic-tauro acid (SeHCAT). The diagnosis was in all cases verified by the DNA test for mutation of transthyretin in position 30. Small-intestinal biopsy specimens were examined for deposits of amyloid, and the presence of gastric retention was evaluated by gastroscopy. In addition, the patients were investigated for bacterial overgrowth by means of the bile acid breath test (BABT). A high frequency of abnormal BABT results (44%) was encountered. However, 65% also had abnormal low SeHCAT values, indicating bile acid malabsorption. Only two patients had abnormal BABT and normal SeHCAT results, indicating bacterial contamination of the small intestine. Bile acid losses increased with the duration of gastrointestinal symptoms. Significantly lower SeHCAT values were encountered in patients with gastric retention, whereas the occurrence of amyloid deposits in small-intestinal biopsy specimens was without effect on SeHCAT retention. Bile acid malabsorption is frequently encountered in familial amyloidosis with polyneuropathy and seems to be more closely associated with gastrointestinal motility dysfunction than with amyloid deposits in the intestinal mucosa.

  17. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  18. Revisiting atenolol as a low passive permeability marker.

    PubMed

    Chen, Xiaomei; Slättengren, Tim; de Lange, Elizabeth C M; Smith, David E; Hammarlund-Udenaes, Margareta

    2017-10-31

    Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., K p,uu,brain ) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (V u, brain ) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (f u,brain ) of 0.88 ± 0.07. It is concluded, based on K p,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.

  19. Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency.

    PubMed

    Weglicki, William B; Chmielinska, Joanna J; Kramer, Jay H; Mak, I Tong

    2011-08-01

    In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.

  20. Active intestinal drug absorption and the solubility-permeability interplay.

    PubMed

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Permeabilities of rebamipide via rat intestinal membranes and its colon specific delivery using chitosan capsule as a carrier

    PubMed Central

    Huang, Bei-Bei; Li, Guo-Feng; Luo, Jing-Hui; Duan, Lian; Nobuaki, Kishimoto; Akira, Yamamoto

    2008-01-01

    AIM: To investigate the permeability characteristics of rebamipide across intestinal mucosa, and examine the effects of some absorption enhancers on the permeability across the colonic tissue. Another purpose is to demonstrate the colon-specific delivery of rebamipide with or without absorption enhancers using chitosan capsule as a carrier. METHODS: The permeability of rebamipide was evaluated using an in vitro diffusion chamber system, and the effects of some absorption enhancers on the permeability via colon were further investigated. The release of rebamipide from chitosan or gelatin capsule was studied by Japan Pharmacopoeia rotating basket method. The colonic and plasma concentrations were analyzed by high performance liquid chromatography (HPLC) to evaluate colon-targeting action after oral administration of various dosage forms, and rebamipide with absorption enhancers in chitosan dosage forms. RESULTS: The permeability of rebamipide across the jejunal or ileal membranes was higher than the colonic membranes. Both sodium laurate (C12) and labrasol significantly increased permeability across the colon membranes. On the other hand, the release of rebamipide from chitosan capsule was less than 10% totally within 6 h. The area under concentration-time profile of drug in the colon mucosa using chitosan capsules (AUCLI, 1 6011.2 ng·h/g) was 2.5 times and 4.4 times greater than using gelatin capsules and CMC suspension, respectively. Meanwhile, the area under concentration-time profile of drug in the plasma (AUCPL) was 1016.0 ng·h/mL for chitosan capsule, 1887.9 ng·h/mL for CMC suspension p and 2163.5 ng·h/mL for gelatin capsule. Overall, both AUCLI and AUCPL were increased when C12 was co-administrated, but the increase of AUCLI was much greater; the drug delivery index (DDI) was more than 1 compared with simple chitosan capsule group. CONCLUSION: There was a regional difference in the permeability of Rebamipide across the jejunum, ileum and the colon, and passive diffusion seems to be one of the major transport mechanisms of rebamipide. Absorption enhancers can increase the permeability of rebamipide across the colon tissue significantly. In addition, chitosan capsule may be a useful carrier to deliver rebamipide to the colon specifically and the co-administration of C12 with rebamipide may also be very useful in local treatment. PMID:18756602

  2. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract.

    PubMed

    Bilski, Jan; Mazur-Bialy, Agnieszka; Wojcik, Dagmara; Zahradnik-Bilska, Janina; Brzozowski, Bartosz; Magierowski, Marcin; Mach, Tomasz; Magierowska, Katarzyna; Brzozowski, Tomasz

    2017-01-01

    Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients.

  3. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract

    PubMed Central

    Wojcik, Dagmara; Zahradnik-Bilska, Janina; Mach, Tomasz

    2017-01-01

    Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients. PMID:28316376

  4. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    PubMed

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  5. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    PubMed

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  6. Transintestinal transport mechanisms of 5-aminosalicylic acid (in situ rat intestine perfusion, Caco-2 cells) and Biopharmaceutics Classification System.

    PubMed

    Smetanová, Libuše; Stětinová, Věra; Kholová, Dagmar; Kuneš, Martin; Nobilis, Milan; Svoboda, Zbyněk; Květina, Jaroslav

    2013-09-01

    The aim of the study was 1) to estimate permeability of 5-aminosalicylic acid (5-ASA), 2) to categorize 5-ASA according to BCS (Biopharmaceutics Classification System), and 3) to contribute to determination of 5-ASA transintestinal transport and biotransformation mechanisms. The in situ rat intestine perfusion was used as an initial method to study 5-ASA transport. The amount of 5-ASA (released from tablet) transferred into portal circulation reached 5.79 ± 0.24%. During this transport, the intestinal formation of 5-ASA main metabolite (N-ac-5-ASA) occurred. N-ac-5-ASA was found in perfusate both from intestinal lumen and from v. portae. In in vitro Caco-2 monolayers, transport of 5-ASA (10-1000 µmol/l) was studied in apical-basolateral and basolateral-apical direction (iso-pH 7.4 conditions). The transport of total 5-ASA (parent drug plus intracellularly formed N-ac-5-ASA) was linear with time, concentration- and direction-dependent. Higher basolateral-apical (secretory) transport was mainly caused by higher transport of the metabolite (suggesting metabolite efflux transport). Transport of 5-ASA (only parent drug) was saturable (transepithelial carrier-mediated) at low doses, dominated by passive, paracellular process in higher doses which was confirmed by increased 5-ASA transport using Ca2+-free transport medium. The estimated low 5-ASA permeability and its low solubility enable to classify 5-ASA as BCS class IV.

  7. Pharmaceutical Activation or Genetic Absence of ClC-2 Alters Tight Junctions During Experimental Colitis.

    PubMed

    Jin, Younggeon; Pridgen, Tiffany A; Blikslager, Anthony T

    2015-12-01

    We have previously reported that the ClC-2 chloride channel has an important role in regulation of tight junction barrier function during experimental colitis, and the pharmaceutical ClC-2 activator lubiprostone initiates intestinal barrier repair in ischemic-injured intestine. Thus, we hypothesized that pharmaceutical ClC-2 activation would have a protective and therapeutic effect in murine models of colitis, which would be absent in ClC-2 mice. We administered lubiprostone to wild-type or ClC-2 mice with dextran sulfate sodium (DSS) or 2, 4, 5-trinitrobenzene sulfonic acid-induced colitis. We determined the severity of colitis and assessed intestinal permeability. Selected tight junction proteins were analyzed by Western blotting and immunofluorescence/confocal microscopy, whereas proliferative and differentiated cells were examined with special staining and immunohistochemistry. Oral preventive or therapeutic administration of lubiprostone significantly reduced the severity of colitis and reduced intestinal permeability in both DSS and trinitrobenzene sulfonic acid-induced colitis. Preventive treatment with lubiprostone induced significant recovery of the expression and distribution of selected sealing tight junction proteins in mice with DSS-induced colitis. In addition, lubiprostone reduced crypt proliferation and increased the number of differentiated epithelial cells. Alternatively, when lubiprostone was administered to ClC-2 mice, the protective effect against DSS colitis was limited. This study suggests a central role for ClC-2 in restoration of barrier function and tight junction architecture in experimental murine colitis, which can be therapeutically targeted with lubiprostone.

  8. Improvement of Intestinal Absorption of Forsythoside A and Chlorogenic Acid by Different Carboxymethyl Chitosan and Chito-oligosaccharide, Application to Flos Lonicerae - Fructus Forsythiae Herb Couple Preparations

    PubMed Central

    Zhou, Wei; Wang, Haidan; Zhu, Xuanxuan; Shan, Jinjun; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2013-01-01

    The current study aims to investigate the effect of chitosan derivatives on the intestinal absorption and bioavailabilities of forsythoside A (FTA) and Chlorogenic acid (CHA), the major active components in Flos Lonicerae - Fructus Forsythiae herb couple. Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized in vitro, in situ as well as in rats. Based on the identified biopharmaceutics characteristics of the two compounds, the effect of chitosan derivatives as an absorption enhancer on the intestinal absorption and pharmacokinetics of FTA and CHA in pure compound form as well as extract form were investigated in vitro, in situ and in vivo. Both FTA and CHA demonstrated very limited intestinal permeabilities, leading to oral bioavailabilities being only 0.50% and 0.13% in rats, respectively. Results from both in vitro, in situ as well as in vivo studies consistently indicated that Chito-oligosaccharide (COS) at dosage of 25 mg/kg could enhance intestinal permeabilities significantly as well as the in vivo bioavailabilities of both FTA and CHA than CMCs in Flos Lonicerae - Fructus Forsythiae herb couple preparations, and was safe for gastrointestine from morphological observation. Besides, treatment with Flos Lonicerae - Fructus Forsythiae herb couple preparations with COS at the dosage of 25 mg/kg prevented MDCK damage after influenza virus propagation, which was significantly better than control. The current findings not only identified the usefulness of COS for the improved delivery of Flos Lonicerae - Fructus Forsythiae preparations but also demonstrated the importance of biopharmaceutical characterization in the dosage form development of traditional Chinese medicine. PMID:23675483

  9. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract.

    PubMed

    Flynn, Thomas J; Vohra, Sanah N

    2018-06-25

    Caco-2 cells are a commonly used model for estimating the intestinal bioavailability of single chemical entity pharmaceuticals. Caco-2 cells, when induced with calcitriol, also express other biological functions such as phase I (CYP) and phase II (glucuronosyltransferases) drug metabolizing enzymes which are relevant to drug-supplement interactions. Intestinal bioavailability is an important factor in the overall safety assessment of products consumed orally. Foods, including herbal dietary supplements, are complex substances with multiple chemical components. Because of potential interactions between components of complex mixtures, more reliable safety assessments can be obtained by studying the commercial products "as consumed" rather than by testing individual chemical components one at a time. The present study evaluated the apparent intestinal permeability (P app ) of a model herbal extract, Rauwolfia serpentina, using both whole plant extracts and the individual purified Rauwolfia alkaloids. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The P app values for individual Rauwolfia alkaloids were comparable whether measured individually or as components of the complete extract. Both Rauwolfia extract and all individual Rauwolfia alkaloids except yohimbine inhibited CYP3A4 activity (midazolam 1'-hydroxylation). Both Rauwolfia extract and all individual Rauwolfia alkaloids except corynanthine and reserpic acid significantly increased glucuronosyltransferase activity (glucuronidation of 4-methylumbelliferone). The positive control, ketoconazole, significantly inhibited both CYP3A4 and glucuronosyltransferase activities. These findings suggest that the Caco-2 assay is capable of simultaneously identifying both bioavailability and potentially hazardous intestinal drug-supplement interactions in complex mixtures. Published by Elsevier B.V.

  10. Randomized Clinical Trial of Preoperative Feeding to Evaluate Intestinal Barrier Function in Neonates Requiring Cardiac Surgery.

    PubMed

    Zyblewski, Sinai C; Nietert, Paul J; Graham, Eric M; Taylor, Sarah N; Atz, Andrew M; Wagner, Carol L

    2015-07-01

    To evaluate intestinal barrier function in neonates undergoing cardiac surgery using lactulose/mannitol (L/M) ratio measurements, and to determine correlations with early breast milk feeding. This was a single-center, prospective, randomized pilot study of 27 term-born neonates (≥ 37 weeks gestation) requiring cardiac surgery who were randomized to 1 of 2 preoperative feeding groups: nil per os (NPO) or trophic (10 mL/kg/day) breast milk feeds. At 3 time points (preoperative [preop], postoperative [postop] day 7, and postop day 14), subjects were administered an oral L/M solution, after which urine L/M ratios were measured using gas chromatography, with higher ratios indicative of increased intestinal permeability. Trends over time in the mean urine L/M ratios for each group were estimated using a general linear mixed model. There were no adverse events related to preoperative trophic feeding. In the NPO group (n = 13), the mean urine L/M ratio was 0.06 at preop, 0.12 at postop day 7, and 0.17 at postop day 14. In the trophic breast milk feeds group (n = 14), the mean urine L/M ratio was 0.09 at preop, 0.19 at postop day 7, and 0.15 at postop day 14. In both groups, L/M ratios were significantly higher at postop day 7 and postop day 14 compared with preop (P < .05). Neonates have increased intestinal permeability after cardiac surgery extending to at least postop day 14. This pilot study was not powered to detect differences in benefit or adverse events comparing the NPO and trophic breast milk feeds groups. Further studies to identify mechanisms of intestinal injury and therapeutic interventions are warranted. Registered with ClinicalTrials.gov: NCT01475357. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Suppression of TNF-α and free radicals reduces systematic inflammatory and metabolic disorders: Radioprotective effects of ginseng oligopeptides on intestinal barrier function and antioxidant defense.

    PubMed

    He, Li-Xia; Wang, Jun-Bo; Sun, Bin; Zhao, Jian; Li, Lin; Xu, Teng; Li, Hui; Sun, Jing-Qin; Ren, Jinwei; Liu, Rui; Chen, Qi-He; Zhang, Zhao-Feng; Li, Yong

    2017-02-01

    Irradiation therapy is markedly associated with intestinal injure and oxidant stress. This study aimed to investigate the effects of ginseng (Panax ginseng C.A. Mey.) oligopeptides (GOP) on irradiation-induced intestinal injury and antioxidant defense in mice. BALB/c mice (8 weeks old) were randomly divided into six groups: vehicle control, irradiation control (IR), IR+whey protein [0.30 g/kg body weight (BW)], IR+GOP 0.15 g/kg BW, IR+GOP 0.30 g/kg BW and IR+GOP 0.60 g/kg BW. Postirradiation 30-day survival trial, white blood cells count and bone marrow hematopoietic system damage were performed to identify the injury degree induced by irradiation. Then, histopathology analysis was observed and intestinal permeability in vivo was quantified with fluorescein isothiocyanate-dextran. The enzyme-linked immunosorbent assay was used to determine antioxidant ability, plasma inflammatory cytokines, diamine oxidase (DAO) and endotoxin (LPS) levels. The immunohistochemistry assay was used to analyze the expression levels of tight junction proteins. We found that GOP-treated mice exhibited lower concentrations of plasma LPS and DAO and decreased instructors of inflammatory and oxidative stress which were linked to the lower intestinal permeability and higher tight junction proteins expression. The blockage of GOP was linked with the reduction of TNF-α and free radicals. The 15-day pretreatment of GOP could exhibit radioprotective effects, and another 15-day posttreatment benefited the quick repair of irradiation-induced injury. We confirm that GOP would exhibit effective therapeutic value on attenuating irradiation-induced hematopoietic, gastrointestinal and oxidative injury in cancer patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis

    PubMed Central

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-01-01

    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051

  14. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis.

    PubMed

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-11-23

    This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.

  15. The Use of Low Molecular Weight Protamine Chemical Chimera to Enhance Monomeric Insulin Intestinal Absorption

    PubMed Central

    He, Huining; Sheng, Jianyong; David, Allan E.; Kwon, Young Min; Zhang, Jian; Huang, Yongzhuo; Wang, Jianxin; Yang, Victor C.

    2013-01-01

    Although oral delivery of insulin offers a number of unmatched advantages, it nevertheless is beset by the poor permeability of insulin molecules through the epithelial cell membranes of the intestinal mucosal layer. We previously reported the development of low molecular weight protamine (LMWP) as a nontoxic yet potent cell penetrating peptide, of which via covalent linkage was capable of translocating protein cargos through the membranes of almost all cell types. It is therefore hypothesized that LMWP could be practically employed as a safe and effective tool to deliver insulin across the intestinal mucosal membrane, thereby augmenting its absorption through the GI tract. However, formulating 1:1 monomeric insulin/LMWP conjugate presents a tall order of challenge, as the acidic insulin and basic LMWP would automatically form tight aggregates through electrostatic interactions. In this paper, we developed an innovative conjugation strategy to solve this problem, by using succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-MAL) as an intermediate cross-linker during the coupling process. Both SDS-PAGE and MALDI-TOF mass spectroscopy confirmed the formation of a homogeneous, monomeric (1:1 ratio) insulin/LMWP conjugate without encountering the conventional problem of substrate aggregation. Cell culture studies demonstrated that transport of the Insulin-PEG-LMWP conjugate across the intestinal mucosal monolayer was augmented by almost five folds compared to native insulin. Furthermore, results from the in situ loop absorption tests in rats showed that systemic pharmacological bioavailability of insulin was significantly enhanced after its conjugation with LMWP. Overall, the presented chemical conjugation with LMWP could offer a reliable and safe means to improve the intestinal permeability of therapeutic peptides/proteins, shedding light of the possibility for their effective oral delivery. PMID:23863452

  16. Capsaicin pretreatment enhanced the bioavailability of fexofenadine in rats by P-glycoprotein modulation: in vitro, in situ and in vivo evaluation.

    PubMed

    Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar

    2017-06-01

    Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.

  17. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.

    PubMed

    Li, Li; Somerset, Shawn

    2014-10-01

    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes.

    PubMed

    Tao, Wenhui; Zhao, Dongyang; Sun, Mengchi; Wang, Ziyu; Lin, Bin; Bao, Yu; Li, Yingying; He, Zhonggui; Sun, Yinghua; Sun, Jin

    2018-04-25

    Decitabine (DAC), a potent DNA methyltransferase (DNMT) inhibitor, has a limited oral bioavailability. Its 5'-amino acid ester prodrugs could improve its oral delivery but the specific absorption mechanism is not yet fully understood. The aim of this present study was to investigate the in vivo absorption and activation mechanism of these prodrugs using in situ intestinal perfusion and pharmacokinetics studies in rats. Although PEPT1 transporter is pH dependent, there appeared to be no proton cotransport in the perfusion experiment with a preferable transport at pH 7.4 rather than pH 6.5. This suggested that the transport was mostly dependent on the dissociated state of the prodrugs and the proton gradient might play only a limited role. In pH 7.4 HEPES buffer, an increase in P eff was observed for L-val-DAC, D-val-DAC, L-phe-DAC and L-trp-DAC (2.89-fold, 1.2-fold, 2.73-fold, and 1.90-fold, respectively), compared with the parent drug. When co-perfusing the prodrug with Glysar, a known substrate of PEPT1, the permeabilities of the prodrugs were significantly inhibited compared with the control. To further investigate the absorption of the prodrugs, L-val-DAC was selected and found to be concentration-dependent and saturable, suggesting a carrier-mediated process (intrinsic K m : 7.80 ± 2.61 mM) along with passive transport. Determination of drug in intestinal homogenate after perfusion further confirmed that the metabolic activation mainly involved an intestinal first-pass effect. In a pharmacokinetic evaluation, the oral bioavailability of L-val-DAC, L-phe-DAC and L-trp-DAC were nearly 1.74-fold, 1.69-fold and 1.49-fold greater than that of DAC. The differences in membrane permeability and oral bioavailability might be due to the different stability in the intestinal lumen and the distinct PEPT1 affinity which is mainly caused by the stereochemistry, hydrophobicity and steric hindrance of the side chains. In summary, the detailed investigation of the absorption mechanism by in vivo intestinal perfusion and pharmacokinetic studies showed that the prodrugs of DAC exhibited excellent permeability and oral bioavailability, which might be attributed to a hybrid (partly PEPT1-mediated and partly passive) transport mode and a rapid activation process in enterocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Biopharmaceutics permeability classification of lorcaserin, a selective 5-hydroxytryptamine 2C agonist: method suitability and permeability class membership.

    PubMed

    Chen, Chuan; Ma, Michael G; Fullenwider, Cody L; Chen, Weichao G; Sadeque, Abu J M

    2013-12-02

    The objectives of the study were (1) to demonstrate that a Caco-2 cell-based permeability assay, developed in our laboratory, is suitable to identify the permeability classification according to the US Food and Drug Administration Biopharmaceutics Classification System guidance, and (2) to use the validated Caco-2 method to determine permeability class membership of lorcaserin. Lorcaserin, marketed in United States as Belviq, is a selective human 5-hydroxytryptamine 2C agonist used for weight management. First, the permeability of twenty commercially available drugs was determined in the apical-to-basolateral direction at a final concentration of 10 μM, with the pH of transporter buffer in the apical and basolateral compartments being 6.8 and 7.4, respectively. A rank-order relationship between in vitro permeability results and the extent of human intestinal absorption for the drugs tested was observed. Second, the apparent permeability coefficient values of lorcaserin at 2, 20, and 200 μM and apical pH values of 6.8 and 7.4 in the apical-to-basolateral direction were determined using the validated method and found to be comparable to those of the high-permeability internal standard metoprolol. Lorcaserin permeability across Caco-2 cell monolayers was not dependent on the variation of apical pH. Furthermore, lorcaserin was not a substrate for efflux transporters such as P-glycoprotein. In conclusion, using the validated Caco-2 permeability assay, it was shown that lorcaserin is a highly permeable compound.

  20. Localized intestinal perforations as a potential complication of brain hypothermic therapy for perinatal asphyxia.

    PubMed

    Nishizaki, Naoto; Maiguma, Atsuko; Obinata, Kaoru; Okazaki, Tadaharu; Shimizu, Toshiaki

    2016-01-01

    Brain hypothermic therapy (BHT) is becoming a frequently used standard of care for perinatal asphyxia. Although cardiovascular side effects, coagulation disorders, renal impairment, electrolyte abnormalities, impaired liver function, opportunistic infections, and skin lesions are well-known adverse effects of BHT in newborns, little information is available on the clinical features of intestinal perforation-related BHT. We herein report a case of therapeutic brain cooling for perinatal asphyxia complicated by localized intestinal perforation. In practice, the neonatologist should be aware that intestinal perforation in an infant with perinatal asphyxia is possible, particularly following BHT.

  1. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats.

    PubMed

    Wang, Xin; Zheng, Mei; Liu, Jia; Huang, Zhifeng; Bai, Yidan; Ren, Zhuoying; Wang, Ziwen; Tian, Yangli; Qiao, Zhou; Liu, Wenyuan; Feng, Feng

    2017-09-14

    Uncaria rhynchophylla (Miq.) Miq. ex Havil., is a plant species used in traditional Chinese medicine to treat cardiovascular and central nervous system diseases. Rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of epimers, are major alkaloids isolated from U. rhynchophylla and exhibit diverse pharmacological effects. Our previous study demonstrated that the pharmacokinetics of these epimers existed stereoselectivity after oral administration; however, the specific mechanism remains unknown and merits investigation. In the present study, the aim was to elucidate the mechanism underlying stereoselective pharmacokinetic characteristics of RIN and IRN in rats. The total (F), hepatic (F h ) and intestinal (F a ·F g ) bioavailabilities of each epimer were measured using portal vein cannulated rats following different dosing routes (intravenous, intraportal and intraduodenal) to assess individual contributions of the liver and intestine in stereoselective pharmacokinetics. Then the differences of first-pass metabolism in the liver and intestine between two epimers were evaluated by in vitro incubation with rat liver microsomes, intestinal S9 and gastrointestinal (GI) content solutions, respectively. Meanwhile, the membrane permeability and efflux by P-glycoprotein (P-gp) were examined by in situ single-pass intestinal perfusion with and without P-gp inhibitor verapamil. The configurational interconversion at different pH values and the excretions via feces and urine were also examined. Pharmacokinetic data showed that the total bioavailability of RIN was 5.9 folds higher than that of IRN (23.4% vs. 4.0%). The hepatic availability of RIN was 4.6 folds higher than that of IRN (46.9% vs. 10.3%), whereas the intestinal availability of RIN (48.1%) was comparable to that of IRN (42.7%). In addition, intestinal perfusion showed that IRN possessed higher intestinal permeability than RIN and co-perfusion with verapamil could affect absorption process of RIN but not IRN. Conversely, the metabolism rate of IRN in rat liver microsomes was significantly faster than that of RIN, resulting in a lower systemic exposure of IRN after oral administration. The degradation in GI lumen and epimerization between two epimers also existed but had small contributions. Additionally, the excretions of both epimers via feces and urine were negligible. Taken together, different first-pass metabolism in the liver was the major factor responsible for the stereoselective pharmacokinetics of RIN and IRN. Copyright © 2017. Published by Elsevier B.V.

  2. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    PubMed Central

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  3. Development and characterization of an effective food allergy model in Brown Norway rats.

    PubMed

    Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2015-01-01

    Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.

  4. Development and Characterization of an Effective Food Allergy Model in Brown Norway Rats

    PubMed Central

    Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J.; Franch, Àngels; Castell, Margarida

    2015-01-01

    Background Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. Objective The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Methods Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Results Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. Conclusions These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression. PMID:25923134

  5. Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs.

    PubMed

    Rådberg, K; Biernat, M; Linderoth, A; Zabielski, R; Pierzynowski, S G; Weström, B R

    2001-10-01

    The present investigation characterized the effect of red kidney bean lectin exposure on gut maturation and function in young piglets. Eleven suckling pigs were given by stomach tube a crude red kidney bean lectin preparation (containing about 25% lectin, 400 mg/kg BW) (lectin-treated pigs) at 10, 11, and 12 d of life, and an additional 16 pigs (control pigs) were given saline instead. On the next day, the intestinal absorptive capacity was determined in vivo, and on the 14th d of life the piglets were killed and organs and small intestine samples were collected for analyses and in vitro permeability experiments. The lectin-treated pigs showed an increase in stomach weights and mucosa thickness, whereas no weight effect was found for the small intestine, spleen, liver, or adrenals. Morphometric analyses of the small intestine in lectin-treated pigs showed a decrease in villus heights, an increase in crypt depths and crypt cell mitotic indices, and fewer vacuolated enterocytes per villus and reduced vacuole size. Lectin treatment also resulted in a decrease in the absorption of different-sized marker molecules after gavage feeding, a decrease in intestinal marker permeability, and a change in small intestinal disaccharidase activities, with increased maltase and sucrase activities. The size of the pancreatic acini was also greater in the lectin-treated pigs, but no increases in enzyme content or pancreatic weight could be determined. In addition, the blood plasma levels of cholecystokinin were higher in the lectin-treated than in the control pigs. The results indicate that exposure to crude red kidney bean lectin induces structural and functional maturation of the gut and pancreatic growth in young suckling piglets. This possibility of inducing gut maturation may lead to an improvement in the piglets' ability to adapt to weaning and to an increase in the growth and health of these animals.

  6. The novel formulation design of self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion III: the permeation mechanism of a poorly water soluble drug entrapped O/W microemulsion in rat isolated intestinal membrane by the Ussing chamber method.

    PubMed

    Araya, Hiroshi; Tomita, Mikio; Hayashi, Masahiro

    2006-02-01

    We used ibuprofen as a poorly water soluble model drug, to examine the influence of bile salts and mucin layers on the permeability of that entrapped in an O/W microemulsion, in a rat isolated intestinal membrane by the Ussing chamber method. Under the presence of 3 kinds of the primary bile salts such a sodium taurocholate, etc., or a secondary bile salt such a sodium taurochenodeoxycholate at 0.01 mmol/L concentration, a significant difference was not demonstrated in the permeation clearance of the ibuprofen entrapped O/W microemulsion, as compared with the case without the bile salts. Thus, the bile salts did not have a remarkable influence on the permeability of the drug entrapped in the O/W microemulsion, and it was verified that this O/W microemulsion was hardly influenced by the flow of the bile secretion. On the other hand, when N-acetyl-L-cysteine (NAC) with the removal ability of a mucin layer was combined with the ibuprofen entrapped O/W microemulsion at the concentration of 3 and 10 mmol/L, it was shown that the permeation clearance of free ibuprofen did not decrease, but that of ibuprofen entrapped in the O/W microemulsion decreased with the increase of the NAC concentration. Therefore, it is confirmed that the mucin layer participates in the permeability of the drug entrapped in the O/W microemulsion. From these results, the mechanism in which the drug entrapped in the O/W microemulsion is released in a mucin layer, without passing through the route of the mixed micelle formation by bile, thereafter the drug permeates an intestinal membrane, is supposed.

  7. Opposite Effect of Opuntia ficus-indica L. Juice Depending on Fruit Maturity Stage on Gastrointestinal Physiological Parameters in Rat.

    PubMed

    Rtibi, Kais; Selmi, Slimen; Grami, Dhekra; Amri, Mohamed; Sebai, Hichem; Marzouki, Lamjed

    2018-06-01

    The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg -1 , b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α- 2 -adrenergic agonist, 1 mg kg -1 , b.w., i.p.), yohimbine (α- 2 -adrenergic antagonist, 2 mg kg -1 , b.w., i.p.), and loperamide (5 mg kg -1 , b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.

  8. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability.

    PubMed

    Madgula, Vamsi L; Avula, Bharathi; Reddy V L, Niranjan; Khan, Ikhlas A; Khan, Shabana I

    2007-04-01

    Decursin (DE) and decursinol angelate (DA) were isolated from the roots of Angelica gigas (Apiaceae) and purified by HPLC. DE and DA have been reported to exhibit significant neuropharmacological activities, but their intestinal transport and permeability in terms of CNS penetration across the blood-brain barrier (BBB) are unknown. This study was undertaken to evaluate the IN VITRO intestinal and BBB transport of DE and DA using Caco-2 and MDR-MDCK cell monolayer models, respectively. The bidirectional transport of DE and DA across Caco-2 and MDR-MDCK monolayers was examined for 2 hours. Integrity of the monolayer was determined by TEER value and by monitoring the transport of Lucifer yellow (Ly) across the monolayers. Quantitation of DE and DA was performed by HPLC. DE and DA exhibited bidirectional transport with a Papp value in the range of 9.0-12.0x10(-6) cm/sec and 7.2-11.7x10(-6) cm/sec in Caco-2 and MDR-MDCK monolayers, respectively. The TEER values were in the range of 410-440 and 1170-1230 ohm cm2 for Caco-2 and MDR-MDCK monolayers, respectively. Ly measurement, the fluorescent marker of passive paracellular diffusion, resulted in Papp values of 2.5-5.0x10(-6) in Caco-2 and 6.0-8.0x10(-6) cm/sec in MDR-MDCK monolayers, confirming that the monolayer integrity was intact at the end of the experiment. Caco-2:human colonic adenocarcinoma DA:decursinol angelate DE:decursin Ly:Lucifer yellow MDCK:Madin-Darby canine kidney MDR:multidrug resistant Papp:apparent permeability TEER:transepithelial electrical resistance.

  9. Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells

    PubMed Central

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (−)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22±0.16, 0.90±0.14, 3.25±0.37, and 1.92±0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68±0.16, 0.88±0.09, 2.39±0.31, and 1.42±0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems. PMID:24855353

  10. Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway.

    PubMed

    Markov, A G; Falchuk, E L; Kruglova, N M; Radloff, J; Amasheh, S

    2016-01-01

    Members of the tight junction protein family of claudins have been demonstrated to specifically determine paracellular permeability of the intestinal epithelium. In small intestinal mucosa, which is generally considered to be a leaky epithelium, Peyer's patches are a primary part of the immune system. The aim of this study was to analyse the tight junctional barrier of follicle-associated epithelium covering Peyer's patches (lymphoid follicles). Employing small intestinal tissue specimens of male Wistar rats, electrophysiological analyses including the Ussing chamber technique, marker flux measurements and one-path impedance spectroscopy were performed. Morphometry of HE-stained tissue sections was taken into account. Claudin expression and localization was analysed by immunoblotting and confocal laser scanning immunofluorescence microscopy. Almost twofold higher parameters of epithelial and transepithelial tissue resistance and a markedly lower permeability for the paracellular permeability markers 4 and 20 kDa FITC-dextran were detected in follicle-associated epithelium compared to neighbouring villous epithelium. Analysis of claudin expression and localization revealed a stronger expression of major sealing proteins in follicle-associated epithelium, including claudin-1, claudin-4, claudin-5 and claudin-8. Therefore, the specific expression and localization of claudins is in accordance with barrier properties of follicle-associated epithelium vs. neighbouring villous epithelium. We demonstrate that follicle-associated epithelium is specialized to ensure maximum restriction of the epithelial paracellular pathway in Peyer's patches by selective sealing of tight junctions. This results in an exclusive transcellular pathway of epithelial cells as the limiting and mandatory route for a controlled presentation of antigens to the underlying lymphocytes under physiological conditions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats.

    PubMed

    Gil-Cardoso, K; Ginés, I; Pinent, M; Ardévol, A; Terra, X; Blay, M

    2017-01-01

    The gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.

  12. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance.

    PubMed

    Bindels, Laure B; Neyrinck, Audrey M; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G; Langella, Philippe; Cani, Patrice D; Thissen, Jean-Paul; Delzenne, Nathalie M

    2018-04-06

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium ( Faecalibacterium prausnitzii ) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

  13. Transmigrated neutrophils in the intestinal lumen engage ICAM 1 to regulate the epithelial barrier and neutrophil recruitment

    PubMed Central

    Sumagin, Ronen; Robin, Alex Z.; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Neutrophil (PMN) transepithelial migration (TEM) and accumulation in luminal spaces is a hallmark of mucosal inflammation. TEM has been extensively modeled, however the functional consequences and molecular basis of PMN interactions with luminal epithelial ligands are not clear. Here we report that cytokine-induced expression of a PMN ligand, intercellular adhesion molecule-1 (ICAM-1), exclusively on the luminal (apical) membrane of the intestinal epithelium results in accumulation and enhanced motility of transmigrated PMN on the apical epithelial surface. Using complementary in-vitro and in-vivo approaches we demonstrate that ligation of epithelial ICAM-1 by PMN or with specific antibodies results in myosin light chain kinase (MLCK)-dependent increases in epithelial permeability that are associated with enhanced PMN TEM. Effects of ICAM-1 ligation on epithelial permeability and PMN migration in-vivo were blocked after intraluminal addition of peptides derived from the cytoplasmic domain of ICAM-1. These findings provide new evidence for functional interactions between PMN and epithelial cells after migration into the intestinal lumen. While such interactions may aid in clearance of invading microorganisms by promoting PMN recruitment, engagement of ICAM-1 under pathologic conditions would increase accumulation of epithelial-associated PMN, thus contributing to mucosal injury as observed in conditions including ulcerative colitis. PMID:24345805

  14. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance

    PubMed Central

    Bindels, Laure B.; Neyrinck, Audrey M.; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G.; Langella, Philippe; Cani, Patrice D.; Thissen, Jean-Paul; Delzenne, Nathalie M.

    2018-01-01

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis. PMID:29719601

  15. Can lipid nanoparticles improve intestinal absorption?

    PubMed

    Mendes, M; Soares, H T; Arnaut, L G; Sousa, J J; Pais, A A C C; Vitorino, C

    2016-12-30

    Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications

    PubMed Central

    Carroll, Ian M; Maharshak, Nitsan

    2013-01-01

    Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894

  17. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    PubMed

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of fasting on intestinal transfer of sugars and amino acids in vitro

    PubMed Central

    Newey, H.; Sanford, P. A.; Smyth, D. H.

    1970-01-01

    1. Transfer of sugars, amino acids and fluid and metabolism of glucose were studied with everted sacs of small intestine prepared from fed and 3-day fasted rats. 2. In the absence of glucose there was some evidence for increased intestinal transfer of sugars and amino acids in fasted animals. In the presence of glucose there was in general decrease in transfer of amino acids and fluid. 3. In fasted animals glucose transfer was reduced except in the lower ileum, and there was a general reduction in glucose metabolism. 4. Because of the large reduction in gut weight in fasted animals, expressing transfer on a weight basis is considered not to be a valid procedure in studying the effects of fasting on intestinal transfer. 5. The results have been discussed in relation to effects of fasting on energy availability, efficiency of transfer mechanisms, permeability of the intestine and the value of in vitro methods in the study of physiological absorption. PMID:5499792

  19. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability...

  20. A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease.

    PubMed

    Brimelow, Rachel E; West, Nicholas P; Williams, Lauren T; Cripps, Allan W; Cox, Amanda J

    2017-05-24

    Obesity is a strong predictive factor in the development of chronic disease and has now superseded undernutrition as a major public health issue. Chronic inflammation is one mechanism thought to link excess body weight with disease. Increasingly, the gut and its extensive population of commensal microflora are recognized as playing an important role in the development of obesity-related chronic inflammation. Obesity and a high fat diet are associated with altered commensal microbial communities and increased intestinal permeability which contributes to systemic inflammation as a result of the translocation of lipopolysaccharide into the circulation and metabolic endotoxemia. Various milk proteins are showing promise in the prevention and treatment of obesity and chronic low-grade inflammation via reductions in visceral fat, neutralization of bacteria at the mucosa and reduced intestinal permeability. In this review, we focus on evidence supporting the potential antiobesogenic and anti-inflammatory effects of bovine whey-derived lactoferrin and immunoglobulins.

  1. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel.

    PubMed

    Jiang, Xing; Wang, Kaikai; Zhou, Zaigang; Zhang, Yifan; Sha, Huizi; Xu, Qiuping; Wu, Jie; Wang, Juan; Wu, Jinhui; Hu, Yiqiao; Liu, Baorui

    2017-06-24

    Paclitaxel (PTX) is a cytotoxic chemotherapy drug with encouraging activity in human malignancies. However, free PTX has a very low oral bioavailability due to its low aqueous solubility and the gastrointestinal drug barrier. In order to overcome this obstacle, we have designed erythrocyte membrane nanoparticles (EMNP) using sonication method. The permeability of PTX by EMNP was 3.5-fold (P app  = 0.425 nm/s) and 16.2-fold (P app  = 394.1 nm/s) higher than free PTX in MDCK-MDR1 cell monolayers and intestinal mucosal tissue, respectively. The in vivo pharmacokinetics indicated that the AUC 0-t (μg/mL·h) and C max (μg/mL) of EMNP were 14.2-fold and 6.0-fold higher than that of free PTX, respectively. In summary, the EMNP appears to be a promising nanoformulation to enhance the oral bioavailability of insoluble and poorly permeable drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    PubMed

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  3. Inhibition of IKKβ in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality.

    PubMed

    Dominguez, Jessica A; Samocha, Alexandr J; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M

    2013-10-01

    Nuclear factor-κB is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Prospective, randomized controlled study. Animal laboratories in university medical centers. Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkβ) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikkβ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikkβ mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikkβ mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikkβ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikkβ mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikkβ mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikkβ mice (47% vs 80%, p<0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikkβ mice. Enterocyte-specific NF-kB has a beneficial role in sepsis by partially preventing sepsis-induced increases in apoptosis and permeability, which are associated with worsening mortality.

  4. Placental ischemia-induced increases in brain water content and cerebrovascular permeability: role of TNF-α

    PubMed Central

    Warrington, Junie P.; Drummond, Heather A.; Granger, Joey P.

    2015-01-01

    Cerebrovascular complications and increased risk of encephalopathies are characteristic of preeclampsia and contribute to 40% of preeclampsia/eclampsia-related deaths. Circulating tumor necrosis factor-α (TNF-α) is elevated in preeclamptic women, and infusion of TNF-α into pregnant rats mimics characteristics of preeclampsia. While this suggests that TNF-α has a mechanistic role to promote preeclampsia, the impact of TNF-α on the cerebral vasculature during pregnancy remains unclear. We tested the hypothesis that TNF-α contributes to cerebrovascular abnormalities during placental ischemia by first infusing TNF-α in pregnant rats (200 ng/day ip, from gestational day 14 to 19) at levels to mimic those reported in preeclamptic women. TNF-α increased mean arterial pressure (MAP, P < 0.05) and brain water content in the anterior cerebrum (P < 0.05); however, TNF-α infusion had no effect on blood-brain barrier (BBB) permeability in the anterior cerebrum or posterior cerebrum. We then assessed the role of endogenous TNF-α in mediating these abnormalities in a model of placental ischemia induced by reducing uterine perfusion pressure followed by treatment with the soluble TNF-α receptor (etanercept, 0.8 mg/kg sc) on gestational day 18. Etanercept reduced placental ischemia-mediated increases in MAP, anterior brain water content (P < 0.05), and BBB permeability (202 ± 44% in placental ischemic rats to 101 ± 28% of normal pregnant rats). Our results indicate that TNF-α mechanistically contributes to cerebral edema by increasing BBB permeability and is an underlying factor in the development of cerebrovascular abnormalities associated with preeclampsia complicated by placental ischemia. PMID:26400187

  5. Intestinal microbiota in functional bowel disorders: a Rome foundation report

    PubMed Central

    Barbara, Giovanni; Flint, Harry J; Spiegel, Brennan M R; Spiller, Robin C; Vanner, Stephen; Verdu, Elena F; Whorwell, Peter J; Zoetendal, Erwin G

    2013-01-01

    It is increasingly perceived that gut host–microbial interactions are important elements in the pathogenesis of functional gastrointestinal disorders (FGID). The most convincing evidence to date is the finding that functional dyspepsia and irritable bowel syndrome (IBS) may develop in predisposed individuals following a bout of infectious gastroenteritis. There has been a great deal of interest in the potential clinical and therapeutic implications of small intestinal bacterial overgrowth in IBS. However, this theory has generated much debate because the evidence is largely based on breath tests which have not been validated. The introduction of culture-independent molecular techniques provides a major advancement in our understanding of the microbial community in FGID. Results from 16S rRNA-based microbiota profiling approaches demonstrate both quantitative and qualitative changes of mucosal and faecal gut microbiota, particularly in IBS. Investigators are also starting to measure host–microbial interactions in IBS. The current working hypothesis is that abnormal microbiota activate mucosal innate immune responses which increase epithelial permeability, activate nociceptive sensory pathways and dysregulate the enteric nervous system. While we await important insights in this field, the microbiota is already a therapeutic target. Existing controlled trials of dietary manipulation, prebiotics, probiotics, synbiotics and non-absorbable antibiotics are promising, although most are limited by suboptimal design and small sample size. In this article, the authors provide a critical review of current hypotheses regarding the pathogenetic involvement of microbiota in FGID and evaluate the results of microbiota-directed interventions. The authors also provide clinical guidance on modulation of gut microbiota in IBS. PMID:22730468

  6. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  7. Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats.

    PubMed

    Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei

    2016-06-01

    Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.

  8. Evaluation of the bioavailability of major withanolides of Withania somnifera using an in vitro absorption model system.

    PubMed

    Devkar, Santosh T; Kandhare, Amit D; Sloley, Brian D; Jagtap, Suresh D; Lin, James; Tam, Yun K; Katyare, Surendra S; Bodhankar, Subhash L; Hegde, Mahabaleshwar V

    2015-01-01

    Withania somnifera (L.) Dunal, shows several pharmacological properties which are attributed mainly to the withanolides present in the root. The efficacy of medicinally active withanolides constituents depends on the absorption and transportation through the intestinal epithelium. We examined these characteristics by employing the Sino-Veda Madin-Darby canine kidney cells culture system, which under in vitro condition shows the absorption characteristics similar to the human intestinal epithelium. Thus, the aim of the present investigation was to assess the bioavailability of individual withanolides. Withanolides were diluted in Hank's buffered saline at a concentration of 2 μg/ml were tested for permeability studies carried out for 1 h duration. Permeability was measured in terms of efflux pump (P eff) in cm/s. P eff values of withanolide A (WN A), withanone (WNN), 1,2-deoxywithastramonolide (1,2 DWM), withanolide B (WN B), withanoside IV-V (WS IV-V), and withaferin A were 4.05 × 10(-5), 2.06 × 10(-5), 1.97 × 10(-5), 1.80 × 10(-5), 3.19 × 10(-6), 3.03 × 10(-6) and 3.30 × 10(-7) respectively. In conclusion, the nonpolar and low molecular weight compounds (WN A, WNN, 1,2 DWM, and WN B) were highly permeable. As against this, the glycosylated and polar WS IV and WS V showed low permeability. Surprisingly and paradoxically, the highly biologically active withaferin A was completely impermeable, suggesting that further studies possibly using human epithelial colorectal adenocarcinoma (Caco-2) cells may be needed to delineate the absorption characteristics of withanolides, especially withaferin A.

  9. Chronic zinc deficiency alters chick gut microbiota composition and function

    USDA-ARS?s Scientific Manuscript database

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  10. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis.

    PubMed

    Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L

    2003-10-15

    The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.

  11. Small intestinal bacterial overgrowth as an uncommon cause of false positive lactose hydrogen breath test among patients with diarrhea-predominant irritable bowel syndrome in Asia.

    PubMed

    Wang, Yilin; Xiong, Lishou; Gong, Xiaorong; Li, Weimin; Zhang, Xiangsong; Chen, Minhu

    2015-06-01

    It has been reported that small intestinal bacterial overgrowth (SIBO) may lead to false positive diagnoses of lactose malabsorption (LM) in irritable bowel syndrome patients. The aim of this study was to determine the influence of SIBO on lactose hydrogen breath test (HBT) results in these patients. Diarrhea-predominant irritable bowel syndrome patients with abnormal lactose HBTs ingested a test meal containing (99m) Tc and lactose. The location of the test meal and the breath levels of hydrogen were recorded simultaneously by scintigraphic scanning and lactose HBT, respectively. The increase in hydrogen concentration was not considered to be caused by SIBO if ≥ 10% of (99m) Tc accumulated in the cecal region at the time or before of abnormal lactose HBT. LM was present in 84% (31/37) of irritable bowel syndrome patients. Twenty of these patients agreed to measurement of oro-cecal transit time. Only three patients (15%) with abnormal lactose HBT might have had SIBO. The median oro-cecal transit time between LM and lactose intolerance patients were 75 min and 45 min, respectively (Z=2.545, P=0.011). Most of irritable bowel syndrome patients with an abnormal lactose HBT had LM. SIBO had little impact on the interpretation of lactose HBTs. The patients with lactose intolerance had faster small intestinal transit than LM patients. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. Acute Effects of a Glucagon-Like Peptide 2 Analogue, Teduglutide, on Gastrointestinal Motor Function and Permeability in Adult Patients With Short Bowel Syndrome on Home Parenteral Nutrition.

    PubMed

    Iturrino, Johanna; Camilleri, Michael; Acosta, Andres; O'Neill, Jessica; Burton, Duane; Edakkanambeth Varayil, Jithinraj; Carlson, Paula J; Zinsmeister, Alan R; Hurt, Ryan

    2016-11-01

    Glucagon-like peptide 2 (GLP-2) agonists decrease the need for parenteral nutrition (PN) in short bowel syndrome (SBS); mechanisms evaluated to date have focused on the intestinotrophic effect of GLP-2 agonists such as increased absorptive capacity of the remnant intestine and increased citrulline levels. Other mechanisms may also play a role in effects of GLP-2 agonists. To measure effects of a GLP-2 agonist, teduglutide (TED), compared with placebo (PLA) on gastric emptying (GE), overall gut transit, fluid balance, intestinal monosaccharide absorption, and permeability in patients with SBS on home PN (HPN). In 8 adults with SBS on HPN, we compared daily subcutaneous TED (0.05 mg/kg) and PLA (crossover design, each treatment 7 days with a 14-day washout) on gut transit, intestinal absorption, and permeability after oral mannitol (200 mg) and lactulose (1 g), as well as stool weight and urine volume over 8 hours. Analysis used the paired t test. Of 8 patients, 4 were men, with a mean ± SD age of 54 ± 1 years, body mass index of 25 ± 4 kg/m 2 , residual small intestine of 63 ± 12 cm, and 25% ± 15% of residual colon. The overall gut transit (% emptied at 6 hours) was 53.4% ± 15% for TED vs 62.4% ± 15.2% for PLA (P = .075), with no effect on GE (P = .74). TED increased urine mannitol excretion at 0-2 hours (16.2 ± 3.6 mg TED vs 11.3 ± 2.2 mg PLA, P = .20) and 0-8 hours (32.7 ± 5.9 mg PLA vs 48.8 ± 8.9 mg TED, P = .17). There were no differences in urine lactulose excretion or lactulose/mannitol ratio (0.024 ± 0.005 TED vs 0.021 ± 0.005 PLA). Over 8 hours, TED (vs PLA) numerically reduced stool weight (mean ± SEM, 77 ± 18 g TED vs 106 ± 43 g PLA, P = .42) and increased urine volume (408.9 ± 52.2 mL TED vs 365.7 ± 57.3 mL PLA, P = .34). Seven-day TED treatment in 8 participants suggests beneficial effects on fluid balance and monosaccharide absorption, and it retarded overall gut transit with no effects on GE or mucosal permeability. Larger, longer, mechanistic studies of TED in SBS are warranted. This trial was registered at clinicaltrials.gov as NCT02099084. © 2015 American Society for Parenteral and Enteral Nutrition.

  13. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group.

    PubMed

    Abdel-Rahman, Susan M; Amidon, Gordon L; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A; Knipp, Gregory T

    2012-11-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community to be an enabling guide for the rational selection of compounds, formulation for clinical advancement, and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) Working Group was convened to consider the possibility of developing an analogous pediatric-based classification system. Because there are distinct developmental differences that can alter intestinal contents, volumes, permeability, and potentially biorelevant solubilities at different ages, the PBCS Working Group focused on identifying age-specific issues that need to be considered in establishing a flexible, yet rigorous PBCS. We summarized the findings of the PBCS Working Group and provided insights into considerations required for the development of a PBCS. Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development-US Pediatric Formulation Initiative Workshop (November 2011) and via teleconferences, the PBCS Working Group considered several high-level questions that were raised to frame the classification system. In addition, the PBCS Working Group identified a number of knowledge gaps that need to be addressed to develop a rigorous PBCS. It was determined that for a PBCS to be truly meaningful, it needs to be broken down into several different age groups that account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal (GI) transit. Several critical knowledge gaps were identified, including (1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the GI tract, in the liver, and in the kidney; (2) an incomplete understanding of age-based changes in the GI, liver, and kidney physiology; (3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; (4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and (5) a lack of literature published in age-based pediatric pharmacokinetics to build physiologically- and population-based pharmacokinetic (PBPK) databases. To begin the process of establishing a PBPK model, 10 pediatric therapeutic agents were selected (based on their adult BCS classifications). These agents should be targeted for additional research in the future. The PBCS Working Group also identified several areas where greater emphasis on research was needed to enable the development of a PBCS. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  14. Summary of the NICHD-BPCA Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System (PBCS) Working Group

    PubMed Central

    Abdel-Rahman, Susan; Amidon, Gordon L.; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A.; Knipp, Gregory

    2012-01-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community as an enabling guide for the rational selection of compounds, formulation for clinical advancement and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) working group was convened to consider the possibility of developing an analogous pediatric based classification system. Since there are distinct developmental differences that can alter intestinal contents, volumes, permeability and potentially biorelevant solubilities at the different ages, the PBCS working group focused on identifying age specific issues that would need to be considered in establishing a flexible, yet rigorous PBCS. Objective To summarize the findings of the PBCS working group and provide insights into considerations required for the development of a pediatric based biopharmaceutics classification system. Methods Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development (NICHD)-US Pediatric Formulation Initiative (PFI) workshop (November 2011) and via teleconferences, the PBCS working group considered several high level questions that were raised to frame the classification system. In addition, the PBCS working group identified a number of knowledge gaps that would need to be addressed in order to develop a rigorous PBCS. Results It was determined that for a PBCS to be truly meaningful, it would need to be broken down into several different age groups that would account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal transit. Several critical knowledge gaps where identified including: 1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the gastrointestinal (GI) tract, in the liver and in the kidney; 2) an incomplete understanding of age-based changes in the GI, liver and kidney physiology; 3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; 4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and 5) a lack of literature published in age-based pediatric pharmacokinetics in order to build Physiologically- and Population-Based Pharmacokinetic (PBPK) databases. Conclusions To begin the process of establishing a PBPK model, ten pediatric therapeutic agents were selected (based on their adult BCS classifications). Those agents should be targeted for additional research in the future. The PBCS working group also identified several areas where a greater emphasis on research is needed to enable the development of a PBCS. PMID:23149009

  15. How useful is abdominal ultrasonography in dogs with diarrhoea?

    PubMed

    Mapletoft, E K; Allenspach, K; Lamb, C R

    2018-01-01

    To assess the utility of abdominal ultrasonography in the diagnostic work-up of dogs with diarrhoea. Retrospective cross-sectional study based on a referral population of dogs with diarrhoea. Associations between the clinical signs, use of abdominal ultrasonography, results of abdominal ultrasonography and subsequent work-up were examined. The utility of abdominal ultrasonography was scored as high, moderate, none or counterproductive based on review of medical records. Medical records of 269 dogs were reviewed, of which 149 (55%) had abdominal ultrasonography. The most frequent result was no ultrasonographic abnormalities affecting the intestine in 65 (44%) dogs. Ultrasonography results were associated with subsequent work-up as follows: (1) no detected abnormalities and dietary trial; (2) focal thickening of the intestinal wall, loss of intestinal wall layers or enlarged abdominal lymph nodes and ultrasound-guided fine-needle aspirates; (3) diffuse thickening of the intestinal wall or hyperechoic striations in the small intestinal mucosa and endoscopy; and (4) small intestinal foreign body and coeliotomy. Abdominal ultrasonography was considered to be diagnostic without further testing in only four (3%) dogs: two had a portosystemic shunt identified ultrasonographically, one had a linear foreign body and one had a perforated pyloric ulcer. Abdominal ultrasonography had moderate utility in 56 (38%) dogs and no utility in 79 (53%) dogs. Abdominal ultrasonography was considered counterproductive in 10 (7%) dogs because results were either falsely negative or falsely positive. These results should prompt clinicians to reconsider routine use of abdominal ultrasonography in dogs with diarrhoea. © 2017 British Small Animal Veterinary Association.

  16. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.

    PubMed

    Rizzetto, Lisa; Fava, Francesca; Tuohy, Kieran M; Selmi, Carlo

    2018-05-31

    Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    PubMed

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.

  19. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease

    PubMed Central

    Lambertz, Jessica; Weiskirchen, Sabine; Landert, Silvano; Weiskirchen, Ralf

    2017-01-01

    Fructose is one of the key dietary catalysts in the development of non-alcoholic fatty liver disease (NAFLD). NAFLD comprises a complex disease spectrum, including steatosis (fatty liver), non-alcoholic steatohepatitis, hepatocyte injury, inflammation, and fibrosis. It is also the hepatic manifestation of the metabolic syndrome, which covers abdominal obesity, insulin resistance, dyslipidemia, glucose intolerance, or type 2 diabetes mellitus. Commensal bacteria modulate the host immune system, protect against exogenous pathogens, and are gatekeepers in intestinal barrier function and maturation. Dysbalanced intestinal microbiota composition influences a variety of NAFLD-associated clinical conditions. Conversely, nutritional supplementation with probiotics and preobiotics impacting composition of gut microbiota can improve the outcome of NAFLD. In crosstalk with the host immune system, the gut microbiota is able to modulate inflammation, insulin resistance, and intestinal permeability. Moreover, the composition of microbiota of an individual is a kind of fingerprint highly influenced by diet. In addition, not only the microbiota itself but also its metabolites influence the metabolism and host immune system. The gut microbiota can produce vitamins and a variety of nutrients including short-chain fatty acids. Holding a healthy balance of the microbiota is therefore highly important. In the present review, we discuss the impact of long-term intake of fructose on the composition of the intestinal microbiota and its biological consequences in regard to liver homeostasis and disease. In particular, we will refer about fructose-induced alterations of the tight junction proteins affecting the gut permeability, leading to the translocation of bacteria and bacterial endotoxins into the blood circulation. PMID:28970836

  20. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease

    PubMed Central

    LIU, TIAN-JING; SHI, YONG-YAN; WANG, EN-BO; ZHU, TONG; ZHAO, QUN

    2016-01-01

    Angiotensin II, which is the main effector of the renin-angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proin-flammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3. PMID:26676112

  1. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    PubMed

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.

  2. Successful Treatment of Protein-Losing Enteropathy Induced by Intestinal Lymphangiectasia in a Liver Cirrhosis Patient with Octreotide: A Case Report

    PubMed Central

    Lee, Hang Lak; Kim, Jin Bae; Jeon, Yong Chul; Sohn, Joo Hyun; Hahm, Joon Soo

    2004-01-01

    A 47-yr-old man with hepatitis B virus associated liver cirrhosis was admitted to our hospital with diarrhea and generalized edema and diagnosed as protein-losing enteropathy due to intestinal lymphangiectasia by intestinal biopsy and 99mTc albumin scan. During hospitalization, he received subcutaneous octreotide therapy. After 2 weeks of octreotide therapy, follow-up albumin scan showed no albumin leakage, and the serum albumin level was sustained. We speculate that liver cirrhosis can be a cause of intestinal lymphangiectasia and administration of octreotide should be considered for patients with intestinal lymphangiectasia whose clinical and biochemical abnormalities do not respond to a low-fat diet. PMID:15201518

  3. (abstract) Effects of Radiation and Oxidative Stress on Development and Morphology of Intestinal Cells

    NASA Technical Reports Server (NTRS)

    Honda, Shuji; Nelson, Gregory; Schubert, Wayne

    1993-01-01

    Intestinal cells when subjected to oxidative stress or radiation exhibit abnormal nuclear divisions observed as: 1) supernumerary cell divisions in anterior intestinal cells or 2) incomplete nuclear division and the persistence of anaphase bridges between daughter nuclei. Two oxygen sensitive mutants, mev-1 and rad-8 were observed to exhibit spontaneous supernumerary nuclear divisions at low frequency. N2 can be induced to undergo these divisions by treatment with the superoxide dismutase (SOD) inhibitor diethyl dithicarbamate or with the free radical generator methyl viologen. By contrast, the free radical generator bleomycin produces anaphase bridges in N2 intestinal nuclei at high frequency. Intestinal anaphase bridges can be induced by ionizing radiation and their formation is dependent on dose and radiation type.

  4. [Volvolus in an adult patient due to intestinal malrotation. Case report and review of literature].

    PubMed

    Nardone, Armando; Tamini, Nicolò; Nespoli, Luca; Pirovano, Riccardo

    2010-01-01

    Intestinal malrotation is a rare cause of bowel obstruction in adults and it could create a perplexing situation for surgeons not familiar with this pediatric pathology. Symptomatic patients present either acutely with bowel obstruction and intestinal ischemia with a midgut or cecal volvolus, or chronically with vague abdominal pain. Several modalities can be used to describe the intestinal abnormality such as barium X-ray, computer tomography scans, angiography and sometimes also the explorative laparotomy. The authors report on a case 62 years-old women presented to Emergency Center for plurime episodies of biliar emesis and diffuse abdominal pain in the last 5 days and treated for bowel obstruction secondary to a midgut volvolus in anomaly of fetal intestinal rotation.

  5. Targeting palmitoyl acyltransferase ZDHHC21 improves gut epithelial barrier dysfunction resulting from burn-induced systemic inflammation.

    PubMed

    Haines, R J; Wang, C Y; Yang, C G Y; Eitnier, R A; Wang, F; Wu, M H

    2017-12-01

    Clinical studies in burn patients demonstrate a close association between leaky guts and increased incidence or severity of sepsis and other complications. Severe thermal injury triggers intestinal inflammation that contributes to intestinal epithelial hyperpermeability, which exacerbates systemic response leading to multiple organ failure and sepsis. In this study, we identified a significant function of a particular palmitoyl acyltransferase, zinc finger DHHC domain-containing protein-21 (ZDHHC21), in mediating signaling events required for gut hyperpermeability induced by inflammation. Using quantitative PCR, we show that ZDHHC21 mRNA production was enhanced twofold when intestinal epithelial cells were treated with TNF-α-IFN-γ in vitro. In addition, pharmacological targeting of palmitoyl acyltransferases with 2-bromopalmitate (2-BP) showed significant improvement in TNF-α-IFN-γ-mediated epithelial barrier dysfunction by using electric cell-substrate impedance-sensing assays, as well as FITC-labeled dextran permeability assays. Using acyl-biotin exchange assay and click chemistry, we show that TNF-α-IFN-γ treatment of intestinal epithelial cells results in enhanced detection of total palmitoylated proteins and this response is inhibited by 2-BP. Using ZDHHC21-deficient mice or wild-type mice treated with 2-BP, we showed that mice with impaired ZDHHC21 expression or pharmacological inhibition resulted in attenuated intestinal barrier dysfunction caused by thermal injury. Moreover, hematoxylin and eosin staining of the small intestine, as well as transmission electron microscopy, showed that mice with genetic interruption of ZDHHC21 had attenuated villus structure disorganization associated with thermal injury-induced intestinal barrier damage. Taken together, these results suggest an important role of ZDHHC21 in mediating gut hyperpermeability resulting from thermal injury. NEW & NOTEWORTHY Increased mucosal permeability in the gut is one of the major complications following severe burn. Here we report the novel finding that zinc finger DHHC domain-containing protein-21 (ZDHHC21) mediates gut epithelial hyperpermeability resulting from an experimental model of thermal injury. The hyperpermeability response was significantly attenuated with a pharmacological inhibitor of palmitoyl acyltransferases and in mice with genetic ablation of ZDHHC21. These findings suggest that ZDHHC21 may serve as a novel therapeutic target for treating burn-induced intestinal barrier dysfunction. Copyright © 2017 the American Physiological Society.

  6. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator.

    PubMed

    Sundh, Henrik; Kvamme, Bjørn Olav; Fridell, Frode; Olsen, Rolf Erik; Ellis, Tim; Taranger, Geir Lasse; Sundell, Kristina

    2010-11-09

    Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon.

  7. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator

    PubMed Central

    2010-01-01

    Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon. PMID:21062437

  8. Gastrointestinal obstruction caused by a radiolucent foreign body in a green iguana (Iguana Iguana)

    PubMed Central

    Büker, Markus; Foldenauer, Ulrike; Simova-Curd, Stefka; Martig, Sandra; Hatt, Jean-Michel

    2010-01-01

    This report describes an intestinal obstruction in a green iguana (Iguana iguana). The patient was presented with vomiting and subtle signs of abdominal pain. Radiographs and ultrasound imaging did not reveal any abnormalities. A coeliotomy was performed and a 30-cm piece of absorbent cotton was removed surgically from the large intestine. PMID:20676294

  9. Tectonic significance of porosity and permeability regimes in the red beds formations of the South Georgia Rift Basin

    NASA Astrophysics Data System (ADS)

    Akintunde, Olusoga M.; Knapp, Camelia C.; Knapp, James H.

    2014-09-01

    A simple, new porosity/permeability-depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Berkeley, Dunbarton, Clubhouse Crossroad-3 (CC-3) and Norris Lightsey wells. As expected, both porosity and permeability show changes with depth at the regional scale that was much greater than at local scale. The significant changes in porosity and permeability with depth suggest a highly compacted, deformed basin, and potentially, a history of uplift and erosion. The permeability is generally low both at shallow (less than 1826 ft/556.56 m) and deeper depths (greater than 1826 ft/556.56 m). Both porosity and permeability follow the normal trend, decreasing linearly with depth for most parts of the study locations with the exception of the Norris Lightsey well. A petrophysical study on a suite of well logs penetrating the Norris Lightsey red beds at depths sampled by the core-derived laboratory measurements shows an abnormal shift (by 50%) in the acoustic travel time and/or in the sonic-derived P-wave velocity that indicates possible faulting or fracturing at depth. The departure of the Norris Lightsey's porosities and permeabilities from the normal compaction trend may be a consequence of the existence of a fault/fracture controlled abnormal pressure condition at depth. The linear and non-linear behaviors of the porosity/permeability distribution throughout the basin imply the composition of the SGR red beds, and by extension analog/similar Triassic-Jurassic formations within the Eastern North American Margin have been altered by compaction, uplift, erosion and possible faulting that have shaped the evolution of these Triassic formations following the major phase of rifting.

  10. Newcomers in paediatric GI pathology: childhood enteropathies including very early onset monogenic IBD.

    PubMed

    Ensari, Arzu; Kelsen, Judith; Russo, Pierre

    2018-01-01

    Childhood enteropathies are a group of diseases causing severe chronic (>2-3 weeks) diarrhoea often starting in the first week of life with the potential for fatal complications for the affected infant. Early identification and accurate classification of childhood enteropathies are, therefore, crucial for making treatment decisions to prevent life-threatening complications. Childhood enteropathies are classified into four groups based on the underlying pathology: (i) conditions related to defective digestion, absorption and transport of nutrients and electrolytes; (ii) disorders related to enterocyte differentiation and polarization; (iii) defects of enteroendocrine cell differentiation; and (iv) disorders associated with defective modulation of intestinal immune response. While the intestinal mucosa is usually normal in enteropathies related to congenital transport or enzyme deficiencies, the intestinal biopsy in other disorders may reveal a wide range of abnormalities varying from normal villous architecture to villous atrophy and/or inflammation, or features specific to the underlying disorder including epithelial abnormalities, lipid vacuolization in the enterocytes, absence of plasma cells, lymphangiectasia, microorganisms, and mucosal eosinophilic or histiocytic infiltration. This review intends to provide an update on small intestinal biopsy findings in childhood enteropathies, the "newcomers", including very early onset monogenic inflammatory bowel disease (IBD), in particular, for the practicing pathologist.

  11. Permeability of human jejunal segments to gonyautoxins measured by the Ussing chamber technique.

    PubMed

    Mardones, Pamela; Andrinolo, Darío; Csendes, Attila; Lagos, Néstor

    2004-10-01

    The aim of this work was to study the mechanisms involved in intestinal permeability of gonyautoxins. For this purpose, the influence on transmucosal resistance of gonyautoxins and their permeability was investigated in excised human jejunal segments. To evaluate these events, the isolated mucosa was mounted in Ussing chambers for electrophysiological characterization. The organic gonyautoxin cations were applied to the mucosal side and samples collected on the serosal side. The permeability of gonyautoxins measured at 37 degrees C was 4.3-fold greater than at 4 degrees C, indicative of high cation selective transcellular permeability. In order to characterize the permeability of gonyautoxins, the effects of choline, ouabain, phlorizin and fluorescein were studied. The inhibition by these compounds was expressed as percent inhibition of the maximal flux of gonyautoxins at 120 min. Replacement of sodium ion by choline, showed the highest inhibition (85.5% from control). Ouabain, fluorescein and phlorizin inhibit the gonyautoxins flux by 53.9, 41.0 and 9.64%, respectively. The inhibition of gonyautoxins' permeability produced by ouabain and phlorizin go in parallel with an increase in the transmucosal electrical resistance (TER). This study shows that permeability of gonyautoxin cations occurred predominantly by the transcellular pathway (76%) when toxins were applied in the mucosal-serosal direction. The paracellular pathway of gonyautoxins was 24% of total permeability when compared with [3H] mannitol permeability. These findings suggests that permeability of gonyautoxins depends on temperature and processes involving sodium ion. Replacing sodium ions by choline ions showed a marked effect on TER.

  12. Everolimus for Primary Intestinal Lymphangiectasia With Protein-Losing Enteropathy.

    PubMed

    Ozeki, Michio; Hori, Tomohiro; Kanda, Kaori; Kawamoto, Norio; Ibuka, Takashi; Miyazaki, Tatsuhiko; Fukao, Toshiyuki

    2016-03-01

    Primary intestinal lymphangiectasia (PIL), also known as Waldmann's disease, is an exudative enteropathy resulting from morphologic abnormalities in the intestinal lymphatics. In this article, we describe a 12-year-old boy with PIL that led to protein-losing enteropathy characterized by diarrhea, hypoalbuminemia associated with edema (serum albumin level: 1.0 g/dL), and hypogammaglobulinemia (serum IgG level: 144 mg/dL). Severe hypoalbuminemia, electrolyte abnormalities, and tetany persisted despite a low-fat diet and propranolol. Everolimus (1.6 mg/m(2)/day) was added to his treatment as an antiangiogenic agent. With everolimus treatment, the patient's diarrhea resolved and replacement therapy for hypoproteinemia was less frequent. Hematologic and scintigraphy findings also improved (serum albumin level: 2.5 g/dL). There were no adverse reactions during the 12-month follow-up. To the best of our knowledge, this is the first report of everolimus use in a patient with PIL. Copyright © 2016 by the American Academy of Pediatrics.

  13. Recent developments in the pathophysiology of irritable bowel syndrome

    PubMed Central

    El-Salhy, Magdy

    2015-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients. PMID:26167065

  14. Early neurodevelopmental outcomes of infants with intestinal failure.

    PubMed

    So, Stephanie; Patterson, Catherine; Gold, Anna; Rogers, Alaine; Kosar, Christina; de Silva, Nicole; Burghardt, Karolina Maria; Avitzur, Yaron; Wales, Paul W

    2016-10-01

    The survival rate of infants and children with intestinal failure is increasing, necessitating a greater focus on their developmental trajectory. To evaluate neurodevelopmental outcomes in children with intestinal failure at 0-15months corrected age. Analysis of clinical, demographic and developmental assessment results of 33 children followed in an intestinal rehabilitation program between 2011 and 2014. Outcome measures included: Prechtl's Assessment of General Movements, Movement Assessment of Infants, Alberta Infant Motor Scale and Mullen Scales of Early Learning. Clinical factors were correlated with poorer developmental outcomes at 12-15months corrected age. Thirty-three infants (17 males), median gestational age 34weeks (interquartile range 29.5-36.0) with birth weight 1.98kg (interquartile range 1.17-2.50). Twenty-nine (88%) infants had abnormal General Movements. More than half had suspect or abnormal scores on the Alberta Infant Motor Scale and medium to high-risk scores for future neuromotor delay on the Movement Assessment of Infants. Delays were seen across all Mullen subscales, most notably in gross motor skills. Factors significantly associated with poorer outcomes at 12-15months included: prematurity, low birth weight, central nervous system co-morbidity, longer neonatal intensive care admission, necrotizing enterocolitis diagnosis, number of operations and conjugated hyperbilirubinemia. Multiple risk factors contribute to early developmental delay in children with intestinal failure, highlighting the importance of close developmental follow-up. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Formation of intestinal atresias in the Fgfr2IIIb-/- mice is not associated with defects in notochord development or alterations in Shh expression.

    PubMed

    Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F

    2012-09-01

    The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb-/- intestines developed atresias of the colon in either the presence or absence of Shh protein. Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb-/- genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Formation of Intestinal Atresias in the Fgfr2IIIb−/− Mice is not Associated with Defects in Notochord Development or Alterations in Shh Expression

    PubMed Central

    Reader, Amy L.; Botham, Robert A.; Franco, Marta; Zaremba, Krzysztof M.; Nichol, Peter F.

    2012-01-01

    Purpose The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacological animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh) which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and utilized the Fibroblast Growth Factor Receptor 2IIIb homozygous mutant (Fgfr2IIIb−/−) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Methods Wild-type and Fgfr2IIIb−/− mouse embryos were harvested at E10.5, E11.5, E12.5 and E13.5. Whole mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for H&E staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb−/− embryos at E10.5, then cultured for 48 hours in matrigel with FGF10 in the presence or absence of exogenous SHH protein. Explants were harvested, fixed in formalin and photographed. Results Fgfr2IIIb−/− mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb−/− intestines developed atresias of the colon in either the presence, or absence, of Shh protein. Conclusions Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb−/− genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. PMID:22572615

  17. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    PubMed

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  18. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.)

    PubMed Central

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Cepeda-Cañedo, Eduardo

    2017-01-01

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp(AP-BL)) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp(AP-BL) values than triglycosides. Sugar substituents affected the Papp(AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo. PMID:28829356

  19. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption.

    PubMed

    Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H

    2016-01-01

    Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice.

    PubMed

    Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine; Joshi, Shweta; Bhat, Vikas; Durden, Donald L; Mosnier, Laurent O; Drygalski, Annette von

    2018-06-01

    Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression. Schattauer GmbH Stuttgart.

  1. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    PubMed

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  2. Leaky gut and diabetes mellitus: what is the link?

    PubMed

    de Kort, S; Keszthelyi, D; Masclee, A A M

    2011-06-01

    Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  3. The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers.

    PubMed

    Parr, Alan; Hidalgo, Ismael J; Bode, Chris; Brown, William; Yazdanian, Mehran; Gonzalez, Mario A; Sagawa, Kazuko; Miller, Kevin; Jiang, Wenlei; Stippler, Erika S

    2016-01-01

    Currently, the FDA allows biowaivers for Class I (high solubility and high permeability) and Class III (high solubility and low permeability) compounds of the Biopharmaceutics Classification System (BCS). Scientific evidence should be provided to support biowaivers for BCS Class I and Class III (high solubility and low permeability) compounds. Data on the effects of excipients on drug permeability are needed to demonstrate that commonly used excipients do not affect the permeability of BCS Class III compounds, which would support the application of biowaivers to Class III compounds. This study was designed to generate such data by assessing the permeability of four BCS Class III compounds and one Class I compound in the presence and absence of five commonly used excipients. The permeability of each of the compounds was assessed, at three to five concentrations, with each excipient in two different models: Caco-2 cell monolayers, and in situ rat intestinal perfusion. No substantial increases in the permeability of any of the compounds were observed in the presence of any of the tested excipients in either of the models, with the exception of disruption of Caco-2 cell monolayer integrity by sodium lauryl sulfate at 0.1 mg/ml and higher. The results suggest that the absorption of these four BCS Class III compounds would not be greatly affected by the tested excipients. This may have implications in supporting biowaivers for BCS Class III compounds in general.

  4. Imaging diagnosis--muscular hypertrophy of the small intestine and pseudodiverticula in a horse.

    PubMed

    Navas De Solís, Cristobal; Biscoe, Elisabeth W; Lund, Caleb M; Labbe, Karyn; Muñoz, Juan; Farnsworth, Kelly

    2015-01-01

    A 14-year-old Thoroughbred gelding was presented for chronic colic and weight loss. Transcutaneous and transrectal abdominal ultrasonography revealed distended, thickened small intestine with primary thickening of the muscularis and a focally more thickened loop with an echoic structure crossing the wall from the mucosa to the serosa. Visualization of diffuse thickening of the muscularis (muscular hypertrophy of the small intestine) and a focal lesion (pseudodiverticulum) helped clinicians make informed decisions. This case illustrates the importance of transabdominal and transrectal ultrasonography in horses with chronic colic and the relevance of considering the abnormalities in layering pattern of the intestinal wall. © 2014 American College of Veterinary Radiology.

  5. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    PubMed Central

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-01-01

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury. PMID:27918411

  6. Gut microbiota-related complications in cirrhosis

    PubMed Central

    Gómez-Hurtado, Isabel; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-01-01

    Gut microbiota plays an important role in cirrhosis. The liver is constantly challenged with commensal bacteria and their products arriving through the portal vein in the so-called gut-liver axis. Bacterial translocation from the intestinal lumen through the intestinal wall and to mesenteric lymph nodes is facilitated by intestinal bacterial overgrowth, impairment in the permeability of the intestinal mucosal barrier, and deficiencies in local host immune defences. Deranged clearance of endogenous bacteria from portal and systemic circulation turns the gut into the major source of bacterial-related complications. Liver function may therefore be affected by alterations in the composition of the intestinal microbiota and a role for commensal flora has been evidenced in the pathogenesis of several complications arising in end-stage liver disease such as hepatic encephalopathy, splanchnic arterial vasodilatation and spontaneous bacterial peritonitis. The use of antibiotics is the main therapeutic pipeline in the management of these bacteria-related complications. However, other strategies aimed at preserving intestinal homeostasis through the use of pre-, pro- or symbiotic formulations are being studied in the last years. In this review, the role of intestinal microbiota in the development of the most frequent complications arising in cirrhosis and the different clinical and experimental studies conducted to prevent or improve these complications by modifying the gut microbiota composition are summarized. PMID:25400446

  7. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    PubMed

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  8. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  9. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut

    PubMed Central

    Seki, Ekihiro; Schnabl, Bernd

    2012-01-01

    Liver fibrosis occurs as a wound-healing scar response following chronic liver inflammation including alcoholic liver disease, non-alcoholic steatohepatitis, viral hepatitis, cholestatic liver disease and autoimmune liver diseases. The liver has a unique vascular system within the gastrointestinal tract, as the majority of the liver's blood supply comes from the intestine through the portal vein. When the intestinal barrier function is disrupted, an increase in intestinal permeability leads to the translocation of intestine-derived bacterial products such as lipopolysaccharide (LPS) and unmethylated CpG containing DNA to the liver via the portal vein. These gut-derived bacterial products stimulate innate immune receptors, namely Toll-like receptors (TLRs), in the liver. TLRs are expressed on Kupffer cells, endothelial cells, dendritic cells, biliary epithelial cells, hepatic stellate cells, and hepatocytes. TLRs activate these cells to contribute to acute and chronic liver diseases. This review summarizes recent studies investigating the role of TLRs, intestinal microbiota and bacterial translocation in liver fibrosis, alcoholic liver disease and non-alcoholic steatohepatitis. PMID:22124143

  10. Gastrointestinal stromal tumor of Meckel's diverticulum: a rare cause of intestinal volvulus.

    PubMed

    Cengız, Fevzi; Sun, Mehmet Ali; Esen, Özgür Sipahi; Erkan, Nazif

    2012-08-01

    Meckel's diverticulum is the most common congenital abnormality of the gastrointestinal tract. Most cases are asymptomatic; however, when symptomatic, it is often misdiagnosed at presentation. Common complications presenting in adults include bleeding, obstruction, diverticulitis, and perforation. Tumors within a Meckel's diverticulum are rare. Herein, we present a gastrointestinal stromal tumor arising from the Meckel's diverticulum that led to intestinal obstruction by volvulus.

  11. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  12. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Investigation of auranofin-induced diarrhoea.

    PubMed Central

    Behrens, R; Devereaux, M; Hazleman, B; Szaz, K; Calvin, J; Neale, G

    1986-01-01

    Gastrointestinal function was assessed in six patients with rheumatoid arthritis who had developed diarrhoea on treatment with Auranofin. With the administration of Auranofin whole gut transit time decreased markedly (to 50% or less of control values) in five of six patients. The speed of passage of intestinal contents through the colon was certainly increased but attempts to assess transit through the upper gastrointestinal tract failed because the breath hydrogen method gave inconclusive results. There was no evidence of colitis and in all cases biopsy of the rectal mucosa appeared normal by light microscopy. In the five patients with rapid intestinal transit faecal weight increased more than two-fold (range +44 to +335%) although in only three cases were the changes sufficient to cause an increased frequency of bowel action. Overall the concentration of sodium in faecal water increased three-fold (mean values rose from 10.6 to 38.3 mmol/l). There were no significant changes in the concentrations of either potassium or chloride but bicarbonate was reduced. Faecal pH fell from a mean value of 7.5 (range 6.8-7.9) to a mean value of 6.4 (range 6.0-7.4). In the three patients who developed overt diarrhoea and in two others taking Auranofin the intestinal uptake of 51Cr-EDTA was increased on average three-fold and there was a similar change in the ratio of the absorption of lactulose/mannitol. The mean clearance of alpha-1-antitrypsin from the circulation into the gastrointestinal tract was doubled. These data indicate an increase in intestinal permeability. In contrast the absorption of vitamin B12 was unaffected and there was no significant change in the excretion of faecal fat although one patient developed mild steatorrhoea. Thus in a selected group of subjects with rheumatoid arthritis the administration of Auranofin caused diarrhoea in association with a reversible defect in intestinal permeability but without significant change in the absorption of nutrients. PMID:3081411

  14. Evaluation of the bioavailability of major withanolides of Withania somnifera using an in vitro absorption model system

    PubMed Central

    Devkar, Santosh T.; Kandhare, Amit D.; Sloley, Brian D.; Jagtap, Suresh D.; Lin, James; Tam, Yun K.; Katyare, Surendra S.; Bodhankar, Subhash L.; Hegde, Mahabaleshwar V.

    2015-01-01

    Withania somnifera (L.) Dunal, shows several pharmacological properties which are attributed mainly to the withanolides present in the root. The efficacy of medicinally active withanolides constituents depends on the absorption and transportation through the intestinal epithelium. We examined these characteristics by employing the Sino-Veda Madin-Darby canine kidney cells culture system, which under in vitro condition shows the absorption characteristics similar to the human intestinal epithelium. Thus, the aim of the present investigation was to assess the bioavailability of individual withanolides. Withanolides were diluted in Hank's buffered saline at a concentration of 2 μg/ml were tested for permeability studies carried out for 1 h duration. Permeability was measured in terms of efflux pump (Peff) in cm/s. Peff values of withanolide A (WN A), withanone (WNN), 1,2-deoxywithastramonolide (1,2 DWM), withanolide B (WN B), withanoside IV-V (WS IV-V), and withaferin A were 4.05 × 10−5, 2.06 × 10−5, 1.97 × 10−5, 1.80 × 10−5, 3.19 × 10−6, 3.03 × 10−6 and 3.30 × 10−7 respectively. In conclusion, the nonpolar and low molecular weight compounds (WN A, WNN, 1,2 DWM, and WN B) were highly permeable. As against this, the glycosylated and polar WS IV and WS V showed low permeability. Surprisingly and paradoxically, the highly biologically active withaferin A was completely impermeable, suggesting that further studies possibly using human epithelial colorectal adenocarcinoma (Caco-2) cells may be needed to delineate the absorption characteristics of withanolides, especially withaferin A. PMID:26605156

  15. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues.

    PubMed

    Pinier, Maud; Fuhrmann, Gregor; Galipeau, Heather J; Rivard, Nathalie; Murray, Joseph A; David, Chella S; Drasarova, Hana; Tuckova, Ludmila; Leroux, Jean-Christophe; Verdu, Elena F

    2012-02-01

    Copolymers of hydroxyethyl methacrylate and styrene sulfonate complex with isolated gliadin (the toxic fraction of gluten) and prevent damage to the intestinal barrier in HLA-HCD4/DQ8 mice. We studied the activity toward gluten and hordein digestion and biologic effects of poly(hydroxyethyl methacrylate-co-styrene sulfonate (P(HEMA-co-SS)). We also investigated the effect of gliadin complex formation in intestinal biopsy specimens from patients with celiac disease. We studied the ability of P(HEMA-co-SS) to reduce digestion of wheat gluten and barley hordein into immunotoxic peptides using liquid chromatography-mass spectrometry. The biodistribution and pharmacokinetic profile of orally administered P(HEMA-co-SS) was established in rodents using tritium-labeled polymer. We assessed the capacity of P(HEMA-co-SS) to prevent the immunologic and intestinal effects induced by a gluten-food mixture in gluten-sensitized HLA-HCD4/DQ8 mice after short-term and long-term administration. We measured the effects of gliadin complex formation on cytokine release ex vivo using intestinal biopsy specimens from patients with celiac disease. P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein in vitro, thereby decreasing formation of toxic peptides associated with celiac disease. After oral administration to rodents, P(HEMA-co-SS) was predominantly excreted in feces, even in the presence of low-grade mucosal inflammation and increased intestinal permeability. In gluten-sensitized mice, P(HEMA-co-SS) reduced paracellular permeability, normalized anti-gliadin immunoglobulin A in intestinal washes, and modulated the systemic immune response to gluten in a food mixture. Furthermore, incubation of P(HEMA-co-SS) with mucosal biopsy specimens from patients with celiac disease showed that secretion of tumor necrosis factor-α was reduced in the presence of partially digested gliadin. The copolymer P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein and attenuated the immune response to gluten in a food mixture in rodents. It might be developed to prevent or reduce gluten-induced disorders in humans. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    Cationic hydroxyethyl cellulose (cHEC) , was fed to hamsters to determine if this new soluble fiber had an effect on hypercholesterolemia and dyslipidemia associated with cardiovascular disease. In this study, Golden Syrian hamsters were supplemented with 3-8% cHEC or microcrystalline cellulose (MC...

  17. A randomized, double-blind, placebo-controlled trial of Rifaximin, a nonabsorbable antibiotic, in the treatment of tropical enteropathy

    USDA-ARS?s Scientific Manuscript database

    Tropical enteropathy is characterized by an increased urinary lactulose-to-mannitol (L:M) ratio on a site-specific sugar absorption test and is associated with increased intestinal permeability and decreased nutrient absorptive capacity. The etiology of tropical enteropathy is postulated to be intes...

  18. Additional common bean in the diet of Malawian children does not affect linear growth, but reduces intestinal permeability

    USDA-ARS?s Scientific Manuscript database

    Chronic malnutrition, as manifested by linear growth faltering, is pervasive among rural African children. Improvements in complementary feeding may decrease the burden of environmental enteric dysfunction (EED) and thus improve growth in children during the critical first 1000 d of development. We...

  19. Effects of mineral and vitamin supplementation to pasteurized whole milk diets on growth and health of preruminant Holstein bull calves

    USDA-ARS?s Scientific Manuscript database

    Our objective was to determine whether supplementation of vitamins and trace minerals (VTM), formulated to meet or exceed NRC requirements when added to pasteurized whole milk (PWM), increases challenge resolution and prevents intestinal macromolecular permeability after injection with bacterial lip...

  20. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones.

    PubMed

    Serra, H; Mendes, T; Bronze, M R; Simplício, Ana Luísa

    2008-04-01

    Three glycosilated flavonoids (diosmin, hesperidin and naringin) and respective aglycones were characterized in terms of their apparent ionisation constants and bidirectional permeability using the cellular model Caco-2 as well as the artificial membrane model PAMPA. Ionisation curves were established by capillary electrophoresis. It was confirmed that significant amounts of the aglycones are ionised at physiological pH whereas the glycosides are in the neutral form. Permeation was not detected for the glycosides in either the apical-to-basolateral or basolateral-to-apical directions confirming the need for metabolism before absorption through the intestinal membrane. The aglycones permeated in both directions with apparent permeabilities (P(app)) in the range of 1-8x10(-5) cm/s. The results from both in vitro methods correlated providing some evidence of passive transport; however, the hypothesis of active transport cannot be excluded particularly in the case of diosmetin. Metabolism of the aglycones was detected with the cell model, more extensively when loading in the apical side. Some of the metabolites were identified as glucuronide conjugates by enzymatic hydrolysis.

  1. Introduction for the special issue on recent advances in drug delivery across tissue barriers.

    PubMed

    Mrsny, Randall J; Brayden, David J

    2016-01-01

    This special issue of Tissue Barriers contains a series of reviews with the common theme of how biological barriers established at epithelial tissues limit the uptake of macromolecular therapeutics. By improving our functional understanding of these barriers, the majority of the authors have highlighted potential strategies that might be applied to the non-invasive delivery of biopharmaceuticals that would otherwise require an injection format for administration. Half of the articles focus on the potential of particular technologies to assist oral delivery of peptides, proteins and other macromolecules. These include use of prodrug chemistry to improve molecule stability and permeability, and the related potential for oral delivery of poorly permeable agents by cell-penetrating peptides and dendrimers. Safety aspects of intestinal permeation enhancers are discussed, along with the more recent foray into drug-device combinations as represented by intestinal microneedles and externally-applied ultrasound. Other articles highlight the crossover between food research and oral delivery based on nanoparticle technology, while the final one provides a fascinating interpretation of the physiological problems associated with subcutaneous insulin delivery and how inefficient it is at targeting the liver.

  2. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  3. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis.

    PubMed

    Li, H; Sun, J; Du, J; Wang, F; Fang, R; Yu, C; Xiong, J; Chen, W; Lu, Z; Liu, J

    2018-05-01

    Traumatic brain injury (TBI) is a common occurrence following gastrointestinal dysfunction. Recently, more and more attentions are being focused on gut microbiota in brain and behavior. Glucagon-like peptide-1 (GLP-1) is considered as a mediator that links the gut-brain axis. The aim of this study was to explore the neuroprotective effects of Clostridium butyricum (Cb) on brain damage in a mouse model of TBI. Male C57BL/6 mice were subjected to a model of TBI-induced by weight-drop impact head injury and were treated intragastrically with Cb. The cognitive deficits, brain water content, neuronal death, and blood-brain barrier (BBB) permeability were evaluated. The expression of tight junction (TJ) proteins, Bcl-2, Bax, GLP-1 receptor (GLP-1R), and phosphorylation of Akt (p-Akt) in the brain were also measured. Moreover, the intestinal barrier permeability, the expression of TJ protein and GLP-1, and IL-6 level in the intestine were detected. Cb treatment significantly improved neurological dysfunction, brain edema, neurodegeneration, and BBB impairment. Meanwhile, Cb treatment also significantly increased the expression of TJ proteins (occludin and zonula occluden-1), p-Akt and Bcl-2, but decreased expression of Bax. Moreover, Cb treatment exhibited more prominent effects on decreasing the levels of plasma d-lactate and colonic IL-6, upregulating expression of Occludin, and protecting intestinal barrier integrity. Furthermore, Cb-treated mice showed increased the secretion of intestinal GLP-1 and upregulated expression of cerebral GLP-1R. Our findings demonstrated the neuroprotective effect of Cb in TBI mice and the involved mechanisms were partially attributed to the elevating GLP-1 secretion through the gut-brain axis. © 2017 John Wiley & Sons Ltd.

  4. Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion

    PubMed Central

    Knauf, Felix; Ko, Narae; Jiang, Zhirong; Robertson, William G.; Van Itallie, Christina M.; Anderson, James M.

    2011-01-01

    Mice lacking the oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium-oxalate stones as a result of a defect in intestinal oxalate secretion, but what accounts for the absorptive oxalate flux remains unknown. We measured transepithelial absorption of [14C]oxalate simultaneously with the flux of [3H]mannitol, a marker of the paracellular pathway, across intestine from wild-type and Slc26a6-null mice. We used the anion transport inhibitor DIDS to investigate other members of the SLC26 family that may mediate transcellular oxalate absorption. Absorptive flux of oxalate in duodenum was similar to mannitol, insensitive to DIDS, and nonsaturable, indicating that it is predominantly passive and paracellular. In contrast, in wild-type mice, secretory flux of oxalate in duodenum exceeded that of mannitol, was sensitive to DIDS, and saturable, indicating transcellular secretion of oxalate. In Slc26a6-null mice, secretory flux of oxalate was similar to mannitol, and no net flux of oxalate occurred. Absorptive fluxes of both oxalate and mannitol varied in parallel in different segments of small and large intestine. In epithelial cell lines, modulation of the charge selectivity of the claudin-based pore pathway did not affect oxalate permeability, but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in parallel. Moreover, formation of soluble complexes with cations did not affect oxalate absorption. In conclusion, absorptive oxalate flux occurs through the paracellular “leak” pathway, and net absorption of dietary oxalate depends on the relative balance between absorption and SLC26A6-dependent transcellular secretion. PMID:22021714

  5. Gut as a target for cadmium toxicity.

    PubMed

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans.

    PubMed

    Prot, Jean Matthieu; Maciel, Luis; Bricks, Thibault; Merlier, Franck; Cotton, Jérôme; Paullier, Patrick; Bois, Fréderic Yves; Leclerc, Eric

    2014-10-01

    We developed a microfluidic platform to investigate paracetamol intestinal and liver first pass metabolism. This approach was coupled with a mathematical model to estimate intrinsic in vitro parameters and to predict in vivo processes. The kinetic modeling estimated the paracetamol and paracetamol sulfate permeabilities, the sulfate and glucuronide effluxes in the intestine compartment. Based on a gut model, we estimated intrinsic intestinal clearance of between 26 and 77 L/h for paracetamol in humans, a permeability of 10 L/h, and a gut availability between 0.17 and 0.53 (compared to 0.95-1 in vivo). The role played by the liver in paracetamol metabolism was estimated via in vitro intrinsic clearances of 7.6, 13.6, and 11.5 µL/min/10(6) cells for HepG2/C3a, rat primary hepatocytes, and human primary hepatocytes, respectively. Based on a parallel tube model to describe the liver, the paracetamol hepatic clearance, and the paracetamol hepatic availability in humans were estimated at 6.5 mL/min/kg of bodyweight (BDW) and 0.7, respectively (when compared to 5 mL/min/kg of BDW and 0.77 to 0.88 for in vivo values, respectively). The drug availability was predicted ranging between 0.24 and 0.41 (0.88 in vivo). The overall approach provided a first step in an integrated strategy combining in silico/in vitro methods based on microfluidic for evaluating drug absorption, distribution and metabolism processes. © 2014 Wiley Periodicals, Inc.

  7. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds

    PubMed Central

    Soons, Merel B.

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12–17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds. PMID:29614085

  8. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds.

    PubMed

    Kleyheeg, Erik; Claessens, Mascha; Soons, Merel B

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12-17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds.

  9. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats.

    PubMed

    Ait-Belgnaoui, Afifa; Durand, Henri; Cartier, Christel; Chaumaz, Gilles; Eutamene, Hélène; Ferrier, Laurent; Houdeau, Eric; Fioramonti, Jean; Bueno, Lionel; Theodorou, Vassilia

    2012-11-01

    Intestinal barrier impairment is incriminated in the pathophysiology of intestinal gut disorders associated with psychiatric comorbidity. Increased intestinal permeability associated with upload of lipopolysaccharides (LPS) translocation induces depressive symptoms. Gut microbiota and probiotics alter behavior and brain neurochemistry. Since Lactobacillus farciminis suppresses stress-induced hyperpermeability, we examined whether (i) L. farciminis affects the HPA axis stress response, (ii) stress induces changes in LPS translocation and central cytokine expression which may be reversed by L. farciminis, (iii) the prevention of "leaky" gut and LPS upload are involved in these effects. At the end of the following treatments female rats were submitted to a partial restraint stress (PRS) or sham-PRS: (i) oral administration of L. farciminis during 2 weeks, (ii) intraperitoneal administration of ML-7 (a specific myosin light chain kinase inhibitor), (iii) antibiotic administration in drinking water during 12 days. After PRS or sham-PRS session, we evaluated LPS levels in portal blood, plasma corticosterone and adrenocorticotropic hormone (ACTH) levels, hypothalamic corticotropin releasing factor (CRF) and pro-inflammatory cytokine mRNA expression, and colonic paracellular permeability (CPP). PRS increased plasma ACTH and corticosterone; hypothalamic CRF and pro-inflammatory cytokine expression; CPP and portal blood concentration of LPS. L. farciminis and ML-7 suppressed stress-induced hyperpermeability, endotoxemia and prevented HPA axis stress response and neuroinflammation. Antibiotic reduction of luminal LPS concentration prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines. The attenuation of the HPA axis response to stress by L. farciminis depends upon the prevention of intestinal barrier impairment and decrease of circulating LPS levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery.

    PubMed

    Almeida, Andreia; Silva, Daniella; Gonçalves, Virginia; Sarmento, Bruno

    2018-04-01

    In this work, self-assembled amphiphilic micelles based on chitosan (CS) and polycaprolactone (PCL) were produced and used as carriers of paclitaxel (PTX) to improve its intestinal pharmacokinetic profile. Chitosan-grafted-polycaprolactone (CS-g-PCL) was synthesized through a carbodiimide reaction by amidation and confirmed by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance analysis ( 1 H NMR), and contact angle evaluation. Micelles were produced by solvent evaporation method, and the critical micelle concentration was investigated by conductimetry. The obtained micelles were of 408-nm mean particle size, narrow size distribution (polydispersity index of 0.335) and presented positive surface charge around 30 mV. The morphology of micelles assessed by transmission electron microscopy (TEM) revealed round and smooth surface, in agreement with dynamic light scattering measurements. The association efficiency determined by high-performance liquid chromatography (HPLC) was as high as 82%. The in vitro cytotoxicity of the unloaded and PTX-loaded micelles was tested against Caco-2 and HT29-MTX intestinal epithelial cells, resulting in the absence of cell toxicity for all formulations. Moreover, the permeability of PTX-loaded micelles in Caco-2 monolayer and Caco-2/HT29-MTX co-culture model was determined. Results showed that the permeability of PTX was higher in Caco-2/HT29-MTX co-culture model compared with Caco-2 monolayer due to the mucoadhesive character of micelles, acting as a platform to deliver PTX at the sites of absorption. Therefore, it can be concluded that the PTX-loaded CS-g-PCL micelles, employed for the first time as PTX carriers, may be a potential drug carrier for the intestinal delivery of hydrophobic drugs, particularly anticancer agents.

  11. Variable Isoflavone Contents of Red Clover Products Affect Intestinal Disposition of Biochanin A, Formononetin, Genistein and Daidzein

    PubMed Central

    Wang, Stephen W.J.; Chen, Yan; Joseph, Tiby; Hu, Ming

    2009-01-01

    Marketed red clover products use a wide variety of labels and the isoflavone contents from the lable is ambiguous. In the present study, we analyzed the content of various isoflavone products, and determined a) the content and b) how sample matrix of red clover products affects intestinal disposition of main isoflavones within it using the human intestinal Caco-2 cell model. Analysis using high and ultra-performance liquid chromatography indicates that the isoflavone content varied significantly (p<0.05) between the chosen products. Consequently, rates of isoflavone absorption across the Caco-2 cell monolayers varied (p<0.05) greatly. Unexpectedly, permeabilities of biochanin A and formononetin (two key biomarkers) were found to be significantly affected (p<0.05) by the product matrix. As expected, biochanin A was the only isoflavone with noticeable metabolite peaks in both apical and basolateral sides. Interestingly, rates of metabolism and the polarity of the glucuronidated biochanin A excretion were also significantly altered (p<0.05) by product matrix. Studies using breast cancer resistance protein inhibitor dipyridamole showed that both the apical and basolateral excretion of biochanin A glucuronides were significantly (P<0.05) reduced (7.5 and 9.4-fold, respectively) when dipyridamole is present. This provides evidence that BCRP is the main transporter responsible for the apical efflux of isoflavone glucuronides. In conclusion, the isoflavone contents of the marketed red clover products are highly variable, and product matrix significantly affected intestinal disposition of red clover isoflavones by altering their absorption rates, permeabilities, biochanin A glucuronide excretion rates, and the polarity of biochanin A glucuronide excretion. This research provides scientific evidence to support the standardization effort so that consumers can make intelligent product choices. PMID:18370585

  12. Associations between intestinal mucosal function and changes in plasma zinc concentration following zinc supplementation1

    PubMed Central

    Wessells, K. Ryan; Hess, Sonja Y.; Rouamba, Noel; Ouédraogo, Zinewendé P.; Kellogg, Mark; Goto, Rie; Duggan, Christopher; Ouédraogo, Jean-Bosco; Brown, Kenneth H.

    2015-01-01

    Objectives Subclinical environmental enteropathy is associated with malabsorption of fats, carbohydrates, and vitamins A, B12 and folate; however, little information is available on mineral absorption. We therefore investigated the relationship between intestinal mucosal function (measured by the lactulose:mannitol permeability test and plasma citrulline concentration), and zinc absorption, as estimated by the change in plasma zinc concentration (PZC) following short-term zinc or placebo supplementation. Methods We conducted a randomized, partially-masked, placebo-controlled trial among 282 apparently healthy children 6–23 mo of age in Burkina Faso. After completing baseline intestinal function tests, participants received either 5 mg zinc, as zinc sulfate, or placebo, daily for 21 d. Results At baseline, mean ± SD PZC was 62.9 ± 11.9 µg/dL; median (IQR) urinary lactulose:mannitol (L:M) recovery ratio and plasma citrulline concentration were 0.04 (0.03 – 0.07) and 11.4 (9.0 – 15.6) µmol/L, respectively. Change in PZC was significantly greater in the zinc supplemented versus placebo group (15.6 ± 13.3 µg/dL vs. 0.02 ± 10.9 µg/dL; P < 0.0001), and was negatively associated with initial urinary L:M recovery ratio (−1.1 µg/dL per 50% increase in urinary L:M recovery ratio; P = 0.014); this latter relationship did not differ between supplementation groups (P = 0.26). Baseline plasma citrulline concentration was not associated with change in PZC. Conclusions Although altered intestinal permeability may reduce dietary zinc absorption, it likely does not undermine the efficacy of zinc supplementation, given the large increases in PZC following short-term zinc supplementation observed in this study, even among those with increased urinary L:M recovery ratios. PMID:23689263

  13. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)

    PubMed Central

    Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy

    2006-01-01

    Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004

  14. Enhanced Oral Bioavailability of Domperidone with Piperine in Male Wistar Rats: Involvement of CYP3A1 and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-01-01

    Domperidone is a commonly used antiemetic drug. The oral bioavailability of domperidone is very low due to its rapid first pass metabolism in the intestine and liver. Piperine, the main alkaloid present in black pepper has been reported to show inhibitory effects on Cytochrome P-450 (CYP-450) enzymes and P-glycoprotein (P-gp). In the present study we investigated the effect of piperine pretreatment on the intestinal transport and oral bioavailability of domperidone in male Wistar rats. The intestinal transport of domperidone was evaluated by an in-vitro non-everted sac method and in-situ single pass intestinal perfusion (SPIP) study. The oral pharmacokinetics of domperidone was evaluated by conducting oral bioavailability study in rats. A statistically significant improvement in apparent permeability (Papp) was observed in rats pretreated with piperine compared to the respective control group. The effective permeability (Peff) of domperidone was increased in the ileum of the piperine treated group. Following pretreatment with piperine, the peak plasma concentration (Cmax) and area under the concentration- time curve (AUC) were significantly increased. A significant decrease in time to reach maximum plasma concentration (Tmax), clearance and elimination rate constant (Kel) was observed in rats pretreated with piperine. Piperine enhanced the oral bioavailability of domperidone by inhibiting CYP3A1 and P-gp in rats. This observation suggests the possibility that the combination of piperine with other CYP3A4 and P-gp dual substrates may also improve bioavailability. Further clinical studies are recommended to verify this drug interaction in human volunteers and patients. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  15. Tight junctions and IBS--the link between epithelial permeability, low-grade inflammation, and symptom generation?

    PubMed

    Piche, T

    2014-03-01

    In this issue of Neurogastroenterology and Motility, Dr Ewa Wilcz-Villega and colleagues report low expression of E-cadherin, a tight junction protein involved in the regulation of paracellular permeability, in the colonic mucosa of patients with the irritable bowel syndrome (IBS) with predominance of diarrhea (IBS-D) or alternating symptoms (IBS-A). These findings constitute an improvement in our knowledge of epithelial barrier disruption associated with IBS. There is mounting evidence to indicate that a compromised epithelial barrier is associated with low-grade immune activation and intestinal dysfunction in at least a proportion of IBS patients. During the last 10 years of research, much interest has focused on the increase in the number of different types of immune cells in the gut mucosa of IBS patients including: mast cells, T lymphocytes, and other local cells such as enteroendocrine cells. The inflammatory mediators released by these cells or other luminal factors could be at the origin of altered epithelial barrier functions and enteric nervous system signaling, which lead to gut hypersensitivity. A current conceptual framework states that clinical symptoms of IBS could be associated with structural and functional abnormalities of the mucosal barrier, highlighting the crucial importance of elucidating the contributory role of epithelial barrier defects in the pathogenesis of IBS. More importantly, disruption of the epithelial barrier could also participate in the generation of persistent abdominal pain and discomfort mimicking IBS in patients with inflammatory bowel diseases considered in remission. This mini review gives a brief summary of clinical and experimental evidence concerning the mechanisms underlying epithelial barrier defects in IBS. © 2014 John Wiley & Sons Ltd.

  16. Ageing sensitized by iPLA2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids.

    PubMed

    Jiao, Li; Gan-Schreier, Hongying; Zhu, Xingya; Wei, Wang; Tuma-Kellner, Sabine; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-12-01

    Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA 2 β is a homeostatic PLA 2 by playing a role in phospholipid metabolism and remodeling. Global iPLA 2 β -/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA 2 β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA 2 β -/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA 2 β -/- mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA 2 β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA 2 β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure.

    PubMed

    Tan, Shan-Jun; Yu, Chao; Yu, Zhen; Lin, Zhi-Liang; Wu, Guo-Hao; Yu, Wen-Kui; Li, Jie-Shou; Li, Ning

    2016-05-01

    Peritoneal air exposure is needed in open abdominal surgery, but long-time exposure could induce intestinal mucosal barrier dysfunction followed by many postoperative complications. High-fat enteral nutrition can ameliorate intestinal injury and improve intestinal function in many gastrointestinal diseases. In the present study, we investigated the effect of high-fat enteral nutrition on intestinal mucosal barrier after peritoneal air exposure and the underlying mechanism. Male adult rats were administrated saline, low-fat or high-fat enteral nutrition via gavage before and after peritoneal air exposure for 3 h. Rats undergoing anesthesia without laparotomy received saline as control. Twenty four hours after surgery, samples were collected to assess intestinal mucosal barrier changes in serum D-lactate levels, intestinal permeability, intestinal tight junction protein ZO-1 and occludin levels, and intestinal histopathology. The levels of malondialdehyde and the activity of superoxide dismutase in the ileum tissue were also measured to assess the status of intestinal oxidative stress. High-fat enteral nutrition significantly decreased the serum D-lactate level and increased the intestinal tight junction protein ZO-1 level when compared to the group treated with low-fat enteral nutrition (P < 0.05). Meanwhile, histopathologic findings showed that the intestinal mucosal injury assessed by the Chiu's score and the intestinal epithelial tight junction were also improved much more in the high-fat enteral nutrition-treated group (P < 0.05). In addition, the intestinal malondialdehyde level was lower, and the intestinal superoxide dismutase activity was higher in the high-fat enteral nutrition-treated group than that in the low-fat enteral nutrition-treated group (P < 0.05). These results suggest that high-fat enteral nutrition could reduce intestinal mucosal barrier damage after peritoneal air exposure, and the underlying mechanism may be associated with its antioxidative action. Perioperative administration of high-fat enteral nutrition may be a promising intervention to preserve intestinal mucosal barrier function in open abdominal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    PubMed

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function, which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes. Copyright © 2017 the American Physiological Society.

  19. Inhibition of IKKß in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality

    PubMed Central

    Dominguez, Jessica A.; Samocha, Alexandr J.; Liang, Zhe; Burd, Eileen M.; Farris, Alton B.; Coopersmith, Craig M.

    2013-01-01

    Objective NF-kB is a critical regulator of cell survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase (IKK)-ß. Design Prospective, randomized, controlled study. Setting Animal laboratories in university medical centers. Subjects and Interventions Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkßf/Δ) and wild type (WT) mice were subjected to sham laparotomy or cecal ligation and puncture (CLP). Animals were sacrified at 24 hours or followed seven days for survival. Measurements and Main Results Septic WT mice had decreased villus length compared to sham mice while villus atrophy was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared to sham mice which was further exacerbated in Vil-Cre/Ikkßf/Δ mice. Sepsis induced intestinal hyperpermeability in WT mice compared to sham mice, which was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. This was associated with increased intestinal expression of claudin-2 in septic WT mice, which was further increased in septic Vil-Cre/Ikkßf/Δ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following CLP, and IL-10 and MCP-1 levels were higher in septic Vil-Cre/Ikkßf/Δ mice than septic WT mice. All septic mice were bacteremic, but no differences in bacterial load were identified between WT and Vil-Cre/Ikkßf/Δ mice. To determine the functional significance of these results, animals were followed for survival. Septic WT mice had lower mortality than septic Vil-Cre/Ikkßf/Δ mice (47% vs. 80%, p<0.05). Anti-TNF administration decreased intestinal apoptosis, permeability and mortality in WT septic mice and a similar improvement in intestinal integrity and survival were seen when anti-TNF was given to Vil-Cre/Ikkßf/Δ mice. Conclusions Enterocyte-specific NF-kB has a beneficial role in sepsis by partially preventing sepsis-induced increases in apoptosis and permeability, which are associated with worsening mortality. PMID:23939348

  20. Role of a novel pyridostigmine bromide-phospholipid nanocomplex in improving oral bioavailability.

    PubMed

    Tan, Qun-you; Hu, Ni-ni; Liu, Guo-dong; Yin, Hua-feng; Zhang, Li; Wang, Hong; Lu, Lu-yang; Zhang, Jing-qing

    2012-03-01

    A novel pyridostigmine bromide (PB)-phospholipid nanocomplex (PBPLC) was prepared to increase the bioavailability of PB. A central composite design approach was employed for process optimization. The physicochemical properties of PBPLC were investigated by means of differential scanning calorimetry, ultraviolet spectroscopy, Fourier transformed infrared spectroscopy and the n-octano/water partition coefficient. The intestinal permeability of PBPLC was observed via a single pass intestinal perfusion in rats. After oral administration of PBPLC, the concentrations of PB at predetermined time points were determined by HPLC, and the pharmacokinetic parameters were computed by DAS 2.1.1 software. Multiple linear regression analysis for process optimization revealed that the optimal PBPLC was obtained when the values of X(1), X(2), and X(3) were 8, 40°C, and 4 mg/mL, respectively. The average particle size and zeta potential of PBPLC with the optimized formulation were 204.60 nm and -25.12 mV, respectively. Non-covalent interactions between PB and phospholipids were found in the PBPLC. The n-octanol/water partition coefficient of PBPLC was substantially increased. PBPLC had better intestinal permeability in comparison with free PB. Mean plasma drug concentration-time curves of PBPLC and free PB after oral administration were both in accordance with the two-compartment open model. The values of pharmacokinetic parameters of PBPLC and free PB were the peak time (T(max)) 2 h vs 2 h, the maximum concentration (C(max)) 22.79 μg/mL vs 6.00 μg/mL, and the value of the area under the concentration vs time curve (AUC(0-∞)) 7128.21 μg·min/mL vs 1772.36 μg·min/mL, respectively. In conclusion, compared with free PB, PBPLC remarkably improves the oral bioavailability of PB, which is likely due to its higher lipophilicity and permeability.

Top