Science.gov

Sample records for abnormal lung development

  1. Selenoprotein N deficiency in mice is associated with abnormal lung development

    PubMed Central

    Moghadaszadeh, Behzad; Rider, Branden E.; Lawlor, Michael W.; Childers, Martin K.; Grange, Robert W.; Gupta, Kushagra; Boukedes, Steve S.; Owen, Caroline A.; Beggs, Alan H.

    2013-01-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1−/−) mouse line. Homozygous Sepn1−/− mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1−/− mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1−/− lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles.—Moghadaszadeh, B., Rider B. E., Lawlor, M. W., Childers, M. K., Grange, R. W., Gupta, K., Boukedes, S. S., Owen, C. A., Beggs, A. H. Selenoprotein N deficiency in mice is associated with abnormal lung development. PMID:23325319

  2. Selenoprotein N deficiency in mice is associated with abnormal lung development.

    PubMed

    Moghadaszadeh, Behzad; Rider, Branden E; Lawlor, Michael W; Childers, Martin K; Grange, Robert W; Gupta, Kushagra; Boukedes, Steve S; Owen, Caroline A; Beggs, Alan H

    2013-04-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1(-/-)) mouse line. Homozygous Sepn1(-/-) mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1(-/-) mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1(-/-) lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles. PMID:23325319

  3. A multiresolution analysis for detection of abnormal lung sounds

    PubMed Central

    Emmanouilidou, Dimitra; Patil, Kailash; West, James; Elhilali, Mounya

    2014-01-01

    Automated analysis and detection of abnormal lung sound patterns has great potential for improving access to standardized diagnosis of pulmonary diseases, especially in low-resource settings. In the current study, we develop signal processing tools for analysis of paediatric auscultations recorded under non-ideal noisy conditions. The proposed model is based on a biomimetic multi-resolution analysis of the spectro-temporal modulation details in lung sounds. The methodology provides a detailed description of joint spectral and temporal variations in the signal and proves to be more robust than frequency-based techniques in distinguishing crackles and wheezes from normal breathing sounds. PMID:23366591

  4. Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities.

    PubMed

    Zayed, Nourhan; Elnemr, Heba A

    2015-01-01

    The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms introduce promising results in detecting the abnormality of lungs in most of the patients in comparison with the normal and suggest that some of the features are significantly recommended than others. PMID:26557845

  5. Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities

    PubMed Central

    Zayed, Nourhan; Elnemr, Heba A.

    2015-01-01

    The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms introduce promising results in detecting the abnormality of lungs in most of the patients in comparison with the normal and suggest that some of the features are significantly recommended than others. PMID:26557845

  6. Association Between Interstitial Lung Abnormalities and All-Cause Mortality

    PubMed Central

    Putman, Rachel K.; Hatabu, Hiroto; Araki, Tetsuro; Gudmundsson, Gunnar; Gao, Wei; Nishino, Mizuki; Okajima, Yuka; Dupuis, Josée; Latourelle, Jeanne C.; Cho, Michael H.; El-Chemaly, Souheil; Coxson, Harvey O.; Celli, Bartolome R.; Fernandez, Isis E.; Zazueta, Oscar E.; Ross, James C.; Harmouche, Rola; Estépar, Raúl San José; Diaz, Alejandro A.; Sigurdsson, Sigurdur; Gudmundsson, Elías F.; Eiríksdottír, Gudny; Aspelund, Thor; Budoff, Matthew J.; Kinney, Gregory L.; Hokanson, John E.; Williams, Michelle C; Murchison, John T.; MacNee, William; Hoffmann, Udo; O’Donnell, Christopher J.; Launer, Lenore J.; Harrris, Tamara B.; Gudnason, Vilmundur; Silverman, Edwin K.; O’Connor, George T.; Washko, George R.; Rosas, Ivan O.; Hunninghake, Gary M.

    2016-01-01

    IMPORTANCE Interstitial lung abnormalities have been associated with decreased six-minute walk distance, diffusion capacity for carbon monoxide and total lung capacity; however to our knowledge, an association with mortality has not been previously investigated. OBJECTIVE To investigate whether interstitial lung abnormalities are associated with increased mortality. DESIGN, SETTING, POPULATION Prospective cohort studies of 2633 participants from the Framingham Heart Study (FHS) (CT scans obtained 9/08–3/11), 5320 from the Age Gene/Environment Susceptibility (AGES)-Reykjavik (recruited 1/02–2/06), 2068 from COPDGene (recruited 11/07–4/10), and 1670 from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) (between 12/05–12/06). EXPOSURES Interstitial lung abnormality status as determined by chest CT evaluation. MAIN OUTCOMES AND MEASURES All cause mortality over approximately 3 to 9 year median follow up time. Cause-of-death information was also examined in the AGES-Reykjavik cohort. RESULTS Interstitial lung abnormalities were present in 177 (7%) of the participants from FHS, 378 (7%) from AGES-Reykjavik, 156 (8%) from COPDGene, and in 157 (9%) from ECLIPSE. Over median follow-up times of ~3–9 years there were more deaths (and a greater absolute rate of mortality) among those with interstitial lung abnormalities compared to those without interstitial lung abnormalities in each cohort; 7% compared to 1% in FHS (6% difference, 95% confidence interval [CI] 2%, 10%), 56% compared to 33% in AGES-Reykjavik (23% difference, 95% CI 18%, 28%), 16% compared to 11% in COPDGene (5% difference, 95% CI −1%, 11%) and 11% compared to 5% in ECLIPSE (6% difference, 95% CI 1%, 11%). After adjustment for covariates, interstitial lung abnormalities were associated with an increase in the risk of death in the FHS (HR=2.7, 95% CI, 1.1–65, P=0.030), AGES-Reykjavik (HR 1.3, 95% CI 1.2–1.4, P<0.001), COPDGene (HR=1.8, 95% CI, 1.1, 2

  7. Effect of Resection of Lung Tumours on the Steroid Abnormalities in Patients with Lung Cancer

    PubMed Central

    Rao, L. G. S.

    1971-01-01

    The urinary excretion of androsterone, aetiocholanolone, total 17-oxosteroids, and 17-hydroxycorticosteroids (17-OHCS) was measured in 40 patients with lung cancer three days before resection and again 10-15 days after resection of their lung tumours. There was a significant postoperative increase in the excretion of 17-OHCS but a significant decrease in the excretion of androsterone and aetiocholanolone, resulting in an increase of the preoperative abnormalities in steroid excretion in these patients. Since there was no change in steroid excretion towards normal after resection of the lung tumours, it seems that the steroid abnormalities found in lung cancer are not the effect of the presence of the lung tumours. As the excretions of 17-OHCS and 11-deoxy-17-oxosteroids change in opposite directions after resection, it is suggested that a dissociation of factors that control the excretion of these two groups of steroids takes place as a response to surgical stress in patients with lung cancer. PMID:5130212

  8. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds

    PubMed Central

    Chen, Chin-Hsing; Huang, Wen-Tzeng; Tan, Tan-Hsu; Chang, Cheng-Chun; Chang, Yuan-Jen

    2015-01-01

    A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician’s subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs) were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications. PMID:26053756

  9. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds.

    PubMed

    Chen, Chin-Hsing; Huang, Wen-Tzeng; Tan, Tan-Hsu; Chang, Cheng-Chun; Chang, Yuan-Jen

    2015-01-01

    A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician's subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs) were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications. PMID:26053756

  10. Development and Validation of Electronic Health Record-based Triggers to Detect Delays in Follow-up of Abnormal Lung Imaging Findings.

    PubMed

    Murphy, Daniel R; Thomas, Eric J; Meyer, Ashley N D; Singh, Hardeep

    2015-10-01

    Purpose To develop an electronic health record (EHR)-based trigger algorithm to identify delays in follow-up of patients with imaging results that are suggestive of lung cancer and to validate this trigger on retrospective data. Materials and Methods The local institutional review board approved the study. A "trigger" algorithm was developed to automate the detection of delays in diagnostic evaluation of chest computed tomographic (CT) images and conventional radiographs that were electronically flagged by reviewing radiologists as being "suspicious for malignancy." The trigger algorithm was developed through literature review and expert input. It included patients who were alive and 40-70 years old, and it excluded instances in which appropriate timely follow-up (defined as occurring within 30 days) was detected (eg, pulmonary visit) or when follow-up was unnecessary (eg, in patients with a terminal illness). The algorithm was iteratively applied to a retrospective test cohort in an EHR data warehouse at a large Veterans Affairs facility, and manual record reviews were used to validate each individual criterion. The final algorithm aimed at detecting an absence of timely follow-up was retrospectively applied to an independent validation cohort to determine the positive predictive value (PPV). Trigger performance, time to follow-up, reasons for lack of follow-up, and cancer outcomes were analyzed and reported by using descriptive statistics. Results The trigger algorithm was retrospectively applied to the records of 89 168 patients seen between January 1, 2009, and December 31, 2009. Of 538 records with an imaging report that was flagged as suspicious for malignancy, 131 were identified by the trigger as being high risk for delayed diagnostic evaluation. Manual chart reviews confirmed a true absence of follow-up in 75 cases (trigger PPV of 57.3% for detecting evaluation delays), of which four received a diagnosis of primary lung cancer within the subsequent 2 years

  11. I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.

    NASA Astrophysics Data System (ADS)

    Jafari, Farhad

    The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the

  12. Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities

    PubMed Central

    Tan, Yong; Jia, Dongmei; Lin, Zhang; Guo, Baosheng; He, Bing; Lu, Cheng; Xiao, Cheng; Liu, Zhongdi; Zhao, Ning; Bian, Zhaoxiang; Zhang, Ge; Zhang, Weidong; Liu, Xinru; Lu, Aiping

    2016-01-01

    Determining sensitive biomarkers in the peripheral blood to identify interstitial lung abnormalities (ILAs) is essential for the simple early diagnosis of ILAs. This study aimed to determine serum metabolic biomarkers of ILAs and the corresponding pathogenesis. Three groups of subjects undergoing health screening, including healthy subjects, subjects with ILAs, and subjects who were healthy initially and with ILAs one year later (Healthy→ILAs), were recruited for this study. The metabolic profiles of all of the subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolic characteristics of the ILAs subjects were discovered, and the corresponding biomarkers were predicted. The metabolomic data from the Healthy→ILAs subjects were collected for further verification. The results indicated that five serum metabolite alterations (up-regulated phosphatidylcholine, phosphatidic acid, betaine aldehyde and phosphatidylethanolamine, as well as down-regulated 1-acylglycerophosphocholine) were sensitive and reliable biomarkers for identifying ILAs. Perturbation of the corresponding biological pathways (RhoA signaling, mTOR/P70S6K signaling and phospholipase C signaling) might be at least partially responsible for the pathogenesis of ILAs. This study may provide a good template for determining the early diagnostic markers of subclinical disease status and for obtaining a better understanding of their pathogenesis. PMID:27438829

  13. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  14. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  15. Retrospective analysis of lung function abnormalities of Bhopal gas tragedy affected population

    PubMed Central

    De, Sajal

    2012-01-01

    Background & objectives: A large numbers of subjects were exposed to the aerosol of methyl isocyanate (MIC) during Bhopal gas disaster and lung was one of the most commonly affected organs. The aim of the present study was to analyze retrospectively the lung function abnormalities among the surviving MIC exposed population (gas victims) and to compare it with the non-MIC exposed (non gas exposed) population. Methods: The spirometry data of both gas victims and non gas exposed population who attended the Bhopal Memorial Hospital & Research Centre for evaluation of their respiratory complaints from August 2001 to December 2009, were retrospectively evaluated and compared. Results: A total 4782 gas victims and 1190 non gas exposed individuals performed spirometry during the study period. Among the gas victims, obstructive pattern was the commonest (50.8%) spirometric abnormality followed by restrictive pattern (13.3%). The increased relative risk of developing restrictive abnormality among gas victims was observed in 20-29 yr age group only (adjusted relative risk: 2.94, P<0.001). Male gas victims were more affected by severe airflow obstruction than females and the overall increased relative risk (1.33 to 1.45, P<0.001) of developing obstructive pattern among gas victims was observed. Interpretation & conclusions: The present study showed that the relative risk for pulmonary function abnormalities in gas victims was significantly more among those who were young at the time of disaster. Increased smoking habit among gas victims might have played an additive effect on predominance of obstructive pattern in spirometry. PMID:22446861

  16. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends

    PubMed Central

    Mansoor, Awais; Foster, Brent; Xu, Ziyue; Papadakis, Georgios Z.; Folio, Les R.; Udupa, Jayaram K.; Mollura, Daniel J.

    2015-01-01

    The computer-based process of identifying the boundaries of lung from surrounding thoracic tissue on computed tomographic (CT) images, which is called segmentation, is a vital first step in radiologic pulmonary image analysis. Many algorithms and software platforms provide image segmentation routines for quantification of lung abnormalities; however, nearly all of the current image segmentation approaches apply well only if the lungs exhibit minimal or no pathologic conditions. When moderate to high amounts of disease or abnormalities with a challenging shape or appearance exist in the lungs, computer-aided detection systems may be highly likely to fail to depict those abnormal regions because of inaccurate segmentation methods. In particular, abnormalities such as pleural effusions, consolidations, and masses often cause inaccurate lung segmentation, which greatly limits the use of image processing methods in clinical and research contexts. In this review, a critical summary of the current methods for lung segmentation on CT images is provided, with special emphasis on the accuracy and performance of the methods in cases with abnormalities and cases with exemplary pathologic findings. The currently available segmentation methods can be divided into five major classes: (a) thresholding-based, (b) region-based, (c) shape-based, (d) neighboring anatomy–guided, and (e) machine learning–based methods. The feasibility of each class and its shortcomings are explained and illustrated with the most common lung abnormalities observed on CT images. In an overview, practical applications and evolving technologies combining the presented approaches for the practicing radiologist are detailed. ©RSNA, 2015 PMID:26172351

  17. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    PubMed

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-10

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases. PMID:27455022

  18. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  19. Lung abscess mimicking lung cancer developed around staples in a patient with permanent tracheostoma.

    PubMed

    Watanabe, Yui; Aoki, Masaya; Suzuki, Soichi; Umehara, Tadashi; Harada, Aya; Wakida, Kazuhiro; Nagata, Toshiyuki; Kariatsumari, Kota; Nakamura, Yoshihiro; Sato, Masami

    2015-11-01

    A 68-year-old male with a tracheostoma due to hypopharyngeal cancer was admitted because his chest computed tomography (CT) showed a small nodule in the right middle lobe. Following a partial resection of the right middle lobe, histopathological diagnosis of the resected sample was that of organizing pneumonia. Eleven months later, chest CT showed a mass with pleural indentation and spiculation in the right middle lobe. 18-Fluorodeoxyglucose-positron emission tomography showed significant accumulation in the middle lobe tumor mass shadow. The abnormal chest shadow that had developed around surgical staples suggested inadequate resection and tumor recurrence. As the abnormal radiological shadow was enlarging, middle lobectomy was carried out. Histological examination revealed that the tumor was a lung abscess without malignant features. This is a unique case of lung abscess mimicking lung cancer which developed around staples used during partial resection of the lung. PMID:24756239

  20. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  1. Are interstitial lung abnormalities associated with COPD? A nested case–control study

    PubMed Central

    Bozzetti, Francesca; Paladini, Ilaria; Rabaiotti, Enrico; Franceschini, Alessandro; Alfieri, Veronica; Chetta, Alfredo; Crisafulli, Ernesto; Silva, Mario; Pastorino, Ugo; Sverzellati, Nicola

    2016-01-01

    Purpose In this study, we tested the association between COPD and interstitial lung abnormality (ILA), notably in relation to the presence of computed tomography (CT) signs of lung fibrosis. Patients and methods COPD cases were selected from participants undergoing lung cancer screening (Multicentric Italian Lung Detection trial) for airflow obstruction (n=311/2,303, 13.5%) and 146 consecutive patients with clinical COPD. In all, 457 COPD cases were selected and classified according to the stages of Global Initiative for Chronic Obstructive Lung Disease. A nested matching (case:control = 1:2) according to age, sex, and smoking history was operated between each COPD case and two control subjects from Multicentric Italian Lung Detection trial without airflow obstruction. Low-dose CT scans of COPD cases and controls were reviewed for the presence of ILA, which were classified into definite or indeterminate according to the presence of signs of lung fibrosis. Results The frequency of definite ILA was similar between COPD cases and controls (P=0.2), independent of the presence of signs of lung fibrosis (P=0.07). Combined definite and indeterminate ILA was homogeneously distributed across Global Initiative for Chronic Obstructive Lung Disease stages (P=0.6). Definite ILA was directly associated with current smoker status (odds ratio [OR] 4.05, 95% confidence interval [CI]: 2.2–7.4) and increasing pack-years (OR 1.01, 95% CI: 1–1.02). Subjects with any fibrotic ILA were more likely to be older (OR 1.17, 95% CI: 1.10–1.25) and male (OR 8.58, 95% CI: 1.58–68.9). Conclusion There was no association between COPD and definite ILA. However, low-dose CT signs of lung fibrosis were also observed in COPD, and their clinical relevance is yet to be determined. PMID:27307724

  2. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension

    PubMed Central

    Galambos, Csaba; Minic, Angela D.; Bush, Douglas; Nguyen, Dominique; Dodson, Blair; Seedorf, Gregory; Abman, Steven H.

    2016-01-01

    Background and Aims Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. Methods Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. Results The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. Conclusions We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and

  3. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  4. Early Lung Cancer Detection in Uranium Miners with Abnormal Sputum Cytology

    SciTech Connect

    Saccomanno, G.

    2000-06-30

    ''Early Lung Cancer Detection in Uranium Miners with Abnormal Sputum Cytology'' was funded by the Department of Energy to monitor the health effects of radon exposure and/or cigarette smoke on uranium workers from the Colorado Plateau. The resulting Saccomanno Uranium Workers Archive and data base has been used as a source of information to prove eligibility for compensation under the Radiation Exposure Compensation Act and as the source of primary data tissue for a subcontract and other collaborations with outside investigators. The latter includes a study of radon exposure and lung cancer risk in a non-smoking cohort of uranium miners (subcontract); a study of genetic markers for lung cancer susceptibility; and a study of {sup 210}Pb accumulation in the skull as a biomarker of radon exposure.

  5. Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: Implications in lung cancer pathogenesis and prognosis

    PubMed Central

    Tang, Ximing; Kadara, Humam; Behrens, Carmen; Liu, Diane D.; Xiao, Yun; Rice, David; Gazdar, Adi F.; Fujimoto, Junya; Moran, Cesar; Varella-Garcia, Marileila; Lee, J. Jack; Hong, Waun Ki; Wistuba, Ignacio I.

    2011-01-01

    PURPOSE Emerging evidence suggests that aberrant expression of oncogenes contributes to development of lung malignancy. The thyroid transcription factor 1 (TITF-1) gene functions as a lineage survival gene abnormally expressed in a significant fraction of NSCLCs, in particular lung adenocarcinomas. EXPERIMENTAL DESIGN To better characterize TITF-1 abnormality: patterns in NSCLC, we studied TITF-1’s gene copy number using fluorescent in situ hybridization (FISH) and quantitative PCR, as well as its protein expression by immunohistochemistry analysis in a tissue microarray comprised of surgically resected NSCLC (N=321) including 204 adenocarcinomas and 117 squamous cell carcinomas (SCCs). TITF-1 copy number and protein expression were correlated with patients’ clinicopathologic characteristics, and in a subset of adenocarcinomas with EGFR and KRAS mutation status. RESULTS We found that increased TITF-1 protein expression was prevalent in lung adenocarcinomas only and was significantly associated with female gender (p<0.001), never smokers (p=0.004), presence of EGFR mutations (p=0.05) and better overall survival (all stages, p=0.0478. stages I and II, p=0.002). TITF-1 copy number gain (CBG) was detected by FISH analysis in both adenocarcinomas (18.9%; high CNG, 8.3%) and SCCs (20.1%; high CNG, 3.0%), and correlated significantly with the protein product (p=0.004) and presence of KRAS mutations (p=0.008) in lung adenocarcinomas. Moreover, multivariate analysis revealed that TITF-1 copy number gain was an independent predictor of poor survival of NSCLC (p=0.039). CONCLUSIONS Our integrative study demonstrates that the protein versus genomic expression patterns of TITF-1 have opposing roles in lung cancer prognosis and may occur preferentially in different subsets of NSCLC patients with distinct oncogene mutations. PMID:21257719

  6. Detection of interstitial lung abnormalities on picture archive and communication system video monitors.

    PubMed

    Washowich, T L; Williams, S C; Richardson, L A; Simmons, G E; Dao, N V; Allen, T W; Hammet, G C; Morris, M J

    1997-02-01

    The purpose of this study was to compare the detection of interstitial lung abnormalities on video display workstation monitors between radiologists experienced with video image interpretation and radiologists who lack this experience. Twenty-four patients with interstitial lung abnormalities documented by high-resolution computed tomography (HRCT) and lung biopsy, and 26 control patients with no history of pulmonary disease or a normal HRCT and normal chest radiographs were studied. Images were acquired using storage phosphor digital radiography and displayed on 1,640 x 2,048 pixel resolution video monitors. Five board-certified radiologists evaluated the images in a blinded and randomized manner by using a six-point presence of abnormality grading scale. Three radiologists were from 1 to 4 years out of residency and considered to be experienced workstation monitor readers with between 1 to 3 years of video monitor image interpretation. For the inexperienced readers, one radiologist had no prior experience with reading images from a video monitor and was direct out of residency, and the other radiologist had less than 4 months of intermittent exposure and was 1 year out of residency. Sensitivity and specificity were determined for individual readers. Positive predictive values, negative predictive values, accuracy, and receiver-operating curves were also generated. A comparison was made between experienced and inexperienced readers. For readers experienced with video monitor image interpretation, the sensitivity ranged from 87.5% to 92%, specificity from 69% to 92%, positive predictive value (PPV) from 73% to 87.5%, negative predictive value (NPV) from 87% to 90%, and accuracy from 80% to 88%. For inexperienced readers, these values were sensitivity 58%, specificity 50% to 65%, PPV 52% to 61%, NPV 56.5% to 63%, and accuracy 54% to 62%. Comparing image interpretation between experienced and inexperienced readers, there were statistically significant differences for

  7. Abnormal skeletal muscle oxidative capacity after lung transplantation by 31P-MRS.

    PubMed

    Evans, A B; Al-Himyary, A J; Hrovat, M I; Pappagianopoulos, P; Wain, J C; Ginns, L C; Systrom, D M

    1997-02-01

    Although lung transplantation improves exercise capacity by removal of a ventilatory limitation, recipients' postoperative maximum oxygen uptake (VO2max) remains markedly abnormal. To determine if abnormal skeletal muscle oxidative capacity contributes to this impaired aerobic capacity, nine lung transplant recipients and eight healthy volunteers performed incremental quadriceps exercise to exhaustion with simultaneous measurements of pulmonary gas exchange, minute ventilation, blood lactate, and quadriceps muscle pH and phosphorylation potential by 31P-magnetic resonance spectroscopy (31P-MRS). Five to 38 mo after lung transplantation, peak VO2 was decreased compared with that of normal control subjects (6.7 +/- 0.4 versus 12.3 +/- 1.0 ml/min/kg, p < 0.001), even after accounting for differences in age and lean body weight. Neither ventilation, arterial O2 saturation nor mild anemia could account for the decrease in aerobic capacity. Quadriceps muscle intracellular pH (pH(i)) was more acidic at rest (7.07 +/- 0.01 versus 7.12 +/- 0.01 units, p < 0.05) and fell during exercise from baseline values at a lower metabolic rate (282 +/- 21 versus 577 +/- 52 ml/min, p < 0.001). Regressions for pH(i) versus VO2, phosphocreatine/inorganic phosphate ratio (PCr/Pi) versus VO2, and blood lactate versus pH(i) were not different. Among transplant recipients, the metabolic rate at which pH(i) fell correlated closely with VO2max (r = 0.87, p < 0.01). The persistent decrease in VO2max after lung transplantation may be related to abnormalities of skeletal muscle oxidative capacity. PMID:9032203

  8. Detection of abnormalities in ultrasound lung image using multi-level RVM classification.

    PubMed

    Veeramani, Senthil Kumar; Muthusamy, Ezhilarasi

    2016-06-01

    The classification of abnormalities in ultrasound images is the monitoring tool of fluid to air passage in the lung. In this study, the adaptive median filtering technique is employed for the preprocessing step. The preprocessed image is then extracted the features by the convoluted local tetra pattern, histogram of oriented gradient, Haralick feature extraction and the complete local binary pattern. The extracted features are selected by applying particle swarm optimization and differential evolution feature selection. In the final stage, classifiers namely relevance vector machine (RVM), and multi-level RVM are employed to perform classification of the lung diseases. The diseases respiratory distress syndrome (RDS), transient tachypnea of the new born, meconium aspiration syndrome, pneumothorax, bronchiolitis, pneumonia, and lung cancer are used for training and testing. The experimental analysis exhibits better accuracy, sensitivity, specificity, pixel count and fitness value than the other existing methods. The classification accuracy of above 90% is accomplished by multi-level RVM classifier. The system has been tested with a number of ultrasound lung images and has achieved satisfactory results in classifying the lung diseases. PMID:26135771

  9. Association of FcRn expression with lung abnormalities and IVIG catabolism in patients with common variable immunodeficiency.

    PubMed

    Freiberger, T; Grodecká, L; Ravcuková, B; Kurecová, B; Postránecká, V; Vlcek, J; Jarkovský, J; Thon, V; Litzman, J

    2010-09-01

    The neonatal Fc receptor (FcRn) acts as a key regulator of IgG homeostasis and is an important sensor of luminal infection. We analyzed the influence of FcRn expression on disease phenotype and the catabolism of therapeutically administered intravenous immunoglobulins (IVIG) in 28 patients with common variable immunodeficiency (CVID). Patients with generalized bronchiectasis and fibrosis had lower levels of FCRN mRNA compared to patients without these complications (P=0.027 and P=0.041, respectively). Moreover, FCRN mRNA levels correlated negatively with the extent of bronchiectasis and the rate of IgG decline after infusion of IVIG (P=0.027 and P=0.045, respectively). No relationship of FCRN expression with age at disease onset, age at diagnosis, diagnostic delay, IgG levels or frequency of infections before or during replacement immunoglobulin treatment, the presence of lung functional abnormalities, chronic diarrhea, granulomas, lymphadenopathy, splenomegaly or autoimmune phenomena was observed. Our results showed that FcRn might play a role in the development of lung structural abnormalities and in the catabolism of IVIG in patients with CVID. PMID:20627700

  10. Novel Logistic Regression Model of Chest CT Attenuation Coefficient Distributions for the Automated Detection of Abnormal (Emphysema or ILD) versus Normal Lung

    PubMed Central

    Chan, Kung-Sik; Jiao, Feiran; Mikulski, Marek A.; Gerke, Alicia; Guo, Junfeng; Newell, John D; Hoffman, Eric A.; Thompson, Brad; Lee, Chang Hyun; Fuortes, Laurence J.

    2015-01-01

    Rationale and Objectives We evaluated the role of automated quantitative computed tomography (CT) scan interpretation algorithm in detecting Interstitial Lung Disease (ILD) and/or emphysema in a sample of elderly subjects with mild lung disease.ypothesized that the quantification and distributions of CT attenuation values on lung CT, over a subset of Hounsfield Units (HU) range [−1000 HU, 0 HU], can differentiate early or mild disease from normal lung. Materials and Methods We compared results of quantitative spiral rapid end-exhalation (functional residual capacity; FRC) and end-inhalation (total lung capacity; TLC) CT scan analyses in 52 subjects with radiographic evidence of mild fibrotic lung disease to 17 normal subjects. Several CT value distributions were explored, including (i) that from the peripheral lung taken at TLC (with peels at 15 or 65mm), (ii) the ratio of (i) to that from the core of lung, and (iii) the ratio of (ii) to its FRC counterpart. We developed a fused-lasso logistic regression model that can automatically identify sub-intervals of [−1000 HU, 0 HU] over which a CT value distribution provides optimal discrimination between abnormal and normal scans. Results The fused-lasso logistic regression model based on (ii) with 15 mm peel identified the relative frequency of CT values over [−1000, −900] and that over [−450,−200] HU as a means of discriminating abnormal versus normal, resulting in a zero out-sample false positive rate and 15%false negative rate of that was lowered to 12% by pooling information. Conclusions We demonstrated the potential usefulness of this novel quantitative imaging analysis method in discriminating ILD and/or emphysema from normal lungs. PMID:26776294

  11. Lifetime consequences of abnormal fetal pancreatic development

    PubMed Central

    Holemans, K; Aerts, L; Van Assche, F A

    2003-01-01

    There is ample evidence that an adverse intrauterine environment has harmful consequences for health in later life. Maternal diabetes and experimentally induced hyperglycaemia result in asymmetric overgrowth, which is associated with an increased insulin secretion and hyperplasia of the insulin-producing B-cells in the fetuses. In adult life, a reduced insulin secretion is found. In contrast, intrauterine growth restriction is associated with low insulin secretion and a delayed development of the insulin-producing B-cells. These perinatal alterations may induce a deficient adaptation of the endocrine pancreas and insulin resistance in later life. Intrauterine growth restriction in human pregnancy is mainly due to a reduced uteroplacental blood flow or to maternal undernutrition or malnutrition. However, intrauterine growth restriction can be present in severe diabetes complicated by vasculopathy and nephropathy. In animal models, intrauterine growth retardation can be obtained through pharmacological (streptozotocin), dietary (semi-starvation, low protein diet) or surgical (intrauterine artery ligation) manipulation of the maternal animal. The endocrine pancreas and more specifically the insulin-producing B-cells play an important role in the adaptation to an adverse intrauterine milieu and the consequences in later life. The long-term consequences of an unfavourable intrauterine environment are of major importance worldwide. Concerted efforts are needed to explore how these long-term effects can be prevented. This review will consist of two parts. In the first part, we discuss the long-term consequences in relation to the development of the fetal endocrine pancreas and fetal growth in the human; in the second part, we focus on animal models with disturbed fetal and pancreatic development and the consequences for later life. PMID:12562919

  12. [The growing spine : Normal and abnormal development].

    PubMed

    Stücker, R

    2016-06-01

    Growth of the pediatric spine occurs in phases. The first 5 years of life are characterized by rapid growth. The lower extremities and trunk contribute equally to the entire growth by 50 % each. In the following years, until the onset of puberty, a steady but reduced rate of growth is observed. During these years a T1-S1 growth of only 1 cm per year can be detected and the spine contributes only one third to the entire growth. Puberty consists of an acceleration phase lasting 2 years. In the first year of this phase the growth peak of the extremities and in the following year the growth peak of the spine can be noticed. The ensuing deceleration phase of puberty lasts for 3 years. During that period the development of the Risser sign, menarche, and fusion of the trochanter epiphysis are taking place. Clinical parameters such as sitting height, standing height, and arm span may be used to evaluate growth. Important radiological parameters include the Risser sign, the determination of skeletal age according to Greulich and Pyle, and the T1-T12 height. The use of the olecranon method during the ascending phase of puberty can be recommended. Problems of the developing spine may include malformations, developmental disruptions or deformations. According to their manifestations they have a different prognosis, which can be estimated by knowledge of residual growth and the typical course of spinal growth in childhood. PMID:27250620

  13. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    ERIC Educational Resources Information Center

    Ozonoff, Sally; Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2008-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with…

  14. Abnormal expression of CCND1 and RB1 in resection margin epithelia of lung cancer patients.

    PubMed Central

    Betticher, D. C.; Heighway, J.; Thatcher, N.; Hasleton, P. S.

    1997-01-01

    Tumours develop through the accumulation of genetic alterations associated with a progressive increase of the malignant phenotype. In lung cancer, chronic exposure of bronchial epithelium to carcinogens in cigarette smoke may lead to multiple dysplastic and hyperplastic lesions scattered throughout the tracheobronchial tree. Little is known about the genetic alterations in such lesions. This study was carried out to examine cyclin D1 (CCND1) and retinoblastoma (RB1) gene expression in the bronchial epithelium of patients with lung cancer. Lung tumours and their corresponding tumour-free resection margins from 33 patients who underwent resection of non-small-cell lung cancer (NSCLC) were examined by immunostaining with monoclonal antibodies against cyclin D1 (DCS-6; Novocastra) and pRb (NCL Rb-1; Novocastra). Examination of the resection margins revealed four carcinomas in situ, 19 hyperplasias and ten sections showing apparently normal bronchial epithelium. A control group of patients, without lung tumours and who had never smoked, revealed no or weak cyclin D1 and positive pRb staining within bronchial epithelia. Increased cyclin D1 and diminished pRb expression were found in 76% (n = 25) and 27% (n = 9) of the resection margins respectively, and in 12% (n = 4) both cyclin D1 and pRb expression were altered. In the corresponding tumours, 48% (n = 16) were normal, while altered expression was found for cyclin D1 in 33% (n = 11), pRb in 27% (n = 9) and both in 9% (n = 3) of cases. It appears that altered expression of cyclin D1 and pRb is an early event in NSCLC development in almost half of cases analysed. Further investigations are needed to determine the significance of immunostaining of bronchial specimens in individuals at risk of lung cancer, with the possibility that the observations are of importance in the early diagnosis of NSCLC. Images Figure 1 PMID:9192978

  15. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-01-01

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients. PMID:27107715

  16. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  17. Impact of Environmental Chemicals on Lung Development

    PubMed Central

    Miller, Mark D.; Marty, Melanie A.

    2010-01-01

    Background Disruption of fundamental biologic processes and associated signaling events may result in clinically significant alterations in lung development. Objectives We reviewed evidence on the impact of environmental chemicals on lung development and key signaling events in lung morphogenesis, and the relevance of potential outcomes to public health and regulatory science. Data sources We evaluated the peer-reviewed literature on developmental lung biology and toxicology, mechanistic studies, and supporting epidemiology. Data synthesis Lung function in infancy predicts pulmonary function throughout life. In utero and early postnatal exposures influence both childhood and adult lung structure and function and may predispose individuals to chronic obstructive lung disease and other disorders. The nutritional and endogenous chemical environment affects development of the lung and can result in altered function in the adult. Studies now suggest that similar adverse impacts may occur in animals and humans after exposure to environmentally relevant doses of certain xenobiotics during critical windows in early life. Potential mechanisms include interference with highly conserved factors in developmental processes such as gene regulation, molecular signaling, and growth factors involved in branching morphogenesis and alveolarization. Conclusions Assessment of environmental chemical impacts on the lung requires studies that evaluate specific alterations in structure or function—end points not regularly assessed in standard toxicity tests. Identifying effects on important signaling events may inform protocols of developmental toxicology studies. Such knowledge may enable policies promoting true primary prevention of lung diseases. Evidence of relevant signaling disruption in the absence of adequate developmental toxicology data should influence the size of the uncertainty factors used in risk assessments. PMID:20444669

  18. A 54-Year-Old Man Presenting With an Abnormal Abdominal CT Scan 8 Months After Double Lung Transplant.

    PubMed

    Mistrot, Daniel P; Gemma, Vincent A; Gagliano, Ronald A; Omar, Ashraf; Panchabhai, Tanmay S

    2016-05-01

    A 54-year-old man who had undergone bilateral sequential lung transplant for idiopathic pulmonary fibrosis was admitted to the hospital for further evaluation of an abnormal abdominal CT scan. Three months previously a gastrojejunostomy tube had been placed after he was found to have evidence of silent aspiration with oral intake. At a recent clinic visit, he denied abdominal pain or problems with the feeding tube. He described frequent diarrhea since placement of the feeding tube. PMID:27157231

  19. Physiologic assessment before video thoracoscopic resection for lung cancer in patients with abnormal pulmonary function

    PubMed Central

    Benattia, Amira; Debeaumont, David; Guyader, Vincent; Tardif, Catherine; Peillon, Christophe; Cuvelier, Antoine

    2016-01-01

    Background Impaired respiratory function may prevent curative surgery for patients with non-small cell lung cancer (NSCLC). Video-assisted thoracoscopic surgery (VATS) reduces postoperative morbility-mortality and could change preoperative assessment practices and therapeutic decisions. We evaluated the relation between preoperative pulmonary function tests and the occurrence of postoperative complications after VATS pulmonary resection in patients with abnormal pulmonary function. Methods We included 106 consecutive patients with ≤80% predicted value of presurgical expiratory volume in one second (FEV1) and/or diffusing capacity of carbon monoxide (DLCO) and who underwent VATS pulmonary resection for NSCLC from a prospective surgical database. Results Patients (64±9.5 years) had lobectomy (n=91), segmentectomy (n=7), bilobectomy (n=4), or pneumonectomy (n=4). FEV1 and DLCO preoperative averages were 68%±21% and 60%±18%. Operative mortality was 1.89%. Only FEV1 was predictive of postoperative complications [odds ratio (OR), 0.96; 95% confidence interval (CI), 0.926–0.991, P=0.016], but there was no determinable threshold. Twenty-five patients underwent incremental exercise testing. Desaturations during exercise (OR, 0.462; 95% CI, 0.191–0.878, P=0.039) and heart rate (HR) response (OR, 0.953; 95% CI, 0.895–0.993, P=0.05) were associated with postoperative complications. Conclusions FEV1 but not DLCO was a significant predictor of pulmonary complications after VATS pulmonary resection despite a low rate of severe morbidity. Incremental exercise testing seems more discriminating. Further investigation is required in a larger patient population to change current pre-operative threshold in a new era of minimally invasive surgery. PMID:27293834

  20. Emotion processes in normal and abnormal development and preventive intervention.

    PubMed

    Izard, Carroll E; Fine, Sarah; Mostow, Allison; Trentacosta, Christopher; Campbell, Jan

    2002-01-01

    We present an analysis of the role of emotions in normal and abnormal development and preventive intervention. The conceptual framework stems from three tenets of differential emotions theory (DET). These principles concern the constructs of emotion utilization; intersystem connections among modular emotion systems, cognition, and action; and the organizational and motivational functions of discrete emotions. Particular emotions and patterns of emotions function differentially in different periods of development and in influencing the cognition and behavior associated with different forms of psychopathology. Established prevention programs have not emphasized the concept of emotion as motivation. It is even more critical that they have generally neglected the idea of modulating emotions, not simply to achieve self-regulation, but also to utilize their inherently adaptive functions as a means of facilitating the development of social competence and preventing psychopathology. The paper includes a brief description of a theory-based prevention program and suggestions for complementary targeted interventions to address specific externalizing and internalizing problems. In the final section, we describe ways in which emotion-centered preventions can provide excellent opportunities for research on the development of normal and abnormal behavior. PMID:12549703

  1. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  2. CHRONIC PERCHLORATE EXPOSURE CAUSES MORPHOLOGICAL ABNORMALITIES IN DEVELOPING STICKLEBACK

    PubMed Central

    Bernhardt, Richard R.; Von Hippel, Frank A.; O’Hara, Todd M.

    2011-01-01

    Few studies have examined the effects of chronic perchlorate exposure during growth and development, and fewer still have analyzed the effects of perchlorate over multiple generations. We describe morphological and developmental characteristics for threespine stickleback (Gasterosteus aculeatus) that were spawned and raised to sexual maturity in perchlorate-treated water (G1,2003) and for their offspring (G2,2004) that were not directly treated with perchlorate. The G1,2003 displayed a variety of abnormalities, including impaired formation of calcified traits, slower growth rates, aberrant sexual development, poor survivorship, and reduced pigmentation that allowed internal organs to be visible. Yet these conditions were absent when the offspring of contaminated fish (G2,2004) were raised in untreated water, suggesting a lack of transgenerational effects and that surviving populations may be able to recover following remediation of perchlorate-contaminated sites PMID:21465539

  3. Normal and Abnormal Development in the Arabidopsis Vegetative Shoot Apex.

    PubMed Central

    Medford, JI; Behringer, FJ; Callos, JD; Feldmann, KA

    1992-01-01

    Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development. PMID:12297656

  4. Abnormal lung gallium-67 uptake preceding pulmonary physiologic impairment in an asymptomatic patient with Pneumocystis carinii pneumonia

    SciTech Connect

    Reiss, T.F.; Golden, J. )

    1990-05-01

    Pneumocystis carinii pneumonia was suggested by a diffuse, bilateral pulmonary uptake of gallium-67 in an asymptomatic, homosexual male with the antibody to the immunodeficiency virus (HIV) who was undergoing staging evaluation for lymphoma clinically localized to a left inguinal lymph node. Chest radiograph and pulmonary function evaluation, including lung volumes, diffusing capacity and arterial blood gases, were within normal limits. Bronchoalveolar lavage revealed Pneumocystis carinii organisms. In this asymptomatic, HIV-positive patient, active alveolar infection, evidenced by abnormal gallium-67 scanning, predated pulmonary physiologic abnormalities. This observation raises questions concerning the natural history of this disease process and the specificity of physiologic tests for excluding disease. It also has implications for the treatment of neoplasia in the HIV-positive patient population.

  5. Early lung cancer detection in uranium miners with abnormal sputum cytology

    SciTech Connect

    Saccomanno, G.

    1991-07-01

    This work, supported by the United States Department of Energy, continues to add data on the health effects of cigarette smoking and radon exposure. Since the beginning of this contract, 473 sputum samples have been collected from 286 uranium workers who are routinely screened in an effort to identify cell changes that could signal possible progression to lung cancer; seven new lung cancer cases have been identified during this period. At this time, there are 426 lung cancer cases in the uranium miner tumor registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only.

  6. T-cell abnormalities after mediastinal irradiation for lung cancer. The in vitro influence of synthetic thymosin alpha-1

    SciTech Connect

    Schulof, R.S.; Chorba, T.L.; Cleary, P.A.; Palaszynski, S.R.; Alabaster, O.; Goldstein, A.L.

    1985-03-01

    The effects of mediastinal irradiation (RT) on the numbers and functions of purified peripheral blood T-lymphocytes from patients with locally advanced non-small cell lung cancer were evaluated. The patients were candidates for a randomized trial to evaluate the immunorestorative properties of synthetic thymosin alpha-1. Twenty-one patients studied before RT did not exhibit any significant difference in T-cell numbers or function compared to age-matched healthy subjects. However, 41 patients studied within 1 week after completing RT exhibited significant depressions of E-rosette-forming cells at 4 degrees C (E4 degrees-RFC)/mm3, E-rosette-forming cells at 29 degrees C (E29 degrees-RFC)/mm3, OKT3/mm3, OKT4/mm3, and OKT8/mm3 (P . 0.0001); total T-cell percentages (%OKT3, P . 0.01); and T-cell proliferative responses in mixed lymphocyte cultures (MLR) (P . 0.01) and to the mitogen phytohemagglutinin under suboptimal conditions (P less than or equal to 0.03). Nine patients studied before and after RT showed a significant increase in OKT4/OKT8 (P . 0.01) following RT. A short-term in vitro incubation with thymosin alpha-1 could enhance MLR of T-cells in 12 of 27 patients with post-RT abnormalities. In 13 patients who were treated with placebo, the RT-induced depression of T-cell numbers and function persisted for at least 3 to 4 months. In addition, in 12 patients progressive decreases developed in %E4 degrees-RFC, %OKT3, %OKT4, and OKT4/OKT8, which always preceded clinical relapse.

  7. Normal and abnormal spine and thoracic cage development

    PubMed Central

    Canavese, Federico; Dimeglio, Alain

    2013-01-01

    Development of the spine and thoracic cage consists of a complex series of events involving multiple metabolic processes, genes and signaling pathways. During growth, complex phenomena occur in rapid succession. This succession of events, this establishment of elements, is programmed according to a hierarchy. These events are well synchronized to maintain harmonious limb, spine and thoracic cage relationships, as growth in the various body segments does not occur simultaneously at the same magnitude or rate. In most severe cases of untreated progressive early-onset spinal deformities, respiratory insufficiency and pulmonary and cardiac hypertension (cor pulmonale), which characterize thoracic insufficiency syndrome (TIS), can develop, sometimes leading to death. TIS is the inability of the thorax to ensure normal breathing. This clinical condition can be linked to costo-vertebral malformations (e.g., fused ribs, hemivertebrae, congenital bars), neuromuscular diseases (e.g., expiratory congenital hypotonia), Jeune or Jarcho-Levin syndromes or to 50% to 75% fusion of the thoracic spine before seven years of age. Complex spinal deformities alter normal growth plate development, and vertebral bodies become progressively distorted, perpetuating the disorder. Therefore, many scoliotic deformities can become growth plate disorders over time. This review aims to provide a comprehensive review of how spinal deformities can affect normal spine and thoracic cage growth. Previous conceptualizations are integrated with more recent scientific data to provide a better understanding of both normal and abnormal spine and thoracic cage growth. PMID:24147251

  8. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies. PMID:25311587

  9. Loss of Rab27 function results in abnormal lung epithelium structure in mice

    PubMed Central

    Bolasco, Giulia; Tracey-White, Dhani C.; Tolmachova, Tanya; Thorley, Andrew J.; Tetley, Teresa D.; Seabra, Miguel C.

    2011-01-01

    Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium. PMID:21160031

  10. Abnormal Canine Bone Development Associated with Hypergravity Exposure

    NASA Technical Reports Server (NTRS)

    Morgan, J. P.; Fisher, G. L.; McNeill, K. L.; Oyama, J.

    1979-01-01

    Chronic centrifugation of 85- to 92-day-old Beagles at 2.0 x g and 2.6 x g for 26 weeks during the time of active skeletal growth caused skeletal abnormalities in the radius and the ulna of ten of 11 dogs. The pattern of change mimicked that found in naturally occurring and experimentally induced premature distal ulnar physeal closure or delayed growth at this physis. Minimal changes in bone density were detected by sensitive photon absorptiometric techniques. Skeletal abnormalities also were found in five of the six cage-control dogs, although the run-control dogs were radiographically normal.

  11. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  12. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  13. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma

    PubMed Central

    SEO, JI-HYE; BANG, MI-AE; KIM, GYEYEOP; CHO, SEUNG SIK; PARK, DAE-HUN

    2016-01-01

    Asthma is a chronic lung condition that can induce mucus hypersecretion and pulmonary obstruction and may even cause death, particularly in children and older individuals. Erythronium japonicum (E. japonicum) is a traditional herb used in Korea and East Asian countries that has been found to exert free radical scavenging activity and anti-proliferative effects in human colorectal carcinoma cells. In the present study, we evaluated the anti-asthmatic effects of an extract of E. japonicum in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice were sensitized with an intraperitoneal injection of OVA and aluminum hydroxide hydrate on days 1 and 8 and then received the following treatments on days 21 to 25: i) control (no treatment), ii) sterilized tap water (given orally), iii) 1 mg/kg/day dexamethasone (administered orally), iv) 60 mg/kg/day E. japonicum extract, and v) 600 mg/kg/day E. japonicum extract. On the same days, all the mice except those in the control group were challenged 1 h later with nebulized 5% OVA for 30 min. We found that treatment with E. japonicum extract suppressed the OVA-induced increase in the number of white blood cells and decreased the IgE level in the bronchoalveolar lavage fluid samples obtained from the mice. Histopathological analysis of the lung tissues revealed that E. japonicum attenuated the asthma-related morphological changes in the mouse lung tissue, including the increased secretion of mucus in the bronchioles, eosinophil infiltration around the bronchioles and vessels, and goblet cell and epithelial cell hyperplasia. Immunohistochemical analysis revealed that treatment with E. japonicum extract suppressed the OVA-induced proliferation of T helper cells (CD4+) and B cells (CD19+) in the mouse lung tissue. Furthermore, treatment with E. japonicum extract modulated the expression of both T helper 2 cell-related factors [GATA binding protein 3 (GATA-3), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-5

  14. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma.

    PubMed

    Seo, Ji-Hye; Bang, Mi-Ae; Kim, Gyeyeop; Cho, Seung Sik; Park, Dae-Hun

    2016-05-01

    Asthma is a chronic lung condition that can induce mucus hypersecretion and pulmonary obstruction and may even cause death, particularly in children and older individuals. Erythronium japonicum (E. japonicum) is a traditional herb used in Korea and East Asian countries that has been found to exert free radical scavenging activity and anti-proliferative effects in human colorectal carcinoma cells. In the present study, we evaluated the anti-asthmatic effects of an extract of E. japonicum in a mouse model of ovalbumin (OVA)‑induced asthma. Female BALB/c mice were sensitized with an intraperitoneal injection of OVA and aluminum hydroxide hydrate on days 1 and 8 and then received the following treatments on days 21 to 25: i) control (no treatment), ii) sterilized tap water (given orally), iii) 1 mg/kg/day dexamethasone (administered orally), iv) 60 mg/kg/day E. japonicum extract, and v) 600 mg/kg/day E. japonicum extract. On the same days, all the mice except those in the control group were challenged 1 h later with nebulized 5% OVA for 30 min. We found that treatment with E. japonicum extract suppressed the OVA-induced increase in the number of white blood cells and decreased the IgE level in the bronchoalveolar lavage fluid samples obtained from the mice. Histopathological analysis of the lung tissues revealed that E. japonicum attenuated the asthma-related morphological changes in the mouse lung tissue, including the increased secretion of mucus in the bronchioles, eosinophil infiltration around the bronchioles and vessels, and goblet cell and epithelial cell hyperplasia. Immunohistochemical analysis revealed that treatment with E. japonicum extract suppressed the OVA-induced proliferation of T helper cells (CD4+) and B cells (CD19+) in the mouse lung tissue. Furthermore, treatment with E. japonicum extract modulated the expression of both T helper 2 cell-related factors [GATA binding protein 3 (GATA-3), tumor necrosis factor

  15. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  16. Early lung cancer detection in uranium miners with abnormal sputum cytology

    SciTech Connect

    Saccomanno, G.

    1992-08-01

    This work supported by the United States of Energy, continues to add data on the health affects of cigarette smoking and radon exposure on uranium miners. Since the last Technical Progress Report in July or 1991, 537 sputum cytology samples have been collected on the 300 uranium workers in the surveillance study. To date there are 436 lung cancer cases in the Uranium Miner Tumor Registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only. In March of 1991 the Geno Saccomanno Uranium Workers Archive was established at St. Mary's Hospital and Medical Center as a depository for biological specimens and epidemiological data from the 17,700 uranium miners who have been a part or the study.

  17. Branch Mode Selection during Early Lung Development

    PubMed Central

    Menshykau, Denis; Kraemer, Conradin; Iber, Dagmar

    2012-01-01

    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes. PMID:22359491

  18. Branch mode selection during early lung development.

    PubMed

    Menshykau, Denis; Kraemer, Conradin; Iber, Dagmar

    2012-01-01

    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes. PMID:22359491

  19. Lung development of monotremes: evidence for the mammalian morphotype.

    PubMed

    Ferner, Kirsten; Zeller, Ulrich; Renfree, Marilyn B

    2009-02-01

    The reproductive strategies and the extent of development of neonates differ markedly between the three extant mammalian groups: the Monotremata, Marsupialia, and Eutheria. Monotremes and marsupials produce highly altricial offspring whereas the neonates of eutherian mammals range from altricial to precocial. The ability of the newborn mammal to leave the environment in which it developed depends highly on the degree of maturation of the cardio-respiratory system at the time of birth. The lung structure is thus a reflection of the metabolic capacity of neonates. The lung development in monotremes (Ornithorhynchus anatinus, Tachyglossus aculeatus), in one marsupial (Monodelphis domestica), and one altricial eutherian (Suncus murinus) species was examined. The results and additional data from the literature were integrated into a morphotype reconstruction of the lung structure of the mammalian neonate. The lung parenchyma of monotremes and marsupials was at the early terminal air sac stage at birth, with large terminal air sacs. The lung developed slowly. In contrast, altricial eutherian neonates had more advanced lungs at the late terminal air sac stage and postnatally, lung maturation proceeded rapidly. The mammalian lung is highly conserved in many respects between monotreme, marsupial, and eutherian species and the structural differences in the neonatal lungs can be explained mainly by different developmental rates. The lung structure of newborn marsupials and monotremes thus resembles the ancestral condition of the mammalian lung at birth, whereas the eutherian newborns have a more mature lung structure. PMID:19051249

  20. Plasticity of lung development in the amphibian, Xenopus laevis

    PubMed Central

    Rose, Christopher S.; James, Brandon

    2013-01-01

    Summary Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. PMID:24337117

  1. The development of a Compton lung densitometer

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  2. IL-10 Gene Polymorphisms Are Associated with Post-Bronchiolitis Lung Function Abnormalities at Six Years of Age

    PubMed Central

    Lauhkonen, Eero; Koponen, Petri; Teräsjärvi, Johanna; Gröndahl-Yli-Hannuksela, Kirsi; Vuononvirta, Juho; Nuolivirta, Kirsi; Toikka, Jyri O.; Helminen, Merja; He, Qiushui; Korppi, Matti

    2015-01-01

    Aim Interleukin-10 (IL-10) has been associated with wheezing and asthma in children and the genetic variation of the IL-10 cytokine production may be linked to post-bronchiolitis lung function. We used impulse oscillometry (IOS) to evaluate the associations of IL10 polymorphisms with lung function at a median age of 6.3 years in children hospitalised for bronchiolitis before six months of age. Methods We performed baseline and post-exercise IOS on 103 former bronchiolitis patients. Data on single nucleotide polymorphisms (SNP) of IL10 rs1800896 (–1082G/A), rs1800871 (–819C/T), rs1800872 (–592C/A) were available for 99 children and of IL10 rs1800890 (–3575T/A) for 98 children. Results IL10 rs1800896, rs1800871 and rs1800872 combined genotype AA+CT+CA and carriage of haplotype ATA, respectively, were associated with higher resistance and lower reactance in baseline IOS in adjusted analyses. At IL10 rs1800890, the A/A-genotype and carriers of A-allele were associated with lower reactance in baseline IOS. There were no significant associations between the studied SNPs and airway hyper-reactivity to exercise. Conclusion Low-IL-10-producing polymorphisms in the IL-10 encoding gene were associated with obstructive lung function parameters, suggesting an important role for IL-10 in development of lung function deficit in early bronchiolitis patients. PMID:26473365

  3. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  4. [Developing surgical options for lung cancer].

    PubMed

    Sihvo, Eero

    2016-01-01

    The selection of correct treatment for lung cancer is multidisciplinary collaboration and requires careful assessment of the extent of the tumor and the condition of the patient. In localized non-small cell lung cancer, mere surgery or surgery in combination with adjuvant therapies are the best options for curing the disease. The trend in modern surgery is mini-invasiveness and preservation of lung tissue. Accordingly, any unit conducting lung cancer operations should have access to all modern techniques in order to provide each patient with optimal, patient-tailored surgical therapy. PMID:27132298

  5. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group. PMID:16225232

  6. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    PubMed

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy andAmhr2-cretransgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). TheAmhr2-cretransgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenicAmhr2-cre, Rosa(Notch1)females were infertile, whereas controlRosa(Notch1)mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression ofWnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activatedSmoand inbeta-catenin,Wnt4,Wnt7a, andDicerconditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  7. Contemporary issues in the management of abnormal placentation during pregnancy in developing nations: An Indian perspective

    PubMed Central

    Bajwa, Sukhwinder Kaur; Singh, Anita; Bajwa, Sukhminder Jit Singh

    2013-01-01

    The gap between the developed and developing nations with regards to maternal mortality and morbidity may have narrowed but still a lot of dedicated work is required to bridge these differences. Obstetrical haemorrhage is the leading cause of maternal deaths in these developing nations especially in India. The most common causes of this fatal haemorrhage are the placental abnormalities which rarely get detected before delivery. Numerous factors have been incremental in the causation of this abnormal placental implantation with resultant complications. The present article is an attempt to review possible predictors of abnormal placental implantation. Also, a genuine attempt has been made to enumerate possible measures to identify the predictors of abnormal placentation during early pregnancy and their suitable prevention and management. PMID:24404455

  8. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung.

    PubMed

    Galvis, Laura A; Holik, Aliaksei Z; Short, Kieran M; Pasquet, Julie; Lun, Aaron T L; Blewitt, Marnie E; Smyth, Ian M; Ritchie, Matthew E; Asselin-Labat, Marie-Liesse

    2015-04-15

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  9. Prenatal exposure to bisphenol A disrupts mouse fetal lung development.

    PubMed

    Hijazi, Ayten; Guan, Haiyan; Cernea, Maria; Yang, Kaiping

    2015-12-01

    Developmental exposure to bisphenol A (BPA) is associated with lung dysfunction and diseases. However, it is unknown if this association has a fetal origin. The present study addressed this important question by examining the effects of BPA on fetal lung development. BPA was administered to pregnant mice via diet from embryonic day (E) 7.5 to E18.5. Fetal lungs were analyzed at E18.5 for changes in structure and expression of key molecular markers of lung maturation. Our main findings were as follows: BPA severely retards fetal lung maturation, as evidenced by diminished alveolar airspace (15% of control) and thickened septa, hallmarks of lung immaturity; this immaturity is characterized by aberrant alveolar epithelial type I cell differentiation because expression of the type I cell marker, aquaporin 5, but not type II cell markers, is dramatically reduced (16% of control); and the effects of BPA are likely mediated through the glucocorticoid signaling pathway because the expression of epithelial sodium channel γ and glutathione peroxidase, 2 well-known glucocorticoid target genes, is down-regulated in BPA-exposed fetal lungs, and, importantly, maternal dexamethasone administration rescues the lung immaturity phenotype. Taken together, these findings demonstrate that BPA disrupts fetal lung maturation, thus suggesting a fetal origin for BPA-induced lung diseases. PMID:26283537

  10. CELLULAR AND MOLECULAR MECHANISMS OF ABNORMAL REPRODUCTIVE DEVELOPMENT

    EPA Science Inventory

    This project will determine the critical factors that account for exposures to endocrine disrupting chemicals, or EDCs (ER, AR, AhR mediated and inhibitors of steroidogenesis) during development resulting in adverse effects seen later in life in male and female offspring. Such f...

  11. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that

  12. A comprehensive approach to the spectrum of abnormal pubertal development.

    PubMed

    Appelbaum, Heather; Malhotra, Shilpa

    2012-04-01

    Puberty is the biological transition from childhood to adulthood. The process involves the coordination of hormonal, physical, psychosocial, and cognitive systems to result in physiologic change. Precocious puberty is defined as pubertal development beginning earlier than expected based on normal standards. Gonadotropin dependent precocious puberty is caused by premature activation of the hypothalamus resulting in pulsatile secretion of GnRH. Gonadotropin independent precocious puberty is caused by excess sex hormones from peripheral or external sources. Treatment with GnRH agonists should be offered to prevent early fusion of the epiphyseal plates to avoid unnecessary short stature and should not be based on perceived psychosocial consequences of early puberty. Delayed puberty is the absence of or incomplete development of secondary sexual characteristics. Hypergonadotropic hypogonadism or primary hypogonadism may result from genetic mutation syndromes or can be acquired from antiovarian antibodies, exposure to radiation or chemotherapy, inflammatory insult, or surgical removal of the gonads. Hypogonadotropic hypogonadism or secondary hypogonadism is due to hypothalamic dysfunction resulting in impaired secretion of GnRH. The long-term goal for patients with inadequate estrogen stimulation is to maintain the serum concentration of sex steroids within the normal adult range to promote the development of secondary sexual characteristics, prevent premature bone loss, and ultimately to induce fertility when indicated. PMID:22764552

  13. Recent developments in the epidemiology of lung cancer

    SciTech Connect

    Kabat, G.C. )

    1993-03-01

    Lung cancer is currently the leading cause of cancer death in the United States and also the most common tumor worldwide. Changes in the distribution of histologic types over the past two decades in the United States, as well as high rates of lung cancer in certain subpopulations, require explanation. While cigarette smoking and specific occupational exposures are firmly established as important risk factors for lung cancer, recent work provides evidence that other factors may play a role either as independent risk factors or as modifiers of the effect of smoking. This paper reviews the epidemiology of lung cancer, with an emphasis on developments in the past decade. 79 refs.

  14. Environmental Enteropathy: Elusive but Significant Subclinical Abnormalities in Developing Countries.

    PubMed

    Watanabe, Koji; Petri, William A

    2016-08-01

    Environmental enteropathy/Environmental enteric dysfunction (EE/EED) is a chronic disease of small intestine characterized by gut inflammation and barrier disruption, malabsorption and systemic inflammation in the absence of diarrhea. It is predominantly diseases of children in low income countries and is hypothesized to be caused by continuous exposure to fecally contaminated food, water and fomites. It had not been recognized as a priority health issue because it does not cause overt symptoms and was seen in apparently healthy individuals. However, there is a growing concern of EE/EED because of its impact on longitudinal public health issues, such as growth faltering, oral vaccine low efficacy and poor neurocognitive development. Recent works have provided important clues to unravel its complex pathogenesis, and suggest possible strategies for controlling EE/EED. However, effective diagnostic methods and interventions remain unsettled. Here, we review the existing literature, especially about its pathogenesis, and discuss a solution for children living in the developing world. PMID:27495791

  15. Early estrogen exposure induces abnormal development of Fundulus heteroclitus.

    PubMed

    Urushitani, Hiroshi; Shimizu, Akio; Katsu, Yoshinao; Iguchi, Taisen

    2002-12-01

    Many chemicals released into the environment exhibit estrogenic activity, having the potential to disrupt development and the functioning of the endocrine system. In order to establish a model system to study the effects of such environmental chemicals on aquatic animals, we examined the effects of a natural estrogen, 17 beta-estradiol (E(2)), on early development of Fundulus heteroclitus. Embryos of F. heteroclitus were reared in seawater containing 10(-10), 10(-8), and 10(-6) M E(2) throughout the experiment. Hatching and survival rates decreased in a dose-dependent manner, and fry treated with 10(-6) M E(2) and 10(-8) M E(2) were dead by two weeks and 12 weeks after hatching, respectively. More than 85% of fry treated with 10(-8) M E(2) showed malformations: i.e., eye extrusion, crooked vertebral column, faded lateral-stripe pattern eight weeks after hatching. Body weight and head and body lengths were significantly reduced in E(2)-treated fry when compared to controls. Ossification was not completed in vertebrae, cranial bones, and other bones in fry treated with 10(-8) M E(2) even 12 weeks after hatching. Sex ratio of control fry was 57% male and 43% female, whereas fry treated with 10(-8) M E(2) were 100% female eight weeks after hatching. The present results demonstrate that exogenous estrogen induced death of embryos and fry, malformations, sex reversal, and incomplete ossification of vertebrae and cranial bones, which would result in shorter body and head lengths and in malformed vertebrae leading to a hunchback condition. PMID:12410597

  16. Association of incidental emphysema with annual lung function decline and future development of airflow limitation

    PubMed Central

    Koo, Hyeon-Kyoung; Jin, Kwang Nam; Kim, Deog Kyeom; Chung, Hee Soon; Lee, Chang-Hoon

    2016-01-01

    Objectives Emphysema is one of the prognostic factors for rapid lung function decline in patients with COPD, but the impact of incidentally detected emphysema on population without spirometric abnormalities has not been evaluated. This study aimed to determine whether emphysema detected upon computed tomography (CT) screening would accelerate the rate of lung function decline and influence the possibility of future development of airflow limitation in a population without spirometric abnormalities. Materials and methods Subjects who participated in a routine screening for health checkup and follow-up pulmonary function tests for at least 3 years between 2004 and 2010 were retrospectively enrolled. The percentage of low-attenuation area below −950 Hounsfield units (%LAA−950) was calculated automatically. A calculated value of %LAA−950 that exceeded 10% was defined as emphysema. Adjusted annual lung function decline was analyzed using random-slope, random-intercept mixed linear regression models. Results A total of 628 healthy subjects within the normal range of spriometric values were included. Multivariable analysis showed that the emphysema group exhibited a faster decline in forced vital capacity (−33.9 versus −18.8 mL/year; P=0.02). Emphysema was not associated with the development of airflow limitation during follow-up. Conclusion Incidental emphysema quantified using CT scan was significantly associated with a more rapid decline in forced vital capacity in the population with normative spirometric values. However, an association between emphysema and future development of airflow limitation was not observed. PMID:26893550

  17. Allometric growth in the extant coelacanth lung during ontogenetic development.

    PubMed

    Cupello, Camila; Brito, Paulo M; Herbin, Marc; Meunier, François J; Janvier, Philippe; Dutel, Hugo; Clément, Gaël

    2015-01-01

    Coelacanths are lobe-finned fishes known from the Devonian to Recent that were long considered extinct, until the discovery of two living species in deep marine waters of the Mozambique Channel and Sulawesi. Despite extensive studies, the pulmonary system of extant coelacanths has not been fully investigated. Here we confirm the presence of a lung and discuss its allometric growth in Latimeria chalumnae, based on a unique ontogenetic series. Our results demonstrate the presence of a potentially functional, well-developed lung in the earliest known coelacanth embryo, and its arrested growth at later ontogenetic stages, when the lung is clearly vestigial. The parallel development of a fatty organ for buoyancy control suggests a unique adaptation to deep-water environments. Furthermore, we provide the first evidence for the presence of small, hard, flexible plates around the lung in L. chalumnae, and consider them homologous to the plates of the 'calcified lung' of fossil coelacanths. PMID:26372119

  18. Allometric growth in the extant coelacanth lung during ontogenetic development

    PubMed Central

    Cupello, Camila; Brito, Paulo M.; Herbin, Marc; Meunier, François J; Janvier, Philippe; Dutel, Hugo; Clément, Gaël

    2015-01-01

    Coelacanths are lobe-finned fishes known from the Devonian to Recent that were long considered extinct, until the discovery of two living species in deep marine waters of the Mozambique Channel and Sulawesi. Despite extensive studies, the pulmonary system of extant coelacanths has not been fully investigated. Here we confirm the presence of a lung and discuss its allometric growth in Latimeria chalumnae, based on a unique ontogenetic series. Our results demonstrate the presence of a potentially functional, well-developed lung in the earliest known coelacanth embryo, and its arrested growth at later ontogenetic stages, when the lung is clearly vestigial. The parallel development of a fatty organ for buoyancy control suggests a unique adaptation to deep-water environments. Furthermore, we provide the first evidence for the presence of small, hard, flexible plates around the lung in L. chalumnae, and consider them homologous to the plates of the ‘calcified lung' of fossil coelacanths. PMID:26372119

  19. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia

    PubMed Central

    Blackley, David J; Halldin, Cara N; Wang, Mei Lin; Laney, A Scott

    2015-01-01

    Objectives To describe the prevalence of lung function abnormality and coal workers’ pneumoconiosis (CWP) by mine size among underground coal miners in Kentucky, Virginia and West Virginia. Methods During 2005–2012, 4491 miners completed spirometry and chest radiography as part of a health surveillance programme. Spirometry was interpreted according to American Thoracic Society and European Respiratory Society guidelines, and radiography per International Labour Office standards. Prevalence ratios (PR) were calculated for abnormal spirometry (obstructive, restrictive or mixed pattern using lower limits of normal derived from National Health and Nutrition Examination Survey (NHANES) III) and CWP among workers from small mines (≤50 miners) compared with those from large mines. Results Among 3771 eligible miners, those from small mines were more likely to have abnormal spirometry (18.5% vs 13.8%, p<0.01), CWP (10.8% vs 5.2%, p<0.01) and progressive massive fibrosis (2.4% vs 1.1%, p<0.01). In regression analysis, working in a small mine was associated with 37% higher prevalence of abnormal spirometry (PR 1.37, 95% CI 1.16 to 1.61) and 2.1 times higher prevalence of CWP (95% CI 1.68 to 2.70). Conclusions More than one in four of these miners had evidence of CWP, abnormal lung function or both. Although 96% of miners in the study have worked exclusively under dust regulations implemented following the 1969 Federal Coal Mine Safety and Health Act, we observed high rates of respiratory disease including severe cases. The current approach to dust control and provision of safe work conditions for central Appalachian underground coal miners is not adequate to protect them from adverse respiratory health effects. PMID:25052085

  20. Wait Times Experienced by Lung Cancer Patients in the BC Southern Interior to Obtain Oncologic Care: Exploration of the Intervals from First Abnormal Imaging to Oncologic Treatment

    PubMed Central

    Chowdhury, Rezwan; Boyce, Andrew; Halperin, Ross

    2015-01-01

    Background: Lung cancer is associated with rapid disease progression, which can significantly progress over a duration of four to eight weeks. This study examines the time interval lung cancer patients from the interior of British Columbia (BC) experience while undergoing diagnostic evaluation, biopsy, staging, and preparation for treatment. Methods: A chart review of lung cancer patients (n=231) referred to the BC Cancer Agency Centre for the Southern Interior between January 1, 2010 and December 31, 2011 was performed. Time zero was defined as the date of the first abnormal chest imaging. Time intervals, expressed as median averages, to specialist consult, biopsy, oncologic referral, initial oncology consultation, and commencement of oncologic treatment were obtained. Results: The median time interval from first abnormal chest imaging to a specialist consultation was 18 days (interquartile range, IQR, 7-36). An additional nine days elapsed prior to biopsy in the form of bronchoscopy, CT-guided biopsy, or sputum cytology (median; IQR, 3-21); if lobectomy was required, 18 days elapsed (median; IQR, 9-28). Eight days were required for pathologic diagnosis and subsequent referral to the cancer centre (median; IQR, 3-16.5). Once referral was received, 10 days elapsed prior to consultation with either a medical or radiation oncologist (median, IQR 5-18). Finally, eight days was required for initiation of radiation and/or chemotherapy (median; IQR, 1-15). The median wait time from detection of lung cancer on imaging to oncologic treatment in the form of radiation and/or chemotherapy was 65.5 days (IQR, 41.5-104.3).  Interpretation: Patients in the BC Southern Interior experience considerable delays in accessing lung cancer care. During this time, the disease has the potential to significantly progress and it is possible that a subset of patients may lose their opportunity for curative intent treatment. PMID:26543688

  1. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  2. Lung development in the marsupial bandicoot, Isoodon macrourus.

    PubMed Central

    Gemmell, R T

    1986-01-01

    The transformation of the terminal sacs present in the newborn into the alveoli observed in the adult, and the tissue and cellular composition of the interalveolar septum at various stages of lung development, were examined in the developing bandicoot. Lungs from 22 bandicoots, aged from 1 day postpartum to adult, were fixed with a glutaraldehyde/formaldehyde fixative and processed for examination of their structure. The respiratory region of the newborn lung is formed from terminating sacs, approximately 300-500 microns in diameter, which are delineated by thick connective tissue septa, have a highly vascularised internal lining and are present from birth until approximately Day 35 postpartum. The large blind sacs are then gradually replaced by alveoli, approximately 80 microns in diameter. In the juvenile and adult bandicoot, the connective tissue septa of the sacs are no longer discernible and a larger area of the blood capillaries of the lung is adjacent to the air within the alveoli. The changes in lung structure throughout pouch life probably reflect the increased respiratory requirements of the developing young. Although the time sequence of lung development in the eutherian differs from that in the marsupial, the adult form of the lung in both animal groups is similar in structure. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:3693087

  3. Roles of the Hippo pathway in lung development and tumorigenesis.

    PubMed

    Yeung, Benjamin; Yu, Jihang; Yang, Xiaolong

    2016-02-01

    Lung cancer is the most commonly diagnosed cancer and accounts for one fifth of all cancer deaths worldwide. Although significant progress has been made toward our understanding of the causes of lung cancer, the 5-year survival is still lower than 15%. Therefore, there is an urgent need for novel lung cancer biomarkers and drug targets. The Hippo signaling pathway is an emerging signaling pathway that regulates various biological processes. Recently, increasing evidence suggests that the Hippo pathway may play important roles in not only lung development but also lung tumorigenesis. In this review article, we will summarize the most recent advances and predict future directions on this new cancer research field. PMID:25644176

  4. [Graphic Evolution Witness the Development of Lung Cancer Translational Research].

    PubMed

    Zhang, Chao; Zhong, Wenzhao

    2016-06-20

    Lung cancer treatment has altered from conventional chemotherapy to targeted treatment, which now has been turned to the immunotherapy. Translational research has played an irreplaceable role during this progression which graphic evolution has witnessed. The evolution has gone through forest plot, KM-curve, waterfall plot, spider plot and timeline-area, showing us the refining concept and gradual process of lung cancer treatment undergoing from community towards individual. Even though the latest immunotherapy is getting increasingly hot, the result isn't quite expected. Meanwhile, the limitations of conventional treatment still exist which require further research. This article will primarily illustrate the development of translational research of lung cancer via the aspect of curve evolution and analysis some abortive clinical trials in lung cancer surgery for inspiring the next graphic style and lung cancer treatment. PMID:27335306

  5. The embryonic development of ear-tufts and associated structural head and neck abnormalities of the Araucana fowl.

    PubMed

    Pabilonia, M S; Somes, R G

    1983-08-01

    Developing embryonic structural abnormalities of ear-tufted embryos of the Araucana fowl are described. These abnormal structures are peduncle, cleft, ear opening, tympanic membrane, and columella auris. The structural abnormalities are believed to be due to the early incomplete fusion of the hyoid and mandibular arches from the distal part of the ear opening to the neck area. PMID:6634592

  6. Abnormal Development of Thalamic Microstructure in Premature Neonates with Congenital Heart Disease

    PubMed Central

    Paquette, Lisa B.; Votava-Smith, Jodie K.; Ceschin, Rafael; Nagasunder, Arabhi C.; Jackson, Hollie A.; Blüml, Stefan; Wisnowski, Jessica L.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Preterm birth is associated with alteration in cortico-thalamic development, which underlies poor neurodevelopmental outcomes. Our hypothesis was that preterm neonates with CHD would demonstrate abnormal thalamic microstructure when compared to critically ill neonates without CHD. A secondary aim was to identify any association between thalamic microstructural abnormalities and peri-operative clinical variables. Material and Methods We compared thalamic DTI measurements in 21 preterm neonates with CHD to two cohorts of neonates without CHD: 28 term and 27 preterm neonates, identified from the same neonatal intensive care unit. Comparison was made with three other selected white matter regions using ROI manual based measurements. Correlation was made with post-conceptional age and peri-operative clinical variables. Results In preterm neonates with CHD, there were age-related differences in thalamic diffusivity (axial and radial) compared to the preterm and term non-CHD group, in contrast to no differences in anisotropy. Contrary to our hypothesis, abnormal thalamic and optic radiation microstructure was most strongly associated with an elevated first arterial blood gas pO2 and elevated pre-operative arterial blood gas pH (p<0.05). Conclusion Age-related thalamic microstructural abnormalities were observed in preterm neonates with CHD. Perinatal hyperoxemia and increased peri-operative serum pH was associated with abnormal thalamic microstructure in preterm neonates with CHD. This study emphasizes the vulnerability of thalamo-cortical development in the preterm neonate with CHD. PMID:25608695

  7. Association of Traditional Cardiovascular Risk Factors With Development of Major and Minor Electrocardiographic Abnormalities: A Systematic Review.

    PubMed

    Healy, Caroline F; Lloyd-Jones, Donald M

    2016-01-01

    Electrocardiographic (ECG) abnormalities are prevalent in middle aged and are associated with risk of adverse cardiovascular events. It is unclear whether and to what extent traditional risk factors are associated with the development of ECG abnormalities. To determine whether traditional cardiovascular risk factors are associated with the presence or development of ECG abnormalities, we performed a systematic review of the English-language literature for cross-sectional and prospective studies examining associations between traditional cardiovascular risk factors and ECG abnormalities, including major and minor ECG abnormalities, isolated nonspecific ST-segment and T-wave abnormalities, other ST-segment and T-wave abnormalities, QT interval, Q waves, and QRS duration. Of the 202 papers initially identified, 19 were eligible for inclusion. We examined data analyzing risk factor associations with ECG abnormalities in individuals free of cardiovascular disease. For composite major or minor ECG abnormalities, black race, older age, higher blood pressure, use of antihypertensive medications, higher body mass index, diabetes, smoking, and evidence of left ventricular hypertrophy or higher left ventricular mass are the factors most commonly associated with prevalence and incidence. Risk factor associations differ somewhat according to types of specific ECG abnormalities. Because major and minor ECG abnormalities have important and independent prognostic significance, understanding the groups at risk for their development may inform prevention strategies focused on modifiable risk factors to reduce the burden of ECG abnormalities, which may in turn promote CVD prevention. PMID:27054606

  8. Sonic Hedgehog Signaling in the Lung. From Development to Disease

    PubMed Central

    Joyner, Alexandra L.; Loomis, Cynthia A.; Munger, John S.

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial–mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling. PMID:25068457

  9. Role of Systemic Therapy in the Development of Lung Sequelae After Conformal Radiotherapy in Breast Cancer Patients

    SciTech Connect

    Varga, Zoltan; Cserhati, Adrienn; Kelemen, Gyoengyi; Boda, Krisztina; Thurzo, Laszlo; Kahan, Zsuzsanna

    2011-07-15

    Purpose: To analyze the risk of radiogenic lung damage in breast cancer patients after conformal radiotherapy and different forms of systemic treatment. Methods and Materials: In 328 patients receiving sequential taxane-based chemotherapy, concomitant hormone therapy (tamoxifen or aromatase inhibitors), or no adjuvant systemic therapy, symptomatic and asymptomatic lung sequelae were prospectively evaluated via the detection of visible CT abnormalities, 3 months or 1 year after the completion of the radiotherapy. Results: Significant positive associations were detected between the development of both pneumonitis and fibrosis of Grade 1 and patient age, ipsilateral mean lung dose, volume of the ipsilateral lung receiving 20 Gy, and irradiation of the regional lymph nodes. In multivariate analysis, age and mean lung dose proved to be independent predictors of early (odds ratio [OR] = 1.035, 95% confidence interval [CI] 1.011-1.061 and OR = 1.113, 95% CI 1.049-1.181, respectively) and late (OR = 1.074, 95% CI 1.042-1.107 and OR = 1.207, 95% CI 1.124-1.295, respectively) radiogenic lung damage, whereas the role of systemic therapy was significant in the development of Grade 1 lung fibrosis (p = 0.01). Among the various forms of systemic therapy, tamoxifen increased the risk of late lung sequelae (OR = 2.442, 95% CI 1.120-5.326, p = 0.025). No interaction was demonstrated between the administration of systemic therapy and the other above-mentioned parameters as regards the risk of radiogenic lung damage. Conclusions: Our analyses demonstrate the independent role of concomitant tamoxifen therapy in the development of radiogenic lung fibrosis but do not suggest such an effect for the other modes of systemic treatment.

  10. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  11. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice

    PubMed Central

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  12. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice.

    PubMed

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  13. Development of lung cancer CT screening operating support system

    NASA Astrophysics Data System (ADS)

    Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2009-02-01

    In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.

  14. Local abnormalities of coagulation and fibrinolytic pathways that promote alveolar fibrin deposition in the lungs of baboons with diffuse alveolar damage.

    PubMed Central

    Idell, S; Peters, J; James, K K; Fair, D S; Coalson, J J

    1989-01-01

    Because alveolar fibrin is a prominent histologic feature of diffuse lung injury in baboons, we hypothesized that local abnormalities of pathways of fibrin turnover would favor fibrin deposition in the alveolar space. To test this hypothesis, procoagulant and fibrinolytic activities were characterized in serial bronchoalveolar lavage (BAL) of baboons with evolving diffuse alveolar damage (DAD) induced by exposure to 100% O2. BAL procoagulant activity, characterized mainly as the tissue factor-Factor VII complex, was markedly increased after induction of DAD. Extrinsic pathway inhibitor was likewise increased in BAL during evolving DAD but was insufficient to control coagulation. Urokinase-like fibrinolytic activity was usually detectable in baseline BAL but was undetectable after 7 d of O2. DAD BAL contained significantly increased plasminogen levels, plasmin inhibitor activity sufficient to neutralize all plasmin produced by BAL plasminogen activator found in control BAL and detectable plasminogen activator inhibitor-1. Antiplasmin activity was due, in part, to increased alpha 2-antiplasmin. These changes correlated with quantitatively increased alveolar fibrin deposition demonstrated by histologic and morphometric analyses. Multiple abnormalities of pathways of fibrin turnover occur concurrently in the alveolar compartment of the lungs of baboons with DAD, which collectively predispose to diffuse alveolar fibrin deposition. Images PMID:2738151

  15. Antenatal endotoxin disrupts lung vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase expression in the developing rat.

    PubMed

    Mandell, Erica; Seedorf, Gregory J; Ryan, Sharon; Gien, Jason; Cramer, Scott D; Abman, Steven H

    2015-11-01

    Vitamin D [vit D; 1,25-(OH)2D] treatment improves survival and lung alveolar and vascular growth in an experimental model of bronchopulmonary dysplasia (BPD) after antenatal exposure to endotoxin (ETX). However, little is known about lung-specific 1,25-(OH)2D3 regulation during development, especially regarding maturational changes in lung-specific expression of the vitamin D receptor (VDR), 1α-hydroxylase (1α-OHase), and CYP24A1 during late gestation and the effects of antenatal ETX exposure on 1,25-(OH)2D3 metabolism in the lung. We hypothesized that vit D regulatory proteins undergo maturation regulation in the late fetal and early neonatal lung and that prenatal exposure to ETX impairs lung growth partly through abnormal endogenous vit D metabolism. Normal fetal rat lungs were harvested between embryonic day 15 and postnatal day 14. Lung homogenates were assayed for VDR, 1α-OHase, and CYP24A1 protein contents by Western blot analysis. Fetal rats were injected on embryonic day 20 with intra-amniotic ETX, ETX + 1,25-(OH)2D3, or saline and delivered 2 days later. Pulmonary artery endothelial cells (PAECs) from fetal sheep were assessed for VDR, 1α-OHase, and CYP24A1 expression after treatment with 25-(OH)D3, 1,25-(OH)2D3, ETX, ETX + 25-(OH)D3, or ETX + 1,25-(OH)2D3. We found that lung VDR, 1α-OHase, and CYP2741 protein expression dramatically increase immediately before birth (P < 0.01 vs. early fetal values). Antenatal ETX increases CYP24A1 expression (P < 0.05) and decreases VDR and 1α-OHase expression at birth (P < 0.001), but these changes are prevented with concurrent vit D treatment (P < 0.001). ETX-induced reduction of fetal PAEC growth and tube formation and lung 1α-OHase expression are prevented by vit D treatment (P < 0.001). We conclude that lung VDR, 1α-OHase, and CYP24A1 protein content markedly increase before birth and that antenatal ETX disrupts lung vit D metabolism through downregulation of VDR and increased vit D catabolic enzyme

  16. Sexual maturation protects against development of lung inflammation through estrogen.

    PubMed

    Draijer, Christina; Hylkema, Machteld N; Boorsma, Carian E; Klok, Pieter A; Robbe, Patricia; Timens, Wim; Postma, Dirkje S; Greene, Catherine M; Melgert, Barbro N

    2016-01-15

    Increasing levels of estrogen and progesterone are suggested to play a role in the gender switch in asthma prevalence during puberty. We investigated whether the process of sexual maturation in mice affects the development of lung inflammation in adulthood and the contributing roles of estrogen and progesterone during this process. By inducing ovalbumin-induced lung inflammation in sexually mature and immature (ovariectomized before sexual maturation) adult mice, we showed that sexually immature adult mice developed more eosinophilic lung inflammation. This protective effect of "puberty" appears to be dependent on estrogen, as estrogen supplementation at the time of ovariectomy protected against development of lung inflammation in adulthood whereas progesterone supplementation did not. Investigating the underlying mechanism of estrogen-mediated protection, we found that estrogen-treated mice had higher expression of the anti-inflammatory mediator secretory leukoprotease inhibitor (SLPI) and lower expression of the proasthmatic cytokine IL-33 in parenchymal lung tissue and that their expressions colocalized with type II alveolar epithelial cells (AECII). Treating AECII directly with SLPI significantly inhibited IL-33 production upon stimulation with ATP. Our data suggest that estrogen during puberty has a protective effect on asthma development, which is accompanied by induction of anti-inflammatory SLPI production and inhibition of proinflammatory IL-33 production by AECII. PMID:26608529

  17. Lung cancer screening: latest developments and unanswered questions.

    PubMed

    van der Aalst, Carlijn M; Ten Haaf, Kevin; de Koning, Harry J

    2016-09-01

    The US National Lung Screening Trial showed that individuals randomly assigned to screening with low-dose CT scans had 20% lower lung cancer mortality than did those screened with conventional chest radiography. On the basis of a review of the literature and a modelling study, the US Preventive Services Task Force recommends annual screening for lung cancer for individuals aged 55-80 years who have a 30 pack-year smoking history and either currently smoke or quit smoking within the past 15 years. However, the balance between benefits and harms of lung cancer screening is still greatly debated. The large number of false-positive results and the potential for overdiagnosis are causes for concern. Some investigators suggest the ratio between benefits and harms could be improved through various means. Nevertheless, many questions remain with regard to the implementation of lung cancer screening. This paper highlights the latest developments in CT lung cancer screening and provides an overview of the main unanswered questions. PMID:27599248

  18. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  19. Wnt and FGF mediated epithelial mesenchymal crosstalk during lung development

    PubMed Central

    Volckaert, Thomas; De Langhe, Stijn P.

    2014-01-01

    The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and Fgf signaling in lung epithelial differentiation. PMID:25470458

  20. Abnormal visual experience during development alters the early stages of visual-tactile integration.

    PubMed

    Niechwiej-Szwedo, Ewa; Chin, Jessica; Wolfe, Paul J; Popovich, Christina; Staines, W Richard

    2016-05-01

    Visual experience during the critical periods in early postnatal life is necessary for the normal development of the visual system. Disruption of visual input during this period results in amblyopia, which is associated with reduced activation of the striate and extrastriate cortices. It is well known that visual input converges with other sensory signals and exerts a significant influence on cortical processing in multiple association areas. Recent work in healthy adults has also shown that task-relevant visual input can modulate neural excitability at very early stages of information processing in the primary somatosensory cortex. Here we used electroencephalography to investigate visual-tactile interactions in adults with abnormal binocular vision due to amblyopia and strabismus. Results showed three main findings. First, in comparison to a visually normal control group, participants with abnormal vision had a significantly lower amplitude of the P50 somatosensory event related potential (ERP) when visual and tactile stimuli were presented concurrently. Second, the amplitude of the P100 somatosensory ERP was significantly greater in participants with abnormal vision. These results indicate that task relevant visual input does not significantly influence the excitability of the primary somatosensory cortex, instead, the excitability of the secondary somatosensory cortex is increased. Third, participants with abnormal vision had a higher amplitude of the P1 visual ERP when a tactile stimulus was presented concurrently. Importantly, these results were not modulated by viewing condition, which indicates that the impact of amblyopia on crossmodal interactions is not simply related to the reduced visual acuity as it was evident when viewing with the unaffected eye and binocularly. These results indicate that the consequences of abnormal visual experience on neurophysiological processing extend beyond the primary and secondary visual areas to other modality

  1. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. PMID:26706459

  2. [Evolution and Development Trend of Lung Cancer Surgical Incision].

    PubMed

    Xie, Dong; Chen, Chang; Jiang, Gening

    2016-06-20

    Minimally invasive, safe and tumor-free are the main principles of the choice of surgical incision in lung cancer surgery. In recent years, with the advances in minimally invasive techniques, single-port video assisted thoracic surgery (VATS), robot-assisted thoracoscopic (RATS), suboxiphoid single-port VATS, simultaneous bilateral VATS pulmonary resection, are emerging approaches, single-port VATS has become one of the most exciting new developments in minimally invasive thoracic surgery in recent years. This paper reviews the evolution and trends of surgical incision in lung cancer surgery. PMID:27335293

  3. Impact of Tobacco Smoke and Nicotine Exposure on Lung Development.

    PubMed

    Gibbs, Kevin; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2016-02-01

    Tobacco smoke and nicotine exposure during prenatal and postnatal life can impair lung development, alter the immune response to viral infections, and increase the prevalence of wheezing during childhood. The following review examines recent discoveries in the fields of lung development and tobacco and nicotine exposure, emphasizing studies published within the last 5 years. In utero tobacco and nicotine exposure remains common, occurring in approximately 10% of pregnancies within the United States. Exposed neonates are at increased risk for diminished lung function, altered central and peripheral respiratory chemoreception, and increased asthma symptoms throughout childhood. Recently, genomic and epigenetic risk factors, such as alterations in DNA methylation, have been identified that may influence the risk for long-term disease. This review examines the impact of prenatal tobacco and nicotine exposure on lung development with a particular focus on nicotinic acetylcholine receptors. In addition, this review examines the role of prenatal and postnatal tobacco smoke and nicotine exposure and its association with augmenting infection risk, skewing the immune response toward a T-helper type 2 bias and increasing risk for developing an allergic phenotype and asthmalike symptoms during childhood. Finally, this review outlines the respiratory morbidities associated with childhood secondhand smoke and nicotine exposure and examines genetic and epigenetic modifiers that may influence respiratory health in infants and children exposed to in utero or postnatal tobacco smoke. PMID:26502117

  4. Oxidative Stress and Therapeutic Development in Lung Diseases

    PubMed Central

    Villegas, Leah; Stidham, Timothy; Nozik-Grayck, Eva

    2016-01-01

    Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies. PMID:27019769

  5. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs.

    PubMed

    Yan, Zhengli; Wei, Huimiao; Ren, Chuanlu; Yuan, Shishan; Fu, Hu; Lv, Yuan; Zhu, Yongfei; Zhang, Tianbao

    2015-06-01

    Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes. PMID:25352652

  6. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    SciTech Connect

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  7. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    PubMed Central

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  8. SRC promotes survival and invasion of lung cancers with epidermal growth factor receptor abnormalities and is a potential candidate for molecular-targeted therapy.

    PubMed

    Leung, Elaine Lai-Han; Tam, Issan Yee-San; Tin, Vicky Pui-Chi; Chua, Daniel Tsin-Tien; Sihoe, Alan Dart-Loon; Cheng, Lik-Cheung; Ho, James Chung-Man; Chung, Lap-Ping; Wong, Maria Pik

    2009-06-01

    Molecular-targeted therapy using tyrosine kinase inhibitors against epidermal growth factor receptor (EGFR) is an effective therapy for non-small cell lung cancer that harbor EGFR mutations. This study aimed to investigate the role of Src, a close EGFR associator, as a drug target in NSCLC cells with different EGFR genomic statuses. Src inhibition was achieved using 4-(4'-Phenoxyanilino)-6,7-dimethoxyquinazolinee (SKI-1) and the specificity of action was verified by RNA interference. The results showed that SKI-1 induced significant apoptosis in a dose-dependent manner in cancer cells with high basal Src activation. Activation of FAK and p130Cas was involved in Src-mediated invasion in SKI-1-sensitive cells. SKI-1 inhibited phosphorylation of EGFR as well as EGFR downstream effectors, such as signal transducers and activators of transcription 3/5, extracellular signal-regulated kinase 1/2 and AKT in the mutant cells but not the wild-type cells. This inhibition profile of EGFR implicates that induction of apoptosis and sensitivity of mutant cells to SKI treatment is mediated by EGFR and EGFR downstream pathways. Cotreatment with SKI-1 and gefitinib enhanced apoptosis in cancer cells that contained EGFR mutation and/or amplification. SKI-1 treatment alone induced significant apoptosis in H1975 cells known to be resistant to gefitinib. Src phosphorylation was shown by immunohistochemistry in around 30% of primary lung carcinomas. In 152 adenocarcinomas studied, p-Src was associated with EGFR mutations (P = 0.029). Overall, the findings indicated that Src could be a useful target for treatment of non-small cell lung cancer. Besides EGFR genomic mutations, other forms of EGFR and related family member abnormalities such as EGFR amplification might enhance SKI sensitivity. PMID:19491201

  9. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  10. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  11. Early lung cancer detection in uranium miners with abnormal sputum cytology. Technical progress report, July 31, 1991--July 31, 1992

    SciTech Connect

    Saccomanno, G.

    1992-08-01

    This work supported by the United States of Energy, continues to add data on the health affects of cigarette smoking and radon exposure on uranium miners. Since the last Technical Progress Report in July or 1991, 537 sputum cytology samples have been collected on the 300 uranium workers in the surveillance study. To date there are 436 lung cancer cases in the Uranium Miner Tumor Registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only. In March of 1991 the Geno Saccomanno Uranium Workers Archive was established at St. Mary`s Hospital and Medical Center as a depository for biological specimens and epidemiological data from the 17,700 uranium miners who have been a part or the study.

  12. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    PubMed Central

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  13. Impact of cytokine expression in the pre-implanted donor lung on the development of chronic lung allograft dysfunction subtypes.

    PubMed

    Saito, T; Takahashi, H; Kaneda, H; Binnie, M; Azad, S; Sato, M; Waddell, T K; Cypel, M; Liu, M; Keshavjee, S

    2013-12-01

    The long-term success of lung transplantation continues to be challenged by the development of chronic lung allograft dysfunction (CLAD). The purpose of this study was to investigate the relationship between cytokine expression levels in pre-implanted donor lungs and the posttransplant development of CLAD and its subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Of 109 patients who underwent bilateral lung or heart-lung transplantation and survived for more than 3 months, 50 BOS, 21 RAS and 38 patients with No CLAD were identified by pulmonary function test results. Using donor lung tissue biopsies sampled from each patient, expression levels of IL-6, IL-1β, IL-8, IL-10, interferon-γ and tumor necrosis factor-α mRNA were measured. IL-6 expression levels were significantly higher in pre-implanted lungs of patients that ultimately developed BOS compared to RAS and No CLAD (p = 0.025 and 0.011, respectively). Cox regression analysis demonstrated an association between high IL-6 expression levels and BOS development (hazard ratio = 4.98; 95% confidence interval = 2.42-10.2, p < 0.001). In conclusion, high IL-6 mRNA expression levels in pre-implanted donor lungs were associated with the development of BOS, not RAS. This association further supports the contention that early graft injury impacts on both late graft function and early graft function. PMID:24164971

  14. The effects of smoking on the developing lung: insights from a biologic model for lung development, homeostasis, and repair.

    PubMed

    Rehan, Virender K; Asotra, Kamlesh; Torday, John S

    2009-01-01

    There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)gamma, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPAR gamma expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967

  15. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  16. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  17. Regulation of fetal lung development in response to maternal overnutrition.

    PubMed

    Lock, Mitchell; McGillick, Erin V; Orgeig, Sandra; McMillen, I Caroline; Morrison, Janna L

    2013-11-01

    With the worldwide obesity epidemic, the proportion of women entering pregnancy overweight or obese has increased significantly in recent years. Babies born to obese women are at an increased risk of respiratory complications at birth and in childhood. In addition to maternal diabetes, there are a number of metabolic changes that the fetus of an overnourished mother experiences in utero that may modulate lung development and represent the mechanisms underlying the increased risk of respiratory complications. Herein we highlight a series of factors associated with the intrauterine environment of an overnourished mother that may impact on fetal lung development and lead to an increased risk of complications at birth or in postnatal life. PMID:24033542

  18. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and

  19. CCAAT/Enhancer Binding Protein β Is Dispensable for Development of Lung Adenocarcinoma

    PubMed Central

    Nakayama, Sohei; VanderLaan, Paul A.; Levantini, Elena; Yamamoto, Mihoko; Hirai, Hideyo; Wong, Kwok-Kin; Costa, Daniel B.; Watanabe, Hideo; Kobayashi, Susumu S.

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Although disruption of normal proliferation and differentiation is a vital component of tumorigenesis, the mechanisms of this process in lung cancer are still unclear. A transcription factor, C/EBPβ is a critical regulator of proliferation and/or differentiation in multiple tissues. In lung, C/EBPβ is expressed in alveolar pneumocytes and bronchial epithelial cells; however, its roles on normal lung homeostasis and lung cancer development have not been well described. Here we investigated whether C/EBPβ is required for normal lung development and whether its aberrant expression and/or activity contribute to lung tumorigenesis. We showed that C/EBPβ was expressed in both human normal pneumocytes and lung adenocarcinoma cell lines. We found that overall lung architecture was maintained in Cebpb knockout mice. Neither overexpression of nuclear C/EBPβ nor suppression of CEBPB expression had significant effects on cell proliferation. C/EBPβ expression and activity remained unchanged upon EGF stimulation. Furthermore, deletion of Cebpb had no impact on lung tumor burden in a lung specific, conditional mutant EGFR lung cancer mouse model. Analyses of data from The Cancer Genome Atlas (TCGA) revealed that expression, promoter methylation, or copy number of CEBPB was not significantly altered in human lung adenocarcinoma. Taken together, our data suggest that C/EBPβ is dispensable for development of lung adenocarcinoma. PMID:25767874

  20. CT Lung Cancer Screening Program Development: Part 2.

    PubMed

    Yates, Teri

    2015-01-01

    Radiology administrators must use innovative strategies around clinical collaboration and marketing to ensure that patients access the service in sufficient numbers. Radiology Associates of South Florida in collaboration with Baptist Health South Florida have developed a successful lung cancer screening program. The biggest factors in their success have been the affordability of their service and the quality of the program. Like mammography, lung cancer screening programs serve as an entry point to other services that generate revenue for the hospital. Patients may require further evaluation in the form of more imaging or surgical services for biopsy. Part 1 provided background and laid out fundamentals for starting a program. Part 2 focuses on building patient volume, marketing, and issues related to patient management after the screen is performed. PMID:26314180

  1. [Clinical study on development of nontuberculous mycobacterial lung disease].

    PubMed

    Kurashima, Atsuyuki

    2004-12-01

    DEVELOPEMENT OF MAC LUNG DISEASE: An increase of nodular bronchiectatic type of MAC lung disease becomes a problem among respiratory physician today. The reason is still unknown, but it seems to be globally recognized that this type of MAC disease is developing particularly in middle-aged woman. Some papers mentioned the existence of such type of MAC lung disease already early in the 70s, in Japan. Yamamoto described that 17 cases of middle lobe type lung disease out of 154 non-photochoromogen cases, and 76.5% were female, in 1970. Shimoide also pointed such type of 39 cases out of 240 MAC lung disease and 84.6% were female, in 1980. Prince reported MAC lung disease seen in old and middle age female of 21 cases including lethality example of 4 cases without a precedent disease in 1989. After his report, the international consensus of this peculiar type of MAC lung disease seems to be spread. In 1989, we compared 72 cases of nodular bronchiectatic type of MAC lung disease and 56 cases of diffuse panbronchiolitis (DPB) that was a most typical chronic airway disease at that time in Japan. The average age of disease onset of DPB group was 37.0 +/- 16.3 years old and that of MAC group was 54.5 +/- 16.3 years old. The percentage of female was 32% in DPB group and 87.5% in MAC group. It was highly possible that two groups belong different parent population. We could grasp that nodular bronchiectatic type of MAC lung disease patients is a unique group. We observed the serial films of 21 cases of nodular bronchiectatic MAC lung disease, and divide the progression of the disease to sequential 7 steps as Fig. 1. Small nodules progress to cavities in mean about 10 years. However, why is MAC which is opportunistic pathogen with weak virulence, able to form a lesion at unimpaired lung parenchyma? Is there really normal site? Why dose it start from lingula? Why is MAC seen a lot in woman? While it is extremely pathognomonic clinical picture, and, is an extremely interesting

  2. LungGENS’: a web-based tool for mapping single-cell gene expression in the developing lung

    PubMed Central

    Du, Yina; Guo, Minzhe; Whitsett, Jeffrey A; Xu, Yan

    2015-01-01

    We developed LungGENS (Lung Gene Expression iN Single-cell), a web-based bioinformatics resource for querying single-cell gene expression databases by entering a gene symbol or a list of genes or selecting a cell type of their interest. Gene query provides quantitative RNA expression of the gene of interest in each lung cell type. Cell type query returns associated selective gene signatures and genes encoding cell surface markers and transcription factors in interactive heatmap and tables. LungGENS will be broadly applicable in respiratory research, providing a cell-specific RNA expression resource at single-cell resolution. LungGENS is freely available for non-commercial use at https://research.cchmc.org/pbge/lunggens/default.html. PMID:26130332

  3. 'LungGENS': a web-based tool for mapping single-cell gene expression in the developing lung.

    PubMed

    Du, Yina; Guo, Minzhe; Whitsett, Jeffrey A; Xu, Yan

    2015-11-01

    We developed LungGENS (Lung Gene Expression iN Single-cell), a web-based bioinformatics resource for querying single-cell gene expression databases by entering a gene symbol or a list of genes or selecting a cell type of their interest. Gene query provides quantitative RNA expression of the gene of interest in each lung cell type. Cell type query returns associated selective gene signatures and genes encoding cell surface markers and transcription factors in interactive heatmap and tables. LungGENS will be broadly applicable in respiratory research, providing a cell-specific RNA expression resource at single-cell resolution. LungGENS is freely available for non-commercial use at https://research.cchmc.org/pbge/lunggens/default.html. PMID:26130332

  4. Organoids as a model system for studying human lung development and disease.

    PubMed

    Nadkarni, Rohan R; Abed, Soumeya; Draper, Jonathan S

    2016-05-01

    The lung is a complex organ comprising multiple cell types that perform a variety of vital processes, including immune defense and gas exchange. Diseases of the lung, such as chronic obstructive pulmonary disease, asthma and lung cancer, together represent one of the largest causes of patient suffering and mortality. Logistical barriers that hamper access to embryonic, normal adult or diseased lung tissue currently hinder the study of lung disease. In vitro lung modeling represents an attractive and accessible avenue for investigating lung development, function and disease pathology, but accurately modeling the lung in vitro requires a system that recapitulates the structural features of the native lung. Organoids are stem cell-derived three-dimensional structures that are supported by an extracellular matrix and contain multiple cell types whose spatial arrangement and interactions mimic those of the native organ. Recently, organoids representative of the respiratory system have been generated from adult lung stem cells and human pluripotent stem cells. Ongoing studies are showing that organoids may be used to model human lung development, and can serve as a platform for interrogating the function of lung-related genes and signalling pathways. In a therapeutic context, organoids may be used for modeling lung diseases, and as a platform for screening for drugs that alleviate respiratory disease. Here, we summarize the organoid-forming capacity of respiratory cells, current lung organoid technologies and their potential use in future therapeutic applications. PMID:26721435

  5. Development of abnormal fluid pressures beneath a ramping thrust sheet: Where's the evidence

    SciTech Connect

    Wiltschko, D.V.; Smith, R.E. . Dept. of Geology and Center for Tectonophysics)

    1992-01-01

    Many models for the mechanics of fold and thrust belts hold that fluid pressure is locally, or even everywhere, abnormal, thus aiding both internal deformation and motion along the base. Recent support comes from studies of accretionary prisms where drill-stem measurements of both fluid flow in fault zones and formation pressure are pointed to as evidence for a hydrodynamic system characterized by wide-spread excess fluid pressure. However, despite the general acceptance of high fluid pressure (Pf) as a potentially important controlling mechanism for thrust motion, and despite nearly 30 years of looking, direct evidence for abnormal fluid pressure in ancient continental thrust belts is either rare or ambiguous. The authors have developed a two-dimensional model for the evolution of fluid pressure within and beneath a ramping thrust sheet. In the model, the fluid and heat flow equations are solved and applied at each time step. The model accounts for porosity compaction, thermal pressuring, and fluid flow. Results of this model show, first, that high fluid pressure can be developed during deposition, before thrust motion. The authors used typical rates of deposition, duration of deposition, and a simplified three-layer stratigraphy for North American thrust belts. Second, the models show that high Pf can be maintained and/or further enhanced during thrusting depending upon the permeabilities assigned to the model hydrostratigraphic section. Of the rock properties studied in detail, modes are most sensitive to permeability. Nevertheless, the models show that for best guesses of the relevant rock properties it should be possible to find evidence for high fluid pressure in, (1) the crests of ramp anticlines and, (2) the toe region, especially in the lower plate.

  6. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    PubMed

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  7. Early detection of intravascular large B-cell lymphoma by 18FDG-PET/CT with diffuse FDG uptake in the lung without respiratory symptoms or chest CT abnormalities

    PubMed Central

    Shiiba, Masato; Izutsu, Koji; Ishihara, Makiko

    2014-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare and aggressive subtype of systemic extranodal non-Hodgkin diffuse large B-cell lymphoma (DLBCL). We report a rare case of IVLBCL who showed diffuse 18F-fluorodeoxyglucose (FDG) uptake in the lung in FDG-positron emission tomography/computed tomography (PET/CT) without respiratory symptoms or chest CT abnormalities. Serum biochemical studies showed a raised level of lactate dehydrogenase (LDH) and serum soluble interleukin-2 receptor (sIL-2R), which suggested the presence of malignant lymphoma strongly. A non-contrast CT showed no abnormalities in the lung fields, no lymphadenopathy was found. FDG-PET/CT revealed diffuse FDG uptake in the both lungs and in spleen as well as multiple hot spots in the liver. Under the suspicion of IVLBCL especially by the diffuse FDG uptake in the lung, a random skin biopsy was performed from three regions, the left forearm, right abdomen and left thigh in which there had been no evidence of FDG uptake. The definite diagnosis of IVLBCL was made based on the pathological analysis of the specimen from the left thigh. She achieved complete remission (CR) after combined chemoimmunotherapy. FDG-PET/CT was useful for the early detection of IVLBCL even without respiratory symptoms or any abnormal findings by chest CT.

  8. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice.

    PubMed

    Lee, Kristie; Tan, Jacqueline; Morris, Michael B; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q

    2012-01-01

    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885

  9. Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice

    PubMed Central

    Lee, Kristie; Tan, Jacqueline; Morris, Michael B.; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q.

    2012-01-01

    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885

  10. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development.

    PubMed

    Chueasiri, Chutharat; Chunthong, Ketsuwan; Pitnjam, Keasinee; Chakhonkaen, Sriprapai; Sangarwut, Numphet; Sangsawang, Kanidta; Suksangpanomrung, Malinee; Michaelson, Louise V; Napier, Johnathan A; Muangprom, Amorntip

    2014-01-01

    The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development. PMID:25192280

  11. Abnormal Development of Tapetum and Microspores Induced by Chemical Hybridization Agent SQ-1 in Wheat

    PubMed Central

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility. PMID:25803723

  12. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  13. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  14. [Impact of inhaled NO on developing lung and brain].

    PubMed

    Baud, O; Olivier, P; Vottier, G; Pham, H; Mercier, J-C; Loron, G

    2009-09-01

    With the advent of prenatal steroids, postnatal exogenous surfactant and less aggressive respiratory support, premature infants can develop chronic lung disease without even acute respiratory distress. This "new bronchopulmonary dysplasia" could be the result of impaired postnatal growth. Several experimental studies have suggested a possible role of the vascular endothelial growth factor/nitric oxide (VEGF/NO) pathway in restoring pulmonary angiogenesis and enhancing distal lung growth. The results of the clinical studies are, however, inconclusive, and it is currently unclear which subsets of premature infants might benefit from inhaled nitric oxide. Besides, severe intracranial haemorrhage and/or cystic periventricular leukomalacia may affect the most immature babies, many of whom are spared from severe initial respiratory disease. Recently, inhaled nitric oxide was shown to significantly decrease the incidence of these neurological events, and to improve the long-term outcome in a few clinical trials. At times neuroprotective, at times neurotoxic, nitric oxide is capable of divergent effects depending upon the extent of cerebral damage, the redox state of the cell, and the experimental model used. Recently, inhaled nitric oxide had recognized to have dramatic remote effects including angiogenesis and maturation on the developing brain in rodent pups. Therefore, the developmental consequences of inhaled NO should be further investigated to ensure its safety on the developing brain and to test its potential neurprotective effect. PMID:19836663

  15. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  16. Deficiency of the Chromatin Regulator Brpf1 Causes Abnormal Brain Development*

    PubMed Central

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  17. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development.

    PubMed

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-13

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  18. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat.

    PubMed

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  19. Lung development: orchestrating the generation and regeneration of a complex organ

    PubMed Central

    Herriges, Michael; Morrisey, Edward E.

    2014-01-01

    The respiratory system, which consists of the lungs, trachea and associated vasculature, is essential for terrestrial life. In recent years, extensive progress has been made in defining the temporal progression of lung development, and this has led to exciting discoveries, including the derivation of lung epithelium from pluripotent stem cells and the discovery of developmental pathways that are targets for new therapeutics. These discoveries have also provided new insights into the regenerative capacity of the respiratory system. This Review highlights recent advances in our understanding of lung development and regeneration, which will hopefully lead to better insights into both congenital and acquired lung diseases. PMID:24449833

  20. MiR-449a Affects Epithelial Proliferation during the Pseudoglandular and Canalicular Phases of Avian and Mammal Lung Development.

    PubMed

    Sanford, Ethan L; Choy, Kwong W; Donahoe, Patricia K; Tracy, Adam A; Hila, Regis; Loscertales, Maria; Longoni, Mauro

    2016-01-01

    Congenital diaphragmatic hernia is associated with pulmonary hypoplasia and respiratory distress, which result in high mortality and morbidity. Although several transgenic mouse models of lung hypoplasia exist, the role of miRNAs in this phenotype is incompletely characterized. In this study, we assessed microRNA expression levels during the pseudoglandular to canalicular phase transition of normal human fetal lung development. At this critical time, when the distal respiratory portion of the airways begins to form, microarray analysis showed that the most significantly differentially expressed miRNA was miR-449a. Prediction algorithms determined that N-myc is a target of miR-449a and identified the likely miR-449a:N-myc binding sites, confirmed by luciferase assays and targeted mutagenesis. Functional ex vivo knock-down in organ cultures of murine embryonic lungs, as well as in ovo overexpression in avian embryonic lungs, suggested a role for miR-449a in distal epithelial proliferation. Finally, miR-449a expression was found to be abnormal in rare pulmonary specimens of human fetuses with Congenital Diaphragmatic Hernia in the pseudoglandular or canalicular phase. This study confirms the conserved role of miR-449a for proper pulmonary organogenesis, supporting the delicate balance between expansion of progenitor cells and their terminal differentiation, and proposes the potential involvement of this miRNA in human pulmonary hypoplasia. PMID:26891231

  1. MiR-449a Affects Epithelial Proliferation during the Pseudoglandular and Canalicular Phases of Avian and Mammal Lung Development

    PubMed Central

    Sanford, Ethan L.; Choy, Kwong W.; Donahoe, Patricia K.; Tracy, Adam A.; Hila, Regis

    2016-01-01

    Congenital diaphragmatic hernia is associated with pulmonary hypoplasia and respiratory distress, which result in high mortality and morbidity. Although several transgenic mouse models of lung hypoplasia exist, the role of miRNAs in this phenotype is incompletely characterized. In this study, we assessed microRNA expression levels during the pseudoglandular to canalicular phase transition of normal human fetal lung development. At this critical time, when the distal respiratory portion of the airways begins to form, microarray analysis showed that the most significantly differentially expressed miRNA was miR-449a. Prediction algorithms determined that N-myc is a target of miR-449a and identified the likely miR-449a:N-myc binding sites, confirmed by luciferase assays and targeted mutagenesis. Functional ex vivo knock-down in organ cultures of murine embryonic lungs, as well as in ovo overexpression in avian embryonic lungs, suggested a role for miR-449a in distal epithelial proliferation. Finally, miR-449a expression was found to be abnormal in rare pulmonary specimens of human fetuses with Congenital Diaphragmatic Hernia in the pseudoglandular or canalicular phase. This study confirms the conserved role of miR-449a for proper pulmonary organogenesis, supporting the delicate balance between expansion of progenitor cells and their terminal differentiation, and proposes the potential involvement of this miRNA in human pulmonary hypoplasia. PMID:26891231

  2. Bronchial ligation enhances murine fetal lung development in whole-organ culture.

    PubMed

    Blewett, C J; Zgleszewski, S E; Chinoy, M R; Krummel, T M; Cilley, R E

    1996-07-01

    Evidence exists from both congenital anomalies and animal models that normal fetal lung development is dependent on maintenance of fluid pressure within the developing "airways." Fetal tracheostomy, allowing free egress of airway fluids, results in lung hypoplasia, indicating that some airway distending pressure is required for normal lung development to occur. In contrast, fetal tracheal ligation, which increases fetal airway pressure, reverses lung hypoplasia in animal models. The authors' experiments test the hypothesis that large airway obstruction accelerates the development of murine lungs in vitro in whole-organ culture. Fetuses from time-dated pregnant CD-1 mice at day 14 of gestation were removed (term, 20 days), and the lungs were excised. The left bronchus of each lung was ligated (n = 26), after which the left lung was isolated and cultured at 37 degrees C (95% air, 5% CO2) in BGJb media supplemented with vitamin C and antibiotics. Some fetal lungs were cultured under similar conditions without bronchial ligation (n = 11). After 7 days in culture, the lungs were taken for various analyses. The lungs were fixed in either formaldehyde and processed for paraffin embedding for light microscopic evaluation and morphometric data collection, or were freshly minced and aliquots taken for total protein and DNA content. Several more ligated and unligated lungs were processed for ultrastructural analysis. Morphometric analysis on transverse sections of lungs showed significant differences in the lung tissue size, thickness, epithelial cell height, luminal areas, perimeters, and total number of airspaces (airway + primordial alveolar airspaces). It was evident that bronchial ligation promoted lung development. The ligated lungs displayed thinning of the primordial alveolar walls with cuboidal epithelial cells. The total number of airspaces per field was lower for better developed ligated lungs because of the increased area of airspaces compared with that of the

  3. Association of Improved Air Quality with Lung Development in Children

    PubMed Central

    Gauderman, W. James; Urman, Robert; Avol, Edward; Berhane, Kiros; McConnell, Rob; Rappaport, Edward; Chang, Roger; Lurmann, Fred; Gilliland, Frank

    2015-01-01

    BACKGROUND Air-pollution levels have been trending downward progressively over the past several decades in southern California, as a result of the implementation of air quality– control policies. We assessed whether long-term reductions in pollution were associated with improvements in respiratory health among children. METHODS As part of the Children’s Health Study, we measured lung function annually in 2120 children from three separate cohorts corresponding to three separate calendar periods: 1994–1998, 1997–2001, and 2007–2011. Mean ages of the children within each cohort were 11 years at the beginning of the period and 15 years at the end. Linear-regression models were used to examine the relationship between declining pollution levels over time and lung-function development from 11 to 15 years of age, measured as the increases in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) during that period (referred to as 4-year growth in FEV1 and FVC). RESULTS Over the 13 years spanned by the three cohorts, improvements in 4-year growth of both FEV1 and FVC were associated with declining levels of nitrogen dioxide (P<0.001 for FEV1 and FVC) and of particulate matter with an aerodynamic diameter of less than 2.5 μm (P = 0.008 for FEV1 and P<0.001 for FVC) and less than 10 μm (P<0.001 for FEV1 and FVC). These associations persisted after adjustment for several potential confounders. Significant improvements in lung-function development were observed in both boys and girls and in children with asthma and children without asthma. The proportions of children with clinically low FEV1 (defined as <80% of the predicted value) at 15 years of age declined significantly, from 7.9% to 6.3% to 3.6% across the three periods, as the air quality improved (P = 0.001). CONCLUSIONS We found that long-term improvements in air quality were associated with statistically and clinically significant positive effects on lung-function growth in children

  4. Abnormal Sperm Development in pcd3J-/- Mice: the Importance of Agtpbp1 in Spermatogenesis

    PubMed Central

    Kim, Nameun; Xiao, Rui; Choi, Hojun; Kim, Jin-Hoi; Sang-Jun, Uhm; Chankyu, Park

    2011-01-01

    Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd3J-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd3J-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward. PMID:21110128

  5. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1. PMID:26531852

  6. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. PMID:23073980

  7. Age, Sexual Dimorphism, and Disease Associations in the Developing Human Fetal Lung Transcriptome.

    PubMed

    Kho, Alvin T; Chhabra, Divya; Sharma, Sunita; Qiu, Weiliang; Carey, Vincent J; Gaedigk, Roger; Vyhlidal, Carrie A; Leeder, J Steven; Tantisira, Kelan G; Weiss, Scott T

    2016-06-01

    The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development. PMID:26584061

  8. Automated Lung Segmentation from HRCT Scans with Diffuse Parenchymal Lung Diseases.

    PubMed

    Pulagam, Ammi Reddy; Kande, Giri Babu; Ede, Venkata Krishna Rao; Inampudi, Ramesh Babu

    2016-08-01

    Performing accurate and fully automated lung segmentation of high-resolution computed tomography (HRCT) images affected by dense abnormalities is a challenging problem. This paper presents a novel algorithm for automated segmentation of lungs based on modified convex hull algorithm and mathematical morphology techniques. Sixty randomly selected lung HRCT scans with different abnormalities are used to test the proposed algorithm, and experimental results show that the proposed approach can accurately segment the lungs even in the presence of disease patterns, with some limitations in the apices and bases of lungs. The algorithm demonstrates a high segmentation accuracy (dice similarity coefficient = 98.62 and shape differentiation metrics dmean = 1.39 mm, and drms = 2.76 mm). Therefore, the developed automated lung segmentation algorithm is a good candidate for the first stage of a computer-aided diagnosis system for diffuse lung diseases. PMID:26961983

  9. Normal and Abnormal Development of the Intrapericardial Arterial Trunks in Man and Mouse

    PubMed Central

    Anderson, Robert H.; Chaudhry, Bill; Mohun, Timothy J.; Bamforth, Simon D.; Hoyland, Darren; Phillips, Helen M.; Webb, Sandra; Moorman, Antoon F.J.; Brown, Nigel A.; Henderson, Deborah J.

    2014-01-01

    Aims The definitive cardiac outflow channels have three components: the intrapericardial arterial trunks; the arterial roots with valves; and the ventricular outflow tracts. We studied the normal and abnormal development of the most distal of these, the arterial trunks, comparing findings in mouse and man. Methods and Results Using lineage tracing and three-dimensional visualization by episcopic reconstruction and scanning electron microscopy, we studied embryonic day 9.5 to 12.5 mouse hearts, clarifying the development of the outflow tracts distal to the primordia of the arterial valves. We characterize a transient aortopulmonary foramen, located between the leading edge of a protrusion from the dorsal wall of the aortic sac and the distal margins of the two outflow cushions. The foramen is closed by fusion of the protrusion, with its cap of neural crest cells, with the neural crest cell-filled cushions; the resulting structure then functioning transiently as an aortopulmonary septum. Only subsequent to this closure is it possible to recognize, more proximally, the previously described aortopulmonary septal complex. The adjacent walls of the intrapericardial trunks are derived from the protrusion and distal parts of the outflow cushions, while the lateral walls are formed from intrapericardial extensions of pharyngeal mesenchyme derived from the second heart field. Conclusions We provide, for the first time, objective evidence of the mechanisms of closure of an aortopulmonary foramen that exists distally between the lumens of the developing intrapericardial arterial trunks. Our findings provide insights into the formation of aortopulmonary windows and the variants of common arterial trunk. PMID:22499773

  10. Ultrastructural alterations during embryonic rats' lung development caused by ozone.

    PubMed

    López, Irma; Sánchez, Ivonne; Bizarro, Patricia; Acevedo, Sandra; Ustarroz, Martha; Fortoul, Teresa

    2008-01-01

    Ozone (O3) is an oxidizing agent that acts on phospholipids, proteins and sugars of cellular membranes producing free radicals, which cause oxidative damages. The O3 exposure has been used as a model to study oxidative stress, in which the respiratory airways represent the entrance to the organism. In this study, ultrastructural alterations were identified at the bronchiolar level during the intra-uterine lung development, using an O3 exposure model in pregnant rats during 18, 20 and 21 days of gestation. Twelve pregnant Wistar rats, six controls and six exposed to 1 ppm O3 inhalation during 12 h per day, were used. The rats were sacrificed at gestational days 18, 20 and 21; the fetuses were obtained and their lungs dissected. The ultrastructural analysis evidenced swollen mitochondria, cytoplasmic vacuolization of the epithelial cells and structural disorder caused by the oxidative stress. At gestation day 20, flake-off epithelial cells and laminar bodies in the bronchiolar lumen were observed. In the 21-gestation-day group, the mitochondria were edematous and their cristae were disrupted by the damage caused in mitochondrial membranes. PMID:18083976

  11. Control of fetal lung development in the rabbit

    PubMed Central

    Chiswick, Malcolm L.; Ahmed, Ali; Jack, P. M. B.; Milner, R. D. G.

    1973-01-01

    In a series of experiments, one rabbit fetus of a litter was decapitated in utero on day 24 of gestation and allowed to develop for a further 5 days. One effect of fetal decapitation was a reduction in the concentration of osmiophilic inclusion bodies in the type II pneumocytes of the lung. However, certain physical properties of the lung which depend on the presence of a surface active alveolar lining were normal. When 50 μg tetracosactrin was given to the fetus subcutaneously at the time of decapitation, there was no reduction in the concentration of inclusion bodies. It is suggested that though the production of surface active material in the pneumocyte is controlled at least in part by fetal adrenocortical hormones, the extrusion of this material into the alveolar space may be subject to other control. This may have important implications for the prophylactic treatment of the respiratory distress syndrome in premature babies by antepartum maternal glucocorticoid therapy. ImagesFIG. PMID:4354779

  12. The trajectory of gray matter development in Broca's area is abnormal in people who stutter.

    PubMed

    Beal, Deryk S; Lerch, Jason P; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L; De Nil, Luc F

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca's area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter. PMID

  13. The role of estrogens in normal and abnormal development of the prostate gland.

    PubMed

    Prins, Gail S; Huang, Liwei; Birch, Lynn; Pu, Yongbing

    2006-11-01

    Estrogens play a physiologic role during prostate development with regard to programming stromal cells and directing early morphogenic events. However, if estrogenic exposures are abnormally high during the critical developmental period, permanent alterations in prostate branching morphogenesis and cellular differentiation will result, a process referred to as neonatal imprinting or developmental estrogenization. These perturbations are associated with an increased incidence of prostatic lesions with aging, which include hyperplasia, inflammation, and dysplasia. To understand how early estrogenic exposures can permanently alter the prostate and predispose it to neoplasia, we examined the effects of estrogens on prostatic steroid receptors and key developmental genes. Transient and permanent alterations in prostatic AR, ERalpha, ERbeta, and RARs are observed. We propose that estrogen-induced alterations in these critical transcription factors play a fundamental role in initiating prostatic growth and differentiation defects by shifting the prostate from an androgen-dominated gland to one whose development is regulated by estrogens and retinoids. This in turn leads to specific disruptions in the expression patterns of key prostatic developmental genes that normally dictate morphogenesis and differentiation. Specifically, we find transient reductions in Nkx3.1 and permanent reductions in Hoxb-13, which lead to differentiation defects particularly within the ventral lobe. Prolonged developmental expression of Bmp-4 contributes to hypomorphic growth throughout the prostatic complex. Reduced expression of Fgf10 and Shh and their cognate receptors in the dorsolateral lobes leads to branching defects in those specific regions in response to neonatal estrogens. We hypothesize that these molecular changes initiated early in life predispose the prostate to the neoplastic state upon aging. PMID:17261752

  14. Using lessons from breast, cervical, and colorectal cancer screening to inform the development of lung cancer screening programs.

    PubMed

    Armstrong, Katrina; Kim, Jane J; Halm, Ethan A; Ballard, Rachel M; Schnall, Mitchell D

    2016-05-01

    Multiple advisory groups now recommend that high-risk smokers be screened for lung cancer by low-dose computed tomography. Given that the development of lung cancer screening programs will face many of the same issues that have challenged other cancer screening programs, the National Cancer Institute-funded Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) consortium was used to identify lessons learned from the implementation of breast, cervical, and colorectal cancer screening that should inform the introduction of lung cancer screening. These lessons include the importance of developing systems for identifying and recruiting eligible individuals in primary care, ensuring that screening centers are qualified and performance is monitored, creating clear communication standards for reporting screening results to referring physicians and patients, ensuring follow-up is available for individuals with abnormal test results, avoiding overscreening, remembering primary prevention, and leveraging advances in cancer genetics and immunology. Overall, this experience emphasizes that effective cancer screening is a multistep activity that requires robust strategies to initiate, report, follow up, and track each step as well as a dynamic and ongoing oversight process to revise current screening practices as new evidence regarding screening is created, new screening technologies are developed, new biological markers are identified, and new approaches to health care delivery are disseminated. Cancer 2016;122:1338-1342. © 2016 American Cancer Society. PMID:26929386

  15. Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development

    PubMed Central

    Li, Xue; Liang, Jiurong; Jiang, Dianhua; Geng, Yan; Ning, Wen

    2016-01-01

    Follistatin-like 1 (FSTL1) is a secreted bone morphogenetic protein (BMP) antagonist, and it plays a crucial role in normal lung development. Deletion of Fstl1 leads to postnatal death in mice due to respiratory failure. To further explore the role of FSTL1 in mouse lung development, we created a transgene SFTPC-Fstl1 allele mouse displaying significant epithelial overexpression of Fstl1 in all stages of lung development. However, epithelial overexpression of Fstl1 did not alter lung morphogenesis, epithelial differentiation and lung function. Moreover, we found that FSTL1 function was blocked by the epithelial polarization, which was reflected by the remarkable apical secretion of FSTL1 and the basolateral BMP signaling. Taken together, this study demonstrates that tightly spatial interaction of FSTL1 and BMP signaling plays an essential role in lung development. PMID:27355685

  16. Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development.

    PubMed

    Li, Xiaohe; Fang, Yinshan; Li, Xue; Liang, Jiurong; Jiang, Dianhua; Geng, Yan; Ning, Wen

    2016-01-01

    Follistatin-like 1 (FSTL1) is a secreted bone morphogenetic protein (BMP) antagonist, and it plays a crucial role in normal lung development. Deletion of Fstl1 leads to postnatal death in mice due to respiratory failure. To further explore the role of FSTL1 in mouse lung development, we created a transgene SFTPC-Fstl1 allele mouse displaying significant epithelial overexpression of Fstl1 in all stages of lung development. However, epithelial overexpression of Fstl1 did not alter lung morphogenesis, epithelial differentiation and lung function. Moreover, we found that FSTL1 function was blocked by the epithelial polarization, which was reflected by the remarkable apical secretion of FSTL1 and the basolateral BMP signaling. Taken together, this study demonstrates that tightly spatial interaction of FSTL1 and BMP signaling plays an essential role in lung development. PMID:27355685

  17. Genetic Evidence for XPC-KRAS Interactions During Lung Cancer Development.

    PubMed

    Zhang, Xiaoli; He, Nonggao; Gu, Dongsheng; Wickliffe, Jeff; Salazar, James; Boldogh, Istavan; Xie, Jingwu

    2015-10-20

    Lung cancer causes more deaths than breast, colorectal and prostate cancers combined. Despite major advances in targeted therapy in a subset of lung adenocarcinomas, the overall 5-year survival rate for lung cancer worldwide has not significantly changed for the last few decades. DNA repair deficiency is known to contribute to lung cancer development. In fact, human polymorphisms in DNA repair genes such as xeroderma pigmentosum group C (XPC) are highly associated with lung cancer incidence. However, the direct genetic evidence for the role of XPC for lung cancer development is still lacking. Mutations of the Kirsten rat sarcoma viral oncogene homolog (Kras) or its downstream effector genes occur in almost all lung cancer cells, and there are a number of mouse models for lung cancer with these mutations. Using activated Kras, Kras(LA1), as a driver for lung cancer development in mice, we showed for the first time that mice with Kras(LA1) and Xpc knockout had worst outcomes in lung cancer development, and this phenotype was associated with accumulated DNA damage. Using cultured cells, we demonstrated that induced expression of oncogenic KRAS(G12V) led to increased levels of reactive oxygen species (ROS) as well as DNA damage, and both can be suppressed by anti-oxidants. Our results suggest that XPC may help repair DNA damage caused by KRAS-mediated production of ROS. PMID:26554912

  18. Development of early postnatal peripheral nerve abnormalities in Trembler-J and PMP22 transgenic mice

    PubMed Central

    ROBERTSON, A. M.; HUXLEY, C.; KING, R. H. M.; THOMAS, P. K.

    1999-01-01

    Mutations in the gene for peripheral myelin protein 22 (PMP22) are associated with peripheral neuropathy in mice and humans. Although PMP22 is strongly expressed in peripheral nerves and is localised largely to the myelin sheath, a dual role has been suggested as 2 differentially expressed promoters have been found. In this study we compared the initial stages of postnatal development in transgenic mouse models which have, in addition to the murine pmp22 gene, 7 (C22) and 4 (C61) copies of the human PMP22 gene and in homozygous and heterozygous Trembler-J (TrJ) mice, which have a point mutation in the pmp22 gene. The number of axons that were singly ensheathed by Schwann cells was the same in all groups indicating that PMP22 does not function in the initial ensheathment and separation of axons. At both P4 and P12 all mutants had an increased proportion of fibres that were incompletely surrounded by Schwann cell cytoplasm indicating that this step is disrupted in PMP22 mutants. C22 and homozygous TrJ animals could be distinguished by differences in the Schwann cell morphology at the initiation of myelination. In homozygous TrJ animals the Schwann cell cytoplasm had failed to make a full turn around the axon whereas in the C22 strain most fibres had formed a mesaxon. It is concluded that PMP22 functions in the initiation of myelination and probably involves the ensheathment of the axon by the Schwann cell, and the extension of this cell along the axon. Abnormalities may result from a failure of differentiation but more probably from defective interactions between the axon and the Schwann cell. PMID:10580849

  19. Advances in pulmonary therapy and drug development: Lung tissue engineering to lung-on-a-chip.

    PubMed

    Doryab, Ali; Amoabediny, Ghassem; Salehi-Najafabadi, Amir

    2016-01-01

    Lung disease is one of the major causes of death, and the rate of pulmonary diseases has been increasing for decades. Although lung transplantation is the only treatment for majority of patients, this method has been limited due to lack of donors. Therefore, recently, attentions have increased to some new strategies with the aid of tissue engineering and microfluidics techniques not only for the functional analysis, but also for drug screening. In fact, in tissue engineering, the engineered tissue is able to grow by using the patient's own cells without intervention in the immune system. On the other hand, microfluidics devices are applied in order to evaluate drug screenings, function analysis and toxicity. This article reviews new advances in lung tissue engineering and lung-on-a-chip. Furthermore, future directions, difficulties and drawbacks of pulmonary therapy in these areas are discussed. PMID:26875777

  20. Sex, Race, and the Development of Acute Lung Injury

    PubMed Central

    Lemos-Filho, Luciano B.; Mikkelsen, Mark E.; Martin, Greg S.; Dabbagh, Ousama; Adesanya, Adebola; Gentile, Nina; Esper, Annette; Gajic, Ognjen

    2013-01-01

    Background: Prior studies suggest that mortality differs by sex and race in patients who develop acute lung injury (ALI). Whether differences in presentation account for these disparities remains unclear. We sought to determine whether sexual and racial differences exist in the rate of ALI development and ALI-related mortality after accounting for differences in clinical presentations. Methods: This was a multicenter, observational cohort study of 5,201 patients at risk for ALI. Multivariable logistic regression with adjustment for center-level effects was used to adjust for potential covariates. Results: The incidence of ALI development was 5.9%; in-hospital mortality was 5.0% for the entire cohort, and 24.4% for those patients who developed ALI. Men were more likely to develop ALI compared to women (6.9% vs 4.7%, P < .001) and had a nonsignificant increase in mortality when ALI developed (27.6% vs 18.5%, P = .08). However, after adjustment for baseline imbalances between sexes these differences were no longer significant. Black patients, compared to white patients, presented more frequently with pneumonia, sepsis, or shock and had higher severity of illness. Black patients were less likely to develop ALI than whites (4.5% vs. 6.5%, P = .014), and this association remained statistically significant after adjusting for differences in presentation (OR, 0.66; 95 % CI, 0.45-0.96). Conclusions: Sex and race differences exist in the clinical presentation of patients at risk of developing ALI. After accounting for differences in presentation, there was no sex difference in ALI development and outcome. Black patients were less likely to develop ALI despite increased severity of illness on presentation. PMID:23117155

  1. Ex vivo lung perfusion: a comprehensive review of the development and exploration of future trends.

    PubMed

    Roman, Marius A; Nair, Sukumaran; Tsui, Steven; Dunning, John; Parmar, Jasvir S

    2013-09-01

    There is a critical mismatch between the number of donor lungs available and the demand for lungs for transplantation. This has created unacceptably high waiting-list mortality for lung transplant recipients. Currently (2012) in the United Kingdom, there are 216 patients on the lung transplant waiting list and 17 on heart and lung transplant list. The waiting times for suitable lungs average 412 days, with an increasing mortality and morbidity among the patients on the lung transplant list. Ex vivo lung perfusion (EVLP) has emerged as a technique for the assessment, resuscitation, and potential repair of suboptimal donor lungs. This is a rapidly developing field with significant clinical implications. In this review article, we critically appraise the background developments that have led to our current clinical practice. In particular, we focus on the human and animal experience, the different perfusion-ventilation strategies, and the impact of different perfusates and leukocyte filters. Finally, we examine EVLP as a potential research tool. This will provide insight into EVLP and its future development in the field of clinical lung transplantation. PMID:23694953

  2. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    PubMed Central

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  3. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms.

    PubMed

    Antony, N; McDougall, A R; Mantamadiotis, T; Cole, T J; Bird, A D

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1(-/-) mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1(-/-) mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1(-/-) mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  4. 78 FR 40485 - Lung Cancer Patient-Focused Drug Development; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... lung cancer patient-focused drug development. In the Federal Register of June 5, 2013 (78 FR 33581... In the Federal Register of June 5, 2013 (78 FR 33581), FDA announced an opportunity for public... HUMAN SERVICES Food and Drug Administration Lung Cancer Patient-Focused Drug Development; Extension...

  5. Long term effects of maternal protein restriction on postnatal lung alveoli development of rat offspring.

    PubMed

    Farid, S A; Mahmoud, O M; Salem, N A; Abdel-Alrahman, G; Hafez, G A

    2015-01-01

    Poor nutrition of women during pregnancy causes reduction in foetal growth and can adversely affect the development of the foetal lungs. The purpose of the present study was to assess the effects of maternal protein restriction on the postnatal lung development in neonatal period, and on lung structure in adult rat offspring. Female virgin Sprague-Dawley albino rats (more than 200 g) were used. One male rat was introduced into a cage with one female for matting. Once the pregnancy was confirmed, pregnant rats were divided into two main groups; each consists of 6 female as follow: 1 - normally nourished group; 2 - protein deficient group. After delivery, offspring were subdivided into three groups: 1 day after delivery, 2 weeks and 2 months postnatal. Rat body and lung weight were recorded and ratio of lung weight to body weight was assessed. Total plasma protein and serum albumin were assessed for all groups. Lung tissue stained with H&E for histological and morphometric analysis. Immunohistochemistry was performed to evaluate the number of cells positive for pulmonary surfactant protein A. Our results showed that protein restriction interfere with neonatal and postnatal lung development resulting in morphological and morphometric changes of normal lung development. We concluded that protein deficiency lead to developmental retardation of lung. PMID:26620509

  6. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH. PMID:22917924

  7. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer.

    PubMed

    Miyazu, Yuka Matsuoka; Miyazawa, Teruomi; Hiyama, Keiko; Kurimoto, Noriaki; Iwamoto, Yasuo; Matsuura, Hiroo; Kanoh, Koji; Kohno, Nobuoki; Nishiyama, Masahiko; Hiyama, Eiso

    2005-11-01

    Centrally located lung cancers in smokers frequently associated with subsequent primary tumors. We evaluated the telomerase expression chronologically in noncancerous epithelia as a risk factor of susceptibility to lung cancer development. Telomerase protein expression was examined in situ by immunohistochemistry in 26 noncancerous bronchial epithelia adjacent to centrally located early-stage lung cancers in sequential 23 patients treated by photodynamic therapy or surgery among 206 patients who underwent autofluorescence bronchoscopy from 1997 to 2003. Among the 15 lesions in 12 patients treated by photodynamic therapy alone, 11 lesions achieved complete remission after photodynamic therapy, and none of their noncancerous bronchial epithelia was telomerase positive. On the contrary, in the remaining four lesions, either recurrence or secondary lung cancer developed adjacent to the successfully treated primary cancer within 26 months, and the telomerase protein expression in noncancerous epithelia was detected before the secondary cancer development (P < 0.001). The overall relationship of human telomerase reverse transcriptase positivity in noncancerous epithelia and subsequent lung cancer development, including patients treated by radiation or surgery, showed higher significance (P < 0.0001). Histologically "normal" bronchial epithelia in smokers may unphysiologically express telomerase as a field, and such epithelia are likely susceptible to develop lung cancer. We propose that ectopic expression of telomerase in bronchial epithelia may precede transformation in human lung cancer development and that detection of telomerase protein in noncancerous bronchial epithelia will become a useful marker detecting high-risk patients for lung cancer development. PMID:16266979

  8. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  9. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  10. Heparan sulfate in lung morphogenesis: The elephant in the room.

    PubMed

    Thompson, Sophie M; Jesudason, Edwin C; Turnbull, Jeremy E; Fernig, David G

    2010-03-01

    Heparan sulfate (HS) is a structurally complex polysaccharide located on the cell surface and in the extracellular matrix, where it participates in numerous biological processes through interactions with a vast number of regulatory proteins such as growth factors and morphogens. HS is crucial for lung development; disruption of HS synthesis in flies and mice results in a major aberration of airway branching, and in mice, it results in neonatal death as a consequence of malformed lungs and respiratory distress. Epithelial-mesenchymal interactions governing lung morphogenesis are directed by various diffusible proteins, many of which bind to, and are regulated by HS, including fibroblast growth factors, sonic hedgehog, and bone morphogenetic proteins. The majority of research into the molecular mechanisms underlying defective lung morphogenesis and pulmonary pathologies, such as bronchopulmonary dysplasia and pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), has focused on abnormal protein expression. The potential contribution of HS to abnormalities of lung development has yet to be explored to any significant extent, which is somewhat surprising given the abnormal lung phenotype exhibited by mutant mice synthesizing abnormal HS. This review summarizes our current understanding of the role of HS and HS-binding proteins in lung morphogenesis and will present in vitro and in vivo evidence for the fundamental importance of HS in airway development. Finally, we will discuss the future possibility of HS-based therapeutics for ameliorating insufficient lung growth associated with lung diseases such as CDH. PMID:20301217

  11. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  12. [Development of molecular targeted therapies in lung cancers].

    PubMed

    Suda, Kenichi; Mitsudomi, Tetsuya

    2014-05-01

    Human cancers usually possess cumulative genetic aberrations. However, recent studies have revealed that the proliferation and survival of specific subsets of lung cancer depend on a few somatic mutation(s), so-called driver mutations. Representative driver mutations include the EGFR mutation and ALK translocation identified in about 40% and 3% of lung adenocarcinomas in Japan, respectively. These tumors are extremely sensitive to the respective tyrosine kinase inhibitors. This sensitivity has encouraged researchers and clinicians to explore novel driver mutations in lung cancers as future molecular targets. Driver mutations reported so far include the HER2 mutation, BRAF mutation, ROS1 translocation, RET translocation, and NTRK translocation in lung adenocarcinomas, and FGFR1 amplification, DDR2 mutation, and FGFR3 translocation in lung squamous cell carcinomas. However, despite initial dramatic responses, the acquisition of resistance to molecular targeted drugs is almost inevitable. Overcoming resistance to molecular targeted drugs, the key drugs at this time, is an urgent issue to improve the outcomes of lung cancer patients. PMID:24946519

  13. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  14. Development of lung adenocarcinomas with exclusive dependence on oncogene fusions.

    PubMed

    Saito, Motonobu; Shimada, Yoko; Shiraishi, Kouya; Sakamoto, Hiromi; Tsuta, Koji; Totsuka, Hirohiko; Chiku, Suenori; Ichikawa, Hitoshi; Kato, Mamoru; Watanabe, Shun-Ichi; Yoshida, Teruhiko; Yokota, Jun; Kohno, Takashi

    2015-06-01

    This report delivers a comprehensive genetic alteration profile of lung adenocarcinomas (LADC) driven by ALK, RET, and ROS1 oncogene fusions. These tumors are difficult to study because of their rarity. Each drives only a low percentage of LADCs. Whole-exome sequencing and copy-number variation analyses were performed on a Japanese LADC cohort (n = 200) enriched in patients with fusions (n = 31, 15.5%), followed by deep resequencing for validation. The driver fusion cases showed a distinct profile with smaller numbers of nonsynonymous mutations in cancer-related genes or truncating mutations in SWI/SNF chromatin remodeling complex genes than in other LADCs (P < 0.0001). This lower mutation rate was independent of age, gender, smoking status, pathologic stage, and tumor differentiation (P < 0.0001) and was validated in nine fusion-positive cases from a U.S. LADCs cohort (n = 230). In conclusion, our findings indicate that LADCs with ALK, RET, and ROS1 fusions develop exclusively via their dependence on these oncogene fusions. The presence of such few alterations beyond the fusions supports the use of monotherapy with tyrosine kinase inhibitors targeting the fusion products in fusion-positive LADCs. PMID:25855381

  15. TROPHIC CONTROL OF LUNG DEVELOPMENT BY SYMPATHETIC NEURONS: EFFECTS OF NEONATAL SYMPATHECTOMY WITH 6-HYDROXYDOPAMINE

    EPA Science Inventory

    The onset of peripheral sympathetic neuronal function is thought to provide trophic regulatory signals for development of adrenergic target tissues. n the current study, we examined the effects on lung development of neonatal sympathectomy with hydroxydopamine. he completeness of...

  16. Prophylactic irradiation of the lungs to prevent development of pulmonary metastases in patients with osteosarcoma of the limbs

    SciTech Connect

    Breur, K.; Schweisguth, O.; Cohen, P.; Voute, P.A.

    1981-04-01

    A controlled clinical trial conducted by the European Organization for Research on Treatment of Cancer Radiotherapy Cooperative Group has shown that prophylactic lung irradiation is effective in preventing lung metastases in patients under 17 years of age. Recently, a new three-armed trial has started in which prophylactic chemotherapy and lung irradiation and chemotherapy combined with radiotherapy to the lungs will be compared for their ability to prevent the development of lung metastases.

  17. Lung cancer

    PubMed Central

    Dong, Jie; Kislinger, Thomas; Jurisica, Igor; Wigle, Dennis A.

    2010-01-01

    High-throughput genomic data for both lung development and lung cancer continue to accumulate. Significant molecular intersection between these two processes has been hypothesized due to overlap in phenotypes and genomic variation. Examining the network biology of both cancer and development of the lung may shed functional light on the individual signaling modules involved. Stem cell biology may explain a portion of this network intersection and consequently studying lung organogenesis may have relevance for understanding lung cancer. This review summarizes our understanding of the potential overlapping mechanisms involved in lung development and lung tumorigenesis. PMID:19202349

  18. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    PubMed Central

    Liao, Zhengchang; Zhou, Xiaocheng; Luo, Ziqiang; Huo, Huiyi; Wang, Mingjie; Yu, Xiaohe; Cao, Chuanding; Ding, Ying; Xiong, Zeng

    2016-01-01

    Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR's expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801's influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA's direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development. PMID:27478831

  19. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice

    PubMed Central

    Stanishevsky, Andrei; Bulger, Arlene; Halloran, Brian; Steele, Chad; Vohra, Yogesh; Matalon, Sadis

    2013-01-01

    Nanoparticles are used in an increasing number of biomedical, industrial, and food applications, but their safety profiles in developing organisms, including the human fetus and infant, have not been evaluated. Titanium oxide (TiO2) nanoparticles, which are commonly used in cosmetics, sunscreens, paints, and food, have been shown to induce emphysema and lung inflammation in adult mice. We hypothesized that exposure of newborn mice to TiO2 would induce lung inflammation and inhibit lung development. C57BL/6 mice were exposed to TiO2 (anatase; 8–10 nm) nanoparticles by intranasal instillation as a single dose on postnatal day 4 (P4) or as three doses on postnatal days 4, 7, and 10 (each dose = 1 μg/g body wt). Measurements of lung function (compliance and resistance), development (morphometry), inflammation (histology; multiplex analysis of bronchoalveolar lavage fluid for cytokines; PCR array and multiplex analysis of lung homogenates for cytokines) was performed on postnatal day 14. It was observed that a single dose of TiO2 nanoparticles led to inflammatory cell influx, and multiple doses led to increased inflammation and inhibition of lung development without significant effects on lung function. Macrophages were noted to take up the TiO2 nanoparticles, followed by polymorphonuclear infiltrate. Multiple cytokines and matrix metalloproteinase-9 were increased in lung homogenates, and VEGF was reduced. These results suggest that exposure of the developing lung to nanoparticles may lead to ineffective clearance by macrophages and persistent inflammation with resulting effects on lung development and may possibly impact the risk of respiratory disorders in later life. PMID:23220372

  20. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. PMID:26486996

  1. Development of a sintering methodology through abnormal glow discharge for manufacturing metal matrix composites

    NASA Astrophysics Data System (ADS)

    Pérez, S.; Pineda, Y.; Sarmiento, A.; López, A.

    2016-02-01

    In this study, a sintering methodology is presented by using abnormal glow discharge to metal matrix composites (MMC), consisting of 316 steel, reinforced with titanium carbide (TiC). The wear behaviour of these compounds was evaluated according to the standard ASTM G 99 in a tribometer pin-on-disk. The effect of the percentage of reinforcement (3, 6, and 9%), with 40 minutes of mixing in the planetary mill is analysed, using compaction pressure of 700MPa and sintering temperature of 1,100°C±5°C, gaseous atmosphere of H2 - N2, and sintering time of 30 minutes. As a result of the research, it shows that the best behaviour against wear is obtained when the MMC contains 6% TiC. Under this parameter the lowest percentage of pores and the lowest coefficient of friction are achieved, ensuring that the incorporation of ceramic particles (TiC) in 316 austenitic steel matrix significantly improves the wear resistance. Also, it is shown that it is possible to sinter such materials using the abnormal glow discharge, being a novel and effective method in which the working temperature is reached in a short time.

  2. [Idiopathic pulmonary fibrosis and lung cancer].

    PubMed

    Yoshimura, Akinobu; Kudoh, Syoji

    2003-02-01

    It is widely known that patients with idiopathic pulmonary fibrosis (IPF) are frequently associated with lung cancer. Although a complication with lung cancer is an important prognostic factor for IPF, standard treatments for lung cancer cannot be given because of IPF. Especially, the administration of many anticancer agents is limited by a complication with IPF, which is recognized as a risk factor for the development of fatal lung injury in cancer chemotherapy. Epidemiological studies reveal that cigarette smoking and occupational and environmental exposure to toxic substances are common risk factors for both IPF and lung cancer. It has been assumed that metaplasia in fibrous lesions is pathologically a precancerous lesion, but it is necessary to prove several genetic abnormalities in the process of carcinogenesis in order to clarify that. Currently, several genetic abnormalities in IPF, including in p53, K-ras, FHIT and transforming growth factor (TGF)-beta 1 type II receptor, have been reported. PMID:12610869

  3. Enrichment strategies in glycomics based lung cancer biomarker development

    PubMed Central

    Ruhaak, L. Renee; Nguyen, Uyen Thao; Stroble, Carol; Taylor, Sandra L.; Taguchi, Ayumu; Hanash, Samir M.; Lebrilla, Carlito B.; Kim, Kyoungmi; Miyamoto, Suzanne

    2013-01-01

    Purpose There is a need to identify better glycan biomarkers for diagnosis, early detection and treatment monitoring in lung cancer using biofluids such as blood. Biofluids are complex mixtures of proteins dominated by a few high abundance proteins that may not have specificity for lung cancer. Therefore two methods for protein enrichment were evaluated; affinity capturing of IgG and enrichment of medium abundance proteins, thus allowing us to determine which method yields the best candidate glycan biomarkers for lung cancer. Experimental design N-glycans isolated from plasma samples from 20 cases of lung adenocarcinoma and 20 matched controls were analyzed using nLC-PGC-chip-TOF-MS. N-glycan profiles were obtained for five different fractions: total plasma, isolated IgG, IgG depleted plasma, and the bound and flow-through fractions of protein enrichment. Results Four glycans differed significantly (FDR<0.05) between cases and controls in whole unfractionated plasma, while four other glycans differed significantly by cancer status in the IgG fraction. No significant glycan differences were observed in the other fractions. Conclusions and clinical relevance These results confirm that the N-glycan profile in plasma of lung cancer patients is different from healthy controls and appears to be dominated by alterations in relatively abundant proteins. PMID:23640812

  4. Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent O2-induced alveolar injury.

    PubMed

    Tibboel, Jeroen; Groenman, Freek A; Selvaratnam, Johanna; Wang, Jinxia; Tseu, Irene; Huang, Zhen; Caniggia, Isabella; Luo, Daochun; van Tuyl, Minke; Ackerley, Cameron; de Jongste, Johan C; Tibboel, Dick; Post, Martin

    2015-04-01

    This study investigated whether hypoxia-inducible factor (HIF)-1 influences postnatal vascularization and alveologenesis in mice and whether stable (constitutive-active) HIF could prevent hyperoxia-induced lung injury. We assessed postnatal vessel and alveolar formation in transgenic mice, expressing a stable, constitutive-active, HIF1α-subunit (HIF-1αΔODD) in the distal lung epithelium. In addition, we compared lung function, histology, and morphometry of neonatal transgenic and wild-type mice subjected to hyperoxia. We found that postnatal lungs of HIF-1αΔODD mice had a greater peripheral vessel density and displayed advanced alveolarization compared with control lungs. Stable HIF-1α expression was associated with increased postnatal expression of angiogenic factors, including vascular endothelial growth factor, angiopoietins 1 and 2, Tie2, and Ephrin B2 and B4. Hyperoxia-exposed neonatal HIF-1αΔODD mice exhibited worse lung function but had similar histological and surfactant abnormalities compared with hyperoxia-exposed wild-type controls. In conclusion, expression of constitutive-active HIF-1α in the lung epithelium was associated with increased postnatal vessel growth via up-regulation of angiogenic factors. The increase in postnatal vasculature was accompanied by enhanced alveolar formation. However, stable HIF-1α expression in the distal lung did not prevent hyperoxia-induced lung injury in neonates but instead worsened lung function. PMID:25180700

  5. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  6. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  7. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  8. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  9. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development.

    PubMed

    Benjamin, John T; van der Meer, Riet; Im, Amanda M; Plosa, Erin J; Zaynagetdinov, Rinat; Burman, Ankita; Havrilla, Madeline E; Gleaves, Linda A; Polosukhin, Vasiliy V; Deutsch, Gail H; Yanagisawa, Hiromi; Davidson, Jeffrey M; Prince, Lawrence S; Young, Lisa R; Blackwell, Timothy S

    2016-07-01

    The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung. PMID:27181406

  10. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  11. Lung development and repair: Contribution of the ciliated lineage

    PubMed Central

    Rawlins, Emma L.; Ostrowski, Lawrence E.; Randell, Scott H.; Hogan, Brigid L. M.

    2007-01-01

    The identity of the endogenous epithelial cells in the adult lung that are responsible for normal turnover and repair after injury is still controversial. In part, this is due to a paucity of highly specific genetic lineage tools to follow efficiently the fate of the major epithelial cell populations: the basal, secretory, ciliated, neuroendocrine, and alveolar cells. As part of a program to address this problem we have used a 1-kb FOXJ1 promoter to drive CreER in the ciliated cells of the embryonic and adult lung. Analysis of FOXJ1-GFP transgenic lungs shows that labeled cells appear in a proximal-distal pattern during embryogenesis and that the promoter drives expression in all ciliated cells. Using FOXJ1CreER adult mice, we have followed the fate of ciliated cells after epithelial injury by naphthalene or sulfur dioxide. From quantitative analysis and confocal microscopy we conclude that ciliated cells transiently change their morphology in response to lung injury but do not proliferate or transdifferentiate as part of the repair process. PMID:17194755

  12. Canonical Wnt Signaling Activity in Early Stages of Chick Lung Development

    PubMed Central

    daMota, Paulo; Correia-Pinto, Jorge

    2014-01-01

    Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good

  13. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure

    PubMed Central

    Miranda da Silva, Cristiane; Peres Leal, Mayara; Brochetti, Robson Alexandre; Braga, Tárcio; Vitoretti, Luana Beatriz; Saraiva Câmara, Niels Olsen; Damazo, Amílcar Sabino; Ligeiro-de-Oliveira, Ana Paula; Chavantes, Maria Cristina; Lino-dos-Santos-Franco, Adriana

    2015-01-01

    Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant. PMID:26569396

  14. Gene expression subtraction of non-cancerous lung from smokers and non-smokers with adenocarcinoma, as a predictor for smokers developing lung cancer

    PubMed Central

    Stav, David; Bar, Ilan; Sandbank, Judith

    2008-01-01

    Background Lung cancer is the commonest cause of cancer death in developed countries. Adenocarcinoma is becoming the most common form of lung cancer. Cigarette smoking is the main risk factor for lung cancer. Long-term cigarettes smoking may be characterized by genetic alteration and diffuse injury of the airways surface, named field cancerization, while cancer in non-smokers is usually clonally derived. Detecting specific genes expression changes in non-cancerous lung in smokers with adenocarcinoma may give us instrument for predicting smokers who are going to develop this malignancy. Objectives We described the gene expression in non-cancerous lungs from 21 smoker patients with lung adenocarcinoma and compare it to gene expression in non-cancerous lung tissue from 10 non-smokers with primary lung adenocarcinoma. Methods Total RNA was isolated from peripheral non-cancerous lung tissue. The cDNA was hybridized to the U133A GeneChip array. Hierarchical clustering analysis on genes obtained from smokers and non-smokers, after subtracting were exported to the Ingenuity Pathway Analysis software for further analysis. Results The genes subtraction resulted in disclosure of 36 genes with high score. They were subsequently mapped and sorted based on location, cellular components, and biochemical activity. The gene functional analysis disclosed 20 genes, which are involved in cancer process (P = 7.05E-5 to 2.92E-2). Conclusion Detected genes may serve as a predictor for smokers who may be at high risk of developing lung cancer. In addition, since these genes originating from non-cancerous lung, which is the major area of the lungs, a sample from an induced sputum may represent it. PMID:18811983

  15. The 78-kD Glucose-Regulated Protein Regulates Endoplasmic Reticulum Homeostasis and Distal Epithelial Cell Survival during Lung Development.

    PubMed

    Flodby, Per; Li, Changgong; Liu, Yixin; Wang, Hongjun; Marconett, Crystal N; Laird-Offringa, Ite A; Minoo, Parviz; Lee, Amy S; Zhou, Beiyun

    2016-07-01

    Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-β/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-β/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD. PMID:26816051

  16. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile

    PubMed Central

    Selvaraj, Vimal; Asano, Atsushi; Page, Jennifer L.; Nelson, Jacquelyn L.; Kothapalli, Kumar S. D.; Foster, James A.; Brenna, J. Thomas; Weiss, Robert S.; Travis, Alexander J.

    2010-01-01

    The male germ cell-specific fatty acid binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9−/− mice were viable and fertile. Phenotypic analysis showed that FABP9−/− mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the “ventral spur” in ~10% of FABP9−/− sperm. However, deficiency of FABP9 neither affected membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9−/− mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function. PMID:20920498

  17. [Development of Precision Medicine in the Surgical Treatment of Lung Cancer].

    PubMed

    Tan, Fengwei; Li, Ning; Gao, Shugeng; He, Jie

    2016-06-20

    Precision medicine is to developing the most appropriate individualized treatment for each patient based on the macro to the micro level of individual differences. Genomic, proteomics, metabolomics data, and other big data analysis methods are the essence of precision medicine. Precision medicine brings the hope to overcome cancer. Among all kinds of tumors, lung cancer is the biggest threat to human. This paper reviewed the development of precision medicine in the surgical treatment of lung cancer. PMID:27335287

  18. Indoor fuel exposure and the lung in both developing and developed countries: An update

    PubMed Central

    2012-01-01

    Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607

  19. Lung needle biopsy

    MedlinePlus

    ... when there is an abnormal condition near the surface of the lung, in the lung itself, or on the chest wall. Most often, it is done to rule out cancer. The biopsy is usually done after abnormalities appear on a chest x-ray or CT ...

  20. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  1. Neuregulin-ErbB4 signaling in the developing lung alveolus: a brief review.

    PubMed

    Fiaturi, Najla; Castellot, John J; Nielsen, Heber C

    2014-06-01

    Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks gestation. Proper lung development from 23-28 weeks requires coordinated cell proliferation and differentiation. Infants born at this age are at high risk for respiratory distress syndrome (RDS), a lung disease characterized by insufficient surfactant production due to immaturity of the alveoli and its constituent cells in the lung. The ErbB4 receptor and its stimulation by neuregulin (NRG) plays a critical role in surfactant synthesis by alveolar type II epithelial cells. In this review, we first provide an introduction to normal human alveolar development, followed by a discussion of the neuregulin and ErbB4-mediated mechanisms regulating alveolar development and surfactant production. PMID:24878836

  2. Beta-carotene promotes the development of NNK-induced small airway-derived lung adenocarcinoma

    PubMed Central

    Al-Wadei, Hussein A. N.; Schuller, Hildegard M.

    2009-01-01

    Aim Beta-carotene has shown cancer preventive effects in preclinical studies while increasing lung cancer mortality in clinical trials. We have shown that β-carotene stimulates cAMP signaling in vitro. Here, we have tested the hypothesis that beta-carotene promotes the development of pulmonary adenocarcinoma (PAC) in vivo via cAMP signaling. Methods: PAC was induced in hamsters with the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) followed by β-carotene for 1.5 years. Incidence, multiplicity and size of lung tumors were recorded and phosphorylated CREB and ERK1/2 in tumour cells determined by Western blots. Cyclic AMP in blood cells was analysed by immunoassays, retinoids in serum and lungs by HPLC. Results: beta-carotene increased lung tumor multiplicity, lung tumour size, blood cell cAMP, serum and lung levels of retinoids and induced p-CREB and p-ERK1/2 in lung tumours. Conclusions:Our data suggest that beta-carotene promotes the development of PAC via increased cAMP signaling. PMID:19254833

  3. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.

    PubMed

    Stoltz, David A; Meyerholz, David K; Pezzulo, Alejandro A; Ramachandran, Shyam; Rogan, Mark P; Davis, Greg J; Hanfland, Robert A; Wohlford-Lenane, Chris; Dohrn, Cassie L; Bartlett, Jennifer A; Nelson, George A; Chang, Eugene H; Taft, Peter J; Ludwig, Paula S; Estin, Mira; Hornick, Emma E; Launspach, Janice L; Samuel, Melissa; Rokhlina, Tatiana; Karp, Philip H; Ostedgaard, Lynda S; Uc, Aliye; Starner, Timothy D; Horswill, Alexander R; Brogden, Kim A; Prather, Randall S; Richter, Sandra S; Shilyansky, Joel; McCray, Paul B; Zabner, Joseph; Welsh, Michael J

    2010-04-28

    Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). Understanding the pathogenesis of this disease has been hindered, however, by the lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with mutated CFTR genes. We now report that, within months of birth, CF pigs spontaneously developed hallmark features of CF lung disease, including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting that the lungs of CF pigs have a host defense defect against a wide spectrum of bacteria. In humans, the temporal and causal relations between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation but were less often sterile than controls. Moreover, after introduction of bacteria into their lungs, pigs with CF failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Our finding that pigs with CF have a host defense defect against bacteria within hours of birth provides an opportunity to further investigate CF pathogenesis and to test therapeutic and preventive strategies that could be deployed before secondary consequences develop. PMID:20427821

  4. Developing EZH2-Targeted Therapy for Lung Cancer.

    PubMed

    Frankel, Arthur E; Liu, Xin; Minna, John D

    2016-09-01

    Epigenetic targets are exciting new avenues for cancer drug discovery. Zhang and colleagues have designed the open-source EZH2 inhibitor JQEZ5 and shown antitumor efficacy in vitro and in vivo in preclinical studies in murine and human lung adenocarcinoma models expressing high levels of EZH2. Cancer Discov; 6(9); 949-52. ©2016 AACRSee related article by Zhang and colleagues, p. 1006. PMID:27587466

  5. Lung transplantation: does oxidative stress contribute to the development of bronchiolitis obliterans syndrome?

    PubMed

    Madill, Janet; Aghdassi, Ellie; Arendt, Bianca; Hartman-Craven, Brenda; Gutierrez, Carlos; Chow, Chung-Wai; Allard, Johane

    2009-04-01

    Lung transplantation is the ultimate treatment of end-stage lung disease. After transplantation, the 1-year survival rate is 80%. However, 5-year survival rates drop to 50% due to bronchiolitis obliterans syndrome (BOS). Ischemia/reperfusion injury, infections, and acute rejection are major risk factors contributing to the development of BOS. These risk factors are also associated with increased oxidative stress. Oxidative stress is a condition whereby prooxidants overwhelm the antioxidant defense system and may contribute to the pathogenesis of BOS by inducing more tissue injury and inflammation. This article reviews the current state of knowledge on oxidative stress in lung transplantation and BOS. PMID:19298941

  6. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals

    PubMed Central

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  7. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    PubMed

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  8. MiR-221 and miR-130a Regulate Lung Airway and Vascular Development

    PubMed Central

    Mujahid, Sana

    2013-01-01

    Epithelial-mesenchymal interactions play a crucial role in branching morphogenesis, but very little is known about how endothelial cells contribute to this process. Here, we examined how anti-angiogenic miR-221 and pro-angiogenic miR-130a affect airway and vascular development in the fetal lungs. Lung-specific effects of miR-130a and miR-221 were studied in mouse E14 whole lungs cultured for 48 hours with anti-miRs or mimics to miR-130a and miR-221. Anti-miR 221 treated lungs had more distal branch generations with increased Hoxb5 and VEGFR2 around airways. Conversely, mimic 221 treated lungs had reduced airway branching, dilated airway tips and decreased Hoxb5 and VEGFR2 in mesenchyme. Anti-miR 130a treatment led to reduced airway branching with increased Hoxa5 and decreased VEGFR2 in the mesenchyme. Conversely, mimic 130a treated lungs had numerous finely arborized branches extending into central lung regions with diffusely localized Hoxa5 and increased VEGFR2 in the mesenchyme. Vascular morphology was analyzed by GSL-B4 (endothelial cell-specific lectin) immunofluorescence. Observed changes in airway morphology following miR-221 inhibition and miR-130a enhancement were mirrored by changes in vascular plexus formation around the terminal airways. Mouse fetal lung endothelial cells (MFLM-91U) were used to study microvascular cell behavior. Mimic 221 treatment resulted in reduced tube formation and cell migration, where as the reverse was observed with mimic 130a treatment. From these data, we conclude that miR-221 and miR-130a have opposing effects on airway and vascular morphogenesis of the developing lung. PMID:23409087

  9. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections

    PubMed Central

    Domm, William; Misra, Ravi S.; O’Reilly, Michael A.

    2015-01-01

    Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health. PMID:26322310

  10. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  11. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation.

    PubMed

    Hoyle, Gary W; Chen, Jing; Schlueter, Connie F; Mo, Yiqun; Humphrey, David M; Rawson, Greg; Niño, Joe A; Carson, Kenneth H

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. PMID:26952014

  12. Cell-Type Specific Expression of Apc in Lung Development, Injury and Repair

    PubMed Central

    Li, Aimin; Xing, Yiming; Chan, Belinda; Heisterkamp, Nora; Groffen, John; Borok, Zea; Minoo, Parviz; Li, Changgong

    2010-01-01

    Adenomatous polyposis coli (Apc) is critical for Wnt signaling and cell migration. The current study examined Apc expression during lung development, injury and repair. Apc was first detectable in smooth muscle layers in early lung morphogenesis, and was highly expressed in ciliated and neuroendocrine cells in the advanced stages. No Apc immunoreactivity was detected in Clara or basal cells, which function as stem/progenitor cell in adult lung. In ciliated cells, Apc is associated mainly with apical cytoplasmic domain. In response to naphthalene induced injury, Apcpositive cells underwent squamous metaplasia, accompanied by changes in Apc subcellular distribution. In conclusion, both spatial and temporal expression of Apc is dynamically regulated during lung development and injury repair. Differential expression of Apc in progenitor vs. non-progenitor cells suggests a functional role in cell type specification. Subcellular localization changes of Apc in response to naphthalene injury suggest a role in cell shape and cell migration. PMID:20658693

  13. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  14. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  15. Abnormal Development of the Femoral Head Epiphysis in an Infant with no Developmental Dysplasia of the Hip Apparent on Ultrasonography

    PubMed Central

    Atalar, Hakan; Gunay, Cuneyd; Aytekin, Mahmut Nedim

    2014-01-01

    Introduction: In the investigation of hip development in newborns and infants, ultrasonography and radiography are widely used, but their optimal roles in this setting remain controversial. Case Report: Here we describe an 8.5-month-old infant who had undergone hip radiography at a primary care facility and was referred to our hospital to be evaluated for developmental dysplasia of the hip. Ultrasonography showed no developmental dysplasia of the hip according to standard criteria, but developmental retardation of the femoral head was apparent on the radiograph. Conclusion: This patient's findings demonstrate that abnormalities in femoral head epiphysis development can go undetected during routine ultrasonographic evaluations for developmental dysplasia of the hip. PMID:27298982

  16. Steroid abnormalities and the developing brain: Declarative memory for emotionally arousing and neutral material in children with congenital adrenal hyperplasia

    PubMed Central

    Maheu, Françoise S.; Merke, Deborah P.; Schroth, Elizabeth A.; Keil, Margaret F.; Hardin, Julie; Poeth, Kaitlin; Pine, Daniel S.; Ernst, Monique

    2008-01-01

    Summary Steroid hormones modulate memory in animals and human adults. Little is known on the developmental effect of these hormones on the neural networks underlying memory. Using Congenital Adrenal Hyperplasia (CAH) as a naturalistic model of early steroid abnormalities, this study examines the consequences of CAH on memory and its neural correlates for emotionally arousing and neutral material in children. Seventeen patients with CAH and 17 age- and sex-matched healthy children (ages 12 to 14 years) completed the study. Subjects were presented positive, negative and neutral pictures. Memory recall occurred about 30 minutes after viewing the pictures. Children with CAH showed memory deficits for negative pictures compared to healthy children (p < 0.01). There were no group differences on memory performance for either positive or neutral pictures (p’s >0.1). In patients, 24h urinary-free cortisol levels (reflecting glucocorticoid replacement therapy) and testosterone levels were not associated with memory performance. These findings suggest that early steroid imbalances affect memory for negative material in children with CAH. Such memory impairments may result from abnormal brain organization and function following hormonal dysfunction during critical periods of development. PMID:18162329

  17. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  18. Development of a neonate lung reconstruction algorithm using a wavelet AMG and estimated boundary form.

    PubMed

    Bayford, R; Kantartzis, P; Tizzard, A; Yerworth, R; Liatsis, P; Demosthenous, A

    2008-06-01

    Objective, non-invasive measures of lung maturity and development, oxygen requirements and lung function, suitable for use in small, unsedated infants, are urgently required to define the nature and severity of persisting lung disease, and to identify risk factors for developing chronic lung problems. Disorders of lung growth, maturation and control of breathing are among the most important problems faced by the neonatologists. At present, no system for continuous monitoring of neonate lung function to reduce the risk of chronic lung disease in infancy in intensive care units exists. We are in the process of developing a new integrated electrical impedance tomography (EIT) system based on wearable technology to integrate measures of the boundary diameter from the boundary form for neonates into the reconstruction algorithm. In principle, this approach could provide a reduction of image artefacts in the reconstructed image associated with incorrect boundary form assumptions. In this paper, we investigate the required accuracy of the boundary form that would be suitable to minimize artefacts in the reconstruction for neonate lung function. The number of data points needed to create the required boundary form is automatically determined using genetic algorithms. The approach presented in this paper is to assist quality of the reconstruction using different approximations to the ideal boundary form. We also investigate the use of a wavelet algebraic multi-grid (WAMG) preconditioner to reduce the reconstruction computation requirements. Results are presented that demonstrate a full 3D model is required to minimize artefact in the reconstructed image and the implementation of a WAMG for EIT. PMID:18544799

  19. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders

    ClinicalTrials.gov

    2016-04-19

    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  20. Crosstalk of dynamic functional modules in lung development of rhesus macaques.

    PubMed

    Yu, Xuexin; Feng, Lin; Han, Zujing; Wu, Bo; Wang, Shuyuan; Xiao, Yun; Li, Feng; Zhang, Lianfeng; Cao, Bangrong; Di, Xuebing; Lu, Dan; Li, Xia; Jiang, Wei; Zhang, Kaitai; Cheng, Shujun

    2016-04-01

    Lung development follows a complex series of dynamic histogenic events that depend on the fluctuation of gene expression, and the disruption of gene regulation could lead to devastating consequences, such as diseases in adulthood. In order to investigate the mechanism of lung development, we performed RNA sequencing by Illumina HiSeq™ 2000 to measure mRNA expression in lung tissues of nine rhesus macaques spanning from foetuses at gestation of 45 days to postnatal at 7 days. This development period was divided into three developmental stages, including the early stage (45-100 gestational days), the middle stage (137-163 gestational days) and the late stage (after birth at 4-7 days). Firstly, we identified stage-specific genes, based on which we found that the principle biological processes of the early stage were mainly associated with internal growth signalling, while the middle and late stage-specific genes controlled the external stress signalling. Then, we constructed a stage-specific protein-protein interaction (PPI) subnetwork, extracted dynamic modules, and identified crosstalk between modules. Moreover, we found four active pathways that could mediate the crosstalk, including the Notch signalling pathway, cell cycle, NOD-like receptor signalling pathway, and Toll-like receptor signalling pathway. These pathways not only played crucial roles in lung development, but also were implicated in lung diseases. Finally, some important bridgers, such as PSEN2, HSP90AA1 and CASP8, were discovered to explain the potential mechanism of crosstalk. Therefore, our study presents the landscape of gene expression of lung development of rhesus macaques, and provides an extended insight into the lung development mechanism. PMID:26923754

  1. Maternal high-fat diet is associated with impaired fetal lung development.

    PubMed

    Mayor, Reina S; Finch, Katelyn E; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D; Frank, Aaron P; Hahner, Lisa D; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F; Rosenfeld, Charles R; Savani, Rashmin C; Clegg, Deborah J

    2015-08-15

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997

  2. In vitro evaluation of a newly developed implantable artificial lung.

    PubMed

    Sato, Hitoshi; Taga, Ichiro; Kinoshita, Takahiro; Funakubo, Akio; Ichiba, Shingo; Shimizu, Nobuyoshi

    2006-04-01

    A prototype of an implantable artificial lung without a pump (Prototype II) has been tested. A commercially available membrane oxygenator, MENOX AL6000alpha (Dainippon Ink and Chemicals, Inc., Tokyo, Japan), was used as a basic model. The packing density of the hollow fiber was decreased in order to achieve low resistance through the blood pathway. The configuration of its housing was also re-designed using computational fluid dynamics (CFD). The first prototype, known as Prototype I, was already tested in a 15 kg pig, which showed excellent gas exchange with normal hemodynamics. A second prototype, Prototype II, has a larger membrane surface area than Prototype I. The device was evaluated for resistance through the blood path and gas transfer rate in an in vitro setting by the single pass method using fresh bovine blood. The resistance through the blood path of Prototype II was 2.7+- 0.7 mmHg/(L/min) at Q = 5L/min. The oxygen (O2) transfer rate was 178 +- 5.3 ml/min at Q = 5 L/min, V/Q = 3, and the carbon dioxide (CO2) transfer rate was 149 +- 28 ml/min at Q = 5 L/min, V/Q = 2 (Q: blood flow rate, V: sweep oxygen flow rate through the artificial lung). For the purpose of implantation, this prototype showed sufficiently low resistance in the pulmonary circulation with reasonable gas exchange. PMID:16680188

  3. Development and characterization of a naturally derived lung extracellular matrix hydrogel.

    PubMed

    Pouliot, Robert A; Link, Patrick A; Mikhaiel, Nabil S; Schneck, Matthew B; Valentine, Michael S; Kamga Gninzeko, Franck J; Herbert, Joseph A; Sakagami, Masahiro; Heise, Rebecca L

    2016-08-01

    The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016. PMID:27012815

  4. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    PubMed Central

    Bao, Rudi; Chan, Pokman

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been developed at different stages. Optimization of various chemotherapy regimens in different settings is one of the aims of current clinical trials. Some predictive biomarkers (eg, excision repair cross-complementing 1, ERCC1) and histotypes (eg, adenocarcinoma) are found to be associated with resistance/response to some cytotoxic drugs. Another notable advance is the addition of targeted therapy to lung cancer treatment. Targeted agents such as erlotinib and bevacizumab have demonstrated clinical benefits and gained Food and Drug Administration approval for lung cancer. More agents targeting various signaling pathways critical to lung cancer are at different stages of development. Along with the effort of new targeted drug discovery, biomarkers such as epidermal growth factor receptor and anaplastic lymphoma kinase mutations have proven useful for patient selection, and more predictive biomarkers have been actively evaluated in non-small cell lung cancer. The paradigm of lung cancer treatment has shifted towards biomarker-based personalized medicine.

  5. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  6. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  7. Towards an integrated approach to lung health in adolescents in developing countries.

    PubMed

    Nelson, E A S; Olukoya, A; Scherpbier, R W

    2004-06-01

    The World Health Organization strategies, Integrated Management of Childhood Illness and Practical Approach to Lung health provide assessment and management guidelines for health workers in developing countries. We reviewed issues important to lung health in adolescents to highlight whether differences in factors such as adolescent behaviour have consequences for the development of case management guidelines, to form a bridge between guidelines for younger children and for adults and to make suggestions for further study. Pneumonia, asthma and tuberculosis are the leading lung health problems in adolescents. As countries industrialise, the importance of asthma mortality and morbidity increases as that of pneumonia and pulmonary tuberculosis decreases. Guidelines for managing pneumonia and asthma in children and adults in developing and developed countries should be adaptable for use in adolescents in developing countries, although more information is needed on predictors of severity such as respiratory rate cut-offs, level of fever, hypotension, malnutrition and level of consciousness. The effectiveness of low-cost treatment for asthma should be explored further. HIV and the global resurgence of tuberculosis pose significant challenges for improving adolescent lung health, and prevention of smoking initiation during adolescence is a priority goal of any integrated approach to improving lung health. PMID:15186540

  8. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene.

    PubMed

    Abrass, C K; Berfield, A K; Ryan, M C; Carter, W G; Hansen, K M

    2006-09-01

    Mice with targeted disruption of the lama3 gene, which encodes the alpha3 chain of laminin-5 (alpha3beta3gamma2, 332), develop a blistering skin disease similar to junctional epidermolysis bullosa in humans. These animals also develop abnormalities in glomerulogenesis. In both wild-type and mutant animals (lama3(-/-)), podocytes secrete glomerular basement membrane and develop foot processes. Endothelial cells migrate into this scaffolding and secrete a layer of basement membrane that fuses with the one formed by the podocyte. In lama3(-/-) animals, glomerular maturation arrests at this stage. Endothelial cells do not attenuate, develop fenestrae, or form typical lumens, and mesangial cells (MCs) were not identified. LN alpha3 subunit (LAMA3) protein was identified in the basement membrane adjacent to glomerular endothelial cells (GEnCs) in normal rats and mice. In developing rat glomeruli, the LAMA3 subunit was first detectable in the early capillary loop stage, which corresponds to the stage at which maturation arrest was observed in the mutant mice. Lama3 mRNA and protein were identified in isolated rat and mouse glomeruli and cultured rat GEnCs, but not MC. These data document expression of LAMA3 in glomeruli and support a critical role for it in GEnC differentiation. Furthermore, LAMA3 chain expression and/or another product of endothelial cells are required for MC migration into the developing glomerulus. PMID:16850021

  9. Overexpression of the CmACS-3 gene in melon causes abnormal pollen development.

    PubMed

    Zhang, H; Luan, F

    2015-01-01

    Sexual diversity expressed by the Curcurbitaceae family is a primary example of developmental plasticity in plants. Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. Over-expression of the CmACS-3 gene in melon plants showed an increased number of flower buds, and increased femaleness as demonstrated by a larger number bisexual buds. Transformation of CmACS-3 in melons showed earlier development of and an increased number of bisexual buds that matured to anthesis but also increased the rate of development of the bisexual buds to maturity. Field studies showed that CmACS-3-overexpressing melons had earlier mature bisexual flowers, earlier fruit set, and an increased number of fruits set on closely spaced nodes on the main stem. PMID:26400274

  10. Baseline sacroiliac joint magnetic resonance imaging abnormalities and male sex predict the development of radiographic sacroiliitis.

    PubMed

    Akar, Servet; Isik, Sibel; Birlik, Bilge; Solmaz, Dilek; Sari, Ismail; Onen, Fatos; Akkoc, Nurullah

    2013-10-01

    We evaluated the relationship between the baseline sacroiliac joint (SIJ) magnetic resonance imaging (MRI) findings and the development of radiographic sacroiliitis and tested their prognostic significance in cases of ankylosing spondylitis. Patients who had undergone an SIJ MRI at the rheumatology department were identified. Individuals for whom pelvic X-rays were available after at least 1 year of MRI were included in the analysis. All radiographs and MRI examinations were scored by two independent readers. Medical records of the patients were reviewed to obtain potentially relevant demographic and clinical data. We identified 1,069 SIJ MRIs, and 328 fulfilled our inclusion criteria. Reliability analysis revealed moderate to good inter- and intra-observer agreement. On presentation data, 14 cases were excluded because they had unequivocal radiographic sacroiliitis at baseline. After a mean of 34.8 months of follow-up, 24 patients developed radiographic sacroiliitis. The presence of active sacroiliitis (odds ratio (OR) 15.1) and structural lesions on MRI (OR 8.3), male sex (OR 4.7), fulfillment of Calin's inflammatory back pain criteria (P = 0.001), and total MRI activity score (P < 0.001) were found to be related to the development of radiographic sacroiliitis. By regression modeling, the presence of both active inflammatory and structural damage lesions on MRI and male sex were found to be predictive factors for the development of radiographic sacroiliitis. Our present results suggest that the occurrence of both active inflammatory and structural lesions in SIJs revealed by MRI is a significant risk factor for radiographic sacroiliitis, especially in male patients with early inflammatory back pain. PMID:23765093

  11. Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth

    PubMed Central

    Kapellou, Olga; Counsell, Serena J; Kennea, Nigel; Dyet, Leigh; Saeed, Nadeem; Stark, Jaroslav; Maalouf, Elia; Duggan, Philip; Ajayi-Obe, Morenike; Hajnal, Jo; Allsop, Joanna M; Boardman, James; Rutherford, Mary A; Cowan, Frances; Edwards, A. David

    2006-01-01

    Background We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment. Methods and Findings We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25–1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth. Conclusions Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery. PMID:16866579

  12. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development

    PubMed Central

    McNeill, Elizabeth M.; Klöckner-Bormann, Mariana; Roesler, Elizabeth C.; Talton, Lynn E.; Moechars, Dieder; Clagett-Dame, Margaret

    2011-01-01

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  13. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  14. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.

    PubMed

    McNeill, Elizabeth M; Klöckner-Bormann, Mariana; Roesler, Elizabeth C; Talton, Lynn E; Moechars, Dieder; Clagett-Dame, Margaret

    2011-05-15

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests that the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  15. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M. )

    1993-09-01

    We tested the hypothesis that the two common oxidant air pollutants, ozone and nitrogen dioxide, modulate the development of respiratory tract tumors in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm)* of ozone or 15 ppm of nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. Ozone delayed the appearance of tracheal tumors and reduced the incidence of tumors in the lung periphery. A suspected neuroendocrine differentiation of those lung tumors could not be established by immunocytochemistry due to overfixation of tissues. On the other hand, ozone seemed to mitigate development of hepatotoxic lesions mediated by diethylnitrosamine. In animals treated with diethylnitrosamine and exposed to nitrogen dioxide, fewer tracheal tumors and no lung tumors were found. Only a few lung tumors were produced in animals treated with diethylnitrosamine and kept in an atmosphere of 65% oxygen. The previously observed neuroendocrine nature of tumors induced by simultaneous exposure to diethylnitrosamine and hyperoxia could not be established because the long fixation of tissues precluded immunocytochemical stains. Animals treated with diethylnitrosamine and kept in filtered air while being housed in wire-mesh cages developed fewer lung tumors than animals given the same treatment and kept on conventional bedding in shoebox cages. Although all inhalants tested are known to produce substantial cell proliferation in the respiratory tract, it was not possible to document whether this would enhance lung tumor development. The role of the two common air pollutants, ozone and nitrogen dioxide, as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  16. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  17. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  18. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  19. Modulation of Serotonin Transporter Function during Fetal Development Causes Dilated Heart Cardiomyopathy and Lifelong Behavioral Abnormalities

    PubMed Central

    Noorlander, Cornelle W.; Ververs, Frederique F. T.; Nikkels, Peter G. J.; van Echteld, Cees J. A.; Visser, Gerard H. A.; Smidt, Marten P.

    2008-01-01

    Background Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI. Methodology/Principal Findings In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring. Conclusions These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher

  20. Abnormal development of monoaminergic neurons is implicated in mood fluctuations and bipolar disorder.

    PubMed

    Jukic, Marin M; Carrillo-Roa, Tania; Bar, Michal; Becker, Gal; Jovanovic, Vukasin M; Zega, Ksenija; Binder, Elisabeth B; Brodski, Claude

    2015-03-01

    Subtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons. Here we behaviorally phenotyped mouse mutants overexpressing Otx2 in the hindbrain, resulting in an increased number of DA neurons and a decreased number of 5-HT neurons in both developing and mature animals. Over the course of 1 month, control animals exhibited stable locomotor activity in their home cages, whereas mutants showed extended periods of elevated or decreased activity relative to their individual average. Additional behavioral paradigms, testing for manic- and depressive-like behavior, demonstrated that mutants showed an increase in intra-individual fluctuations in locomotor activity, habituation, risk-taking behavioral parameters, social interaction, and hedonic-like behavior. Olanzapine, lithium, and carbamazepine ameliorated the behavioral alterations of the mutants, as did the mixed serotonin receptor agonist quipazine and the specific 5-HT2C receptor agonist CP-809101. Testing the relevance of the genetic networks specifying monoaminergic neurons for BPD in humans, we applied an interval-based enrichment analysis tool for genome-wide association studies. We observed that the genes specifying DA and 5-HT neurons exhibit a significant level of aggregated association with BPD but not with schizophrenia or major depressive disorder. The results of our translational study suggest that aberrant development of monoaminergic neurons leads to mood fluctuations and may be associated with BPD. PMID:25241801

  1. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  2. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice

    PubMed Central

    Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Wei, Wei; Zhu, Guojing; Khoriaty, Rami N.; Zhang, Bin

    2015-01-01

    COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo. PMID:26494538

  3. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  4. Abnormal etioplast development in barley seedlings infected with BSMV by seed transmission.

    PubMed

    Harsányi, Anett; Böddi, Béla; Bóka, Károly; Almási, Asztéria; Gáborjányi, Richard

    2002-01-01

    The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley (Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus. PMID:11982946

  5. Silencing of fas, fas-associated via death domain, or caspase 3 differentially affects lung inflammation, apoptosis, and development of trauma-induced septic acute lung injury.

    PubMed

    Messer, Mirko Philipp; Kellermann, Philipp; Weber, Sascha Jörn; Hohmann, Christoph; Denk, Stephanie; Klohs, Bettina; Schultze, Anke; Braumüller, Sonja; Huber-Lang, Markus Stefan; Perl, Mario

    2013-01-01

    Activation of Fas signaling is a potentially important pathophysiological mechanism in the development of septic acute lung injury (ALI). However, so far the optimal targets within this signaling cascade remain elusive. Thus, we tested the hypothesis that in vivo gene silencing of Fas, Fas-associated via death domain (FADD), or caspase 3 by intratracheal administration of small interfering RNA would ameliorate ALI in a clinically relevant double-hit mouse model of trauma induced septic lung injury. Male C57Bl/6 mice received small interfering (Fas, FADD, caspase 3) or control RNA 24 h before and 12 h after blunt chest trauma or sham procedures. Polymicrobial sepsis was induced by cecal ligation and puncture 24 h after chest trauma. Twelve or 24 h later, lung tissue, plasma, and bronchoalveolar lavage fluid were harvested. During ALI, lung apoptosis (active caspase 3 Western blotting, TUNEL staining) was substantially increased when compared with sham. Silencing of caspase 3 or FADD both markedly reduced pulmonary apoptosis. Fas- and FADD-small interfering RNA administration substantially decreased lung cytokine concentration, whereas caspase 3 silencing did not reduce lung inflammation. In addition, Fas silencing markedly decreased lung neutrophil infiltration. Interestingly, only in response to caspase 3 silencing, ALI-induced lung epithelial barrier dysfunction was substantially improved, and histological appearance was beneficially affected. Taken together, downstream inhibition of lung apoptosis via caspase 3 silencing proved to be superior in mitigating ALI when compared with upstream inhibition of apoptosis via Fas or FADD silencing, even in the presence of additional anti-inflammatory effects. This indicates a major pathophysiological role of lung apoptosis and suggests the importance of other than Fas-driven apoptotic pathways in trauma-induced septic ALI. PMID:23247118

  6. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice

    PubMed Central

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J.; Hong, Seok-Ho; DeMayo, Francesco J.; Lydon, John P.; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-01-01

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8d/d) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8d/d females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8d/d mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice. PMID:26833131

  7. Regulatory Interactions between Androgens, Hoxb5, and TGFβ Signaling in Murine Lung Development

    PubMed Central

    Volpe, MaryAnn V.; Ramadurai, Sujatha M.; Mujahid, Sana; Vong, Thanhxuan; Brandao, Marcia; Wang, Karen T.; Pham, Lucia D.; Nielsen, Heber C.

    2013-01-01

    Androgens enhance airway branching but delay alveolar maturation contributing to increased respiratory morbidity in prematurely born male infants. Hoxb5 protein positively regulates airway branching in developing lung. In other organs, androgen regulation intersects with Hox proteins and TGFβ-SMAD signaling, but these interactions have not been studied in the lung. We hypothesized that androgen alteration of airway branching early in lung development requires Hoxb5 expression and that these androgen-Hoxb5 interactions occur partially through regional changes in TGFβ signaling. To evaluate acute effects of androgen and TGFβ on Hoxb5, E11 whole fetal mouse lungs were cultured with dihydrotestosterone (DHT) with/without Hoxb5 siRNA or TGFβ inhibitory antibody. Chronic in utero DHT exposure was accomplished by exposing pregnant mice to DHT (subcutaneous pellet) from E11 to E18. DHT's ability to enhance airway branching and alter phosphorylated SMAD2 cellular localization was partially dependent on Hoxb5. Hoxb5 inhibition also changed the cellular distribution of SMAD7 protein. Chronic in utero DHT increased Hoxb5 and altered SMAD7 mesenchymal localization. TGFβ inhibition enhanced airway branching, and Hoxb5 protein cellular localization was more diffuse. We conclude that DHT controls lung airway development partially through modulation of Hoxb5 protein expression and that this level of regulation involves interactions with TGFβ signaling. PMID:24078914

  8. HTR4 gene structure and altered expression in the developing lung

    PubMed Central

    2013-01-01

    ) dataset. These analyses identified multiple alterations in regulatory motifs for transcription factors implicated in lung development, including Foxp1. Conclusions Taken together, these data suggest a role for HTR4 in lung development, which may at least in part explain the genetic association with lung function. PMID:23890215

  9. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    NASA Astrophysics Data System (ADS)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  10. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities

    PubMed Central

    Lyons, W. Ernest; Mamounas, Laura A.; Ricaurte, George A.; Coppola, Vincenzo; Reid, Susan W.; Bora, Susan H.; Wihler, Cornelia; Koliatsos, Vassilis E.; Tessarollo, Lino

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) has trophic effects on serotonergic (5-HT) neurons in the central nervous system. However, the role of endogenous BDNF in the development and function of these neurons has not been established in vivo because of the early postnatal lethality of BDNF null mice. In the present study, we use heterozygous BDNF+/− mice that have a normal life span and show that these animals develop enhanced intermale aggressiveness and hyperphagia accompanied by significant weight gain in early adulthood; these behavioral abnormalities are known to correlate with 5-HT dysfunction. Forebrain 5-HT levels and fiber density in BDNF+/− mice are normal at an early age but undergo premature age-associated decrements. However, young adult BDNF+/− mice show a blunted c-fos induction by the specific serotonin releaser-uptake inhibitor dexfenfluramine and alterations in the expression of several 5-HT receptors in the cortex, hippocampus, and hypothalamus. The heightened aggressiveness can be ameliorated by the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that endogenous BDNF is critical for the normal development and function of central 5-HT neurons and for the elaboration of behaviors that depend on these nerve cells. Therefore, BDNF+/− mice may provide a useful model to study human psychiatric disorders attributed to dysfunction of serotonergic neurons. PMID:10611369

  11. Prenatal and Perinatal Determinants of Lung Health and Disease in Early Life: A National Heart, Lung, and Blood Institute Workshop Report.

    PubMed

    Manuck, Tracy A; Levy, Philip T; Gyamfi-Bannerman, Cynthia; Jobe, Alan H; Blaisdell, Carol J

    2016-05-01

    Human lung growth and development begins with preconception exposures and continues through conception and childhood into early adulthood. Numerous environmental exposures (both positive and negative) can affect lung health and disease throughout life. Infant lung health correlates with adult lung function, but significant knowledge gaps exist regarding the influence of preconception, perinatal, and postnatal exposures on general lung health throughout life. On October 1 and 2, 2015, the National Heart, Lung, and Blood Institute convened a group of extramural investigators to develop their recommendations for the direction(s) for future research in prenatal and perinatal determinants of lung health and disease in early life and to identify opportunities for scientific advancement. They identified that future investigations will need not only to examine abnormal lung development, but also to use developing technology and resources to better define normal and/or enhanced lung health. Birth cohort studies offer key opportunities to capture the important influence of preconception and obstetric risk factors on lung health, development, and disease. These studies should include well-characterized obstetrical data and comprehensive plans for prospective follow-up. The importance of continued basic science, translational, and animal studies for providing mechanisms to explain causality using new methods cannot be overemphasized. Multidisciplinary approaches involving obstetricians, neonatologists, pediatric and adult pulmonologists, and basic scientists should be encouraged to design and conduct comprehensive and impactful research on the early stages of normal and abnormal human lung growth that influence adult outcome. PMID:26953657

  12. Biomarkers of risk to develop lung cancer in the new screening era

    PubMed Central

    Atwater, Thomas

    2016-01-01

    Low-dose computed tomography for high-risk individuals has for the first time demonstrated unequivocally that early detection save lives. The currently accepted screening strategy comes at the cost of a high rate of false positive findings while still missing a large percentage of the cases. Therefore, there is increasing interest in developing strategies to better estimate the risk of an individual to develop lung cancer, to increase the sensitivity of the screening process, to reduce screening costs and to reduce the numbers of individuals harmed by screening and follow-up interventions. New molecular biomarkers candidates show promise to improve lung cancer outcomes. This review discusses the current state of biomarker research in lung cancer screening with the primary focus on risk assessment. PMID:27195276

  13. Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth

    PubMed Central

    Stoltz, David A; Meyerholz, David K; Pezzulo, Alejandro A; Ramachandran, Shyam; Rogan, Mark P; Davis, Greg J; Hanfland, Robert A; Wohlford-Lenane, Chris; Dohrn, Cassie L; Bartlett, Jennifer A; Nelson, George A; Chang, Eugene H; Taft, Peter J; Ludwig, Paula S; Estin, Mira; Hornick, Emma E; Launspach, Janice L; Samuel, Melissa; Rokhlina, Tatiana; Karp, Philip H; Ostedgaard, Lynda S; Uc, Aliye; Starner, Timothy D; Horswill, Alexander R; Brogden, Kim A; Prather, Randall S; Richter, Sandra S; Shilyansky, Joel; McCray, Paul B; Zabner, Joseph; Welsh, Michael J

    2010-01-01

    Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). However, understanding its pathogenesis has been hindered by lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with targeted CFTR genes. We now report that, within months of birth, CF pigs spontaneously develop hallmark features of CF lung disease including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting an equal opportunity host defense defect. In humans, the temporal and causal relationships between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation, but were less often sterile than controls. Moreover, after intrapulmonary bacterial challenge, CF pigs failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Finding that CF pigs have a bacterial host defense defect within hours of birth provides an opportunity to further investigate pathogenesis and to test therapeutic and preventive strategies before secondary consequences develop. PMID:20427821

  14. The role of DNA methylation in the development and progression of lung adenocarcinoma.

    PubMed

    Kerr, Keith M; Galler, Janice S; Hagen, Jeffrey A; Laird, Peter W; Laird-Offringa, Ite A

    2007-01-01

    Lung cancer, caused by smoking in approximately 87% of cases, is the leading cause of cancer death in the United States and Western Europe. Adenocarcinoma is now the most common type of lung cancer in men and women in the United States, and the histological subtype most frequently seen in never-smokers and former smokers. The increasing frequency of adenocarcinoma, which occurs more peripherally in the lung, is thought to be at least partially related to modifications in cigarette manufacturing that have led to a change in the depth of smoke inhalation. The rising incidence of lung adenocarcinoma and its lethal nature underline the importance of understanding the development and progression of this disease. Alterations in DNA methylation are recognized as key epigenetic changes in cancer, contributing to chromosomal instability through global hypomethylation, and aberrant gene expression through alterations in the methylation levels at promoter CpG islands. The identification of sequential changes in DNA methylation during progression and metastasis of lung adenocarcinoma, and the elucidation of their interplay with genetic changes, will broaden our molecular understanding of this disease, providing insights that may be applicable to the development of targeted drugs, as well as powerful markers for early detection and patient classification. PMID:17325423

  15. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development.

    PubMed

    Yun, Eun Jun; Lorizio, Walter; Seedorf, Gregory; Abman, Steven H; Vu, Thiennu H

    2016-02-15

    Prevention or treatment of lung diseases caused by the failure to form, or destruction of, existing alveoli, as observed in infants with bronchopulmonary dysplasia and adults with emphysema, requires understanding of the molecular mechanisms of alveolar development. In addition to its critical role in gas exchange, the pulmonary circulation also contributes to alveolar morphogenesis and maintenance by the production of paracrine factors, termed "angiocrines," that impact the development of surrounding tissue. To identify lung angiocrines that contribute to alveolar formation, we disrupted pulmonary vascular development by conditional inactivation of the Vegf-A gene during alveologenesis. This resulted in decreased pulmonary capillary and alveolar development and altered lung elastin and retinoic acid (RA) expression. We determined that RA is produced by pulmonary endothelial cells and regulates pulmonary angiogenesis and elastin synthesis by induction of VEGF-A and fibroblast growth factor (FGF)-18, respectively. Inhibition of RA synthesis in newborn mice decreased FGF-18 and elastin expression and impaired alveolarization. Treatment with RA and vitamin A partially reversed the impaired vascular and alveolar development induced by VEGF inhibition. Thus we identified RA as a lung angiocrine that regulates alveolarization through autocrine regulation of endothelial development and paracrine regulation of elastin synthesis via induction of FGF-18 in mesenchymal cells. PMID:26566904

  16. Development and proof-of-concept of three-dimensional lung histology volumes

    NASA Astrophysics Data System (ADS)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  17. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse.

    PubMed

    Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M

    2010-05-31

    Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired. PMID:20347833

  18. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus).

    PubMed

    Mesarič, Tina; Sepčić, Kristina; Drobne, Damjana; Makovec, Darko; Faimali, Marco; Morgana, Silvia; Falugi, Carla; Gambardella, Chiara

    2015-06-01

    We examined egg fertilisation in purple sea urchin (Paracentrotus lividus) after sperm exposure to carbon-based nanomaterials, carbon black (CB) and graphene oxide (GO), from 0.0001 mg/L to 1.0mg/L. Gastrula stage embryos were investigated for acetylcholinesterase and propionylcholinesterase activities, and their morphological characteristics. Plutei were analysed for morphological abnormalities, with emphasis on skeletal rod formation. Egg fertilisation was significantly affected by CB, at all concentrations tested. Loss of cell adhesion at the gastrula surface was observed in eggs fertilised with sperm treated with CB. However, concentration-dependent morphological anomalies were observed in the gastrulae and plutei formed after sperm exposure to either CB or GO. The activities of both cholinesterases decreased in the gastrulae, although not in a concentration-dependent manner. These effects appear to arise from physical interactions between these carbon-based nanomaterials and the sperm, whereby nanomaterials attached to the sperm surface interfere with fertilisation, which leads to disturbances in the signalling pathways of early embryonic development. Reduced cholinesterase activity in gastrulae from eggs fertilised with nanomaterial-treated sperm confirms involvement of the cholinergic system in early sea urchin development, including skeletogenesis. PMID:25897690

  19. Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss

    PubMed Central

    Winship, Amy; Correia, Jeanne; Krishnan, Tara; Menkhorst, Ellen; Cuman, Carly; Zhang, Jian-Guo; Nicola, Nicos A.; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy. PMID:26272398

  20. Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization

    PubMed Central

    Iosef, Cristiana; Alastalo, Tero-Pekka; Hou, Yanli; Chen, Chihhsin; Adams, Eloa S.; Lyu, Shu-Chen; Cornfield, David N.

    2012-01-01

    Bronchopulmonary dysplasia (BPD), a chronic lung disease of infancy, is characterized by arrested alveolar development. Pulmonary angiogenesis, mediated by the vascular endothelial growth factor (VEGF) pathway, is essential for alveolarization. However, the transcriptional regulators mediating pulmonary angiogenesis remain unknown. We previously demonstrated that NF-κB, a transcription factor traditionally associated with inflammation, plays a unique protective role in the neonatal lung. Therefore, we hypothesized that constitutive NF-κB activity is essential for postnatal lung development. Blocking NF-κB activity in 6-day-old neonatal mice induced the alveolar simplification similar to that observed in BPD and significantly reduced pulmonary capillary density. Studies to determine the mechanism responsible for this effect identified greater constitutive NF-κB in neonatal lung and in primary pulmonary endothelial cells (PEC) compared with adult. Moreover, inhibiting constitutive NF-κB activity in the neonatal PEC with either pharmacological inhibitors or RNA interference blocked PEC survival, decreased proliferation, and impaired in vitro angiogenesis. Finally, by chromatin immunoprecipitation, NF-κB was found to be a direct regulator of the angiogenic mediator, VEGF-receptor-2, in the neonatal pulmonary vasculature. Taken together, our data identify an entirely novel role for NF-κB in promoting physiological angiogenesis and alveolarization in the developing lung. Our data suggest that disruption of NF-κB signaling may contribute to the pathogenesis of BPD and that enhancement of NF-κB may represent a viable therapeutic strategy to promote lung growth and regeneration in pulmonary diseases marked by impaired angiogenesis. PMID:22367785

  1. MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality.

    PubMed

    Nardiello, Claudio; Morty, Rory E

    2016-12-01

    MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150(-/-) knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization. PMID:27216745

  2. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  3. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities?

    PubMed

    Stagi, Stefano; Rigante, Donato; Lepri, Gemma; Matucci Cerinic, Marco; Falcini, Fernanda

    2016-07-01

    Twenty-five-hydroxyvitamin D (25(OH)-vitamin D) is crucial in the regulation of immunologic processes, but-although its deficiency has been reported in patients with different rheumatological disorders-no data are available for Kawasaki disease (KD). The goals of this study were to assess the serum levels of 25(OH)-vitamin D in children with KD and evaluate the relationship with the eventual occurrence of KD-related vascular abnormalities. We evaluated serum 25(OH)-vitamin D levels in 79 children with KD (21 females, 58 males, median age 4.9 years, range 1.4-7.5 years) in comparison with healthy sex-/age-matched controls. A significantly higher percentage of KD patients (98.7 %) were shown to have reduced 25(OH)-vitamin D levels (<30 ng/mL) in comparison with controls (78.6 %, p < 0.0001). Furthermore, KD patients had severely low levels of 25(OH)-vitamin D than controls (9.17 ± 4.94 vs 23.3 ± 10.6 ng/mL, p < 0.0001), especially the subgroup who developed coronary artery abnormalities (4.92 ± 1.36 vs 9.41 ± 4.95 ng/mL, p < 0.0001). In addition, serum 25(OH)-vitamin D levels correlated not only with erythrosedimentation rate (p < 0.0001), C-reactive protein (p < 0.0001), hemoglobin level at KD diagnosis (p < 0.0001) but also with both coronary artery aneurysms (p = 0.005) and non-aneurysmatic cardiovascular lesions (p < 0.05). Low serum concentrations of 25(OH)-vitamin D might have a contributive role in the development of coronary artery complications observed in children with KD. PMID:25994612

  4. Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets.

    PubMed

    Máthé, Csaba; Beyer, Dániel; Erdodi, Ferenc; Serfozo, Zoltán; Székvölgyi, Lóránt; Vasas, Gábor; M-Hamvas, Márta; Jámbrik, Katalin; Gonda, Sándor; Kiss, Andrea; Szigeti, Zsuzsa M; Surányi, Gyula

    2009-05-01

    Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in

  5. Progress in the Development of Volatile Exhaled Breath Signatures of Lung Cancer

    PubMed Central

    Wang, Xiao-Feng; Lim, Sung; Jett, James; Choi, Humberto; Zhang, Qi; Beukemann, Mary; Seeley, Meredith; Martino, Ray; Rhodes, Paul

    2015-01-01

    Rationale: Volatile organic compounds present in the exhaled breath have shown promise as biomarkers of lung cancer. Advances in colorimetric sensor array technology, breath collection methods, and clinical phenotyping may lead to the development of a more accurate breath biomarker. Objectives: Perform a discovery-level assessment of the accuracy of a colorimetric sensor array–based volatile breath biomarker. Methods: Subjects with biopsy-confirmed untreated lung cancer, and others at risk for developing lung cancer, performed tidal breathing into a breath collection instrument designed to expose a colorimetric sensor array to the alveolar portion of the breath. Random forest models were built from the sensor output of 70% of the study subjects and were tested against the remaining 30%. Models were developed to separate cancer and subgroups from control, and to characterize the cancer. Additional models were developed after matching the clinical phenotypes of cancer and control subjects. Measurements and Main Results: Ninety-seven subjects with lung cancer and 182 control subjects participated. The accuracies, reported as C-statistics, for models of cancer and subgroups versus control ranged from 0.794 to 0.861. The accuracy was improved by developing models for cancer and control groups selected through propensity matching for clinical variables. A model built using only subjects from the largest available clinical subgroup (49 subjects) had a C-statistic of 0.982. Models developed and tested to characterize cancer histology, and to compare early- with late-stage cancer, had C-statistics of 0.881–0.960. Conclusions: The colorimetric sensor array signature of exhaled breath volatile organic compounds was capable of distinguishing patients with lung cancer from clinically relevant control subjects in a discovery level trial. The incorporation of clinical phenotypes into the further development of this biomarker may optimize its accuracy. PMID:25965541

  6. Development of a computer-aided detection system for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Inaoka, Noriko; Takabatake, Hirotsugu; Mori, Masaki; Sasaoka, Soichi; Natori, Hiroshi; Suzuki, Akira

    1992-06-01

    This paper describes a modified system for automatic detection of lung nodules by means of chest x ray image processing techniques. The objective of the system is to help radiologists to improve their accuracy in cancer detection. It is known from retrospective studies of chest x- ray images that radiologists fail to detect about 30 percent of lung cancer cases. A computerized method for detecting lung nodules would be very useful for decreasing the proportion of such oversights. Our proposed system consists of five sub-systems, for image input, lung region determination, nodule detection, rule-based false-positive elimination, and statistical false-positive elimination. In an experiment with the modified system, using 30 lung cancer cases and 78 normal control cases, we obtained figures of 73.3 percent and 89.7 percent for the sensitivity and specificity of the system, respectively. The system has been developed to run on the IBM* PS/55* and IBM RISC System/6000* (RS/6000), and we give the processing time for each platform.

  7. Molecular oncology of lung cancer.

    PubMed

    Toyooka, Shinichi; Mitsudomi, Tetsuya; Soh, Junichi; Aokage, Keiju; Yamane, Masaomi; Oto, Takahiro; Kiura, Katsuyuki; Miyoshi, Shinichiro

    2011-08-01

    Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities. PMID:21850578

  8. 78 FR 33851 - Lung Cancer Patient-Focused Drug Development; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... interested stakeholders. On April 11, 2013, FDA published a document (78 FR 21613) in the Federal Register... published on September 24, 2012 (77 FR 58849), and a public meeting that was convened on October 25, 2012... HUMAN SERVICES Food and Drug Administration Lung Cancer Patient-Focused Drug Development; Public...

  9. PRENATAL DEXAMETHASONE ADMINISTRATION DISRUPTS THE PATTERN OF CELLULAR DEVELOPMENT IN RAT LUNG

    EPA Science Inventory

    To examine whether prenatal exposure to glucocorticoids could adversely affect subsequent cellular development of the lung, we administered 0.2 mg/kg of dexamethasone to pregnant rats on gestational days 17, 18, and 19. ungs of the offspring were then examined for patterns of cel...

  10. Characterization of the Skeletal Fusion with Sterility (sks) Mouse Showing Axial Skeleton Abnormalities Caused by Defects of Embryonic Skeletal Development

    PubMed Central

    Akiyama, Kouyou; Katayama, Kentaro; Tsuji, Takehito; Kunieda, Tetsuo

    2014-01-01

    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs. PMID:24521859

  11. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. PMID:25736181

  12. The incidence and mortality of lung cancer and their relationship to development in Asia

    PubMed Central

    Pakzad, Reza; Mohammadian-Hafshejani, Abdollah; Ghoncheh, Mahshid; Pakzad, Iraj

    2015-01-01

    Background Lung cancer is the deadliest cancer worldwide and the most common cancer in Asia. It is necessary to get information on epidemiology and inequalities related to incidence and mortality of the cancer to use for planning and further research. This study aimed to investigate epidemiology and inequality of incidence and mortality from lung cancer in Asia. Methods The study was conducted based on data from the world data of cancer and the World Bank [including the Human Development Index (HDI) and its components]. The incidence and mortality rates, and cancer distribution maps were drawn for Asian countries. To analyze data, correlation test between incidence and death rates, and HDI and its components at significant was used in the significant level of 0.05 using SPSS software. Results A total of 1,033,881 incidence (71.13% were males and 28.87% were females. Sex ratio was 2.46) and 936,051 death (71.45% in men and 28.55% in women. The sex ratio was 2.50) recorded in Asian countries in 2012. Five countries with the highest standardized incidence and mortality rates of lung cancer were Democratic Republic of Korea, China, Armenia, Turkey, and Timor-Leste, respectively. Correlation between HDI and standardized incidence rate was 0.345 (P=0.019), in men 0.301 (P=0.042) and in women 0.3 (P=0.043); also between HDI and standardized mortality rate 0.289 (P=0.052), in men 0.265 (P=0.075) and in women 0.200 (P=0.182). Conclusions The incidence of lung cancer has been increasing in Asia. It is high in men. Along with development, the incidence and mortality from lung cancer increases. It seems necessary to study reasons and factors of increasing the incidence and mortality of lung cancer in Asian countries. PMID:26798586

  13. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway.

    PubMed

    Cohen, Ethan David; Ihida-Stansbury, Kaori; Lu, Min Min; Panettieri, Reynold A; Jones, Peter Lloyd; Morrisey, Edward E

    2009-09-01

    Paracrine signaling from lung epithelium to the surrounding mesenchyme is important for lung SMC development and function and is a contributing factor in an array of pulmonary diseases such as bronchopulmonary dysplasia, pulmonary hypertension, and asthma. Wnt7b, which is exclusively expressed in the lung epithelium, is important for lung vascular smooth muscle integrity, but the underlying mechanism by which Wnt signaling regulates lung SMC development is unclear. In this report, we have demonstrated that Wnt7b regulates a program of mesenchymal differentiation in the mouse lung that is essential for SMC development. Genetic loss-of-function studies showed that Wnt7b and beta-catenin were required for expression of Pdgfralpha and Pdgfrbeta and proliferation in pulmonary SMC precursors. In contrast, gain-of-function studies showed that activation of Wnt signaling increased the expression of both Pdgfralpha and Pdgfrbeta as well as the proliferation of SMC precursors. We further showed that the effect on Pdgfr expression was, in part, mediated by direct transcriptional regulation of the ECM protein tenascin C (Tnc), which was necessary and sufficient for Pdgfralpha/beta expression in lung explants. Moreover, this pathway was highly upregulated in a mouse model of asthma and in lung tissue from patients with pulmonary hypertension. Together, these data define a Wnt/Tnc/Pdgfr signaling axis that is critical for smooth muscle development and disease progression in the lung. PMID:19690384

  14. Inhibition of tyrosine kinase receptors by SU6668 promotes abnormal stromal development at the periphery of carcinomas

    PubMed Central

    Farace, P; Galiè, M; Merigo, F; Daducci, A; Calderan, L; Nicolato, E; Degrassi, A; Pesenti, E; Sbarbati, A; Marzola, P

    2009-01-01

    Dynamic contrast-enhanced (albumin-Gd-DTPA) magnetic resonance imaging, performed during 2 weeks of daily administration of an inhibitor of tyrosine kinase receptors (SU6668) in an HT-29 colon carcinoma model, revealed the onset of a hyper-enhancing rim, not observed in untreated tumours. To account for tissue heterogeneity in the quantitative analysis, we segmented tumours into three subunits automatically identified by cluster analysis of the enhancement curves using a k-means algorithm. Transendothelial permeability (Kps) and fractional plasma volume (fPV) were calculated in each subunit. An avascular and necrotic region, an intermediate zone and a well-vascularised periphery were reliably identified. During untreated tumour growth, the identified sub-regions did not substantially change their enhancement pattern. Treatment with SU6668 induced major changes at tumour periphery where a significant increase of Kps and fPV was observed with respect to control tumours. Histology revealed a sub-capsular layer composed of hyper-dense viable tumour cells in the periphery of untreated tumours. The rim of viable neoplastic cells was reduced in treated tumours, and replaced by loose connective tissue characterised by numerous vessels, which explains the observed hyper-enhancement. The present data show a peripheral abnormal development of cancer-associated stroma, indicative of an adaptive response to anti-angiogenic treatment. PMID:19384298

  15. Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus.

    PubMed

    Gao, Juanmei; Ruan, Hangze; Qi, Xianjie; Guo, Xia; Zheng, Jingna; Liu, Cong; Fang, Yanxiao; Huang, Minjiao; Xu, Miao; Shen, Wanhua

    2016-09-01

    Xylene and its derivatives are raw materials widely used in industry and known to be toxic to animals. However, the mechanism underlying the neurotoxicity of para-xylene (PX) to the central nervous system (CNS) in vivo is less clear. Here, we exposed Xenopus laevis tadpoles to sub-lethal concentrations of PX during the critical period of brain development to determine the effects of PX on Xenopus development and visual behavior. We found that the abnormality rate was significantly increased with exposure to increasing concentrations of PX. In particular, the number of apoptotic cells in the optic tectum was dramatically increased with exposure to PX at 2mM. Long-term PX exposure also resulted in significant deficits in visually guided avoidance behavior. Strikingly, co-incubation with PX and d-glucuronolactone (GA) decreased the number of apoptotic cells and rescued the avoidance behavior. Furthermore, we found that the acetylation of H4K12 (H4K12ac) and the dimethylation of H3K9 (H3K9me2) in the optic tectum were significantly increased in PX-treated animals, and these effects were suppressed by GA treatment. In particular, the increase in apoptotic cells in PX-treated brains was also inhibited by GA treatment. These effects indicate that epigenetic regulation plays a key role in PX-induced apoptosis and animal behavior. In an effort to characterize the neurotoxic effects of PX on brain development and behavior, these results suggest that the neurotoxicity of PX requires further evaluation regarding the safety of commercial and industrial uses. PMID:27343828

  16. An Autopsied Case of Malignant Sarcomatoid Pleural Mesothelioma in Which Chest Pain Developed Several Months Earlier without Abnormality on Imaging

    PubMed Central

    Yaguchi, Daizo; Ichikawa, Motoshi; Inoue, Noriko; Kobayashi, Daisuke; Matsuura, Akinobu; Shizu, Masato; Imai, Naoyuki; Watanabe, Kazuko

    2015-01-01

    The patient experienced chest pain for about 7 months, but a diagnosis could not be made until after death. He was diagnosed with malignant sarcomatoid pleural mesothelioma on autopsy. In this case report, difficult aspects of the diagnosis are discussed. The 70-year-old Japanese man was a driver who transported ceramic-related products. Right chest pain developed in July 2013, but no abnormality was detected on a chest computed tomography (CT) performed in September 2013, and the pain was managed as right intercostal neuralgia. A chest CT performed in late October 2013 revealed a right pleural effusion, and the patient was referred to our hospital in early November 2013. Thoracentesis was performed, but the cytology was negative, and no diagnosis could be made. Close examination was postponed because the patient developed a subarachnoid hemorrhage. He underwent 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) after discharge from the neurosurgery department, and extensive right pleural thickening and 18F-FDG accumulation in this region were observed. Based on these findings, malignant pleural mesothelioma was suspected, and a thoracoscopy was performed under local anesthesia in early December 2013, but no definite diagnosis could be made. The patient selected best supportive care and died about 7 months after the initial development of right chest pain. The disease was definitively diagnosed as malignant sarcomatoid pleural mesothelioma by a pathological autopsy. When chronic chest pain of unknown cause is observed and past exposure to asbestos is suspected, actions to prevent delay in diagnosis should be taken, including testing for suspicion of malignant pleural mesothelioma. PMID:26600776

  17. An Autopsied Case of Malignant Sarcomatoid Pleural Mesothelioma in Which Chest Pain Developed Several Months Earlier without Abnormality on Imaging.

    PubMed

    Yaguchi, Daizo; Ichikawa, Motoshi; Inoue, Noriko; Kobayashi, Daisuke; Matsuura, Akinobu; Shizu, Masato; Imai, Naoyuki; Watanabe, Kazuko

    2015-01-01

    The patient experienced chest pain for about 7 months, but a diagnosis could not be made until after death. He was diagnosed with malignant sarcomatoid pleural mesothelioma on autopsy. In this case report, difficult aspects of the diagnosis are discussed. The 70-year-old Japanese man was a driver who transported ceramic-related products. Right chest pain developed in July 2013, but no abnormality was detected on a chest computed tomography (CT) performed in September 2013, and the pain was managed as right intercostal neuralgia. A chest CT performed in late October 2013 revealed a right pleural effusion, and the patient was referred to our hospital in early November 2013. Thoracentesis was performed, but the cytology was negative, and no diagnosis could be made. Close examination was postponed because the patient developed a subarachnoid hemorrhage. He underwent (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) after discharge from the neurosurgery department, and extensive right pleural thickening and (18)F-FDG accumulation in this region were observed. Based on these findings, malignant pleural mesothelioma was suspected, and a thoracoscopy was performed under local anesthesia in early December 2013, but no definite diagnosis could be made. The patient selected best supportive care and died about 7 months after the initial development of right chest pain. The disease was definitively diagnosed as malignant sarcomatoid pleural mesothelioma by a pathological autopsy. When chronic chest pain of unknown cause is observed and past exposure to asbestos is suspected, actions to prevent delay in diagnosis should be taken, including testing for suspicion of malignant pleural mesothelioma. PMID:26600776

  18. Multiple Renal Cyst Development but Not Situs Abnormalities in Transgenic RNAi Mice against Inv::GFP Rescue Gene

    PubMed Central

    Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke

    2014-01-01

    In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938

  19. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  20. Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program

    PubMed Central

    Nelson, Kevin; Bobba, Christopher; Eren, Emre; Spata, Tyler; Tadres, Malak; Hayes,, Don; Black, Sylvester M.

    2015-01-01

    The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and “pearls of wisdom”/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible. PMID:25741794

  1. Method of isolated ex vivo lung perfusion in a rat model: lessons learned from developing a rat EVLP program.

    PubMed

    Nelson, Kevin; Bobba, Christopher; Eren, Emre; Spata, Tyler; Tadres, Malak; Hayes, Don; Black, Sylvester M; Ghadiali, Samir; Whitson, Bryan A

    2015-01-01

    The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and "pearls of wisdom"/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible. PMID:25741794

  2. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  3. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    PubMed

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  4. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter

    PubMed Central

    Beal, Deryk S.; Lerch, Jason P.; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L.; De Nil, Luc F.

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter

  5. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs

    PubMed Central

    Syed, Mansoor A.; Choo-Wing, Rayman; Homer, Robert J.; Bhandari, Vineet

    2016-01-01

    Background The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. Methodology We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. Results VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2−/− and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Conclusion Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung. PMID:26799210

  6. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    PubMed

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  7. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    PubMed Central

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  8. Unsupervised segmentation of lungs from chest radiographs

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2012-03-01

    This paper describes our preliminary investigations for deriving and characterizing coarse-level textural regions present in the lung field on chest radiographs using unsupervised grow-cut (UGC), a cellular automaton based unsupervised segmentation technique. The segmentation has been performed on a publicly available data set of chest radiographs. The algorithm is useful for this application because it automatically converges to a natural segmentation of the image from random seed points using low-level image features such as pixel intensity values and texture features. Our goal is to develop a portable screening system for early detection of lung diseases for use in remote areas in developing countries. This involves developing automated algorithms for screening x-rays as normal/abnormal with a high degree of sensitivity, and identifying lung disease patterns on chest x-rays. Automatically deriving and quantitatively characterizing abnormal regions present in the lung field is the first step toward this goal. Therefore, region-based features such as geometrical and pixel-value measurements were derived from the segmented lung fields. In the future, feature selection and classification will be performed to identify pathological conditions such as pulmonary tuberculosis on chest radiographs. Shape-based features will also be incorporated to account for occlusions of the lung field and by other anatomical structures such as the heart and diaphragm.

  9. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy.

    PubMed

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo; Ji, Sanghoon; Park, Sungkwang; Kim, Jinyoung; Jang, Hongseok; Kang, Youngnam

    2016-01-01

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of change of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was - 30 to + 32mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient׳s respiratory signal and it acts as a deformable 4-dimensional simulation of a patient׳s lung with sufficient volume change. PMID:26778011

  10. Regulation of proto-oncogene expression in adult and developing lungs.

    PubMed Central

    Molinar-Rode, R; Smeyne, R J; Curran, T; Morgan, J I

    1993-01-01

    Activation of immediate-early gene expression has been associated with mitogenesis, differentiation, nerve cell depolarization, and recently, terminal differentiation processes and programmed cell death. Previous evidence also suggested that immediate-early genes play a role in the physiology of the lungs (J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Science 237:192-197, 1987). Therefore, we analyzed c-fos expression in adult and developing lung tissues. Seizures elicited by chemoconvulsants induced expression of mRNA for c-fos, c-jun, and junB and Fos-like immunoreactivity in lung tissue. The use of pharmacological antagonists and adrenalectomy indicated that this increased expression was neurogenic. Interestingly, by using a fos-lacZ transgenic mouse, it was shown that Fos-LacZ expression in response to seizure occurred preferentially in clusters of epithelial cells at the poles of the bronchioles. This was the same location of Fos-LacZ expression detected during early lung development. These data imply that pharmacological induction of immediate-early gene expression in adult mice recapitulates an embryological program of gene expression. Images PMID:8497249

  11. Cardiopulmonary bypass: development of John Gibbon's heart-lung machine

    PubMed Central

    Passaroni, Andréia Cristina; Silva, Marcos Augusto de Moraes; Yoshida, Winston Bonetti

    2015-01-01

    Objective To provide a brief review of the development of cardiopulmonary bypass. Methods A review of the literature on the development of extracorporeal circulation techniques, their essential role in cardiovascular surgery, and the complications associated with their use, including hemolysis and inflammation. Results The advancement of extracorporeal circulation techniques has played an essential role in minimizing the complications of cardiopulmonary bypass, which can range from various degrees of tissue injury to multiple organ dysfunction syndrome. Investigators have long researched the ways in which cardiopulmonary bypass may insult the human body. Potential solutions arose and laid the groundwork for development of safer postoperative care strategies. Conclusion Steady progress has been made in cardiopulmonary bypass in the decades since it was first conceived of by Gibbon. Despite the constant evolution of cardiopulmonary bypass techniques and attempts to minimize their complications, it is still essential that clinicians respect the particularities of each patient's physiological function. PMID:26107456

  12. Nonrandom development of immunologic abnormalities after infection with human immunodeficiency virus: implications for immunologic classification of the disease.

    PubMed Central

    Zolla-Pazner, S; Des Jarlais, D C; Friedman, S R; Spira, T J; Marmor, M; Holzman, R; Mildvan, D; Yancovitz, S; Mathur-Wagh, U; Garber, J

    1987-01-01

    Blood specimens from 165 intravenous drug users who were seropositive for the human immunodeficiency virus (HIV), from 158 seropositive homosexual men with lymphadenopathy, and from 77 patients with acquired immunodeficiency syndrome (AIDS) were assessed immunologically. Immunologic parameters were analyzed by the Guttman scalogram technique to determine if immunologic abnormalities occurred in a nonrandom pattern. The following four patterns emerged: (i) seropositivity for HIV with no immunologic abnormalities; (ii) seropositivity for HIV with a depressed T4/T8 cell ratio; (iii) seropositivity with a depressed T4/T8 cell ratio and T4-cell depletion; and (iv) seropositivity with a depressed T4/T8 cell ratio, T4-cell depletion, and lymphopenia. Ninety-two to 100% of subjects in each of the three groups of patients were found "to scale" because the abnormalities occurred in the cumulative, ordered fashion described. This nonrandom occurrence of abnormalities indicates an ordered progression of immunologic abnormalities in individuals infected with HIV, a finding useful in the staging of both symptomatic and asymptomatic HIV-seropositive subjects. PMID:3496603

  13. Computerized scheme for detection of diffuse lung diseases on CR chest images

    NASA Astrophysics Data System (ADS)

    Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio

    2008-03-01

    We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.

  14. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  15. Recrystallization and the Development of Abnormally Large Grains After Small Strain Deformation in a Polycrystalline Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Miller, Victoria M.; Johnson, Anthony E.; Torbet, Chris J.; Pollock, Tresa M.

    2016-04-01

    The formation of abnormally large grains has been investigated in the polycrystalline nickel-based superalloy René 88DT. Cylindrical specimens with a 15 μm grain size were compressed to plastic strains up to 11.0 pct and subsequently rapidly heated to above the γ' solvus at 1423 K (1150° C) and held for 60 seconds. All deformed samples partially recrystallized during the heat treatment, with the recrystallized grain size varying with the degree of deformation. The largest final grain size occurred in samples deformed to approximately 2 pct strain, with isolated grains as large as 700 μm in diameter observed. It is proposed that abnormally large grains appear due to nucleation-limited recrystallization, not abnormal grain growth, based on the high boundary velocities measured and the observed reduction in grain orientation spread.

  16. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  17. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development.

    PubMed

    Ingrosso, Ilaria; Bonsegna, Stefania; De Domenico, Stefania; Laddomada, Barbara; Blando, Federica; Santino, Angelo; Giovinazzo, Giovanna

    2011-10-01

    A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits. PMID:21843947

  18. An allometric study of lung morphology during development in the Australian pelican, Pelicanus conspicillatus, from embryo to adult

    PubMed Central

    Runciman, S; Seymour, RS; Baudinette, RV; Pearson, JT

    2005-01-01

    Pelicans produce altricial chicks that develop into some of the largest birds capable of sustained flight. We traced pulmonary morphological development in the Australian pelican, Pelicanus conspicillatus, from third trimester embryos to adults. We described growth and development with allometric relationships between lung components and body mass or lung volume, according to the equation y = axb. Pelican lung volume increased faster than body mass (b = 1.07). Relative to lung volume, the airways and vascular spaces increased allometrically (b > 1) in embryos, but isometrically (b ≈ 1) after hatching. Parabronchial mantle volume decreased (b < 1) prior to hatching and increased isometrically thereafter. Surface area of air capillaries, blood capillaries and the blood–gas barrier increased relative to lung volume (b > 0.67) before and after hatching. Barrier thickness decreased before hatching, remained constant in juveniles and decreased by adulthood. The anatomical diffusing capacity significantly increased before hatching (b = 4.44) and after hatching (b = 1.26). Although altricial pelicans developed pulmonary complexity later than precocial turkeys, the volume-specific characteristics were similar. However, lungs of volant adult pelicans became significantly larger, with a greater capacity for gas exchange, than lungs of terrestrial turkeys. Exchange characteristics of growing pelican lungs were inferior to those of adult birds of 26 other species, but converged with them at maturity. PMID:16191165

  19. Secondary osteosarcoma developing 10 years after chemoradiotherapy for non-small-cell lung cancer.

    PubMed

    Yagishita, Shigehiro; Horinouchi, Hidehito; Yorozu, Takashi; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Mori, Taisuke; Tsuta, Koji; Sumi, Minako; Tamura, Tomohide

    2014-02-01

    A 53-year-old female patient was admitted with pain and a progressively enlarging mass in the right upper chest. Chest computed tomography revealed a mass lesion in the region of the right upper ribs. Ten years prior to this admission, the patient had undergone right lobectomy for lung adenocarcinoma. One year after the surgery, follow-up computed tomography had revealed tumor recurrence in the mediastinal and supraclavicular lymph nodes, and the patient had been treated by chemoradiotherapy. Thereafter, regular follow-up had revealed no evidence of recurrence of the non-small-cell lung cancer. Histopathological findings revealed proliferation of spindle-shaped malignant tumor cells in a background of osteoid, consistent with the diagnosis of osteosarcoma. The location of the tumor was consistent with the radiation field. Based on the clinicopathological findings, the patient was diagnosed as having secondary osteosarcoma occurring as a result of the chemoradiotherapy administered previously for the recurrent non-small-cell lung cancer. Unfortunately, the patient died of rapid progression of the osteosarcoma within a week of admission to the hospital. The autopsy revealed contiguous invasion by the tumor of the heart, with massive thrombus formation. The peripheral pulmonary arteries were diffusely occluded by metastatic tumors. Our case serves to highlight the risk of development of secondary sarcoma as a life-threatening late complication after chemoradiotherapy for locally advanced non-small-cell lung cancer, even after complete cure of the primary tumor. PMID:24338556

  20. Development of Liposomal Ciprofloxacin to Treat Lung Infections

    PubMed Central

    Cipolla, David; Blanchard, Jim; Gonda, Igor

    2016-01-01

    Except for management of Pseudomonas aeruginosa (PA) in cystic fibrosis, there are no approved inhaled antibiotic treatments for any other diseases or for infections from other pathogenic microorganisms such as tuberculosis, non-tuberculous mycobacteria, fungal infections or potential inhaled biowarfare agents including Francisella tularensis, Yersinia pestis and Coxiella burnetii (which cause pneumonic tularemia, plague and Q fever, respectively). Delivery of an antibiotic formulation via the inhalation route has the potential to provide high concentrations at the site of infection with reduced systemic exposure to limit side effects. A liposomal formulation may improve tolerability, increase compliance by reducing the dosing frequency, and enhance penetration of biofilms and treatment of intracellular infections. Two liposomal ciprofloxacin formulations (Lipoquin® and Pulmaquin®) that are in development by Aradigm Corporation are described here. PMID:26938551

  1. Development of Liposomal Ciprofloxacin to Treat Lung Infections.

    PubMed

    Cipolla, David; Blanchard, Jim; Gonda, Igor

    2016-01-01

    Except for management of Pseudomonas aeruginosa (PA) in cystic fibrosis, there are no approved inhaled antibiotic treatments for any other diseases or for infections from other pathogenic microorganisms such as tuberculosis, non-tuberculous mycobacteria, fungal infections or potential inhaled biowarfare agents including Francisella tularensis, Yersinia pestis and Coxiella burnetii (which cause pneumonic tularemia, plague and Q fever, respectively). Delivery of an antibiotic formulation via the inhalation route has the potential to provide high concentrations at the site of infection with reduced systemic exposure to limit side effects. A liposomal formulation may improve tolerability, increase compliance by reducing the dosing frequency, and enhance penetration of biofilms and treatment of intracellular infections. Two liposomal ciprofloxacin formulations (Lipoquin(®) and Pulmaquin(®)) that are in development by Aradigm Corporation are described here. PMID:26938551

  2. Analysis of p21Waf1/Cip1 expression in normal, premalignant, and malignant cells during the development of human lung adenocarcinoma.

    PubMed Central

    Hayashi, H.; Miyamoto, H.; Ito, T.; Kameda, Y.; Nakamura, N.; Kubota, Y.; Kitamura, H.

    1997-01-01

    Our studies suggested that adenocarcinoma of the peripheral lung mostly develops by several steps from atypical adenomatous hyperplasia through early adenocarcinoma to overt adenocarcinoma, and that some p53 abnormalities play an important role in this progression. In the present study, we examined by immunohistochemistry the expression of p53-inducible cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) in the cells at various developmental stages of lung adenocarcinoma (32 lesions of adenomatous hyperplasia, 14 of early adenocarcinoma, 23 of well differentiated adenocarcinoma, and 17 of moderately or poorly differentiated adenocarcinoma) in comparison with 19 reactive proliferative lesions and analyzed the relationship between p53 and p21 expression. Bronchioalveolar cells in the normal lung expressed very little or no p21 and no p53 expression. In not only reactive but also neoplastic lesions regardless of their developmental stage, the cells expressed p21 at various frequencies. The average labeling indices ranged from 5.4 to 13.8%, and there was no significant difference between any of these categories. The expression of p21, however, tended to be relatively low in moderately and poorly differentiated adenocarcinomas (5.5%) compared to well differentiated adenocarcinomas (12.2%), and high-level p21 expressors (10% < or = positive cells) were more frequent in the latter group (1 of 17 (6%) versus 3 of 23 (35%), P < 0.05), suggesting that p21 expression is affected by the degree of differentiation of the neoplastic cells. Although the correlation was positive between the expression of p21 and p53 in reactive lesions (r = 0.88; P < 0.001), none was found in neoplastic lesions at any step or grade (-0.12 < or = r < or = 0.26). These results indicated that p21 expression depends upon p53 expression in reactive lung cells, whereas p21 expression is at least in part independent of that of p53 from the earliest to the most fully developed step of lung adenocarcinoma

  3. Azithromycin, Ureaplasma and chronic lung disease of prematurity: a case study for neonatal drug development.

    PubMed

    Turner, Mark A; Jacqz-Aigrain, Evelyne; Kotecha, Sailesh

    2012-06-01

    Chronic lung disease of prematurity (CLD) remains a major cause of morbidity and mortality in preterm infants. Ureaplasma has received intermittent attention over the last two decades as a possible contributory factor. In addition, pulmonary inflammation is associated with the development of CLD. The macrolide azithromycin provides an attractive option to determine if it can decrease the development of CLD as it has both anti-inflammatory and anti-infective properties. In this article, the authors review the evidence for the role of Ureaplasma in the development of CLD and the obstacles faced in the development of a drug before it reaches clinical practice. PMID:21697219

  4. Subclinical Interstitial Lung Disease

    PubMed Central

    Doyle, Tracy J.; Hunninghake, Gary M.

    2012-01-01

    The widespread use of high-resolution computed tomography in clinical and research settings has increased the detection of interstitial lung abnormalities (ILA) in asymptomatic and undiagnosed individuals. We reported that in smokers, ILA were present in about 1 of every 12 high-resolution computed tomographic scans; however, the long-term significance of these subclinical changes remains unclear. Studies in families affected with pulmonary fibrosis, smokers with chronic obstructive pulmonary disease, and patients with inflammatory lung disease have shown that asymptomatic and undiagnosed individuals with ILA have reductions in lung volume, functional limitations, increased pulmonary symptoms, histopathologic changes, and molecular profiles similar to those observed in patients with clinically significant interstitial lung disease (ILD). These findings suggest that, in select at-risk populations, ILA may represent early stages of pulmonary fibrosis or subclinical ILD. The growing interest surrounding this topic is motivated by our poor understanding of the inciting events and natural history of ILD, coupled with a lack of effective therapies. In this perspective, we outline past and current research focused on validating radiologic, physiological, and molecular methods to detect subclinical ILD. We discuss the limitations of the available cross-sectional studies and the need for future longitudinal studies to determine the prognostic and therapeutic implications of subclinical ILD in populations at risk of developing clinically significant ILD. PMID:22366047

  5. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice.

    PubMed

    Bridges, James P; Wert, Susan E; Nogee, Lawrence M; Weaver, Timothy E

    2003-12-26

    Surfactant Protein C (SP-C) is a secreted transmembrane protein that is exclusively expressed by alveolar type II epithelial cells of the lung. SP-C associates with surfactant lipids to reduce surface tension within the alveolus, maintaining lung volume at end expiration. Mutations in the gene encoding SP-C (SFTPC) have recently been linked to chronic lung disease in children and adults. The goal of this study was to determine whether a disease-linked mutation in SFTPC causes lung disease in transgenic mice. The SFTPC mutation, designated g.1728 G --> A, results in the deletion of exon4, generating a truncated form of SP-C (SP-C(Deltaexon4)). cDNA encoding SP-C(Deltaexon4) was constitutively expressed in type II epithelial cells of transgenic mice. Viable F0 transgene-positive mice were not generated after two separate rounds of pronuclear injections. Histological analysis of lung tissue harvested from embryonic day 17.5 F0 transgene-positive fetuses revealed that SP-C(Deltaexon4) caused a dose-dependent disruption in branching morphogenesis of the lung associated with epithelial cell cytotoxicity. Transient expression of SP-C(Deltaexon4) in isolated type II epithelial cells or HEK293 cells resulted in incomplete processing of the mutant proprotein, a dose-dependent increase in BiP transcription, trapping of the proprotein in the endoplasmic reticulum, and rapid degradation via a proteasome-dependent pathway. Taken together, these data suggest that the g.1728 G --> A mutation causes misfolding of the SP-C proprotein with subsequent induction of the unfolded protein response and endoplasmic reticulum-associated degradation pathways ultimately resulting in disrupted lung morphogenesis. PMID:14525980

  6. Nail abnormalities

    MedlinePlus

    ... nails include systemic amyloidosis , malnutrition, vitamin deficiency, and lichen planus . Skin cancers near the nail and fingertip ... the nail bed. Chemotherapy medicines can affect nail growth. Normal aging affects the growth and development of ...

  7. Thyroid transcription factor-1, hepatocyte nuclear factor-3β and surfactant protein A and B in the developing chick lung

    PubMed Central

    ZENG, XIN; YUTZEY, KATHERINE E.; WHITSETT, JEFFREY A.

    1998-01-01

    Expression of surfactant proteins SP-A, SP-B and the transcription factors TTF-1 and HNF-3β was identified by immunohistochemistry in the developing chicken. SP-B, a small hydrophobic peptide critical for lung function and surfactant homeostasis in mammals, was detected in the epithelial cells of parabronchi in embryonic chicken lung from the 15th day of incubation, prior to the onset of the breathing movements and was expressed at high levels in the posthatching chicken lung. SP-A, an abundant surfactant protein involved in innate defence of the mammalian lung, was detected in the chick embryo in subsets of epithelial cells in the mesobronchus, starting from d 15 and was detected in the posthatching chicken lung. The transcription factors hepatocyte nuclear factor 3β (HNF-3β) and thyroid transcription factor-1 (TTF-1), both regulators epithelial cell differentiation and gene expression in mammalian species, were detected at the onset of lung bud formation (d 4 of incubation) and throughout lung development. Abundant nuclear expression was detected in nuclei of respiratory epithelial cells of developing bronchial tubules for both transcription factors. In contrast to the surfactant proteins, expression of both TTF-1 and HNF-3β decreased markedly in posthatching chicken lung. The expression of SP-A and SP-B in chick lung demonstrates the conservation of surfactant proteins in vertebrates. The temporospatial pattern of TTF-1 and HNF-3β overlaps with that of SP-A and SP-B, supporting their potential roles in chick lung development and demonstrating the conservation of regulatory mechanisms contributing to gene expression in respiratory epithelial cells in vertebrates. PMID:9877295

  8. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development

    PubMed Central

    Herriges, Michael J.; Swarr, Daniel T.; Morley, Michael P.; Rathi, Komal S.; Peng, Tien; Stewart, Kathleen M.; Morrisey, Edward E.

    2014-01-01

    Long noncoding RNAs (lncRNAs) are thought to play important roles in regulating gene transcription, but few have well-defined expression patterns or known biological functions during mammalian development. Using a conservative pipeline to identify lncRNAs that have important biological functions, we identified 363 lncRNAs in the lung and foregut endoderm. Importantly, we show that these lncRNAs are spatially correlated with transcription factors across the genome. In-depth expression analyses of lncRNAs with genomic loci adjacent to the critical transcription factors Nkx2.1, Gata6, Foxa2 (forkhead box a2), and Foxf1 mimic the expression patterns of their protein-coding neighbor. Loss-of-function analysis demonstrates that two lncRNAs, LL18/NANCI (Nkx2.1-associated noncoding intergenic RNA) and LL34, play distinct roles in endoderm development by controlling expression of critical developmental transcription factors and pathways, including retinoic acid signaling. In particular, we show that LL18/NANCI acts upstream of Nkx2.1 and downstream from Wnt signaling to regulate lung endoderm gene expression. These studies reveal that lncRNAs play an important role in foregut and lung endoderm development by regulating multiple aspects of gene transcription, often through regulation of transcription factor expression. PMID:24939938

  9. CDC42 is required for structural patterning of the lung during development.

    PubMed

    Wan, Huajing; Liu, Caijun; Wert, Susan E; Xu, Wei; Liao, Yong; Zheng, Yi; Whitsett, Jeffrey A

    2013-02-01

    The formation of highly branched epithelial structures is critical for the development of many essential organs, including lung, liver, pancreas, kidney and mammary glands. Elongation and branching of these structures require precise control of complex morphogenetic processes that are dependent upon coordinate regulation of cell shape, apical-basal polarity, proliferation, migration, and interactions among multiple cell types. Herein, we demonstrate that temporal-spatial regulation of epithelial cell polarity by the small GTPase, CDC42, is essential for branching morphogenesis of the developing lung. Epithelial cell-specific deletion of CDC42 in fetal mice disrupted epithelial cell polarity, the actin cytoskeleton, intercellular contacts, directional trafficking of proteins, proliferation and mitotic spindle orientation, impairing the organization and patterning of the developing respiratory epithelium and adjacent mesenchyme. Transition from a pseudostratified to a simple columnar epithelium was impaired, consistent with coordinate dysregulation of epithelial cell polarity, mitotic spindle orientation, and repositioning of mitotic cells within the epithelium during cell cycle progression. Expression of sonic hedgehog and its receptor, patched-1, was decreased, while fibroblast growth factor 10 expression in the mesenchyme was expanded, resulting in disruption of branching morphogenesis and bronchiolar smooth muscle formation in this model. CDC42 is required for spatial positioning of proliferating epithelial cells, as well as signaling interactions between the epithelium and mesenchyme and is, therefore, essential for formation and maintenance of the respiratory tract during morphogenesis of the fetal lung. PMID:23219958

  10. CDC42 is Required for Structural Patterning of the Lung During Development

    PubMed Central

    Wan, Huajing; Liu, Caijun; Wert, Susan E.; Wei, Xu; Liao, Yong; Zheng, Yi; Whitsett, Jeffrey A.

    2012-01-01

    The formation of highly branched epithelial structures is critical for the development of many essential organs, including lung, liver, pancreas, kidney and mammary glands. Elongation and branching of these structures require precise control of complex morphogenetic processes that are dependent upon coordinate regulation of cell shape, apical-basal polarity, proliferation, migration, and interactions among multiple cell types. Herein, we demonstrate that temporal-spatial regulation of epithelial cell polarity by the small GTPase, CDC42, is essential for branching morphogenesis of the developing lung. Epithelial cell-specific deletion of CDC42 in fetal mice disrupted epithelial cell polarity, the actin cytoskeleton, intercellular contacts, directional trafficking of proteins, proliferation and mitotic spindle orientation, impairing the organization and patterning of the developing respiratory epithelium and adjacent mesenchyme. Transition from a pseudostratified to a simple columnar epithelium was impaired, consistent with coordinate dysregulation of epithelial cell polarity, mitotic spindle orientation, and repositioning of mitotic cells within the epithelium during cell cycle progression. Expression of sonic hedgehog and its receptor, patched-1, was decreased, while fibroblast growth factor 10 expression in the mesenchyme was expanded, resulting in disruption of branching morphogenesis and bronchiolar smooth muscle formation in this model. CDC42 is required for spatial positioning of proliferating epithelial cells, as well as signaling interactions between the epithelium and mesenchyme and is, therefore, essential for formation and maintenance of the respiratory tract during morphogenesis of the fetal lung. PMID:23219958

  11. fDOT for in vivo follow-up of tumor development in mice lungs

    NASA Astrophysics Data System (ADS)

    Koenig, Anne; Hervé, Lionel; Da Silva, Anabela; Dinten, Jean-Marc; Boutet, Jérôme; Berger, Michel; Josserand, Véronique; Coll, Jean-Luc; Peltié, Philippe; Rizo, Philippe

    2007-07-01

    This paper presents in vivo experiments conducted on cancerous mice bearing mammary murine tumors. In order to reconstruct the fluorescence yield even in highly attenuating and heterogeneous regions like lungs, we developed a fDOT reconstruction method which at first corrects the light propagation model from optical heterogeneities by using the transmitted excitation light measurements. The same approach is also designed to enable working without immersing the mouse in adaptation liquid. The 3D fluorescence map is then reconstructed from the emitted signal of fluorescence and from the corrected propagation model by an ART (Algebraic Reconstruction Technique) algorithm. The system ability to reconstruct fluorescence distribution in presence of high attenuating objects has been validated on phantoms presenting a fluorescent absorbent inclusion. A study was conducted on mice to follow up lungs at different stages of tumor development. The mice were imaged after intravenous injection to the animal of a cancer specific fluorescent marker. A control experiment was conducted in parallel on healthy mice to ensure that the multiple injections of fluorophore did not induce parasite fluorescence distribution. These results validate our system performances for studying small animal lungs tumor evolution. Detection and localization of the fluorophore fixations expresses the tumor development.

  12. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer.

    PubMed

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-09-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case-control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21 cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  13. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer

    PubMed Central

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-01-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case–control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  14. Comparative Functional Genomics Analysis of NNK Tobacco-Carcinogen Induced Lung Adenocarcinoma Development in Gprc5a-Knockout Mice

    PubMed Central

    Men, Taoyan; van Pelt, Carolyn; Lotan, Dafna; Lotan, Reuben

    2010-01-01

    Background Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months). Methodology/Principal Findings To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n = 5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively. Conclusions/Significance Our findings demonstrate that lung tumorigenesis in the Gprc5a-KO mouse model is augmented by NNK and that gene expression changes induced by tobacco carcinogen(s) may be conserved between mouse and human lung epithelial cells. Further experimentation to prove the reliability of the Gprc5a knockout mouse model for the study of tobacco-induced lung carcinogenesis is warranted. PMID:20686609

  15. Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs

    PubMed Central

    Ames, Juliana; Chokshi, Mithil; Aiad, Norman; Sanyal, Sonali; Kawabata, Kimihito C.; Levental, Ilya; Sundararaghavan, Harini G.; Burdick, Jason A.; Janmey, Paul; Miyazono, Kohei; Wells, Rebecca G.; Jones, Peter L.

    2015-01-01

    Abstract Although there are many studies focusing on the molecular pathways underlying lung vascular morphogenesis, the extracellular matrix (ECM)–dependent regulation of mesenchymal cell differentiation in vascular smooth muscle development needs better understanding. In this study, we demonstrate that the paired related homeobox gene transcription factor Prx1 maintains the elastic ECM properties, which are essential for vascular smooth muscle precursor cell differentiation. We have found that Prx1null mouse lungs exhibit defective vascular smooth muscle development, downregulated elastic ECM expression, and compromised transforming growth factor (TGF)–β localization and signaling. Further characterization of ECM properties using decellularized lung ECM scaffolds derived from Prx1 mice demonstrated that Prx1 is required to maintain lung ECM stiffness. The results of cell culture using stiffness-controlled 2-D and 3-D synthetic substrates confirmed that Prx1-dependent ECM stiffness is essential for promotion of smooth muscle precursor differentiation for effective TGF-β stimulation. Supporting these results, both decellularized Prx1null lung ECM and Prx1WT (wild type) ECM scaffolds with blocked TGF-β failed to support mesenchymal cell to 3-D smooth muscle cell differentiation. These results suggest a novel ECM-dependent regulatory pathway of lung vascular development wherein Prx1 regulates lung vascular smooth muscle precursor development by coordinating the ECM biophysical and biochemical properties. PMID:26064466

  16. Alveolar flows of the developing lungs:from embryonic to early childhood airways

    NASA Astrophysics Data System (ADS)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josue

    2014-11-01

    At the onset of life in utero the respiratory system is simply a liquid-filled duct. With our first breath, alveoli are filled with air and become a significant port of entry for airborne particles. As such, alveolar lining is nearly fully functional at birth, though lung development continues during childhood as structural changes increase alveolar surface area to optimize ventilation. We hypothesize that such fluid dynamical changes potentially affect two phenomena occurring within alveoli: (i) flow patterns in airspaces at distinct stages of both in- and ex-utero life and (ii) fate of inhaled particles ex-utero. To investigate these phenomena, we combine experimental and numerical approaches where (i) microfluidic in vitro devices mimic liquid flows across the epithelium of fetal airspaces, and (ii) computational simulations are employed to examine particle transport and deposition in the deep alveolated regions of infants' lungs. Our approaches capture anatomically-inspired geometries based on morphometrical data, as well as physiological flows, including the convective-diffusive nature of submicron particle transport in alveolar regions.Overall, we investigate respiratory flows in alveolar regions of developing lungs, from early embryonic stages to late childhood

  17. Blockade of Interleukin-17 Restrains the Development of Acute Lung Injury.

    PubMed

    Li, Q; Gu, Y; Tu, Q; Wang, K; Gu, X; Ren, T

    2016-03-01

    The acute respiratory distress syndrome (ARDS), a clinical complication of severe acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Here, we explored the association between IL-17 and development of ALI using LPS-induced murine model. We found that IL-17 level was elevated in bronchoalveolar lavage (BAL) fluid of ALI mice. Upregulation of IL-17 resulted in increased severity of ALI as evidenced by decreased body weight and survival rate, elevated level of total protein and albumin in BAL fluid, as well as more apparent histopathology changes of lung. Induction of ALI was impaired in IL-17-deficient mice. Management of IL-17 could modulate LPS-induced pulmonary inflammation, as reflected by the total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Of note, blockade of IL-17 effectively inhibited the lung inflammation and alleviated ALI severity. Finally, we confirmed the clinical relevance and found that IL-17 expression was elevated and associated with the disease severity in patients with ARDS. In essence, IL-17 was crucial for development of ALI, suggesting a potential application for IL-17-based therapy in clinical practice. PMID:26709006

  18. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue.

    PubMed

    Abbas, Yasmine; Azzazy, Hassan M E; Tammam, Salma; Lamprecht, Alf; Ali, Mohamed Ehab; Schmidt, Annette; Sollazzo, Silvio; Mathur, Sanjay

    2016-10-01

    Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted delivery of chemotherapeutics to cancer in deep lung tissue is the aim of this study. The formulation consisted of inhalable polyvinylpyrrolidone (PVP)/maltodextrin (MD)-based microparticles (MPs) encapsulating chitosan (CS) nanoparticles (NPs) loaded with either drug only or drug and magnetic nanoparticles (MNPs). Drug release from CS NPs was enhanced with the aid of MNPs by a factor of 1.7 in response to external magnetic field. Preferential toxicity by CS NPs was shown towards tumor cells (A549) in comparison to cultured fibroblasts (L929). The prepared spray freeze dried (SFD) powders for CS NPs and CS MNPs were of the same size at ∼6μm. They had a fine particle fraction (FPF≤5.2μm) of 40-42% w/w and mass median aerodynamic diameter (MMAD) of 5-6μm as determined by the Next Generation Impactor (NGI). SFD-MPs of CS MNPs possess higher MMAD due to the high density associated with encapsulated MNPs. The developed formulation demonstrates several capabilities including tissue targeting, controlled drug release, and the possible imaging and diagnostic values (due to its MNPs content) and therefore represents an improved therapeutic platform for drug delivery to cancer in deep lung tissue. PMID:27244047

  19. Development of acute lung injury after the combination of intravenous bleomycin and exposure to hyperoxia in rats.

    PubMed Central

    Hay, J G; Haslam, P L; Dewar, A; Addis, B; Turner-Warwick, M; Laurent, G J

    1987-01-01

    Pulmonary toxicity is an important adverse effect of bleomycin treatment. Very little is known of the mechanisms underlying the development of lung injury, especially after intravenous administration, or how it can be modulated. In this study acute lung injury induced by bleomycin has been examined in rats by assessment of alveolar lavage cell profiles, histological examination, and measurement of the total pulmonary extravascular albumin space. Intratracheal instillation of bleomycin 1.5 mg resulted in a severe pneumonitis with influx of inflammatory cells into the alveoli as assessed by alveolar lavage, oedema of the alveolar walls, and up to an eight fold increase in the total pulmonary extravascular albumin space, maximal at 72 hours. Intravenous bleomycin 0.15-5 mg produced no detectable injury when assessed in these ways. Exposure to hyperoxia (40-90%) after intravenous bleomycin, however, induced lung injury similar to that produced by intratracheal bleomycin. A much more severe injury followed administration of intravenous bleomycin after an exposure to hyperoxia, which itself resulted in lung injury; but lung injury was still detectable after bleomycin when the exposure to hyperoxia was insufficient to induce changes in control animals. Lung injury was not observed when the exposure to hyperoxia preceded bleomycin treatment. These results indicate the importance of oxygen in the pathways leading to acute lung injury following intravenous bleomycin. We conclude that exposure to oxygen might induce lung injury during and after bleomycin treatment, and suggest that in these circumstances oxygen therapy should be kept to a minimum. PMID:2443992

  20. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    SciTech Connect

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  1. The Implantable Pediatric Artificial Lung: Interim Report on the Development of an End-Stage Lung Failure Model

    PubMed Central

    Alghanem, Fares; Davis, Ryan P.; Bryner, Benjamin S.; Hoffman, Hayley R.; Trahanas, John; Cornell, Marie; Rojas-Peña, Alvaro; Bartlett, Robert H.; Hirschl, Ronald B.

    2015-01-01

    An implantable pediatric artificial lung (PAL) may serve as a bridge to lung transplantation for children with end-stage lung failure (ESLF); however, an animal model of pediatric lung failure is needed to evaluate a PAL’s efficacy before it can enter clinical trials. The objective of this study was to assess ligation of the right pulmonary artery (rPA) as a model for pediatric ESLF. Seven 20-30kg lambs underwent rPA ligation and were recovered and monitored for up to 4 days. Intraoperatively, rPA ligation significantly increased physiologic deadspace fraction (Vd/Vt: baseline=48.6±5.7%, rPA ligation=60.1±5.2%, p=0.012), mean pulmonary arterial pressure (mPPA: baseline=17.4±2.2mmHg, rPA ligation=28.5±5.2mmHg, p<0.001), and arterial partial pressure of carbon dioxide (PaCO2: baseline=40.4±9.3mmHg, rPA ligation=57.3±12.7mmHg, p=0.026). Of the 7 lambs, 3 were unable to be weaned from mechanical ventilation post-operatively, 3 were successfully weaned but suffered cardiorespiratory failure within 4 days, and 1 survived all 4 days. All 4 animals that were successfully weaned from mechanical ventilation had persistent pulmonary hypertension (mPPA=28.6±2.2mmHg) and remained tachypneic (respiratory rate=63±21min−1). Three of the 4 recovered lambs required supplemental oxygen. We conclude that rPA ligation creates the physiologic derangements commonly seen in pediatric end-stage lung failure and may be suitable for testing and implanting a PAL. PMID:25905495

  2. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  3. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    PubMed Central

    Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-01-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579

  4. The lung cancer patient, the pneumologist and palliative care: a developing alliance.

    PubMed

    Blum, Torsten; Schönfeld, Nicolas

    2015-01-01

    Considerable evidence is now available on the value of palliative care for lung cancer patients in all stages and at all times during the course of the disease. However, pneumologists and their institutions seem to be widely in arrears with the implementation of palliative care concepts and the development of integrated structures. This review focuses on the available evidence and experience of various frequently unmet needs of lung cancer patients, especially psychological, social, spiritual and cultural ones. A PubMed search for evidence on these aspects of palliative care as well as on barriers to the implementation, on outcome parameters and effectiveness, and on structure and process quality was performed with a special focus on lung cancer patients. As a consequence, this review particularly draws pneumologists' attention to improving their skills in communication with the patients, their relatives and among themselves, and to establish team structures with more far-reaching competences and continuity than existing multilateral cooperations and conferences can provide. Ideally, any process of structural and procedural improvement should be accompanied by scientific evaluation and measures for quality optimisation. PMID:25359341

  5. Inhibitory effect of 5F on development of lung cancer in A/J mice

    PubMed Central

    Ye, Hua; Yang, Xiaoqing; Wu, Kefeng; Li, Li; Lv, Yingnian; Liu, Yi; Zheng, Xuebao

    2015-01-01

    The purpose of the study is to investigate the effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F) on the model of induced A/J mice lung cancer in A/J mice. The expressions of tumor-related molecules including P65 and Bcl-2 at protein level were examined using the immunohistochemical method (IHC). Side effects of 5F were also monitored. The results indicated that 5F significantly suppressed the development of B[a]P and NNK-induced lung cancer in vivo by facilitating cell apoptosis with minimal side effects. Compared to the expressions of P65 and Bcl-2 in model group, the levels were strongly attenuated both in blank and 5F injection groups. Moreover, P65 and Bcl-2 levels varied among different groups receiving 5F treatment. The expressions of P65 and Bcl-2 were much lower in groups receiving high-concentration 5F treatment than those with low-concentration 5F injection. Findings revealed that 5F inhibited the pathogenesis of lung cancer through accelerating apoptosis in a dose-dependent manner. PMID:26097604

  6. Chronic Exposure to Ambient Levels of Urban Particles Affects Mouse Lung Development

    PubMed Central

    Mauad, Thais; Rivero, Dolores Helena Rodriguez Ferreira; de Oliveira, Regiani Carvalho; de Faria Coimbra Lichtenfels, Ana Julia; Guimarães, Eliane Tigre; de Andre, Paulo Afonso; Kasahara, David Itiro; de Siqueira Bueno, Heloisa Maria; Saldiva, Paulo Hilário Nascimento

    2008-01-01

    Rationale: Chronic exposure to air pollution has been associated with adverse effects on children's lung growth. Objectives: We analyzed the effects of chronic exposure to urban levels of particulate matter (PM) on selected phases of mouse lung development. Methods: The exposure occurred in two open-top chambers (filtered and nonfiltered) placed 20 m from a street with heavy traffic in São Paulo, 24 hours/day for 8 months. There was a significant reduction of the levels of PM2.5 inside the filtered chamber (filtered = 2.9 ± 3.0 μg/m3, nonfiltered = 16.8 ± 8.3 μg/m3; P = 0.001). At this exposure site, vehicular sources are the major components of PM2.5 (PM ≤ 2.5μm). Exposure of the parental generation in the two chambers occurred from the 10th to the 120th days of life. After mating and birth of offspring, a crossover of mothers and pups occurred within the chambers, resulting in four groups of pups: nonexposed, prenatal, postnatal, and pre+postnatal. Offspring were killed at the age of 15 (n = 42) and 90 (n = 35) days; lungs were analyzed by morphometry for surface to volume ratio (as an estimator of alveolization). Pressure–volume curves were performed in the older groups, using a 20-ml plethysmograph. Measurements and Main Results: Mice exposed to PM2.5 pre+postnatally presented a smaller surface to volume ratio when compared with nonexposed animals (P = 0.036). The pre+postnatal group presented reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure (P = 0.001). There were no differences among prenatal and postnatal exposure and nonexposed animals. Conclusions: Our data provide anatomical and functional support to the concept that chronic exposure to urban PM affects lung growth. PMID:18596224

  7. Robust algorithmic detection of the developed cardiac pathologies and emerging or transient abnormalities from short periods of RR data

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, Valeriy V.; Senyukova, Olga

    2011-06-01

    Numerous research efforts and clinical testing have confirmed validity of heart rate variability (HRV) analysis as one of the cardiac diagnostics modalities. The majority of HRV analysis tools currently used in practice are based on linear indicators. Methods from nonlinear dynamics (NLD) provide more natural modeling framework for adaptive biological systems with multiple feedback loops. Compared to linear indicators, many NLD-based measures are much less sensitive to data artifacts and non-stationarity. However, majority of NLD measures require long time series for stable calculation. Similar restrictions also apply for linear indicators. Such requirements could drastically limit practical usability of HRV analysis in many applications, including express diagnostics, early indication of subtle directional changes during personalization of medical treatment, and robust detection of emerging or transient abnormalities. Recently we have illustrated that these challenges could be overcome by using classification framework based on boosting-like ensemble learning techniques that are capable of discovering robust meta-indicators from existing HRV measures and other incomplete empirical knowledge. In this paper we demonstrate universality of such meta-indicators and discuss operational details of their practical usage. Using such pathology examples as congestive heart failure (CHF) and arrhythmias, we show that classifiers trained on short RR segments (down to several minutes) could achieve reasonable classification accuracy (˜80-85% and higher). These indicators calculated from longer RR segments could be applicable for accurate diagnostics with classification accuracy approaching 100%. In addition, it is feasible to discover single "normal-abnormal" meta-classifier capable of detecting multiple abnormalities.

  8. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  9. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  10. The Risk of Early and Late Lung Sequelae After Conformal Radiotherapy in Breast Cancer Patients

    SciTech Connect

    Kahan, Zsuzsanna . E-mail: kahan@onko.szote.u-szeged.hu; Csenki, Melinda; Varga, Zoltan; Szil, Elemer; Cserhati, Adrienn; Balogh, Attila; Gyulai, Zsofia; Mandi, Yvette; Boda, Krisztina; Thurzo, Laszlo

    2007-07-01

    Purpose: To study the risks of early and late radiogenic lung damage in breast cancer patients after conformal radiotherapy. Methods and Materials: Radiogenic lung sequelae were assessed prospectively in 119 patients by means of clinical signs, radiologic abnormalities, and the mean density change (MDC) of the irradiated lung on CT. Results: Significant positive associations were detected between the development of lung abnormalities 3 months or 1 year after the radiotherapy and the age of the patient, the ipsilateral mean lung dose (MLD), the radiation dose to 25% of the ipsilateral lung (D{sub 25%}) and the volume of the ipsilateral lung receiving 20 Gy (V{sub 20Gy}). The irradiation of the axillary and supraclavicular lymph nodes favored the development of pneumonitis but not that of fibrosis. No relation was found between the preradiotherapy plasma TGF-{beta} level and the presence of radiogenic lung damage. At both time points, MDC was strongly related to age. Significant positive associations were demonstrated between the risks of pneumonitis or fibrosis and the age of the patient, MLD, D{sub 25%}, and V{sub 20Gy}. A synergistic effect of MLD, D{sub 25%}, and V{sub 20Gy} with age in patients older than 59 years is suggested. Conclusion: Our analyses indicate that the risks of early and late radiogenic lung sequelae are strongly related to the age of the patient, the volume of the irradiated lung, and the dose to it.

  11. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors.

    PubMed

    Suzui, Masumi; Futakuchi, Mitsuru; Fukamachi, Katsumi; Numano, Takamasa; Abdelgied, Mohamed; Takahashi, Satoru; Ohnishi, Makoto; Omori, Toyonori; Tsuruoka, Shuji; Hirose, Akihiko; Kanno, Jun; Sakamoto, Yoshimitsu; Alexander, David B; Alexander, William T; Jiegou, Xu; Tsuda, Hiroyuki

    2016-07-01

    Multiwalled carbon nanotubes (MWCNT) have a fibrous structure and physical properties similar to asbestos and have been shown to induce malignant mesothelioma of the peritoneum after injection into the scrotum or peritoneal cavity in rats and mice. For human cancer risk assessment, however, data after administration of MWCNT via the airway, the exposure route that is most relevant to humans, is required. The present study was undertaken to investigate the carcinogenicity of MWCNT-N (NIKKISO) after administration to the rat lung. MWCNT-N was fractionated by passing it through a sieve with a pore size of 25 μm. The average lengths of the MWCNT were 4.2 μm before filtration and 2.6 μm in the flow-through fraction; the length of the retained MWCNT could not be determined. For the present study, 10-week-old F344/Crj male rats were divided into five groups: no treatment, vehicle control, MWCNT-N before filtration, MWCNT-N flow-through and MWCNT-N retained groups. Administration was by the trans-tracheal intrapulmonary spraying (TIPS) method. Rats were administered a total of 1 mg/rat during the initial 2 weeks of the experiment and then observed up to 109 weeks. The incidences of malignant mesothelioma and lung tumors (bronchiolo-alveolar adenomas and carcinomas) were 6/38 and 14/38, respectively, in the three groups administered MWCNT and 0/28 and 0/28, respectively, in the control groups. All malignant mesotheliomas were localized in the pericardial pleural cavity. The sieve fractions did not have a significant effect on tumor incidence. In conclusion, administration of MWCNT to the lung in the rat induces malignant mesothelioma and lung tumors. PMID:27098557

  12. Development of a Multicompartment Permeability-Limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs

    PubMed Central

    Gaohua, L; Wedagedera, J; Small, BG; Almond, L; Romero, K; Hermann, D; Hanna, D; Jamei, M; Gardner, I

    2015-01-01

    Achieving sufficient concentrations of antituberculosis (TB) drugs in pulmonary tissue at the optimum time is still a challenge in developing therapeutic regimens for TB. A physiologically based pharmacokinetic model incorporating a multicompartment permeability-limited lung model was developed and used to simulate plasma and pulmonary concentrations of seven drugs. Passive permeability of drugs within the lung was predicted using an in vitro-in vivo extrapolation approach. Simulated epithelial lining fluid (ELF):plasma concentration ratios showed reasonable agreement with observed clinical data for rifampicin, isoniazid, ethambutol, and erythromycin. For clarithromycin, itraconazole and pyrazinamide the observed ELF:plasma ratios were significantly underpredicted. Sensitivity analyses showed that changing ELF pH or introducing efflux transporter activity between lung tissue and ELF can alter the ELF:plasma concentration ratios. The described model has shown utility in predicting the lung pharmacokinetics of anti-TB drugs and provides a framework for predicting pulmonary concentrations of novel anti-TB drugs. PMID:26535161

  13. Developing Software to “Track and Catch” Missed Follow-up of Abnormal Test Results in a Complex Sociotechnical Environment

    PubMed Central

    Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.

    2013-01-01

    Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed

  14. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    PubMed Central

    Donnan, Peter T; McLernon, David; Steinke, Douglas; Ryder, Stephen; Roderick, Paul; Sullivan, Frank M; Rosenberg, William; Dillon, John F

    2007-01-01

    Background Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT) in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people). The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000) between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT) database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1), dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150) with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision support tool. Discussion

  15. Lung boundary detection in pediatric chest x-rays

    NASA Astrophysics Data System (ADS)

    Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.

    2015-03-01

    Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

  16. Development of molecularly targeted agents and immunotherapies in small cell lung cancer.

    PubMed

    Sharp, Adam; Bhosle, Jaishree; Abdelraouf, Fatma; Popat, Sanjay; O'Brien, Mary; Yap, Timothy A

    2016-06-01

    Small cell lung cancer (SCLC) is a smoking-induced malignancy with multiple toxin-associated mutations, which accounts for 15% of all lung cancers. It remains a clinical challenge with a rapid doubling time, early dissemination and poor prognosis. Despite multiple clinical trials in SCLC, platinum-based chemotherapy remains the mainstay of treatment in the first line advanced disease setting; good initial responses are nevertheless inevitably followed by disease relapse and survival ultimately remains poor. There are currently no molecularly targeted agents licenced for use in SCLC. Advances in sequencing the cancer genome and other high-throughput profiling technologies have identified aberrant pathways and mechanisms implicated in SCLC development and progression. Novel anti-tumour therapeutics that impact these putative targets are now being developed and investigated in SCLC. In this review, we discuss novel anti-tumour agents assessed in SCLC with reference to the complex molecular mechanisms implicated in SCLC development and progression. We focus on novel DNA damage response inhibitors, immune checkpoint modulators and antibody-drug conjugates that have shown promise in SCLC, and which may potentially transform treatment strategies in this disease. Finally, we envision the future management of SCLC and propose a biomarker-driven translational treatment paradigm for SCLC that incorporates next generation sequencing studies with patient tumours, circulating plasma DNA and functional imaging. Such modern strategies have the potential to transform the management and improve patient outcomes in SCLC. PMID:27060747

  17. Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Produces Abnormalities in Tracheal Development in Neonatal Pigs and Young Children

    PubMed Central

    Meyerholz, David K.; Stoltz, David A.; Namati, Eman; Ramachandran, Shyam; Pezzulo, Alejandro A.; Smith, Amanda R.; Rector, Michael V.; Suter, Melissa J.; Kao, Simon; McLennan, Geoffrey; Tearney, Guillermo J.; Zabner, Joseph; McCray, Paul B.; Welsh, Michael J.

    2010-01-01

    Rationale: Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. Objectives: To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. Methods: We studied newborn CFTR−/− pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. Measurements and Main Results: We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. Conclusions: Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life. PMID:20622026

  18. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  19. Skeletal muscle insulin resistance in hamsters with diabetes developed from obesity is involved in abnormal skeletal muscle LXR, PPAR and SREBP expression

    PubMed Central

    LI, GUO-SHENG; LIU, XU-HAN; ZHU, HUA; HUANG, LAN; LIU, YA-LI; MA, CHUN-MEI

    2016-01-01

    Diabetic ‘lipotoxicity’ theory suggests that fat-induced skeletal muscle insulin resistance (FISMIR) in obesity induced by a high-fat diet (HFD), which leads to ectopic lipid accumulation in insulin-sensitive tissues, may play a pivotal role in the pathogenesis of type 2 diabetes. However, the changes in gene expression and the molecular mechanisms associated with the pathogenesis of FISMIR have not yet been fully elucidated. In the present study the changes in skeletal muscle gene expression were examined in FISMIR in obese insulin-resistant and diabetic hamster models induced by HFD with or without low-dose streptozotocin-treatment. Microarray technology and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to explore the potential underlying molecular mechanisms. The pathophysiological and metabolic features of obesity and type 2 diabetes in humans are closely resembled by these hamster models. The results of microarray analysis showed that the differentially expressed genes associated with metabolism were mostly related to the abnormal regulation and changes in the gene expression of liver X receptor (LXR), peroxisome proliferator-activated receptor (PPAR) and sterol regulatory element-binding protein (SREBP) transcriptional programs in the skeletal muscle from insulin-resistant and diabetic hamsters. The microarray findings confirmed by RT-qPCR indicated that the increased expression of SREBPs and LXRβ and the decreased expression of LXRα and PPARs were involved in the molecular mechanisms of FISMIR pathogenesis in insulin-resistant and diabetic hamsters. A significant difference in the abnormal expression of skeletal muscle LXRs, PPARs and SREBPs was found between insulin-resistant and diabetic hamsters. It may be concluded that the combined abnormal expression of LXR, PPAR and SREBP transcriptional programs may contribute to the development of FISMIR mediated by skeletal muscle lipid accumulation resulting from abnormal

  20. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  1. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    PubMed

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression

  2. Development of an intravenous membrane oxygenator: a new concept in mechanical support for the failing lung.

    PubMed

    Hattler, B G; Reeder, G D; Sawzik, P J; Walters, F R; Pham, S M; Kormos, R L; Keenan, R J; Griffith, B P; Armitage, J M; Hardesty, R L

    1994-01-01

    An intravenous membrane oxygenator is being developed to supplement oxygen and carbon dioxide exchange in patients with temporary and potentially reversible lung failure in either a lung transplantation setting or in cases of acute respiratory distress from multiple causes. Our device incorporates a pulsatile balloon that is centrally located and around which are mounted microporous hollow fibers. Oxygen is vaccuumed through the fibers with resultant gas exchange. The rhythmic pulsations of the balloon enhance cross-flow and three-dimensional convective mixing at the blood-fiber interface and thus promote more efficient oxygen-carbon dioxide exchange. Seven intravenous membrane oxygenator prototypes have been designed and fabricated. Modifications in design have led to a progressive improvement in gas flux. Gas exchange performance measured in vitro and with both saline solution and fresh ox blood have shown gas exchange as high as 203 ml/min/m2 for oxygen and 182 ml/min/m2 for carbon dioxide. In vivo dog experiments with the device positioned in the inferior vena cava and right atrium have shown over a 50% increase in oxygen flux with balloon activation versus the static situation without changes in hemodynamics. The size of the prototype tested in animals can be scaled up fivefold for anticipated human trials. Our results indicate that our intravenous membrane oxygenator prototypes now under development may be an alternative to extracorporeal membrane oxygenation in the treatment of temporary respiratory failure. PMID:7865505

  3. Abnormal pulmonary macrophages in lysinuric protein intolerance. Ultrastructural, morphometric, and x-ray microanalytic study.

    PubMed

    Parto, K; Mäki, J; Pelliniemi, L J; Simell, O

    1994-05-01

    Pediatric patients with lysinuric protein intolerance are predisposed to develop alveolar hemorrhage and pulmonary alveolar proteinosis. We evaluated the ultrastructural features of pulmonary alveolar proteinosis and the potential abnormality of pulmonary macrophages in lysinuric protein intolerance. Lung tissue specimens obtained at autopsy were examined by transmission electron microscopy. Pulmonary macrophages from bronchoalveolar lavages were studied by electron microscopy, morphometry, and x-ray microanalysis and compared with control cells. The macrophages of patients with lysinuric protein intolerance contained significantly more multilamellar structures than did control cells and showed electron-dense material identified to contain excess iron. The predisposition to develop alveolar proteinosis and the abnormal ultrastructure of pulmonary macrophages suggest altered phospholipid metabolism in patients with lysinuric protein intolerance. The marked intramacrophageal accumulations of iron might indicate altered iron metabolism or subclinical hemorrhages in lung tissue. PMID:8192561

  4. Phosphoproteomics and Lung Cancer Research

    PubMed Central

    López, Elena; Cho, William C. S.

    2012-01-01

    Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed. PMID:23202899

  5. Zone-based analysis for automated detection of abnormalities in chest radiographs

    SciTech Connect

    Kao, E-Fong; Kuo, Yu-Ting; Hsu, Jui-Sheng; Chou, Ming-Chung; Liu, Gin-Chung

    2011-07-15

    Purpose: The aim of this study was to develop an automated method for detection of local texture-based and density-based abnormalities in chest radiographs. Methods: The method was based on profile analysis to detect abnormalities in chest radiographs. In the method, one density-based feature, Density Symmetry Index, and two texture-based features, Roughness Maximum Index and Roughness Symmetry Index, were used to detect abnormalities in the lung fields. In each chest radiograph, the lung fields were divided into four zones initially and then the method was applied to each zone separately. For each zone, Density Symmetry Index was obtained from the projection profile of each zone, and Roughness Maximum Index and Roughness Symmetry Index were obtained by measuring the roughness of the horizontal profiles via moving average technique. Linear discriminant analysis was used to classify normal and abnormal cases based on the three indices. The discriminant performance of the method was evaluated using ROC analysis. Results: The method was evaluated on a database of 250 normal and 250 abnormal chest images. In the optimized conditions, the zone-based performance Az of the method for zones 1, 2, 3, and 4 were 0.917, 0.897, 0.892, and 0.814, respectively, and the case-based performance Az of the method was 0.842. Our previous method for detection of gross abnormalities was also evaluated on the same database. The case-based performance of our previous method was 0.689. Conclusions: In comparing the previous method and the new method proposed in this study, there was a great improvement by the new method for detection of local texture-based and density-based abnormalities. The new method combined with the previous one has potential for screening abnormalities in chest radiographs.

  6. Brain abnormalities in male children and adolescents with hemophilia: detection with MR imaging. The Hemophilia Growth and Development Study Group.

    PubMed

    Wilson, D A; Nelson, M D; Fenstermacher, M J; Bohan, T P; Hopper, K D; Tilton, A; Mitchell, W G; Contant, C F; Maeder, M A; Donfield, S M

    1992-11-01

    Cranial magnetic resonance (MR) imaging was performed in 124 male patients (aged 7-19 years), from 14 institutions, in whom a diagnosis of moderate to severe hemophilia was made. Blood tests in all subjects were negative for human immunodeficiency virus. Findings in MR studies were abnormal in 25 (20.2%) subjects. Six lesions in five subjects were classified as congenital. The most commonly identified congenital lesion was a posterior fossa collection of cerebrospinal fluid (five cases). Twenty-two subjects had acquired lesions that were probably related to the hemophilia or its treatment. The most commonly acquired lesions were single- or multifocal areas of high signal intensity within the white matter on T2-weighted images noted in 14 (11.3%) subjects. Two subjects had large focal areas of brain atrophy, and six had some degree of diffuse cerebral cortical atrophy. Three subjects (2.4%) had hemorrhagic lesions. To the authors' knowledge, the unexpected finding of small, focal, nonhemorrhagic white matter lesions has not previously been reported. PMID:1410372

  7. Branching patterns emerge in a mathematical model of the dynamics of lung development

    PubMed Central

    Guo, Yina; Chen, Ting-Hsuan; Zeng, Xingjuan; Warburton, David; Boström, Kristina I; Ho, Chih-Ming; Zhao, Xin; Garfinkel, Alan

    2014-01-01

    Recent experimental work has described an elegant pattern of branching in the development of the lung. Multiple forms of branching have been identified, including side branching and tip bifurcation. A particularly interesting feature is the phenomenon of ‘orthogonal rotation of the branching plane’. The lung must fill 3D space with the essentially 2D phenomenon of branching. It accomplishes this by rotating the branching plane by 90° with each generation. The mechanisms underlying this rotation are not understood. In general, the programmes that underlie branching have been hypothetically attributed to genetic ‘subroutines’ under the control of a ‘global master routine’ to invoke particular subroutines at the proper time and location, but the mechanisms of these routines are not known. Here, we demonstrate that fundamental mechanisms, the reaction and diffusion of biochemical morphogens, can create these patterns. We used a partial differential equation model that postulates three morphogens, which we identify with specific molecules in lung development. We found that cascades of branching events, including side branching, tip splitting and orthogonal rotation of the branching plane, all emerge immediately from the model, without further assumptions. In addition, we found that one branching mode can be easily switched to another, by increasing or decreasing the values of key parameters. This shows how a ‘global master routine’ could work by the alteration of a single parameter. Being able to simulate cascades of branching events is necessary to understand the critical features of branching, such as orthogonal rotation of the branching plane between successive generations, and branching mode switch during lung development. Thus, our model provides a paradigm for how genes could possibly act to produce these spatial structures. Our low-dimensional model gives a qualitative understanding of how generic physiological mechanisms can produce branching

  8. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  9. Fetal Calcium Regulates Branching Morphogenesis in the Developing Human and Mouse Lung: Involvement of Voltage-Gated Calcium Channels

    PubMed Central

    Brennan, Sarah C.; Finney, Brenda A.; Lazarou, Maria; Rosser, Anne E.; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J.; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to

  10. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development

    PubMed Central

    Dimitrova, Nadya; Gocheva, Vasilena; Bhutkar, Arjun; Resnick, Rebecca; Jong, Robyn M.; Miller, Kathryn M.; Bendor, Jordan; Jacks, Tyler

    2015-01-01

    The two unrelated miRNAs, miR-143 and miR-145, co-expressed from the miR-143/145 cluster have been proposed to act as tumor suppressors in human cancer and therapeutic benefits of delivering miR-143 and miR-145 to tumors have been reported. In contrast, we found that tumor-specific deletion of miR-143/145 in an autochthonous mouse model of lung adenocarcinoma did not affect tumor development. This was consistent with the lack of endogenous miR-143/145 expression in normal and transformed lung epithelium. Surprisingly, miR-143/145 in the tumor microenvironment dramatically promoted tumor growth by stimulating the proliferation of endothelial cells. Loss of miR-143/145 in vivo led to derepression of the miR-145 target Camk1d, an inhibitory kinase, which when overexpressed prevents mitotic entry of endothelial cells. As a consequence, tumors in miR-143/145-deficient animals exhibited diminished neoangiogenesis, increased apoptosis and their expansion was limited by the tumor’s ability to co-opt the alveolar vasculature. These findings demonstrate that stromal miR-143/145 promotes tumorigenesis and cautions against the use of these miRNAs as agents in cancer therapeutics. PMID:26586766

  11. A critical review of recent developments in radiotherapy for non-small cell lung cancer.

    PubMed

    Baker, Sarah; Dahele, Max; Lagerwaard, Frank J; Senan, Suresh

    2016-01-01

    Lung cancer is the leading cause of cancer mortality, and radiotherapy plays a key role in both curative and palliative treatments for this disease. Recent advances include stereotactic ablative radiotherapy (SABR), which is now established as a curative-intent treatment option for patients with peripheral early-stage NSCLC who are medically inoperable, or at high risk for surgical complications. Improved delivery techniques have facilitated studies evaluating the role of SABR in oligometastatic NSCLC, and encouraged the use of high-technology radiotherapy in some palliative settings. Although outcomes in locally advanced NSCLC remain disappointing for many patients, future progress may come about from an improved understanding of disease biology and the development of radiotherapy approaches that further reduce normal tissue irradiation. At the moment, the benefits, if any, of radiotherapy technologies such as proton beam therapy remain unproven. This paper provides a critical review of selected aspects of modern radiotherapy for lung cancer, highlights the current limitations in our understanding and treatment approaches, and discuss future treatment strategies for NSCLC. PMID:27600665

  12. Foxa2 programs Th2 cell-mediated innate immunity in the developing lung.

    PubMed

    Chen, Gang; Wan, Huajing; Luo, Fengming; Zhang, Liqian; Xu, Yan; Lewkowich, Ian; Wills-Karp, Marsha; Whitsett, Jeffrey A

    2010-06-01

    After birth, the respiratory tract adapts to recurrent exposures to pathogens, allergens, and toxicants by inducing the complex innate and acquired immune systems required for pulmonary homeostasis. In this study, we show that Foxa2, expressed selectively in the respiratory epithelium, plays a critical role in regulating genetic programs influencing Th2 cell-mediated pulmonary inflammation. Deletion of the Foxa2 gene, encoding a winged helix/forkhead box transcription factor that is selectively expressed in respiratory epithelial cells, caused spontaneous pulmonary eosinophilic inflammation and goblet cell metaplasia. Loss of Foxa2 induced the recruitment and activation of myeloid dendritic cells and Th2 cells in the lung, causing increased production of Th2 cytokines and chemokines. Loss of Foxa2-induced expression of genes regulating Th2 cell-mediated inflammation and goblet cell differentiation, including IL-13, IL-4, eotaxins, thymus and activation-regulated chemokine, Il33, Ccl20, and SAM pointed domain-containing Ets transcription factor. Pulmonary inflammation and goblet cell differentiation were abrogated by treatment of neonatal Foxa2(Delta/Delta) mice with mAb against IL-4Ralpha subunit. The respiratory epithelium plays a central role in the regulation of Th2-mediated inflammation and innate immunity in the developing lung in a process regulated by Foxa2. PMID:20483781

  13. Differential expression of tenascin-C in the developing human lung: an immunohistochemical study.

    PubMed

    Lambropoulou, M; Limberis, V; Koutlaki, N; Simopoulou, M; Ntanovasilis, D; Vandoros, G P; Tatsidou, P; Kekou, I; Koutsikogianni, I; Papadopoulos, N

    2009-12-01

    Much of the specification for the basic embryonic body plan is the result of a hierarchy of developmental decisions at different developmental times. The extracellular matrix (ECM) appears to be a very dynamic structure during embryogenesis. One of the mesenchymal ECM proteins, tenascin, is reported to be transiently expressed during embryonic tissue development, and is absent or much reduced in most fully developed organs. The respiratory system is an outgrowth of the ventral wall of the foregut, and the epithelium of the larynx, trachea, bronchi and alveoli is of endodermal origin. The cartilaginous and muscular components are of mesodermal origin. The aim of this study was to investigate the role of tenascin-C (TNC) in the developing human lung, during the pseudoglandular, canalicular and saccular stage of lung maturation. Formalin-fixed, paraffin-embedded tissue from the lungs of 30 embryos (10 corresponding to the 10th to the 16th gestational week (pseudoglandular stage), 10 to the 17th to the 23rd gestational week (canalicular stage), and 10 to the 24th to the 27th gestational week (saccular stage), were investigated by conventional histology and immunohistology for the expression levels of TNC. The changes observed in the distribution patterns suggest that during embryogenesis, the rate of tenascin synthesis changes significantly. During the pseudoglandular stage, the density of cells expressing TNC was higher in the condensing mesenchyme surrounding the epithelial glands than in the epithelial cells, whereas the inverse result was observed during the canalicular stage. During the saccular stage the pattern of immunoreactivity with TNC was lower than those of the pseudoglandular and canalicular stage, either in epithelial or mesenchymal cells, but it was highly expressed in the basement membranes. This restricted spatiotemporal distribution suggests that tenascin has a key role (1) in mesenchymal tissue remodeling during the pseudoglandular stage, a period

  14. Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears.

    PubMed

    Salimović-Bešić, I; Hukić, M

    2015-09-01

    The objectives of this study were to identify human papillomavirus (HPV) genotypes in a group of Bosnian-Herzegovinian women with abnormal cytology and to assess their potential coverage by vaccines. HPVs were identified by multiplex real-time PCR test (HPV High Risk Typing Real-TM; Sacace Biotechnologies, Italy) of 105 women with an abnormal cervical Pap smear and positive high-risk (HR) HPV DNA screening test. The most common genotypes in the study were HPV-16 (32·6%, 48/147), HPV-31 (14·3%, 21/147), HPV-51 (9·5%, 14/147) and HPV-18 (7·5%, 11/147). The overall frequency of HR HPV-16 and/or HPV-18, covered by currently available vaccines [Gardasil® (Merck & Co., USA) and Cervarix®; (GlaxoSmithKline, UK)] was lower than the overall frequency of other HPVs detected in the study (40·1%, 59/174, P = 0·017). Group prevalence of HR HPVs targeted by a nine-valent vaccine in development (code-named V503) was higher than total frequency of other HPVs detected (68·0%, 100/147, P < 0·001). Development of cervical cytological abnormalities was independent of the presence of multiple infections (χ 2 = 0·598, P = 0·741). Compared to other HPVs, dependence of cervical diagnosis and HPV-16, -18 (P = 0·008) and HPV-16, -18, -31 (P = 0·008) infections were observed. Vaccines targeting HR HPV-16, -18 and -31 might be an important tool in the prevention of cervical disease in Bosnia and Herzegovina. PMID:25578155

  15. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    PubMed

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  16. Development and Evaluation of Patient Education Materials for Elderly Lung Cancer Patients.

    PubMed

    Jewitt, Natalie; Hope, Andrew J; Milne, Robin; Le, Lisa W; Papadakos, Janet; Abdelmutti, Nazek; Catton, Pamela; Giuliani, Meredith E

    2016-03-01

    Patients treated for lung cancer are often elderly presenting a unique challenge for developing patient education materials. This study developed and evaluated a patient education pamphlet on lung stereotactic body radiotherapy (SBRT) designed specifically for an elderly population. The SBRT pamphlet was developed using a participatory design involving a convenience sample of patients. This prospective study assessed patient's opinions of pamphlet effectiveness through self-report questionnaires. The pamphlet was deemed "effective" if patients rated 16/18 evaluation statements as "strongly agree" or "agree." Demographic data and health literacy (Rapid Estimate of Adult Literacy in Medicine short-form (REALM-SF)) were also assessed. Patient opinion of pamphlet "effectiveness" was compared between patients with REALM-SF scores of 7 versus <7 using Fisher's exact test. The overall EQ-5D-5L score was compared for patients who did and did not find the pamphlet effective using the Wilcoxon-Mann-Whitney test. Thirty-seven patients participated. The median age was 76 years (range 56-93) and 22 patients (59 %) had ≤high school education. Most patients preferred to have verbal (65 %) or written (78 %) educational materials as opposed to online information or educational classes. Thirty-two patients (86 %) rated the pamphlet as effective. The proportion of patients who found the pamphlet effective was 85.7 versus 86.7 % (p = 1.00) in those with REALM 7 versus <7. The mean EQ-5D score was 67.5 (SD 19.1) versus 71.8 (SD 8.7) (p = 0.84) in those who found the pamphlet effective versus not. Participatory design is an effective method for developing education materials for challenging patient groups such as elderly patients. Despite advanced age and comorbidity, this patient group had adequate health literacy. PMID:25572462

  17. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  18. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  19. Epidemiology of Lung Cancer

    PubMed Central

    Ridge, Carole A.; McErlean, Aoife M.; Ginsberg, Michelle S.

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promising molecular targets for treatment. PMID:24436524

  20. Extracellular matrix structure and tissue stiffness control postnatal lung development through the lipoprotein receptor-related protein 5/Tie2 signaling system.

    PubMed

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko

    2013-12-01

    Physical properties of the tissues and remodeling of extracellular matrix (ECM) play an important role in organ development. Recently, we have reported that low-density lipoprotein receptor-related protein (LRP) 5/Tie2 signaling controls postnatal lung development by modulating angiogenesis. Here we show that tissue stiffness modulated by the ECM cross-linking enzyme, lysyl oxidase (LOX), regulates postnatal lung development through LRP5-Tie2 signaling. The expression of LRP5 and Tie2 is up-regulated twofold in lung microvascular endothelial cells when cultured on stiff matrix compared to those cultured on soft matrix in vitro. LOX inhibitor, β-aminopropionitrile, disrupts lung ECM (collagen I, III, and VI, and elastin) structures, softens neonatal mouse lung tissue by 20%, and down-regulates the expression of LRP5 and Tie2 by 20 and 60%, respectively, which leads to the inhibition of postnatal lung development (30% increase in mean linear intercept, 1.5-fold increase in air space area). Importantly, hyperoxia treatment (Postnatal Days 1-10) disrupts ECM structure and stiffens mouse lung tissue by up-regulating LOX activity, thereby increasing LRP5 and Tie2 expression and deregulating alveolar morphogenesis in neonatal mice, which is attenuated by inhibiting LOX activity. These findings suggest that appropriate physical properties of lung tissue are necessary for physiological postnatal lung development, and deregulation of this mechanism contributes to postnatal lung developmental disorders, such as bronchopulmonary dysplasia. PMID:23841513

  1. Toxic effects of cadmium on the developing rat lung. II. Glycogen and phospholipid metabolism

    SciTech Connect

    Daston, G.P.

    1982-01-01

    Maternal exposure to Cd reduces lung weight and alters pulmonary surfactant accumulation in the fetus. This may lead to respiratory distress and death postnatally. In this study, the effects of maternal Cd administration on additional biochemical parameters of the fetal lung were investigated. Pregnant rats were given sc injections of 8 mg/kg CdCl/sub 2/ on d 12-15 of gestation and sacrificed throughout late gestation. Fetal lungs were examined for protein, DNA, and glycogen. Incorporation of choline into total and disaturated phosphatidylcholine and sphingomyelin were measured in fetal lung slices. The DNA content of the treated lungs was reduced, but the protein/DNA ratio was not altered. Thus the reduced lung weight was due to hypoplasia, not hypotrophy. Incorporation of choline into pulmonary sphingomyelin was not altered by the treatment. Choline incorporation into both total and disaturated phosphatidylcholine, the most important surfactant component, was reduced on the final days of gestation. Glycogen was reduced in both absolute quantity and cellular concentration in lungs of treated fetuses. Glucose derived from glycogen is a major metabolic substrate in the fetal lung and probably contributes greatly to phospholipid synthesis. The reduction in glucose concentration in lungs of treated fetuses may be a factor in the diminished synthesis of pulmonary surfactant phosphatidylcholine before birth. Prenatal Cd exposure causes pulmonary hypoplasia; reduces the amount of glycogen present in the fetal lung; and diminishes the rate of synthesis of pulmonary surfactant phosphatidylcholine.

  2. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression.

    PubMed

    Bailey-Downs, Lora C; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Hauser, Paul J; Farasyn, Taleah; Berry, William L; Hurst, Robert E; Ihnat, Michael A

    2014-01-01

    Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500-1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30-60 micrometastases in the lung (with many animals also having 2-30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis. PMID:24878664

  3. Scintigraphy at 3 months after single lung transplantation and observations of primary graft dysfunction and lung function.

    PubMed

    Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann

    2012-06-01

    Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD

  4. Development and application of a random lung model for dose calculations in radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Liang

    Radiotherapy requires accurate dose calculations in the human body, especially in disease sites with large variations of electron density in neighboring tissues, such as the lung. Currently, the lung is modeled by a voxelized geometry interpolated from computed tomography (CT) scans to various resolutions. The simplest such voxelized lung, the atomic mix model, is a homogenized whole lung with a volume-averaged bulk density. However, according traditional transport theory, even the relatively fine CT voxelization of the lung is not valid, due to the extremely small mean free path (MFP) of the electrons. The purpose of this thesis is to study the impact of the lung's heterogeneities on dose calculations in lung treatment planning. We first extend the traditional atomic mix theory for charged particles by approximating the Boltzmann equation for electrons to its Fokker-Planck (FP) limit, and then applying a formal asymptotic analysis to the BFP equation. This analysis raises the length scale for homogenizing a heterogeneous medium from the electron mean free path (MFP) to the much larger electron transport MFP. Then, using the lung's anatomical data and our new atomic mix theory, we build a realistic 2 1/2-D random lung model. The dose distributions for representative realizations of the random lung model are compared to those from the atomic mix approximation of the random lung model, showing that significant perturbations may occur with small field sizes and large lung structures. We also apply our random lung model to a more realistic lung phantom and investigate the effect of CT resolutions on lung treatment planning. We show that, compared to the reference 1 x 1 mm2 CT resolution, a 2 x 2 mm2 CT resolution is sufficient to voxelize the lung, while significant deviations in dose can be observed with a larger 4 x 4 mm 2 CT resolution. We use the Monte Carlo method extensively in this thesis, to avoid systematic errors caused by inaccurate heterogeneity corrections

  5. Lung transplantation

    PubMed Central

    2013-01-01

    Lung transplantation may be the only intervention that can prolong survival and improve quality of life for those individuals with advanced lung disease who are acceptable candidates for the procedure. However, these candidates may be extremely ill and require ventilator and/or circulatory support as a bridge to transplantation, and lung transplantation recipients are at risk of numerous post-transplant complications that include surgical complications, primary graft dysfunction, acute rejection, opportunistic infection, and chronic lung allograft dysfunction (CLAD), which may be caused by chronic rejection. Many advances in pre- and post-transplant management have led to improved outcomes over the past decade. These include the creation of sound guidelines for candidate selection, improved surgical techniques, advances in donor lung preservation, an improving ability to suppress and treat allograft rejection, the development of prophylaxis protocols to decrease the incidence of opportunistic infection, more effective therapies for treating infectious complications, and the development of novel therapies to treat and manage CLAD. A major obstacle to prolonged survival beyond the early post-operative time period is the development of bronchiolitis obliterans syndrome (BOS), which is the most common form of CLAD. This manuscript discusses recent and evolving advances in the field of lung transplantation. PMID:23710330

  6. Lung Transplant

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Lung Transplant? A lung transplant is surgery to remove a person's diseased lung ... a healthy lung from a deceased donor. Lung transplants are used for people who are likely to ...

  7. Lung Cancer Screening Recommendation Questioned.

    PubMed

    2016-06-01

    According to a retrospective analysis of data from the National Lung Screening Trial, participants with a history of heavy smoking who test negative for abnormalities suggestive of lung cancer on an initial low-dose CT screen may not need yearly CT scans. Instead, they could work with their doctors to devise an appropriate screening schedule based on individual risk factors. PMID:27076372

  8. The effect of in utero decapitation on the morphological and physiological development of the fetal rabbit lung.

    PubMed Central

    Meyrick, B; Bearn, J G; Cobb, A G; Monkhouse, C R; Reid, L

    1975-01-01

    A study has been made of the consequences of in utero decapitation on the morphological and physiological development of the fetal lung. Fetal rabbits were decapitated in situ at 22 days, without losing any amniotic fluid, and allowed to continue their development with their undamaged littermates as controls. Such decapitation, of course, removes the pituitary and so interferes with adrenal cortical development. Morphological studies showed an interference with lung development in that, although the number of alveolar saccules increased normally, their walls failed to thin. In the decapitated fetuses, a reduction in the number of lamellated bodies per Type II pneumonocyte was found at each age studied; while dense, homogeneous bodies were more numerous. The normal disappearance of glycogen in the Type II pneumonocytes of the decapitated fetuses was retarded. Physiological studies supported these findings. In control fetuses allowed to breathe for a while the Bubble Stability Ratio increased rapidly from day 26 to reach a maximum at 28 days; whereas, in the decapitated ones, bubble stability was not apparent before day 28 and by the 29th day had reached a maximum which was lower than that of the controls. In the control fetuses, lecithin was detected in lung fluid from 26 days on, and in stomach fluid from 29 days. It is argued that lung development must be, at least in part, under the control of the fetus' own pituitary-adrenal axis. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 Fig. 9 Fig. 13 PMID:1141052

  9. Potentiation of chemically induced lung fibrosis by thorax irradiation. [Mice

    SciTech Connect

    Haschek, W.M.; Meyer, K.R.; Ullrich, R.L.; Witschi, H.P.

    1980-04-01

    Intraperitoneal injection of butylated hydroxytoluene (BHT) causes epithelial cell death, followed 2 to 4 days later by extensive proliferation of type II alveolar cells in mouse lung. Five to 8 days after BHT, most dividing cells are capillary endothelial cells or interstitial cells. In animials that were exposed to 200 rad thorax irradiation immediately or 1 day after BHT, lung hydroxyproline was increased 2 weeks later. The response was dose dependent, and the interaction between BHT and thorax irradiation was synergistic. Light microscopy showed abnormal accumulation of collagen in the alveolar septa. Lung hydroxyproline was not increased in animals that were irradiated 6 days after BHT, compared to animals treated with BHT alone. We concluded that fibrosis develops if lung is damaged by a blood-borne agent and radiation to the thorax occurs at a time when it may compromise alveolar reepithelialization. Exposure to x-rays during proliferation of capillary endothelial cells or interstitial cells does not enhance development of fibrosis.

  10. Role of survivin re-expression in the development and progression of non-small cell lung cancer.

    PubMed

    Javid, Jamsheed; Mir, Rashid; Julka, P K; Ray, P C; Saxena, Alpana

    2015-07-01

    Survivin is highly expressed in fetal tissue and is completely absent in terminally differentiated cells, but its re-expression has been observed in most human tumors. Presently, we aimed to analyze the possible impact of the survivin gene (-31G > C, rs 9904341) promoter polymorphism on the expression profile of survivin gene and ultimately the role of survivin re-expression in the development and progression of non-small cell lung cancer. A case-control study of 100 non-small cell lung cancer patients and 100 cancer-free healthy controls was conducted. Survivin gene promoter polymorphism was analyzed by PCR-restriction fragment length polymorphisms (RFLP) technique, and the survivin expression profile was evaluated using quantitative real-time PCR assay. Compared to the survivin GG genotype, odd ratio of 3.2 (95 % CI 4.8-25.9, p = 0.004) was found to be associated to homozygous CC genotype with 15-fold increase of survivin gene expression in non-small cell lung cancer patients. Significant trend of increase in survivin expression was observed with the increase in severity of the disease. Patients with survivin (-31CC) genotype had significantly shorter overall survival compared to survivin (-31GG) genotype carriers. In addition, advanced disease status and significant poor overall survival were also reflected by patients with higher-fold increase in survivin gene expression. In conclusion, present study demonstrated that survivin (-31G > C) polymorphism may contribute to the risk of developing non-small cell lung cancer in Indian population. Survivin (-31CC) genotype was associated with significantly increased survivin gene expression and ultimately may contribute in the poor clinical outcome of non-small cell lung cancer patients, suggesting its possible significance in the development and progression of non-small cell lung cancer. PMID:25677909

  11. Epidemiology, incidence and mortality of lung cancer and their relationship with the development index in the world

    PubMed Central

    Rafiemanesh, Hosein; Mehtarpour, Mojtaba; Khani, Farah; Hesami, Sayed Mohammadali; Shamlou, Reza; Towhidi, Farhad; Makhsosi, Behnam Reza; Moini, Ali

    2016-01-01

    Background The highest incidence of lung cancer is seen in North America and the lowest incidence in central Africa. Socioeconomic factors of inequality reflect regional disparities in human development. Due to the importance of awareness about incidence and mortality of lung cancer in health programming and the possible role of the human development index (HDI), this study was done with the aim to investigate the epidemiology of lung cancer in the world and its relationship with HDI. Methods The study was conducted based on data from the world data of cancer and the World Bank (including the HDI and its components). Data about the age-specific incidence and mortality rate (ASR) for every country in 2012 were getting from the global cancer project. To analyze data, correlation tests between incidence and death rates, and HDI and its components were employed with a significance level of 0.05 using SPSS software. Results Lung cancer with standardized incidence rate (ASIR) and standardized mortality rate (ASMR), equal to 23.1 and 19.7 (in 100,000 people), respectively. The highest and lowest values of mortality incidence ratio (MIR) for lung cancer due to continents division were 0.93 and 0.71 for Eastern Africa and Australia/New Zealand, respectively. Univariate analysis showed significant relationship (P<0.0001) between ASIR and ASMR with life expectancy at birth and mean years of schooling. Conclusions The highest MIR for lung cancer was for medium human development countries. Linear regression analysis showed a reverse significant relationship between MIR and HDI. PMID:27293825

  12. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development

    PubMed Central

    2013-01-01

    Background The adverse effects of maternal diabetes on oocyte maturation and embryo development have been reported. Methods In this study, we used time-lapse live cell imaging confocal microscopy to investigate the dynamic changes of ER and the effects of diabetes on the ER’s structural dynamics during oocyte maturation, fertilization and early embryo development. Results We report that the ER first became remodeled into a dense ring around the developing MI spindle, and then surrounded the spindle during migration to the cortex. ER reorganization during mouse early embryo development was characterized by striking localization around the pronuclei in the equatorial section, in addition to larger areas of fluorescence deeper within the cytoplasm. In contrast, in diabetic mice, the ER displayed a significantly higher percentage of homogeneous distribution patterns throughout the entire ooplasm during oocyte maturation and early embryo development. In addition, a higher frequency of large ER aggregations was detected in GV oocytes and two cell embryos from diabetic mice. Conclusions These results suggest that the diabetic condition adversely affects the ER distribution pattern during mouse oocyte maturation and early embryo development. PMID:23597066

  13. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  14. Development of a Multicomponent Prediction Model for Acute Esophagitis in Lung Cancer Patients Receiving Chemoradiotherapy

    SciTech Connect

    De Ruyck, Kim; Sabbe, Nick; Oberije, Cary; Vandecasteele, Katrien; Thas, Olivier; De Ruysscher, Dirk; Lambin, Phillipe; Van Meerbeeck, Jan; De Neve, Wilfried; Thierens, Hubert

    2011-10-01

    Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade {>=}2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

  15. Development and preliminary results of an in vivo Raman probe for early lung cancer detection

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lam, Stephen; McWilliams, Annette; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2008-02-01

    Our previous results from Raman spectroscopy studies on ex vivo lung tissue showed the technique had great potential to differentiate between samples with different pathologies. In this work, a fast dispersive-type near-infrared (NIR) Raman spectroscopy system was developed to collect real-time, noninvasive, in vivo human lung spectra. The 785 nm excitation, and the collection of tissue emission were accomplished by using a reusable fiber optic catheter which passed down the instrument channel of a bronchoscope. Filters in two stages blocked laser emission other than 785 nm from reaching the tissue surface, and reduced fiber fluorescence and elastically scattered excitation light from being passed to the spectrometer. The spectrometer itself consisted of one of two holographic gratings with usable frequency ranges of: 700 to 2000 cm -1 and 1500 to 3400 cm -1. The dispersed light was detected by a cooled CCD array consisting of 400 by 1340 pixels. To increase the resolution of the system, while maximizing the throughput, a second fiber bundle, consisting of 54×100 μm diameter fibers connected the catheter to the spectrometer. The fibers in this second bundle were spread out to form a parabolic arc which replaced the conventional entrance slit. This geometry corrected for image aberrations, permitting complete CCD vertical binning, thereby yielding up to a 20-fold improvement in signal-to-noise ratio. The estimated spectral resolution of the system was 9 cm -1 for both gratings. So far we have measured spectra from 20 patients and have seen clear differences between spectra from tumor and normal tissue.

  16. Nogo-B Receptor Modulates Pulmonary Artery Smooth Muscle Cell Function in Developing Lungs.

    PubMed

    Tadokoro, Kent S; Rana, Ujala; Jing, Xigang; Konduri, G Ganesh; Miao, Qing R; Teng, Ru-Jeng

    2016-06-01

    Nogo-B and its receptor (NgBR) are involved in blood vessel growth in developing lungs, but their role in pulmonary artery smooth muscle cell (PASMC) growth is unknown. We hypothesized that NgBR regulates growth of PASMCs by modulating the function of endoplasmic reticulum (ER) and formation of reactive oxygen species (ROS). In utero constriction of the ductus arteriosus created pulmonary hypertension in fetal lambs (hypertensive fetal lamb [HTFL]). PASMCs isolated 8 days after surgery were assessed for the alteration of protein levels by immunoblots and ROS formation by dihydroethidium and Cell ROX deep red fluorescence. NgBR small interfering RNA and plasmid DNA were used to manipulate NgBR levels. Proliferation and wound healing were assessed by cell counts and scratch recovery assay, respectively. Acute ER stress was induced by tunicamycin. Differences of mitogen-activated protein kinase and Akt pathway activation in HTFL versus control PASMCs were evaluated. Results showed that HTFL PASMCs had decreased NgBR levels and increased proliferation, wound healing, ER stress, and ROS formation compared with controls. Knockdown of NgBR in control PASMCs generated a phenotype similar to HTFL, and overexpression in HTFL restored the defective phenotype to control. Decreased NgBR levels were associated with increased ROS formation in HTFL PASMCs. Subsequently, scavenging ROS decreased proliferation and wound healing. Mechanistically, ROS formation decreases NgBR expression, which induces ER stress. This leads to extracellular signal-regulated kinase pathway activation and PASMC phenotype alteration. Our data suggest that decreased NgBR expression in pulmonary hypertension of the newborn contributes to increased PASMC proliferation and oxidative stress, which lead to the pathogenesis of lung injury. PMID:26652754

  17. Development of a Genotyping Microarray for Studying the Role of Gene-Environment Interactions in Risk for Lung Cancer

    PubMed Central

    Baldwin, Don A.; Sarnowski, Christopher P.; Reddy, Sabrina A.; Blair, Ian A.; Clapper, Margie; Lazarus, Philip; Li, Mingyao; Muscat, Joshua E.; Penning, Trevor M.; Vachani, Anil; Whitehead, Alexander S.

    2013-01-01

    A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls. PMID:24294113

  18. Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a “Lung Physiome”

    PubMed Central

    Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.

    2011-01-01

    Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236

  19. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development

    PubMed Central

    Beauchemin, Kyle J.; Wells, Julie M.; Kho, Alvin T.; Philip, Vivek M.; Kamir, Daniela; Kohane, Isaac S.

    2016-01-01

    To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http

  20. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development.

    PubMed

    Beauchemin, Kyle J; Wells, Julie M; Kho, Alvin T; Philip, Vivek M; Kamir, Daniela; Kohane, Isaac S; Graber, Joel H; Bult, Carol J

    2016-01-01

    To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http

  1. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanis...

  2. DEVELOPMENT OF SURROGATE LUNG SYSTEMS WITH CONTROLLED THERMODYNAMIC ENVIRONMENTS TO STUDY HYGROSCOPIC PARTICLES, AIR POLLUTANTS AND PHARMACOLOGIC DRUGS

    EPA Science Inventory

    The objective of this text is to demonstrate advantages of interdisciplinary efforts,specifically, applications of engineering technology to health effects issues. he work describes the development of surrogate systems of the human lung for use in studies of hygroscopic growth ki...

  3. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  4. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish

    PubMed Central

    Aspatwar, Ashok; Barker, Harlan R.; Saralahti, Anni K.; Bäuerlein, Carina A.; Ortutay, Csaba; Pan, Peiwen; Kuuslahti, Marianne; Parikka, Mataleena; Rämet, Mika; Parkkila, Seppo

    2015-01-01

    Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder. PMID:26218428

  5. The role of pre-treatment white matter abnormalities in developing white matter changes following whole brain radiation: a volumetric study.

    PubMed

    Sabsevitz, David S; Bovi, Joseph A; Leo, Peter D; Laviolette, Peter S; Rand, Scott D; Mueller, Wade M; Schultz, Christopher J

    2013-09-01

    White matter injury is a known complication of whole brain radiation (WBRT). Little is known about the factors that predispose a patient to such injury. The current study used MR volumetrics to examine risk factors, in particular the influence of pre-treatment white matter health, in developing white matter change (WMC) following WBRT. Thirty-four patients with unilateral metastatic disease underwent FLAIR MRI pre-treatment and at several time points following treatment. The volume of abnormal FLAIR signal in the white matter was measured in the hemisphere contralateral to the diseased hemisphere at each time point. Analyses were restricted to the uninvolved hemisphere to allow for the measurement of WBRT effects without the potential confounding effects of the disease on imaging findings. The relationship between select pre-treatment clinical variables and the degree of WMC following treatment was examined using correlational and regression based analyses. Age when treated and volume of abnormal FLAIR prior to treatment were significantly associated with WMC following WBRT; however, pre-treatment FLAIR volume was the strongest predictor of post-treatment WMCs. Age did not add any predictive value once white matter status was considered. No significant relationships were found between biological equivalent dose and select cerebrovascular risk factors (total glucose, blood pressure, BMI) and development of WMCs. The findings from this study identify pre-treatment white matter health as an important risk factor in developing WMC following WBRT. This information can be used to make more informed decisions and counsel patients on their risk for treatment effects. PMID:23813291

  6. Molecular abnormalities in Ewing's sarcoma.

    PubMed

    Burchill, Susan Ann

    2008-10-01

    Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics. PMID:18925858

  7. Development and usability evaluation of the mHealth Tool for Lung Cancer (mHealth TLC): A virtual world health game for lung cancer patients

    PubMed Central

    Brown-Johnson, Cati G.; Berrean, Beth; Cataldo, Janine K.

    2015-01-01

    Objective To test the feasibility and usability of mHealth TLC, an interactive, immersive 3-dimensional iPad health game that coaches lung cancer patients toward assertive communication strategies during first-person virtual clinics visits. Method We observed players and conducted semi-structured interviews. Research questions focused on scenario believability, the impact of technical issues, transparency of game goals, and potential of mHealth TLC to decrease lung cancer stigma (LCS) and improve patient–clinician communication. Results Eight users confirmed mHealth TLC to be: (1) believable, (2) clinic-appropriate, and (3) helpful in support of informed healthcare consumers. Concerns were expressed about emotionally charged content and plans to use mHealth TLC in clinic settings as opposed to at home. Conclusions Although the dialog and interactions addressed emotionally charged issues, players were able to engage, learn, and benefit from role-play in a virtual world. Health games have the potential to improve patient–clinician communication, and mHealth TLC specifically may decrease LCS, and promote optimal self-management. Practice implications Process reflection revealed the need for health games to be created by experienced game developers in collaboration with health care experts. To prepare for this best practice, research institutions and game developers interested in health games should proactively seek out networking and collaboration opportunities. PMID:25620075

  8. The Role of Chronic Hypoxia in the Development of Neurocognitive Abnormalities in Preterm Infants with Bronchopulmonary Dysplasia

    ERIC Educational Resources Information Center

    Raman, Lakshmi; Georgieff, Michael K.; Rao, Raghavendra

    2006-01-01

    Bronchopulmonary dysplasia is the most common pulmonary morbidity in preterm infants and is associated with chronic hypoxia. Animal studies have demonstrated structural, neurochemical and functional alterations due to chronic hypoxia in the developing brain. Long-term impairments in visual-motor, gross and fine motor, articulation, reading,…

  9. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies.

    PubMed

    Karnati, Srikanth; Graulich, Tilman; Oruqaj, Gani; Pfreimer, Susanne; Seimetz, Michael; Stamme, Cordula; Mariani, Thomas J; Weissmann, Norbert; Mühlfeld, Christian; Baumgart-Vogt, Eveline

    2016-06-01

    Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon. PMID:26796206

  10. ALK inhibitors in non-small cell lung cancer: the latest evidence and developments

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2016-01-01

    The treatment of patients with advanced non-small cell lung cancer (NSCLC) harbouring chromosomal rearrangements of ALK (anaplastic lymphoma kinase) was revolutionized by crizotinib, a small molecule inhibitor of ALK, ROS1 and MET. Unfortunately, the disease progressed within the first 12 months in most of the patients because of the development of crizotinib resistance in the majority of patients and the emergence of acquired resistance mutations in most of them. Many of them had been reported even before its approval leading to the rapid development of second-generation ALK inhibitors for crizotinib-resistant NSCLC. In the last few years, novel potent ALK inhibitors with promising results and a good toxicity profile have become available: ceritinib (LDK378), alectinib (RG7853/AF-802/RO5424802/CH5424802), brigatinib (AP26113), entrectinib (RXDX-101, NMS-E628), PF-06463922, ASP3026, TSR-011, X-376/X-396 and CEP-28122/CEP-37440. Moreover, HSP90 (90 kDa heat shock protein) inhibitors have demonstrated clinical activity in patients with ALK+ NSCLC. This review focuses on the molecular and clinical properties of this new generation of ALK inhibitors under development in the clinic. PMID:26753004

  11. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung

    PubMed Central

    Rafikova, Olga; Meadows, Mary L.; Kinchen, Jason M.; Mohney, Robert P.; Maltepe, Emin; Desai, Ankit A.; Yuan, Jason X.-J.; Garcia, Joe G. N.; Fineman, Jeffrey R.; Rafikov, Ruslan; Black, Stephen M.

    2016-01-01

    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH. PMID:26937637

  12. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.

    PubMed

    Rafikova, Olga; Meadows, Mary L; Kinchen, Jason M; Mohney, Robert P; Maltepe, Emin; Desai, Ankit A; Yuan, Jason X-J; Garcia, Joe G N; Fineman, Jeffrey R; Rafikov, Ruslan; Black, Stephen M

    2016-01-01

    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH. PMID:26937637

  13. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability.

    PubMed

    Brackenbury, William J; Yuan, Yukun; O'Malley, Heather A; Parent, Jack M; Isom, Lori L

    2013-01-15

    Voltage-gated Na(+) channel (VGSC) β1 subunits, encoded by SCN1B, are multifunctional channel modulators and cell adhesion molecules (CAMs). Mutations in SCN1B are associated with the genetic epilepsy with febrile seizures plus (GEFS+) spectrum disorders in humans, and Scn1b-null mice display severe spontaneous seizures and ataxia from postnatal day (P)10. The goal of this study was to determine changes in neuronal pathfinding during early postnatal brain development of Scn1b-null mice to test the hypothesis that these CAM-mediated roles of Scn1b may contribute to the development of hyperexcitability. c-Fos, a protein induced in response to seizure activity, was up-regulated in the Scn1b-null brain at P16 but not at P5. Consistent with this, epileptiform activity was observed in hippocampal and cortical slices prepared from the P16 but not from the P5-P7 Scn1b-null brain. On the basis of these results, we investigated neuronal pathfinding at P5. We observed disrupted fasciculation of parallel fibers in the P5 null cerebellum. Further, P5 null mice showed reduced neuron density in the dentate gyrus granule cell layer, increased proliferation of granule cell precursors in the hilus, and defective axonal extension and misorientation of somata and processes of inhibitory neurons in the dentate gyrus and CA1. Thus, Scn1b is critical for neuronal proliferation, migration, and pathfinding during the critical postnatal period of brain development. We propose that defective neuronal proliferation, migration, and pathfinding in response to Scn1b deletion may contribute to the development of hyperexcitability. PMID:23277545

  14. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes

    PubMed Central

    Morris, Jodie L.; Bridson, Tahnee L.; Alim, Md Abdul; Rush, Catherine M.; Rudd, Donna M.; Govan, Brenda L.; Ketheesan, Natkunam

    2016-01-01

    ABSTRACT The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  15. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes.

    PubMed

    Morris, Jodie L; Bridson, Tahnee L; Alim, Md Abdul; Rush, Catherine M; Rudd, Donna M; Govan, Brenda L; Ketheesan, Natkunam

    2016-01-01

    The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  16. Validation of Tuba1a as appropriate internal control for normalization of gene expression analysis during mouse lung development.

    PubMed

    Mehta, Aditi; Dobersch, Stephanie; Dammann, Reinhard H; Bellusci, Saverio; Ilinskaya, Olga N; Braun, Thomas; Barreto, Guillermo

    2015-01-01

    The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results. PMID:25723738

  17. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  18. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  19. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice.

    PubMed

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-05-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure. PMID:24326400

  20. Forebrain-Specific CRF Overproduction During Development is Sufficient to Induce Enduring Anxiety and Startle Abnormalities in Adult Mice

    PubMed Central

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-01-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure. PMID:24326400

  1. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development

    PubMed Central

    Kumar, Manish; Camlin, Nicole J.; Holt, Janet E.; Teixeira, Jose M.; McLaughlin, Eileen A.; Tanwar, Pradeep S.

    2016-01-01

    All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1ex3cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1ex3cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth. PMID:27265527

  2. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development.

    PubMed

    Kumar, Manish; Camlin, Nicole J; Holt, Janet E; Teixeira, Jose M; McLaughlin, Eileen A; Tanwar, Pradeep S

    2016-01-01

    All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1(ex3)cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1(ex3)cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth. PMID:27265527

  3. Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    PubMed Central

    Yuan, Jupeng; Qian, Yanyan; Sun, Wenjie; Zou, Yongxin; Guo, Chenhong; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2012-01-01

    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse. PMID:22606329

  4. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies.

    PubMed

    Ottewell, P D; Coleman, R E; Holen, I

    2006-03-01

    Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone. PMID:16319986

  5. Life-long Programming Implications of Exposure to Tobacco Smoking and Nicotine Before and Soon After Birth: Evidence for Altered Lung Development

    PubMed Central

    Maritz, Gert S.; Harding, Richard

    2011-01-01

    Tobacco smoking during pregnancy remains common, especially in indigenous communities, and likely contributes to respiratory illness in exposed offspring. It is now well established that components of tobacco smoke, notably nicotine, can affect multiple organs in the fetus and newborn, potentially with life-long consequences. Recent studies have shown that nicotine can permanently affect the developing lung such that its final structure and function are adversely affected; these changes can increase the risk of respiratory illness and accelerate the decline in lung function with age. In this review we discuss the impact of maternal smoking on the lungs and consider the evidence that smoking can have life-long, programming consequences for exposed offspring. Exposure to maternal tobacco smoking and nicotine intake during pregnancy and lactation changes the genetic program that controls the development and aging of the lungs of the offspring. Changes in the conducting airways and alveoli reduce lung function in exposed offspring, rendering the lungs more susceptible to obstructive lung disease and accelerating lung aging. Although it is generally accepted that prevention of maternal smoking during pregnancy and lactation is essential, current knowledge of the effects of nicotine on lung development does not support the use of nicotine replacement therapy in this group. PMID:21556184

  6. Abnormal pituitary development and function in three siblings of a Jamaican family: A new syndrome involving the Pit-1 gene

    SciTech Connect

    Sanchez, J.C.; Schiavi, A.; Parks, J.

    1994-09-01

    In 1967 Mckusick et al. reported three siblings in Canada who had combine pituitary hormone deficiencies (CPHD). Since that report there have been several families with multiple affected members who share the common characteristics of autosomal recessive inheritance and clinical expression of pituitary deficiencies at an early age. We report here a CPHD family of Jamaican origin with three affected and two unaffected siblings. The affected siblings have evidence of severe growth failure, growth hormone deficiency, hypothyroidism and variable prolactin deficiency. Recently, in some families with CPHD a defect has been detected in the Pit-1 gene, which encodes a transcription factor involved in the differentiation of the pituitary and the production of growth hormone, TSH and prolactin. We are studying the Pit-1 gene in this family as a candidate gene that may explain the family phenotype. The Pit-1 gene has been analyzed in DNA extracted from blood. No gross deletion were detected in exons 2, 3, 4, 5 and 6 using exon-specific PCR assay developed in our laboratory. Exon 1 is also currently being analyzed. Single stand conformational polymorphism (SSCP) analysis, a screening technique for point mutations within genes, is being used to identify putative base pair changes in the Pit-1 gene. The exon findings will be confirmed using standard DNA sequencing procedures. If a Pit-1 gene is detected, this family would provide a novel presentation, since gonadotropin deficiency appears to be present. Alternatively, this family may represent a mutation on another yet unknown factor involved in normal pituitary development.

  7. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern

    PubMed Central

    Decker, Amanda R.; McNeill, Matthew S.; Lambert, Aaron M.; Overton, Jeffrey D.; Chen, Yu-Chia; Lorca, Ramón A.; Johnson, Nicolas A.; Brockerhoff, Susan E.; Mohapatra, Durga P.; MacArthur, Heather; Panula, Pertti; Masino, Mark A.; Runnels, Loren W.; Cornell, Robert A.

    2014-01-01

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation. PMID:24291744

  8. Development and psychometric properties of the Pulmonary-specific Quality-of-Life Scale in lung transplant patients

    PubMed Central

    Hoffman, Benson M.; Stonerock, Gregory L.; Smith, Patrick J.; O’Hayer, C. Virginia F.; Palmer, Scott; Davis, Robert D.; Kurita, Keiko; Carney, Robert M.; Freeland, Kenneth; Blumenthal, James A.

    2016-01-01

    BACKGROUND The Pulmonary-specific Quality-of-Life Scale (PQLS) was developed to measure quality of life (QoL) among patients awaiting lung transplant. The objective of this study was to determine the psychometric properties of the PQLS, identify empirically derived sub-scales, and examine ability to detect changes in pulmonary-specific QoL scores after lung transplantation. METHODS Data were derived from the INSPIRE trial, a dual-site randomized controlled trial of coping skills training in 389 lung transplant candidates (obstructive [48.3%], restrictive [24.2%], cystic fibrosis [13.6%], and other [13.9%]). Cronbach alpha was calculated to assess the internal reliability of the PQLS (n = 388). Test-retest reliability was assessed with correlation coefficients between baseline and 12-week post-baseline scores for the usual care control condition (n = 140). Convergent validity was assessed with correlation coefficients between the PQLS and established measures of QoL and emotional distress, 6-minute walk test distance, forced expiratory volume in 1 second, and use of supplemental oxygen at rest (n = 388). Change from baseline to 6 months post-transplantation was assessed with repeated measures analysis of variance (n = 133). RESULTS The PQLS was internally reliable and stable across 12 weeks. The PQLS correlated strongly with QoL measures (e.g., Shortness of Breath Questionnaire, r = 0.78, p < 0.0001), moderately with mood and anxiety (e.g., Beck Depression Inventory-II, r = 0.59, p < 0.0001), and modestly with lung disease severity (e.g., 6-minute walk test, r = −0.41, p < 0.0001). PQLS scores improved by nearly 2 SDs after transplant. CONCLUSIONS These results demonstrated the reliability, validity, and sensitivity to change of the PQLS for measuring pulmonary QoL among patients with advanced lung disease and the responsiveness of the PQLS to changes in QoL after lung transplantation. PMID:25980570

  9. Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk.

    PubMed

    Sevilya, Ziv; Leitner-Dagan, Yael; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Lejbkowicz, Flavio; Rennert, Hedy S; Freedman, Laurence S; Rennert, Gad; Paz-Elizur, Tamar; Livneh, Zvi

    2015-09-01

    The key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean APE1 enzyme activity in case patients was 691 [95% confidence interval (CI) = 655-727] units/ng protein, significantly lower than in control subjects (mean = 793, 95% CI = 751-834 units/ng protein, P = 0.0006). The adjusted odds ratio for lung cancer associated with 1 SD (211 units) decrease in APE1 activity was 2.0 (95% CI = 1.3-3.1; P = 0.002). Comparison of radioactivity- and fluorescence-based assays showed that the two are equivalent, indicating no interference by the fluorescent tag. The APE1Asp148Glu SNP was associated neither with APE1 enzyme activity nor with lung cancer risk. Taken together, our results indicate that low APE1 activity is associated with lung cancer risk, consistent with the hypothesis that 'bad DNA repair', rather than 'bad luck', is involved in cancer etiology. Such assays may be useful, along with additional DNA repair biomarkers, for risk assessment of lung cancer and perhaps other cancers, and for selecting individuals to undergo early detection techniques such as low-dose CT. PMID:26045303

  10. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate.

    PubMed Central

    Moore, R W; Rudy, T A; Lin, T M; Ko, K; Peterson, R E

    2001-01-01

    Several members of the phthalate ester family have antiandrogenic properties, yet little is known about how exposure to these ubiquitous environmental contaminants early in development may affect sexual development. We conducted experiments to determine effects of in utero and lactational exposure to the most prevalent phthalate ester, di(2-ethylhexyl) phthalate (DEHP), on male reproductive system development and sexual behavior. Sprague-Dawley rats were dosed with corn oil or DEHP (0, 375, 750, or 1,500 mg/kg/day, per os) from gestation day 3 through postnatal day (PND) 21. Dose-related effects on male offspring included reduced anogenital distance, areola and nipple retention, undescended testes, and permanently incomplete preputial separation. Testis, epididymis, glans penis, ventral prostate, dorsolateral prostate, anterior prostate, and seminal vesicle weights were reduced at PND 21, 63, and/or 105-112. Additional dose-related effects included a high incidence of anterior prostate agenesis, a lower incidence of partial or complete ventral prostate agenesis, occasional dorsolateral prostate and seminal vesicle agenesis, reduced sperm counts, and testicular, epididymal, and penile malformations. Many DEHP-exposed males were sexually inactive in the presence of receptive control females, but sexual inactivity did not correlate with abnormal male reproductive organs. These results suggest that in utero and lactational DEHP exposure also inhibited sexually dimorphic central nervous system development. No major abnormalities were found in any of eight control litters, but DEHP caused severe male reproductive system toxicity in five of eight litters at 375 mg/kg/day, seven of eight litters at 750 mg/kg/day, and five of five litters at 1,500 mg/kg/day. These results demonstrate that the male reproductive system is far more sensitive to DEHP early in development than when animals are exposed as juveniles or adults. The effects of DEHP on male reproductive organs and

  11. Ultrasonographic assessment of abnormal pregnancy.

    PubMed

    England, G C

    1998-07-01

    Ultrasonographic imaging is widely used in small animal practice for the diagnosis of pregnancy and the determination of fetal number. Ultrasonography can also be used to monitor abnormal pregnancies, for example, conceptuses that are poorly developed for their gestational age (and therefore are likely to fail), and pregnancies in which there is embryonic resorption or fetal abortion. An ultrasound examination may reveal fetal abnormalities and therefore alter the management of the pregnant bitch or queen prior to parturition. There are, however, a number of ultrasonographic features of normal pregnancies that may mimic disease, and these must be recognized. PMID:9698618

  12. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  13. Second-Line Treatment of Non-Small Cell Lung Cancer: New Developments for Tumours Not Harbouring Targetable Oncogenic Driver Mutations.

    PubMed

    Barnfield, Paul C; Ellis, Peter M

    2016-09-01

    Platinum-based doublet chemotherapy with or without bevacizumab is the standard of care for the initial management of advanced and metastatic non-small cell lung cancer (NSCLC) without a targetable molecular abnormality. However, the majority of patients with NSCLC will ultimately develop resistance to initial platinum-based chemotherapy, and many remain candidates for subsequent lines of therapy. Randomised trials over the past 10-15 years have established pemetrexed (non-squamous histology), docetaxel, erlotinib and gefitinib as approved second-line agents in NSCLC without targetable driver mutations or rearrangements. Trials comparing these agents with other chemotherapy, evaluating the addition of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) to chemotherapy or the addition of another targeted agent to erlotinib or gefitinib have all failed to demonstrate an improvement in overall survival for patients with NSCLC. In contrast, recent data comparing therapy with novel monoclonal antibodies against programmed cell death 1 (PD-1) or PD ligand (PD-L1) pathway versus standard chemotherapy following platinum failure have demonstrated significant improvements in overall survival. Therapy with nivolumab or pembrolizumab would now be considered standard second-line therapy in patients without contraindication to immune checkpoint inhibitors. Atezolizumab also appears promising in this setting. PMID:27557830

  14. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Yun, Seung-Hwan; Lee, Seon-Woo; Koo, Hyun-Na; Kim, Gil-Hah

    2014-03-01

    The armyworm, Spodoptera litura (F.) is a polyphagous and important agricultural pest worldwide. In this study, we examined the effect of electron beam irradiation on developmental stages, reproduction, and DNA damage of S. litura. Eggs (0-24 h old), larvae (3rd instar), pupae (3 days old after pupation), and adults (24 h after emergence) were irradiated with electron beam irradiation of six levels between 30 and 250 Gy. When eggs were irradiated with 100 Gy, egg hatching was completely inhibited. When the larvae were irradiated, the larval period was significantly delayed, depending on the doses applied. At 150 Gy, the fecundity of adults that developed from irradiated pupae was entirely inhibited. However, electron beam irradiation did not induce the instantaneous death of S. litura adults. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males. We also conducted the comet assay immediately after irradiation and over the following 5 days period. Severe DNA fragmentation in S. litura cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. However, at more than 100 Gy, DNA damage was not fully recovered.

  15. Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development.

    PubMed

    Geng, Yan; Dong, Yingying; Yu, Mingyan; Zhang, Long; Yan, Xiaohua; Sun, Jingxia; Qiao, Long; Geng, Huixia; Nakajima, Masahiro; Furuichi, Tatsuya; Ikegawa, Shiro; Gao, Xiang; Chen, Ye-Guang; Jiang, Dianhua; Ning, Wen

    2011-04-26

    Lung morphogenesis is a well orchestrated, tightly regulated process through several molecular pathways, including TGF-β/bone morphogenetic protein (BMP) signaling. Alteration of these signaling pathways leads to lung malformation. We investigated the role of Follistatin-like 1 (Fstl1), a secreted follistatin-module-containing glycoprotein, in lung development. Deletion of Fstl1 in mice led to postnatal lethality as a result of respiratory failure. Analysis of the mutant phenotype showed that Fstl1 is essential for tracheal cartilage formation and alveolar maturation. Deletion of the Fstl1 gene resulted in malformed tracheal rings manifested as discontinued rings and reduced ring number. Fstl1-deficient mice displayed septal hypercellularity and end-expiratory atelectasis, which were associated with impaired differentiation of distal alveolar epithelial cells and insufficient production of mature surfactant proteins. Mechanistically, Fstl1 interacted directly with BMP4, negatively regulated BMP4/Smad1/5/8 signaling, and inhibited BMP4-induced surfactant gene expression. Reducing BMP signaling activity by Noggin rescued pulmonary atelectasis of Fstl1-deficient mice. Therefore, we provide in vivo and in vitro evidence to demonstrate that Fstl1 modulates lung development and alveolar maturation, in part, through BMP4 signaling. PMID:21482757

  16. Percutaneous In Utero Thoracoamniotic Shunt Creation for Fetal Thoracic Abnormalities Leading to Non-Immune Hydrops

    PubMed Central

    White, Sarah B.; Tutton, Sean M.; Rilling, William S.; Kuhlmann, Randall S.; Peterson, Erika L.; Wigton, Thomas R.; Ames, Mary B.

    2015-01-01

    Purpose In a fetus, rare, fetal thoracic abnormalities can cause mediastinal shift and vena cava obstruction resulting in fetal hydrops and intra-uterine fetal demise. This series describes a trans-abdominal, trans-uterine Seldinger based percutaneous approach to create a shunt for treatment of these fetal abnormalities. Material and Methods Five fetuses presented with non-immune fetal hydrops due to fetal thoracic abnormalities causing severe mass effect. Under direct ultrasound guidance, an 18 G needle was used to access the malformation. Through a peel away sheath, a customized pediatric transplant 4.5 French double J ureteral stent was advanced; the leading loop was placed in the fetal thorax and the trailing end left outside the fetal thorax within the amniotic cavity. Results Seven thoracoamniotic shunts were successfully placed in 5 fetuses, with one shunt immediately replaced due to displacement during the procedure and the second not functioning at follow-up requiring insertion of a second shunt. All fetuses had successful decompression of the thoracic malformation, allowing lung re-expansion and resolution of hydrops. Three of 5 mothers had meaningful (> 7 days) prolongation of their pregnancies. All pregnancies were maintained to > 30 weeks, with a range of 30 weeks 1 day to 37 weeks 2 days. There were no maternal complications. Conclusions Seldinger based percutaneous approach to draining fetal thoracic abnormalities is feasible and can allow for prolongation of pregnancy, antenatal lung development and ultimately result in fetal survival. PMID:24702750

  17. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  18. Lung tissue engineering.

    PubMed

    Hoganson, David M; Bassett, Erik K; Vacanti, Joseph P

    2014-01-01

    Lung tissue engineering is an emerging field focused on the development of lung replacement devices and tissue to treat patients with end stage lung disease. Microfluidic based lung assist devices have been developed that have biomimetically designed vascular networks that achieve physiologic blood flow. Gas exchange in these devices occurs across a thin respiratory membrane. Designed for intrathoracic implantation as a bridge to transplant or destination therapy, these lung assist devices will allow ambulation and hospital discharge for patients with end stage lung disease. Decellularized lungs subsequently recellularized with epithelial and endothelial cells have been implanted in small animal models with demonstration of initial gas exchange. Further development of these tissues and scaling to large animal models will validate this approach and may be an organ source for lung transplantation. Initial clinical success has been achieved with decellularized tracheal implants using autologous stem cells. Development of microfluidic lung models using similar architecture to the lung assist device technology allows study of lung biology and diseases with manipulation of lung cells and respiratory membrane strain. PMID:24896347

  19. Regulatory cells induced by acute toxoplasmosis prevent the development of allergic lung inflammation.

    PubMed

    Fenoy, Ignacio M; Sanchez, Vanesa R; Soto, Ariadna S; Picchio, Mariano S; Maglioco, Andrea; Corigliano, Mariana G; Dran, Graciela I; Martin, Valentina; Goldman, Alejandra

    2015-05-01

    The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression. PMID:25532793

  20. Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato.

    PubMed

    Liu, Dan-Dan; Dong, Qing-Long; Fang, Mou-Jing; Chen, Ke-Qin; Hao, Yu-Jin

    2012-12-15

    It has been well documented that FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) plays important regulatory roles in diverse developmental processes in model plant Arabidopsis thaliana. However, it is largely unknown how FIE genes function in economically important crops. In this study, MhFIE gene, which was previously isolated from apomictic tea crabapple (Malus hupehensis Redh. var. pingyiensis), was introduced into tomato. The hemizygous transgenic tomato lines produced curly leaves and decreased in seed germination. In addition, the co-suppression of the transgenic MhFIE and endogenous (SlFIE) genes occurred in homozygous transgenic tomatoes. As a result, FIE silencing brought about abnormal phenotypes during reproductive development in tomato, such as increased sepal and petal numbers in flower, a fused ovule and pistil and parthenocarpic fruit formation. A yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) demonstrated that MhFIE interacted with a tomato protein, EZ2 (SlEZ2). Its ectopic expression and SlFIE co-suppression notably influenced the expression of genes associated with leaf, flower, and fruit development. Therefore, together with other PcG proteins, FIE was involved in the regulation of vegetative and reproductive development by modulating the expression of related genes in plants. PMID:23000466

  1. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  2. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  3. Book lung development in the embryo, postembryo and first instar of the cobweb spider, Parasteatoda tepidariorum C. L Koch, 1841 (Araneomorphae, Theridiidae).

    PubMed

    Farley, Roger D

    2015-07-01

    Light and electron microscopy were used to compare spider book lung development with earlier studies of the development of horseshoe crab book gills and scorpion book lungs. Histological studies at the beginning of the 20th century provided evidence that spider and scorpion book lungs begin with outgrowth of a few primary lamellae (respiratory furrows, saccules) from the posterior surface of opisthosomal limb buds, reminiscent of the formation of book gills in the horseshoe crab. In spider embryos, light micrographs herein also show small primary lamellae formed at the posterior surface of opisthosomal limb buds. Later, more prominent primary lamellae extend into each book lung sinus from the inner wall of the book lung operculum formed from the limb bud. It appears most primary lamellae continue developing and become part of later book lungs, but there is variation in the rate and sequence of development. Electron micrographs show the process of air channel formation from parallel rows of precursor cells: mode I (cord hollowing), release of secretory vesicles into the extracellular space and mode II (cell hollowing), alignment and fusion of intracellular vesicles. Cell death (cavitation) is much less common but occurs in some places. Results herein support the early 20th century hypotheses that 1) book lungs are derived from book gills and 2) book lungs are an early step in the evolution of spider tracheae. PMID:25936921

  4. Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure.

    PubMed

    Brown, Traci A; Lee, Joong Won; Holian, Andrij; Porter, Virginia; Fredriksen, Harley; Kim, Minju; Cho, Yoon Hee

    2016-05-01

    Use of multi-walled carbon nanotubes (MWCNT) is growing which increases occupational exposures to these materials. Their toxic potential makes it important to have an in-depth understanding of the inflammation and disease that develops due to exposure. Epigenetics is one area of interest that has been quickly developing to assess disease processes due to its ability to change gene expression and thus the lung environment after exposure. In this study, promoter methylation of inflammatory genes (IFN-γ and TNF-α) was measured after MWCNT exposure using the pyrosequencing assay and found to correlate with initial cytokine production. In addition, methylation of a gene involved in tissue fibrosis (Thy-1) was also altered in a way that matched collagen deposition. In addition to using epigenetics to better understand disease processes, it has also been used as a biomarker of exposure and disease. In this study, global methylation was determined in the lung to ascertain whether MWCNT alter global methylation at the site of exposure and if those alterations coincide with disease development. Then, global methylation levels were determined in the blood to ascertain whether global methylation could be used as a biomarker of exposure in a more easily accessible tissue. Using the LuUminometric Methylation Assay (LUMA) and 5-Methylcytosine (5-mC) Quantification assay, we found that MWCNT lead to DNA hypomethylation in the lung and blood, which coincided with disease development. This study provides initial data showing that alterations in gene-specific methylation correspond with an inflammatory response to MWCNT exposure. In addition, global DNA methylation in the lung and blood coincides with MWCNT-induced disease development, suggesting its potential as a biomarker of both exposure and disease development. PMID:26375518

  5. Recurrence of lymphangioleiomyomatosis: Nine years after a bilateral lung transplantation

    PubMed Central

    Zaki, Khawaja S; Aryan, Zahra; Mehta, Atul C; Akindipe, Olufemi; Budev, Marie

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a rare, slowly progressive lethal lung disease primary afflicting young women. LAM is characterized by proliferation of abnormal smooth muscle cells that target the lungs, causing cystic destruction and eventual respiratory failure leading to death. Recent ten year mortality due to end stage LAM has been reported to be approximately 10%-20%, but may vary. The decline in lung function in LAM is gradual, occurring at a rate of about 3% to 15% per year but can vary from patient to patient. But recently therapy with mammalian target of rapamycin (mTOR) inhibitors such as sirolimus has shown promising results in the stabilization of lung function and reduction of chylous effusions in LAM. Lung transplantation is a viable option for patients who continue to have decline in lung function despite mTOR therapy. Unique issues that may occur post-transplant in a recipient with LAM include development of chylous effusion and a risk of recurrence. We describe a case of LAM recurrence in a bilateral lung transplant recipient who developed histological findings of LAM nine years after transplantation. PMID:27011924

  6. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  7. CD10/neutral endopeptidase 24.11 in developing human fetal lung. Patterns of expression and modulation of peptide-mediated proliferation.

    PubMed Central

    Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A

    1992-01-01

    The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth. Images PMID:1469102

  8. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  9. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia.

    PubMed

    Chetty, Anne; Bennett, Michelle; Dang, Linh; Nakamura, Daisy; Cao, Gong-Jie; Mujahid, Sana; Volpe, MaryAnn; Herman, Ira; Becerra, S Patricia; Nielsen, Heber C

    2015-03-01

    Bronchopulmonary dysplasia is a chronic lung disease of preterm infants characterized by arrested microvascularization and alveolarization. Studies show the importance of proangiogenic factors for alveolarization, but the importance of antiangiogenic factors is unknown. We proposed that hyperoxia increases the potent angiostatin, pigment epithelium-derived factor (PEDF), in neonatal lungs, inhibiting alveolarization and microvascularization. Wild-type (WT) and PEDF(-/-) mice were exposed to room air (RA) or 0.9 fraction of inspired oxygen from Postnatal Day 5 to 13. PEDF protein was increased in hyperoxic lungs compared with RA-exposed lungs (P < 0.05). In situ hybridization and immunofluorescence identified PEDF production primarily in alveolar epithelium. Hyperoxia reduced alveolarization in WT mice (P < 0.05) but not in PEDF(-/-) mice. WT hyperoxic mice had fewer platelet endothelial cell adhesion molecule (PECAM)-positive cells per alveolus (1.4 ± 0.4) than RA-exposed mice (4.3 ± 0.3; P < 0.05); this reduction was absent in hyperoxic PEDF(-/-) mice. The interactive regulation of lung microvascularization by vascular endothelial growth factor and PEDF was studied in vitro using MFLM-91U cells, a fetal mouse lung endothelial cell line. Vascular endothelial growth factor stimulation of proliferation, migration, and capillary tube formation was inhibited by PEDF. MFLM-91U cells exposed to conditioned medium (CM) from E17 fetal mouse lung type II (T2) cells cultured in 0.9 fraction of inspired oxygen formed fewer capillary tubes than CM from T2 cells cultured in RA (hyperoxia CM, 51 ± 10% of RA CM, P < 0.05), an effect abolished by PEDF antibody. We conclude that PEDF mediates reduced vasculogenesis and alveolarization in neonatal hyperoxia. Bronchopulmonary dysplasia likely results from an altered balance between pro- and antiangiogenic factors. PMID:25054647

  10. [Disorders caused by heat, cold, and abnormal pressure].

    PubMed

    Horie, Seichi

    2014-02-01

    Exposure to heat disturbs the homeostasis of body water, serum osmosis, and core temperature, resulting in the development of heat cramp, heat syncope, heat exhaustion, and heat stroke. Commonly coexisting risks are humidity, windlessness, infrared radiation, physical exertion, continuous work, chemical protective clothing, and lack of acclimatization. Exposure to cold constricts peripheral arteries and reduces metabolism, resulting in the development of chilblains, frostbite, immersion foot, and hypothermia. Wind, water immersion, and alcohol drinking will aggravate the symptoms. Exposure to abnormal pressure underwater or inside caissons or air cabins compresses or distends closed cavities inside the body, resulting in squeeze, nitrogen narcosis, oxygen intoxication, decompression sickness, reverse block, lung edema, and arterial gas embolism. Multifaceted preventive measures and on-site emergency care should be undertaken. PMID:24605519

  11. NEW FRONTIER IN UNDERSTANDING THE MECHANISMS OF DEVELOPMENTAL ABNORMALITIES

    EPA Science Inventory

    Recent advancements in molecular developmental biology afford an opportunity to apply newly developed tools for understanding the mechanisms of both normal and abnormal development. lthough a number of agents have been identified as causing developmental abnormalities, knowledge ...

  12. PI3-Kinase-γ Has a Distinct and Essential Role in Lung-Specific Dendritic Cell Development.

    PubMed

    Nobs, Samuel Philip; Schneider, Christoph; Dietrich, Maren Gil; Brocker, Thomas; Rolink, Antonius; Hirsch, Emilio; Kopf, Manfred

    2015-10-20

    Development of dendritic cells (DCs) commences in the bone marrow, from where pre-DCs migrate to peripheral organs to differentiate into mature DCs in situ. However, the factors that regulate organ-specific differentiation to give rise to tissue-specific DC subsets remain unclear. Here we show that the Ras-PI3Kγ-Akt-mTOR signaling axis acted downstream of FLT3L signaling and was required for development of lung CD103(+) DCs and, to a smaller extent, for lung CD11b(+) DCs, but not related DC populations in other non-lymphoid organs. Furthermore, we show that in lymphoid organs such as the spleen, DCs depended on a similar signaling network to respond to FLT3 ligand with overlapping and partially redundant roles for kinases PI3Kγ and PI3Kδ. Thus we identified PI3Kγ as an essential organ-specific regulator of lung DC development and discovered a signaling network regulating tissue-specific DC development mediated by FLT3. PMID:26453378

  13. Animal models and medical countermeasures development for radiation-induced lung damage: report from an NIAID Workshop.

    PubMed

    Williams, Jacqueline P; Jackson, Isabel L; Shah, Jui R; Czarniecki, Christine W; Maidment, Bert W; DiCarlo, Andrea L

    2012-05-01

    Since 9/11, there have been concerns that terrorists may detonate a radiological or nuclear device in an American city. Aside from several decorporation and blocking agents for use against internal radionuclide contamination, there are currently no medications within the Strategic National Stockpile that are approved to treat the immediate or delayed complications resulting from accidental exposure to radiation. Although the majority of research attention has focused on developing countermeasures that target the bone marrow and gastrointestinal tract, since they represent the most acutely radiosensitive organs, individuals who survive early radiation syndromes will likely suffer late effects in the months that follow. Of particular concern are the delayed effects seen in the lung that play a major role in late mortality seen in radiation-exposed patients and accident victims. To address these concerns, the National Institute of Allergy and Infectious Diseases convened a workshop to discuss pulmonary model development, mechanisms of radiation-induced lung injury, targets for medical countermeasures development, and end points to evaluate treatment efficacy. Other topics covered included guidance on the challenges of developing and licensing drugs and treatments specific to a radiation lung damage indication. This report reviews the data presented, as well as key points from the ensuing discussion. PMID:22468702

  14. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs.

    PubMed

    Grunig, Gabriele; Baghdassarian, Aram; Park, Sung-Hyun; Pylawka, Serhiy; Bleck, Bertram; Reibman, Joan; Berman-Rosenzweig, Erika; Durmus, Nedim

    2015-01-01

    This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling. PMID:26917944

  15. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters. Research report, January 1989-March 1992

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M.

    1993-09-01

    The authors tested the hypothesis that ozone and nitrogen dioxide modulate the development of respiratory tract tumors, in particular neuroendocrine cell tumors, in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen N-diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm) of ozone or 15 ppm nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. For positive controls, animals were treated with N-diethylnitrosamine and exposed to 65% oxygen. Ozone delayed the incidence of tumors in the lung periphery. Ozone also seemed to mitigate development of hepatoxic lesions mediated by N-diethylnitrosamine. The role of ozone and nitrogen dioxide as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  16. The role of GSTM1 gene polymorphisms in lung cancer development in Turkish population

    PubMed Central

    Demir, Adalet; Altin, Sedat; Pehlivan, Davut; Demir, Mulahim; Yakar, Fatih; Seyhan, Ekrem Cengiz; Dincer, Seyyit Ibrahim

    2007-01-01

    Background Glutathione S-transferase (GSTs) plays an important role in the detoxification of many xenobiotics involved in the etiology of cancer. In different ethnic groups, variations in null allele frequency have been observed. We have investigated GSTM1 gene polymorphisms in healthy subjects and lung cancer patients in the Turkish population and reviewed the control subjects of the studies performed in the Turkish population. Methods Following blood sampling from patients and controls, DNA samples were extracted from the whole blood and were amplified by using polymerase chain reaction (PCR) method in all of the 256 cases, consisting of 102 previously diagnosed with lung cancer and 154 healthy controls. Results The prevalence of GSTM1-null genotype in the lung cancer patients was 49%, compared to 52.6% in the control group (OR = 1.39, 95% CI = 0.70–1.90, p = 0.57). There were also no significant relationships in GSTM1 genotypes among histopathologic types of lung cancers (p > 0.05). The frequency of GSTM1 was found to be 41.2% (n = 1809) when the control subjects of the studies performed in Turkish population were reviewed. Conclusion We have observed that GSTM1 genotype is not an independent risk factor for lung cancer. PMID:17897446

  17. Early Alterations in Cytokine Expression in Adult Compared to Developing Lung in Mice after Radiation Exposure

    PubMed Central

    Johnston, Carl J.; Hernady, Eric; Reed, Christina; Thurston, Sally W.; Finkelstein, Jacob N.; Williams, Jacqueline P.

    2010-01-01

    To assess early changes in the lung after low-dose radiation exposure that may serve as targets for mitigation of lung injury in the aftermath of a terrorist event, we analyzed cytokine expression after irradiation. Adult mice were studied after whole-lung or total-body irradiation. Mouse pups of different ages were also investigated after total-body irradiation. mRNA abundance was analyzed in tissue and plasma, and pathological changes were assessed. In lung tissue, dose-related changes were seen in IL1B, IL1R2 and CXCR2 mRNA expression at 1 and 6 h after irradiation, concurrent with increases in plasma protein levels of KC/CXCL1 and IL6. However, in the pups, changes in IL1 abundance were not detected until 28 days of age, coincident with the end of postnatal lung growth, although apoptosis was detected at all ages. In conclusion, although cytokines were expressed after low doses of radiation, their role in the progression of tissue response is yet to be determined. They may be candidates for use in marker-based biodosimetry. However, the lack of cytokine induction in early life suggests that different end points (and mitigating treatments) may be required for children. PMID:20334525

  18. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa.

    PubMed

    Harrison, Freya; Muruli, Aneesha; Higgins, Steven; Diggle, Stephen P

    2014-08-01

    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C(12)-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social "cheats" in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment. PMID:24866798

  19. Development of an Ex Vivo Porcine Lung Model for Studying Growth, Virulence, and Signaling of Pseudomonas aeruginosa

    PubMed Central

    Muruli, Aneesha; Higgins, Steven; Diggle, Stephen P.

    2014-01-01

    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment. PMID:24866798

  20. Increased susceptibility of Cftr-/- mice to LPS-induced lung remodeling.

    PubMed

    Bruscia, Emanuela M; Zhang, Ping-Xia; Barone, Christina; Scholte, Bob J; Homer, Robert; Krause, Diane S; Egan, Marie E

    2016-04-15

    Cystic fibrosis (CF) is caused by homozygous mutations of the CF transmembrane conductance regulator (CFTR) Cl(-) channel, which result in chronic pulmonary infection and inflammation, the major cause of morbidity and mortality. Although these processes are clearly related to each other, each is likely to contribute to the pathology differently. Understanding the contribution of each of these processes to the overall pathology has been difficult, because they are usually so intimately connected. Various CF mouse models have demonstrated abnormal immune responses compared with wild-type (WT) littermates when challenged with live bacteria or bacterial products acutely. However, these studies have not investigated the consequences of persistent inflammation on lung tissue in CF mice, which may better model the lung pathology in patients. We characterized the lung pathology and immune response of Cftr(-/-) (CF) and Cftr(+/+) (WT) mice to chronic administration of Pseudomonas aeruginosa lipopolysaccharide (LPS). We show that, after long-term repeated LPS exposure, CF mice develop an abnormal and persistent immune response, which is associated with more robust structural changes in the lung than those observed in WT mice. Although CF mice and their WT littermates develop lung pathology after chronic exposure to LPS, the inflammation and damage resolve in WT mice. However, CF mice do not recover efficiently, and, as a consequence of their chronic inflammation, CF mice are more susceptible to morphological changes and lung remodeling. This study shows that chronic inflammation alone contributes significantly to aspects of CF lung pathology. PMID:26851259

  1. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  2. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  3. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  4. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis.

    PubMed

    Yates, Laura L; Schnatwinkel, Carsten; Murdoch, Jennifer N; Bogani, Debora; Formstone, Caroline J; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A; Dean, Charlotte H

    2010-06-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1(Crsh) and Vangl2(Lp) mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  5. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  6. The Role of VATS in Lung Cancer Surgery: Current Status and Prospects for Development

    PubMed Central

    Dziedzic, Dariusz; Orlowski, Tadeusz

    2015-01-01

    Since the introduction of anatomic lung resection by video-assisted thoracoscopic surgery (VATS) 20 years ago, VATS has experienced major advances in both equipment and technique, introducing a technical challenge in the surgical treatment of both benign and malignant lung disease. The demonstrated safety, decreased morbidity, and equivalent efficacy of this minimally invasive technique have led to the acceptance of VATS as a standard surgical modality for early-stage lung cancer and increasing application to more advanced disease. Formerly there was much debate about the feasibility of the technique in cancer surgery and proper lymph node handling. Although there is a lack of proper randomized studies, it is now generally accepted that the outcome of a VATS procedure is at least not inferior to a resection via a traditional thoracotomy. PMID:26294970

  7. Targeted therapies in development for non-small cell lung cancer

    PubMed Central

    Reungwetwattana, Thanyanan; Dy, Grace Kho

    2013-01-01

    The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by “druggable” protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  8. Targeted therapies in development for non-small cell lung cancer.

    PubMed

    Reungwetwattana, Thanyanan; Dy, Grace Kho

    2013-01-01

    The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by "druggable" protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  9. A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. Evidence for stimulation of airway growth.

    PubMed Central

    Li, K; Nagalla, S R; Spindel, E R

    1994-01-01

    Gastrin-releasing peptide (GRP) is developmentally expressed in human fetal lung and is a growth factor for normal and neoplastic lung but its role in normal lung development has yet to be clearly defined. In this study we have characterized the expression of GRP and its receptor in fetal rhesus monkey lung and determined the effects of bombesin on fetal lung development in vitro. By RNA blot analysis, GRP mRNA was first detectable in fetal monkey lung at 63 days gestation, reached highest levels at 80 days gestation, and then declined to near adult levels by 120 days gestation; a pattern closely paralleling GRP expression in human fetal lung. As in human lung, in situ hybridization localized GRP mRNA to neuroendocrine cells though during the canalicular phase of development (between 63-80 days gestation) GRP mRNA was present not only in classic pulmonary neuroendocrine cells, but also in cells of budding airways. Immunohistochemistry showed that bombesin-like immunoreactivity was present in neuroendocrine cells, but not in budding airways, suggesting that in budding airways either the GRP mRNA is not translated, is rapidly secreted, or a related, but different RNA is present. RNase protection analysis using a probe to the monkey GRP receptor demonstrated that the time course of receptor RNA expression closely paralleled the time course of GRP RNA expression. In situ hybridization showed that GRP receptors were primarily expressed in epithelial cells of the developing airways. Thus GRP would appear to be secreted from neuroendocrine cells to act on target cells in developing airways. This hypothesis was confirmed by organ culture of fetal monkey lung in the presence of bombesin and bombesin antagonists. Bombesin treatment at 1 and 10 nM significantly increased DNA synthesis in airway epithelial cells and significantly increased the number and size of airways in cultured fetal lung. In fact, culturing 60 d fetal lung for 5 d with 10 nM bombesin increased airway size

  10. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  11. Development of a sarcoidosis murine lung granuloma model using Mycobacterium superoxide dismutase A peptide.

    PubMed

    Swaisgood, Carmen M; Oswald-Richter, Kyra; Moeller, Stephen D; Klemenc, Jennifer M; Ruple, Lisa M; Farver, Carol F; Drake, John M; Culver, Daniel A; Drake, Wonder P

    2011-02-01

    Sarcoidosis is characterized by noncaseating granulomas containing CD4(+) T cells with a Th1 immunophenotype. Although the causative antigens remain unknown, independent studies noted molecular and immunologic evidence of mycobacterial virulence factors in sarcoidosis specimens. A major limiting factor in discovering new insights into the pathogenesis of sarcoidosis is the lack of an animal model. Using a distinct superoxide dismutase A peptide (sodA) associated with sarcoidosis granulomas, we developed a pulmonary model of sarcoidosis granulomatous inflammation. Mice were sensitized by a subcutaneous injection of sodA, incorporated in incomplete Freund's adjuvant (IFA). Control subjects consisted of mice with no sensitization (ConNS), sensitized with IFA only (ConIFA), or with Schistosoma mansoni eggs. Fourteen days later, sensitized mice were challenged by tail-vein injection of naked beads, covalently coupled to sodA peptides or to schistosome egg antigens (SEA). Histologic analysis revealed hilar lymphadenopathy and noncaseating granulomas in the lungs of sodA-treated or SEA-treated mice. Flow cytometry of bronchoalveolar lavage (BAL) demonstrated CD4(+) T-cell responses against sodA peptide in the sodA-sensitized mice only. Cytometric bead analysis revealed significant differences in IL-2 and IFN-γ secretion in the BAL fluid of sodA-treated mice, compared with mice that received SEA or naked beads (P = 0.008, Wilcoxon rank sum test). ConNS and ConIFA mice demonstrated no significant formation of granuloma, and no Th1 immunophenotype. The use of microbial peptides distinct for sarcoidosis reveals a histologic and immunologic profile in the murine model that correlates well with those profiles noted in human sarcoidosis, providing the framework to investigate the molecular basis for the progression or resolution of sarcoidosis. PMID:20348207

  12. Dietary iron deficiency compromises normal development of elastic fibers in the aorta and lungs of chicks.

    PubMed

    Hill, Charles H; Ashwell, Chris M; Nolin, Shelly J; Keeley, Fred; Billingham, Catherine; Hinek, Aleksander; Starcher, Barry

    2007-08-01

    Elastic fibers play a key role in the structure and function of numerous organs that require elasticity. Elastogenesis is a complex process in which cells first produce a microfibrillar scaffold, composed of numerous structural proteins, upon which tropoelastin assembles to be cross-linked into polymeric elastin. Recently, it was demonstrated that low concentrations of free iron upregulate elastin gene expression in cultured fibroblasts. The present studies were conducted to assess whether low-iron diets would affect the deposition of elastic fibers in an in vivo model. One-day-old chicks were fed semipurified diets containing 1.3 (low), 12 (moderate), and 24 (control) mg/kg of iron. After 3 wk, chicks in the low-iron group were underweight and anemic. Their aortas were smaller with significantly thinner walls than control chicks, yet elastin or collagen content did not decrease relative to total protein. They also demonstrated a significantly lower stress-strain resistance than the controls. Electron microscopy demonstrated that aortic and lung smooth muscle cells were vacuolated and surrounded by loose extracellular matrix and disorganized elastic lamellae with diffuse and fragmented networks of elastic fibers and microfibrils. Immunohistology demonstrated that fibrillin-3 (FBN3) was disorganized and markedly reduced in amount in aortas of the low-iron chicks. Elastin messenger RNA levels were not downregulated in the tissues from the low-iron-fed chicks; however, there was a significant reduction in expression of the FBN1 and FBN3 genes compared with control chicks. The studies indicate that iron deficiency had a pronounced negative effect on elastic fiber development and suggests that fibrillin may have an important role in this pathology. PMID:17634261

  13. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  14. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  15. Consequences of a Maternal High-Fat Diet and Late Gestation Diabetes on the Developing Rat Lung

    PubMed Central

    Forred, Benjamin J.; Larsen, Tricia D.; Jensen, Danielle N.; Wachal, Angela L.; Khan, Muhammad Ali; Vitiello, Peter F.

    2016-01-01

    Rationale Infants born to diabetic or obese mothers are at risk of respiratory distress and persistent pulmonary hypertension of the newborn (PPHN), conceivably through fuel-mediated pathogenic mechanisms. Prior research and preventative measures focus on controlling maternal hyperglycemia, but growing evidence suggests a role for additional circulating fuels including lipids. Little is known about the individual or additive effects of a maternal high-fat diet on fetal lung development. Objective The objective of this study was to determine the effects of a maternal high-fat diet, alone and alongside late-gestation diabetes, on lung alveologenesis and vasculogenesis,