Science.gov

Sample records for abnormal mechanical stresses

  1. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  2. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations.

  3. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  4. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  5. Abnormal Bursting as a Pathophysiological Mechanism in Parkinson's Disease

    PubMed Central

    Lobb, CJ

    2014-01-01

    Despite remarkable advances in Parkinson's disease (PD) research, the pathophysiological mechanisms causing motor dysfunction remain unclear, possibly delaying the advent of new and improved therapies. Several such mechanisms have been proposed including changes in neuronal firing rates, the emergence of pathological oscillatory activity, increased neural synchronization, and abnormal bursting. This review focuses specifically on the role of abnormal bursting of basal ganglia neurons in PD, where a burst is a physiologically-relevant, transient increase in neuronal firing over some reference period or activity. After reviewing current methods for how bursts are detected and what the functional role of bursts may be under normal conditions, existing studies are reviewed that suggest that bursting is abnormally increased in PD and that this increases with worsening disease. Finally, the influence of therapeutic approaches for PD such as dopamine-replacement therapy with levodopa or dopamine agonists, lesions, or deep brain stimulation on bursting is discussed. Although there is insufficient evidence to conclude that increased bursting causes motor dysfunction in PD, current evidence suggests that targeted investigations into the role of bursting in PD may be warranted. PMID:24729952

  6. Abnormal degradation of high-voltage p-type MOSFET with n+ polycrystalline silicon gate during AC stress

    NASA Astrophysics Data System (ADS)

    Lee, Dongjun; Joo, Ikhyung; Lee, Changsub; Song, Duheon; Choi, Byoungdeog

    2016-11-01

    We investigated the abnormal degradation of high-voltage p-type MOSFET (HV pMOSFET) under negative AC gate bias stress. In HV pMOSFET with n+ polycrystalline silicon (poly-Si) gate, the abnormal degradation occurs after the gradual degradation during negative AC stress. The abnormal degradation is suppressed by changing the gate material from n+ poly-Si to p+ poly-Si, and it is caused by hot holes produced by the impact ionization near the surface when electrons move from the gate toward the gate oxide. We suggest a possible mechanism to explain the improvement of degradation by using p+ poly-Si as a gate material.

  7. Down's Syndrome and Leukemia: Mechanism of Additional Chromosomal Abnormalities

    ERIC Educational Resources Information Center

    And Others; Goh, Kong-oo

    1978-01-01

    Chromosomal abnormalities, some appearing in a stepwise clonal evoluation, were found in five Down's syndrome patients (35 weeks to 12 years old), four with acute leukemia and one with abnormal regulation of leukopoiesis. (Author/SBH)

  8. Proline Mechanisms of Stress Survival

    PubMed Central

    Liang, Xinwen; Zhang, Lu; Natarajan, Sathish Kumar

    2013-01-01

    Abstract Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Advances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011. PMID:23581681

  9. Wall shear stress indicators in abnormal aortic geometries

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Gutmark-Little, Iris

    2015-11-01

    Cardiovascular disease, such as atherosclerosis, occurs at specific locations in the arterial tree. Characterizing flow and forces at these locations is crucial to understanding the genesis of disease. Measures such as time average wall shear stress, oscillatory shear index, relative residence time and temporal wall shear stress gradients have been shown to identify plaque prone regions. The present paper examines these indices in three aortic geometries obtained from patients whose aortas are deformed due to a genetic pathology and compared to one normal geometry. This patient group is known to be prone to aortic dissection and our study aims to identify early indicators that will enable timely intervention. Data obtained from cardiac magnetic resonance imaging is used to reconstruct the aortic arch. The local unsteady flow characteristics are calculated, fully resolving the flow field throughout the entire cardiac cycle. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different red blood cell loading. The impact of the deformed aortic geometries is analyzed to identify flow patterns that could lead to arterial disease at certain locations.

  10. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    SciTech Connect

    Marchetti, F; Wyrobek, A J

    2005-04-05

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.

  11. Hormonal and behavioural abnormalities induced by stress in utero: an animal model for depression.

    PubMed

    Maccari, S; Darnaudery, M; Van Reeth, O

    2001-09-01

    Prenatal stress in rats can exert profound influence on the off spring's development, inducing abnormalities such as increased "anxiety", "emotionality" or "depression-like" behaviours.Prenatal stress has long-term effects on the development of the hypothalamo-pituitary-adrenal(HPA) axis and forebrain cholinergic systems. These long-term neuroendocrinological effects are mediated, at least in part, by stress-induced maternal corticosterone increase during pregnancy and stress-induced maternal anxiety during the postnatal period. We have shown a significant phase advance in the circadian rhythms of corticosterone secretion and locomotor activity in prenatally-stressed (PNS) rats. When subjected to an abrupt shift in the light-dark(LD) cycle, PNS rats resynchronized their activity rhythm more slowly than control rats. In view of the data suggesting abnormalities in the circadian timing system in these animals, we have investigated the effects of prenatal stress on the sleep-wake cycle in adult male rats. PNS rats exhibited various changes in sleep-wake parameters, including a dramatic increase in the amount of paradoxical sleep. Taken together, our results indicate that prenatal stress can induce increased responses to stress and abnormal circadian rhythms and sleep in adult rats.Various clinical observations in humans suggest a possible pathophysiological link between depression and disturbances in circadian rhythmicity. Circadian abnormalities in depression can be related to those found in PNS rats. Interestingly, we have recently shown that the increased immobility in the forced swimming test observed in PNS rats can be corrected by chronic treatment with the antidepressant tianeptine, or with melatonin or S23478, a melatonin agonist. Those results reinforce the idea of the usefulness of PNS rats as an appropriate animal model to study human depression and support a new antidepressant-like effect of melatonin and the melatonin agonist S23478.

  12. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells.

  13. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  14. Deformative stress associated with an abnormal clivo-axial angle: A finite element analysis

    PubMed Central

    Henderson, Fraser C.; Wilson, William A.; Mott, Stephen; Mark, Alexander; Schmidt, Kristi; Berry, Joel K.; Vaccaro, Alexander; Benzel, Edward

    2010-01-01

    Background: Chiari malformation, functional cranial settling and subtle forms of basilar invagination result in biomechanical neuraxial stress, manifested by bulbar symptoms, myelopathy and headache or neck pain. Finite element analysis is a means of predicting stress due to load, deformity and strain. The authors postulate linkage between finite element analysis (FEA)-predicted biomechanical neuraxial stress and metrics of neurological function. Methods: A prospective, Internal Review Board (IRB)-approved study examined a cohort of 5 children with Chiari I malformation or basilar invagination. Standardized outcome metrics were used. Patients underwent suboccipital decompression where indicated, open reduction of the abnormal clivo-axial angle or basilar invagination to correct ventral brainstem deformity, and stabilization/ fusion. FEA predictions of neuraxial preoperative and postoperative stress were correlated with clinical metrics. Results: Mean follow-up was 32 months (range, 7-64). There were no operative complications. Paired t tests/ Wilcoxon signed-rank tests comparing preoperative and postoperative status were statistically significant for pain, bulbar symptoms, quality of life, function but not sensorimotor status. Clinical improvement paralleled reduction in predicted biomechanical neuraxial stress within the corticospinal tract, dorsal columns and nucleus solitarius. Conclusion: The results are concurrent with others, that normalization of the clivo-axial angle, fusion-stabilization is associated with clinical improvement. FEA computations are consistent with the notion that reduction of deformative stress results in clinical improvement. This pilot study supports further investigation in the relationship between biomechanical stress and central nervous system (CNS) function. PMID:20847911

  15. Mechanism of abnormally slow crystal growth of CuZr alloy

    SciTech Connect

    Yan, X. Q.; Lü, Y. J.

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.

  16. Spatial pattern of nerve fiber abnormality indicative of pathologic mechanism.

    PubMed Central

    Dyck, P. J.; Karnes, J.; O'Brien, P.; Nukada, H.; Lais, A.; Low, P.

    1984-01-01

    Estimates of the number, density, and size distribution of myelinated fibers at selected levels of roots, spinal tracts, and sampled levels of peripheral nerves may be used in the detection and characterization of alterations of motor, sensory, and autonomic neurons and their axons with development, aging and disease. Use of imaging techniques, now available, increases the reliability, versatility, and speed of such analysis. In this study, the authors evaluated the spatial pattern of fibers in sampled frames and contour areas of transverse sections of nerve fascicles, utilizing, the coefficient of variation and index of dispersion (ID), the latter extensively employed by plant ecologists. The ID was used for recognization of increased, normal, or decreased variability of density within fascicles, between fascicles, and between nerves in health and in various experimental neuropathies. In addition, various morphometric measurements were made in transverse sections at defined levels along the hind limb nerves of rats in acute and chronic ischemia, after rhizotomy and in galactose neuropathy. These stereomorphometric studies, emphasizing the number, size, shape, and spatial pattern of fibers, revealed differences among experimental neuropathies and may be found to be helpful in the characterization and prediction of pathologic mechanisms in neuropathies of unknown cause. Specifically, these approaches could be used for study of whether fiber loss in human diabetic neuropathy is multifocal and determination of the levels of such losses. PMID:6333825

  17. Mitral Annular Systolic Velocities Predict Left Ventricular Wall Motion Abnormality During Dobutamine Stress Echocardiography

    PubMed Central

    Sharif, Dawod; Sharif-Rasslan, Amal; Shahla, Camilia

    2011-01-01

    Background Longitudinal systolic left ventricular contraction is complementary to the radial performance and can be assessed using tissue Doppler imaging (TDI). This study was performed to evaluate the contribution of mitral annular systolic velocities using TDI after dobutamine stress echocardiography (DSE). Methods and Results Fifty subjects with suspected coronary artery disease and chest pain were examined, using DSE as usual, as well as TDI imaging of the mitral annulus at the septal, lateral, inferior, anterior, posterior regions and the proximal anteroseptal region from the apical views, before and immediately after DSE. In 24 subjects the study was normal, while wall motion abnormality was seen in 26, 9 of them only after DSE. Mitral annular systolic velocity at the 6 locations increased significantly after DSE both in normal subjects and in those with wall motion abnormality (WMA). After DSE mitral annular septal systolic velocity in normals, 19.2 ± 3.8 cm/sec, was higher than in those with WMA, 14.6 ± 2.5 cm/sec, P < 0.0003. Post-DSE mitral systolic velocity was senstive and accurate in predicting WMA. Conclusions Systolic mitral TDI velocities increase after DSE, however to a lesser extent in those with wall motion abnormality, and can differentiate them from normal subjects.

  18. Exposure to traumatic experiences is associated with abnormal neural mechanism during charitable donation.

    PubMed

    Wei, Dongtao; Wang, Kangcheng; Shen, Yimo; Du, Xue; Li, Wenfu; Dupuis-Roy, Nicolas; Qiu, Jiang; Zhang, Qinglin

    2013-10-30

    Previous studies suggested that posttraumatic stress disorder (PTSD) might be associated with dysfunctional reward processing. At present, little is known about the neural mechanisms of reward-related processing during a charitable donation task in trauma survivors who do not go on to develop PTSD. We used functional magnetic resonance imaging (fMRI) to investigate the neural basis of charitable donation in non-PTSD survivors of the Sichuan earthquake. Results showed that activations in the striatum of trauma survivors were reduced in both the low donation (donated a small amount to the Red Cross) and the high donation conditions (donated a large amount to the Red Cross) compared with the healthy controls. Furthermore, the trauma survivors also exhibited less activity in the insula than the healthy controls in the high donation condition. These findings suggest that abnormal reward-related activations might be associated with dysfunctions in the reward pathway of trauma survivors. Also, we discuss the possibility that traumatic experiences attenuate the reactivity of reward-related brain areas to positive emotions (as induced by advantageous donations).

  19. Examining the mediating roles of binge eating and emotional eating in the relationships between stress and metabolic abnormalities.

    PubMed

    Chao, Ariana; Grey, Margaret; Whittemore, Robin; Reuning-Scherer, Jonathan; Grilo, Carlos M; Sinha, Rajita

    2016-04-01

    To test whether binge eating and emotional eating mediate the relationships between self-reported stress, morning cortisol and the homeostatic model of insulin resistance and waist circumference. We also explored the moderators of gender and age. Data were from 249 adults (mean BMI = 26.9 ± 5.1 kg/m(2); mean age = 28.3 ± 8.3 years; 54.2% male; 69.5% white) recruited from the community who were enrolled in a cross-sectional study. Participants completed a comprehensive assessment panel of psychological and physiological assessments including a morning blood draw for plasma cortisol. We found negative relationships between stress and morning cortisol (r = -0.15 to -0.21; p < 0.05), and cortisol and the homeostatic model of insulin resistance and waist circumference (r = -0.16, -0.25, respectively; p < 0.05). There was not statistical support for binge eating or emotional eating as mediators and no support for moderated mediation for either gender or age; however, gender moderated several paths in the model. These include the paths between perceived stress and emotional eating (B = 0.009, p < 0.001), perceived stress and binge eating (B = 0.01, p = 0.003), and binge eating and increased HOMA-IR (B = 0.149, p = 0.018), which were higher among females. Among women, perceived stress may be an important target to decrease binge and emotional eating. It remains to be determined what physiological and psychological mechanisms underlie the relationships between stress and metabolic abnormalities.

  20. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  1. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  2. The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis

    PubMed Central

    Anderson, Donald D.; Brown, Thomas D.; Tochigi, Yuki; Martin, James A.

    2013-01-01

    Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the past 50 years. Cumulative excessive articular surface contact stress that leads to OA results from posttraumatic joint incongruity and instability, and joint dysplasia, but may also cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain, and improve joint function in patients with end-stage posttraumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995

  3. Abnormal Hippocampal Morphology in Dissociative Identity Disorder and Posttraumatic Stress Disorder Correlates with Childhood Trauma and Dissociative Symptoms

    PubMed Central

    Chalavi, Sima; Vissia, Eline M.; Giesen, Mechteld E.; Nijenhuis, Ellert R.S.; Draijer, Nel; Cole, James H.; Dazzan, Paola; Pariante, Carmine M.; Madsen, Sarah K.; Rajagopalan, Priya; Thompson, Paul M.; Toga, Arthur W.; Veltman, Dick J.; Reinders, Antje A.T.S.

    2015-01-01

    Smaller hippocampal volume has been reported in individuals with posttraumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural MRI scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared to HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared to HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders. PMID:25545784

  4. Abnormal hippocampal morphology in dissociative identity disorder and post-traumatic stress disorder correlates with childhood trauma and dissociative symptoms.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Cole, James H; Dazzan, Paola; Pariante, Carmine M; Madsen, Sarah K; Rajagopalan, Priya; Thompson, Paul M; Toga, Arthur W; Veltman, Dick J; Reinders, Antje A T S

    2015-05-01

    Smaller hippocampal volume has been reported in individuals with post-traumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural magnetic resonance imaging scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared with HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared with HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders.

  5. Behavioral, Neurochemical and Neuroendocrine Effects of Abnormal Savda Munziq in the Chronic Stress Mice

    PubMed Central

    Amat, Nurmuhammat; Hoxur, Parida; Ming, Dang; Matsidik, Aynur; Kijjoa, Anake; Upur, Halmurat

    2012-01-01

    Oral administration of Abnormal Savda Munsiq (ASMq), a herbal preparation used in Traditional Uighur Medicine, was found to exert a memory-enhancing effect in the chronic stressed mice, induced by electric foot-shock. The memory improvement of the stressed mice was shown by an increase of the latency time in the step-through test and the decrease of the latency time in the Y-maze test. Treatment with ASMq was found to significantly decrease the serum levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and β-endorphin (β-EP) as well as the brain and serum level of norepinephrine (NE). Furthermore, ASMq was able to significantly reverse the chronic stress by decreasing the brain and serum levels of the monoamine neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT) and 3,4-dihydroxyphenylalanine (DOPAC). The results obtained from this study suggested that the memory-enhancing effect of ASMq was mediated through regulations of neurochemical and neuroendocrine systems. PMID:22919413

  6. Abnormality of the corpus callosum in coalmine gas explosion-related posttraumatic stress disorder.

    PubMed

    Zhang, Yang; Li, Huabing; Lang, Xu; Zhuo, Chuanjun; Qin, Wen; Zhang, Quan

    2015-01-01

    Abnormal corpus callosum (CC) has been reported in childhood trauma-related posttraumatic stress disorder (PTSD); however, the nature of white matter (WM) integrity alterations in the CC of young adult-onset PTSD patients is unknown. In this study, 14 victims of a coal mine gas explosion with PTSD and 23 matched coal miners without experiencing the coal mine explosion were enrolled. The differences in fractional anisotropy (FA) within 7 sub-regions of the CC were compared between the two groups. Compared to the controls, PTSD coal miners exhibited significantly reduced FA values in the anterior sub-regions of the CC (P < 0.05, Bonferroni-corrected), which mainly interconnect the bilateral frontal cortices. Our findings indicated that the anterior part of the CC was more severely impaired than the posterior part in young adult-onset PTSD, which suggested the patterns of CC impairment may depend on the developmental stage of the structure when the PTSD occurs.

  7. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  8. Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation

    PubMed Central

    Herman, James P.; Tasker, Jeffrey G.

    2016-01-01

    The hypothalamic paraventricular nucleus (PVN) is the primary driver of hypothalamo–pituitary–adrenocortical (HPA) responses. At least part of the role of the PVN is managing the demands of chronic stress exposure. With repeated exposure to stress, hypophysiotrophic corticotropin-releasing hormone (CRH) neurons of the PVN display a remarkable cellular, synaptic, and connectional plasticity that serves to maximize the ability of the HPA axis to maintain response vigor and flexibility. At the cellular level, chronic stress enhances the production of CRH and its co-secretagogue arginine vasopressin and rearranges neurotransmitter receptor expression so as to maximize cellular excitability. There is also evidence to suggest that efficacy of local glucocorticoid feedback is reduced following chronic stress. At the level of the synapse, chronic stress enhances cellular excitability and reduces inhibitory tone. Finally, chronic stress causes a structural enhancement of excitatory innervation, increasing the density of glutamate and noradrenergic/adrenergic terminals on CRH neuronal cell somata and dendrites. Together, these neuroplastic changes favor the ability of the HPA axis to retain responsiveness even under conditions of considerable adversity. Thus, chronic stress appears able to drive PVN neurons via a number of convergent mechanisms, processes that may play a major role in HPA axis dysfunction seen in variety of stress-linked disease states. PMID:27843437

  9. Peripheral and central mechanisms of stress resilience

    PubMed Central

    Pfau, Madeline L.; Russo, Scott J.

    2014-01-01

    Viable new treatments for depression and anxiety have been slow to emerge, likely owing to the complex and incompletely understood etiology of these disorders. A budding area of research with great therapeutic promise involves the study of resilience, the adaptive maintenance of normal physiology and behavior despite exposure to marked psychological stress. This phenomenon, documented in both humans and animal models, involves coordinated biological mechanisms in numerous bodily systems, both peripheral and central. In this review, we provide an overview of resilience mechanisms throughout the body, discussing current research in animal models investigating the roles of the neuroendocrine, immune, and central nervous systems in behavioral resilience to stress. PMID:25506605

  10. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis.

    PubMed

    Elias, Peter M; Wakefield, Joan S

    2014-10-01

    I review how diverse inherited and acquired abnormalities in epidermal structural and enzymatic proteins converge to produce defective permeability barrier function and antimicrobial defense in patients with atopic dermatitis (AD). Although best known are mutations in filaggrin (FLG), mutations in other member of the fused S-100 family of proteins (ie, hornerin [hrn] and filaggrin 2 [flg-2]); the cornified envelope precursor (ie, SPRR3); mattrin, which is encoded by TMEM79 and regulates the assembly of lamellar bodies; SPINK5, which encodes the serine protease inhibitor lymphoepithelial Kazal-type trypsin inhibitor type 1; and the fatty acid transporter fatty acid transport protein 4 have all been linked to AD. Yet these abnormalities often only predispose to AD; additional acquired stressors that further compromise barrier function, such as psychological stress, low ambient humidity, or high-pH surfactants, often are required to trigger disease. T(H)2 cytokines can also compromise barrier function by downregulating expression of multiple epidermal structural proteins, lipid synthetic enzymes, and antimicrobial peptides. All of these inherited and acquired abnormalities converge on the lamellar body secretory system, producing abnormalities in lipid composition, secretion, and/or extracellular lamellar membrane organization, as well as antimicrobial defense. Finally, I briefly review therapeutic options that address this new pathogenic paradigm.

  11. Cell signalling mechanisms for insect stress tolerance.

    PubMed

    Davies, Shireen A; Cabrero, Pablo; Overend, Gayle; Aitchison, Lorraine; Sebastian, Sujith; Terhzaz, Selim; Dow, Julian A T

    2014-01-01

    Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.

  12. Oxidative stress as a mechanism of teratogenesis.

    PubMed

    Hansen, Jason M

    2006-12-01

    Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.

  13. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function.

  14. The making of abnormal spermatozoa: cellular and molecular mechanisms underlying pathological spermiogenesis.

    PubMed

    Chemes, Hector E; Rawe, Vanesa Y

    2010-09-01

    Fertilization in mammals occurs via a series of well-defined events in the secluded environment of the female reproductive tract. The mode of selection of the fertilizing spermatozoon nevertheless remains unknown. As has become evident during in vitro fertilization by sperm microinjection into the oocyte, abnormal spermatozoa can successfully fertilize oocytes. Under these extreme conditions, post-fertilization events, early embryonic development and implantation are significantly compromised indicating that the contribution of spermatozoa extends beyond sperm penetration. Microscopic identification of normal spermatozoa is a well-standardized procedure but insights into the mechanisms that lead to aberrant sperm differentiation and into the subcellular nature of sperm abnormalities have only recently begun to be obtained. The spermatozoon is the result of a complex development in which spermatid organelles give rise to various structural components with characteristic functions. Similar to other differentiated cells, the spermatozoon has a specific pathology that is most clearly identified by ultrastructural evaluation coupled with immunocytochemistry and molecular techniques. This multidisciplinary approach allows the precise characterization of sperm abnormalities, including structural, molecular and functional aspects. We summarize here studies of the physiopathology of spermiogenesis in two abnormal sperm phenotypes of infertile men: dysplasia of the fibrous sheath and acephalic spermatozoa/abnormal head-tail attachment. The characterization of the abnormalities of the tail cytoskeleton and centrioles has uncovered aspects of the subcellular basis of pathological spermiogenesis, has suggested experimental approaches to explore the nature of these anomalies and has opened the way for genetic studies that will ultimately lead to the design of the therapeutic tools of the future.

  15. Mechanisms of stress in the brain

    PubMed Central

    McEwen, Bruce S.; Bowles, Nicole P.; Gray, Jason D.; Hill, Matthew N.; Hunter, Richard G.; Karatsoreos, Ilia N.; Nasca, Carla

    2016-01-01

    The brain is the central organ of perceiving and adapting to social and physical stressors via multiple interacting mediators from the cell surface to the cytoskeleton to epigenetic regulation and non-genomic mechanisms. A key result of stress is structural remodeling of neural architecture that may be a sign of successful adaptation, while persistence of these changes when stress ends indicates failed resilience. Excitatory amino acids and glucocorticoids play a key role, along with a growing list of extra- and intracellular mediators, including endocannabinoids and brain derived neurotrophic factor (BDNF). The result is a continually changing pattern of gene expression via epigenetic mechanisms involving histone modifications and CpG methylation/hydroxy-methylation as well as activity of retrotransponsons that may alter genomic stability. Elucidation of the underlying mechanisms of plasticity and vulnerability of the brain provides a basis for understanding the efficacy of interventions for anxiety and depressive disorders as well as age-related cognitive decline. PMID:26404710

  16. Accuracy of pulmonary auscultation to detect abnormal respiratory mechanics: a cross-sectional diagnostic study.

    PubMed

    Xavier, Glaciele Nascimento; Duarte, Antonio Carlos Magalhães; Melo-Silva, César Augusto; dos Santos, Carlos Eduardo Ventura Gaio; Amado, Veronica Moreira

    2014-12-01

    Pulmonary auscultation is a method used in clinical practice for the evaluation and detection of abnormalities relating to the respiratory system. This method has limitations, as it depends on the experience and hearing acuity of the examiner to determine adventitious sounds. In this context, it's important to analyze whether there is a correlation between auscultation of lung sounds and the behavior of the respiratory mechanical properties of the respiratory system in patients with immediate postoperative cardiac surgery.

  17. Mechanical stability of iron under hydrostatic stresses

    NASA Astrophysics Data System (ADS)

    Mishra, K. L.; Thakur, O. P.; Thakur, K. P.

    1991-09-01

    A comprehensive investigation of the mechanics of iron subjected to arbitrary fluid pressure has been carried out. Apart from the classical elastic moduli ( k, μ, and μ') and conventional elastic moduli (Green and stretch moduli) computations are carried out for a family of generalised moduli of which the conventional moduli are just specific members. With the generalised moduli the mechanical stability of iron is investigated through Born criteria. It is found that classical stability, Green stability and stretch stability are all represented uniquely by the present generalised scheme. The definition of effective classical moduli under stresses enabled the amalgamation of the Born criteria of lattice stability into the single classical criteria of lattice stability of cubic crystal under hydrostatic loading environment. Computations are also carried out to investigate the coordinate and stress dependence of Young's modulus of elasticity, Poisson's ratio, mean velocity of elastic wave, and Debye temperature. Surprisingly, it is found that all these properties of solids play an important role in representing the mechanical stability of the solid. The path of uniaxial loading of iron is also investigated along with its internal energy variation on this path. This indicated the existance of stress-free fcc phase of iron on the path of uniaxial deformation at cell length a=3.6444 Å giving enthalpy of transformation (bcc→fcc) of 1.1 kJ/mol in good agreement with experimental results.

  18. Involvement of Mechanical Stress in Androgenetic Alopecia

    PubMed Central

    Tellez-Segura, Rafael

    2015-01-01

    Context: Androgenetic alopecia (AGA) is a frequent disorder characterized by progressive hair miniaturization in a very similar pattern among all affected men. The pathogenesis is related to androgen-inducible overexpression of transforming growth factor β-1 from balding dermal papilla cells, which is involved in epithelial inhibition and perifollicular fibrosis. Recent research shows that hair follicle androgen sensitivity is regulated by Hic-5, an androgen receptor co-activator which may be activated by the mechanical stimulation. Moreover, the dermis of scalp susceptible to be affected by AGA is firmly bounded to the galea aponeurotica, so the physical force exerted by the occipitofrontalis muscle is transmitted to the scalp skin. Aims: To know whether mechanical stress supported by hair follicles is involved in AGA phenomenon. Materials and Methods: It is performed with a finite element analysis of a galea model and a schematic representation of AGA progression according to Hamilton–Norwood scale in order to establish the correlation between elastic deformation in scalp and clinical progression of male pattern baldness. Results: The result was a highly significant correlation (r: −0.885, P < 0.001) that clearly identifies a mechanical factor in AGA development. Conclusions: All these data suggest that mechanical stress determines AGA patterning and a stretch-induced and androgen-mediated mechanotransduction in dermal papilla cells could be the primary mechanism in AGA pathogenesis. PMID:26622151

  19. Mechanics of couple-stress fluid coatings

    NASA Technical Reports Server (NTRS)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  20. Mechanically induced residual stresses: Modelling and characterisation

    NASA Astrophysics Data System (ADS)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  1. A mechanical model predicts morphological abnormalities in the developing human brain.

    PubMed

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-10

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  2. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  3. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  4. Exercise protects against obesity induced semen abnormalities via downregulating stem cell factor, upregulating Ghrelin and normalizing oxidative stress.

    PubMed

    Alhashem, Fahaid; Alkhateeb, Mahmoud; Sakr, Hussein; Alshahrani, Mesfer; Alsunaidi, Mohammad; Elrefaey, Hesham; Alessa, Riyad; Sarhan, Mohammad; Eleawa, Samy M; Khalil, Mohammad A

    2014-01-01

    Increased oxidative stress and hormonal imbalance have been hypothesized to underlie infertility in obese animals. However, recent evidence suggests that Ghrelin and Stem Cell Factor (SCF) play an important role in fertility, in lean individuals. Therefore, this study aimed at investigating whether changes in the levels of Ghrelin and SCF in rat testes underlie semen abnormal parameters observed in obese rats, and secondly, whether endurance exercise or Orlistat can protect against changes in Ghrelin, SCF, and/or semen parameters in diet induced obese rats. Obesity was modelled in male Wistar rats using High Fat Diet (HFD) 12-week protocol. Eight week-old rats (n=40) were divided into four groups, namely, Group I: fed with a standard diet (12 % of calories as fat); Group II: fed HFD (40 % of calories as fat); Group III: fed the HFD with a concomitant dose of Orlistat (200 mg/kg); and Group IV: fed the HFD and underwent 30 min daily swimming exercise. The model was validated by measuring the levels of testosterone, FSH, LH, estradiol, leptin, triglycerides, total, HDL, and LDL cholesterol, and final change in body weight. Levels were consistent with published obesity models (see Results). As predicted, the HFD group had a 76.8 % decrease in sperm count, 44.72 % decrease in sperm motility, as well as 47.09 % increase in abnormal sperm morphology. Unlike the control group, in the HFD group (i.e. obese rats) Ghrelin mRNA and protein were elevated, while SCF mRNA and protein were diminished in the testes. Furthermore, in the HFD group, SOD and GPx activities were significantly reduced, 48.5±5.8 % (P=0.0012) and 45.6±4.6 % (P=0.0019), respectively, while TBARS levels were significantly increased (112.7±8.9 %, P=0.0001). Finally, endurance exercise training and Orlistat administration individually and differentially protected semen parameters in obese rats. The mechanism includes, but is not limited to, normalizing the levels of Ghrelin, SCF, SOD, GPx and TBARS. In rat

  5. Absence of DJ-1 causes age-related retinal abnormalities in association with increased oxidative stress.

    PubMed

    Bonilha, Vera L; Bell, Brent A; Rayborn, Mary E; Samuels, Ivy S; King, Anna; Hollyfield, Joe G; Xie, Chengsong; Cai, Huaibin

    2017-03-01

    Oxidative stress alters physiological function in most biological tissues and can lead to cell death. In the retina, oxidative stress initiates a cascade of events leading to focal loss of RPE and photoreceptors, which is thought to be a major contributing factor to geographic atrophy. Despite these implications, the molecular regulation of RPE oxidative stress under normal and pathological conditions remains largely unknown. A better understanding of the mechanisms involved in regulating RPE and photoreceptors oxidative stress response is greatly needed. To this end we evaluated photoreceptor and RPE changes in mice deficient in DJ-1, a protein that is thought to be important in protecting cells from oxidative stress. Young (3 months) and aged (18 months) DJ-1 knockout (DJ-1 KO) and age-matched wild-type mice were examined. In both group of aged mice, scanning laser ophthalmoscopy (SLO) showed the presence of a few autofluorescent foci. The 18 month-old DJ-1 KO retinas were also characterized by a noticeable increase in RPE fluorescence to wild-type. Optical coherence tomography (OCT) imaging demonstrated that all retinal layers were present in the eyes of both DJ-1 KO groups. ERG comparisons showed that older DJ-1 KO mice had reduced sensitivity under dark- and light-adapted conditions compared to age-matched control. Histologically, the RPE contained prominent vacuoles in young DJ-1 KO group with the appearance of enlarged irregularly shaped RPE cells in the older group. These were also evident in OCT and in whole mount RPE/choroid preparations labeled with phalloidin. Photoreceptors in the older DJ-1 KO mice displayed decreased immunoreactivity to rhodopsin and localized reduction in cone markers compared to the wild-type control group. Lower levels of activated Nrf2 were evident in retina/RPE lysates in both young and old DJ-1 KO mouse groups compared to wild-type control levels. Conversely, higher levels of protein carbonyl derivatives and i

  6. Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries.

    PubMed

    Ji, Cheng

    2012-01-01

    Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  7. Upper extremity stress fractures and spondylolysis in an adolescent baseball pitcher with an associated endocrine abnormality: a case report.

    PubMed

    Li, Xinning; Heffernan, Michael J; Mortimer, Errol S

    2010-06-01

    Lower extremity stress fractures are relatively common among competitive athletes. Stress fractures of the upper extremity, however, are rare and most have been reported in the literature as case reports. We present a case of an adolescent baseball pitcher who had both proximal humeral and ulnar shaft stress fractures, as well as spondylolysis of the lumbar spine. This particular patient also had an underlying endocrine abnormality of secondary hyperparathyroidism with a deficiency in vitamin D. A bone mineral density panel demonstrated a high T score (+2.79 SD above the mean) and the patient's biologic bone age was noted to be 2 years ahead of his chronologic age. The patient was treated with a course of vitamin D and calcium supplementation. After treatment, both the vitamin D and parathyroid hormone returned to normal levels. The upper extremity stress fractures and spondylolysis were managed conservatively and he was able to return to full activity and baseball. For patients who present with multiple stress fractures not associated with consistent high levels of repeated stress, a bone mineral density panel should be considered. If vitamin D deficiency is present, a course of oral supplementation may be considered in the management. An endocrinology consult should also be considered in patients who present with multiple stress fractures. Conservative management of upper extremity stress fractures and spondylolysis was successful in returning this patient back to his previous activity level.

  8. Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression.

    PubMed

    Tulogdi, Aron; Biro, Laszlo; Barsvari, Beata; Stankovic, Mona; Haller, Jozsef; Toth, Mate

    2015-04-15

    Our recent studies showed that brain areas that are activated in a model of escalated aggression overlap with those that promote predatory aggression in cats. This finding raised the interesting possibility that the brain mechanisms that control certain types of abnormal aggression include those involved in predation. However, the mechanisms of predatory aggression are poorly known in rats, a species that is in many respects different from cats. To get more insights into such mechanisms, here we studied the brain activation patterns associated with spontaneous muricide in rats. Subjects not exposed to mice, and those which did not show muricide were used as controls. We found that muricide increased the activation of the central and basolateral amygdala, and lateral hypothalamus as compared to both controls; in addition, a ventral shift in periaqueductal gray activation was observed. Interestingly, these are the brain regions from where predatory aggression can be elicited, or enhanced by electrical stimulation in cats. The analysis of more than 10 other brain regions showed that brain areas that inhibited (or were neutral to) cat predatory aggression were not affected by muricide. Brain activation patterns partly overlapped with those seen earlier in the cockroach hunting model of rat predatory aggression, and were highly similar with those observed in the glucocorticoid dysfunction model of escalated aggression. These findings show that the brain mechanisms underlying predation are evolutionarily conservative, and indirectly support our earlier assumption regarding the involvement of predation-related brain mechanisms in certain forms of escalated social aggression in rats.

  9. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation

    PubMed Central

    Mishra, Vikas; Shuai, Bing; Kodali, Maheedhar; Shetty, Geetha A.; Hattiangady, Bharathi; Rao, Xiaolan; Shetty, Ashok K.

    2015-01-01

    Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy. PMID:26639668

  10. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress.

    PubMed

    Li, Huang; Zhang, Xiang-Yu; Wu, Tuo-Jiang; Cheng, Wei; Liu, Xin; Jiang, Ting-Ting; Wen, Juan; Li, Jie; Ma, Qiao-Ling; Hua, Zi-Chun

    2013-06-21

    Compressive mechanical stress-induced cartilage thinning has been characterized as a key step in the progression of temporomandibular joint diseases, such as osteoarthritis. However, the regulatory mechanisms underlying this loss have not been thoroughly studied. Here, we used an established animal model for loading compressive mechanical stress to induce cartilage thinning in vivo. The mechanically stressed mandibular chondrocytes were then isolated to screen potential candidates using a proteomics approach. A total of 28 proteins were identified that were directly or indirectly associated with endoplasmic reticulum stress, including protein disulfide-isomerase, calreticulin, translationally controlled tumor protein, and peptidyl-prolyl cis/trans-isomerase protein. The altered expression of these candidates was validated at both the mRNA and protein levels. The induction of endoplasmic reticulum stress by mechanical stress loading was confirmed by the activation of endoplasmic reticulum stress markers, the elevation of the cytoplasmic Ca(2+) level, and the expansion of endoplasmic reticulum membranes. More importantly, the use of a selective inhibitor to block endoplasmic reticulum stress in vivo reduced the apoptosis observed at the early stages of mechanical stress loading and inhibited the proliferation observed at the later stages of mechanical stress loading. Accordingly, the use of the inhibitor significantly restored cartilage thinning. Taken together, these results demonstrated that endoplasmic reticulum stress is significantly activated in mechanical stress-induced mandibular cartilage thinning and, more importantly, that endoplasmic reticulum stress inhibition alleviates this loss, suggesting a novel pharmaceutical strategy for the treatment of mechanical stress-induced temporomandibular joint diseases.

  11. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    NASA Astrophysics Data System (ADS)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a <100> preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  12. Microstructural abnormalities in children with post-traumatic stress disorder: a diffusion tensor imaging study at 3.0T.

    PubMed

    Lei, Du; Li, Lingjiang; Li, Lei; Suo, Xueling; Huang, Xiaoqi; Lui, Su; Li, Jing; Bi, Feng; Kemp, Graham J; Gong, Qiyong

    2015-03-11

    Posttraumatic stress disorder (PTSD) is a severe anxiety disorder characterized by re-experiencing, avoidance and hyperarousal. Brain microstructure abnormalities in PTSD, especially in children, are not yet well characterized. The aim of this study was to use MR diffusion tensor imaging (DTI) to identify brain microstructure alterations in children with PTSD compared to non-PTSD controls who experienced the same time-limited trauma. We studied 27 children with PTSD and 24 age- and gender-matched traumatized controls without PTSD, who all experienced the 2008 Sichuan major earthquake. DTI data were acquired and analyzed in terms of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Children with PTSD showed an abnormal pattern, not only of FA, but also of the diffusivity measures MD, AD and RD. Most of the abnormal brain regions belonged to two important networks: the default-mode network, including precuneus and angular gyrus, and the salience network, including insula, putamen and thalamus. This DTI study identifies microstructural abnormalities of children with PTSD after a major earthquake, our results are consistent with the suggestion that pediatric PTSD is accompanied by a connectivity disequilibrium between the salience and default-mode networks, a finding of potential pathophysiological significance.

  13. Continuum mechanics, stresses, currents and electrodynamics.

    PubMed

    Segev, Reuven

    2016-04-28

    The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.

  14. An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure.

    PubMed

    Shenoda, Botros B

    2017-02-03

    GABAergic Interneuronal migration constitutes an essential process during corticogenesis. Derived from progenitor cells located in the proliferative zones of the ventral telencephalon, newly generated GABAergic Interneuron migrate to their cortical destinations. Cortical dysfunction associated with defects in neuronal migration results in severe developmental consequences. There is growing evidence linking prenatal ethanol exposure to abnormal GABAergic interneuronal migration and subsequent cortical dysfunction. Investigating the pathophysiological mechanisms behind disrupted GABAergic interneuronal migration encountered with prenatal alcohol exposure is crucial for understanding and managing fetal alcohol spectrum disorders. This review explores the molecular pathways regulating GABAergic interneuronal cortical migration that might be altered by prenatal ethanol exposure thus opening new avenues for further research in this topic.

  15. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  16. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Gliske, Stephen; Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  17. A risk score for predicting coronary artery disease in women with angina pectoris and abnormal stress test finding.

    PubMed

    Lo, Monica Y; Bonthala, Nirupama; Holper, Elizabeth M; Banks, Kamakki; Murphy, Sabina A; McGuire, Darren K; de Lemos, James A; Khera, Amit

    2013-03-15

    Women with angina pectoris and abnormal stress test findings commonly have no epicardial coronary artery disease (CAD) at catheterization. The aim of the present study was to develop a risk score to predict obstructive CAD in such patients. Data were analyzed from 337 consecutive women with angina pectoris and abnormal stress test findings who underwent cardiac catheterization at our center from 2003 to 2007. Forward selection multivariate logistic regression analysis was used to identify the independent predictors of CAD, defined by ≥50% diameter stenosis in ≥1 epicardial coronary artery. The independent predictors included age ≥55 years (odds ratio 2.3, 95% confidence interval 1.3 to 4.0), body mass index <30 kg/m(2) (odds ratio 1.9, 95% confidence interval 1.1 to 3.1), smoking (odds ratio 2.6, 95% confidence interval 1.4 to 4.8), low high-density lipoprotein cholesterol (odds ratio 2.9, 95% confidence interval 1.5 to 5.5), family history of premature CAD (odds ratio 2.4, 95% confidence interval 1.0 to 5.7), lateral abnormality on stress imaging (odds ratio 2.8, 95% confidence interval 1.5 to 5.5), and exercise capacity <5 metabolic equivalents (odds ratio 2.4, 95% confidence interval 1.1 to 5.6). Assigning each variable 1 point summed to constitute a risk score, a graded association between the score and prevalent CAD (ptrend <0.001). The risk score demonstrated good discrimination with a cross-validated c-statistic of 0.745 (95% confidence interval 0.70 to 0.79), and an optimized cutpoint of a score of ≤2 included 62% of the subjects and had a negative predictive value of 80%. In conclusion, a simple clinical risk score of 7 characteristics can help differentiate those more or less likely to have CAD among women with angina pectoris and abnormal stress test findings. This tool, if validated, could help to guide testing strategies in women with angina pectoris.

  18. Learning to cope with stress: psychobiological mechanisms of stress resilience.

    PubMed

    Cabib, Simona; Campus, Paolo; Colelli, Valentina

    2012-01-01

    Stress is the main non-genetic source of psychopathology. Therefore, the identification of neurobiological bases of resilience, the resistance to pathological outcomes of stress, is a most relevant topic of research. It is an accepted view that resilient individuals are those who do not develop helplessness, or other depression-like phenotypes, following a history of stress. In the present review, we discuss the phenotypic differences between mice of the inbred C57BL/6J and DBA/2J strains that could be associated with the strain-specific resistance to helplessness observable in DBA/2J mice. The reviewed results support the hypothesis that resilience to stress-promoted helplessness develops through interactions between a specific genetic makeup and a history of stress, and is associated with an active coping style, a bias toward the use of stimulus-response learning, and specific adaptive changes of mesoaccumbens dopamine transmission under stress. Finally, evidence that compulsivity represents a side effect of the neuroadaptive processes fostering resistance to develop depressive-like phenotypes under stress is discussed.

  19. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  20. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  1. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses.

    PubMed

    Toth, Mate; Mikics, Eva; Tulogdi, Aron; Aliczki, Mano; Haller, Jozsef

    2011-06-01

    We showed earlier that social isolation from weaning (a paradigm frequently used to model social neglect in children) induces abnormal forms of attack in rats, and assumed that these are associated with hyperarousal. To investigate this hypothesis, we deprived rats of social contacts from weaning and studied their behavior, glucocorticoid and autonomic stress responses in the resident-intruder paradigm at the age of 82 days. Social isolation resulted in abnormal attack patterns characterized by attacks on vulnerable targets, deficient social communication and increased defensive behaviors (defensive upright, flight, freezing). During aggressive encounters, socially deprived rats rapidly switched from one behavior to another, i.e. showed an increased number of behavioral transitions as compared to controls. We tentatively term this behavioral feature "behavioral fragmentation" and considered it a form of behavioral arousal. Basal levels of plasma corticosterone regularly assessed by radioimmunoassay between 27 and 78 days of age were not affected. In contrast, aggression-induced glucocorticoid responses were approximately doubled by socially isolation. Diurnal oscillations in heart rate assessed by in vivo biotelemetry were not affected by social isolation. In contrast, the aggression-induced increase in heart rate was higher in socially isolated than in socially housed rats. Thus, post-weaning social isolation induced abnormal forms of aggression that developed on the background of increased behavioral, endocrine and autonomic arousal. We suggest that this paradigm may be used to model aggression-related psychopathologies associated with hyperarousal, particularly those that are triggered by adverse rearing conditions.

  2. EFL Foreign Teacher Stress in Korea: Causes and Coping Mechanisms

    ERIC Educational Resources Information Center

    Brundage, Gregory C.

    2007-01-01

    Survey study of 53 foreign EFL teachers in Jeonju City, South Korea looks at causes of teacher stress and coping mechanisms between the years of 2004 and 2006. Results show foreign EFL teachers report moderate levels of stress and attribute stresses in roughly equal measures to student misbehavior and school director/administrative sources. Survey…

  3. Transgenic sickle cell trait mice do not exhibit abnormal thermoregulatory and stress responses to heat shock exposure.

    PubMed

    Chen, Yifan; Islam, Aminul

    2016-07-01

    There remains controversy over whether individuals with sickle cell trait (SCT) are vulnerable to health risks during physical activity in high temperatures. We examined thermoregulatory and stress-related responses to heat exposure in SCT and wild-type (WT) mice. No significant differences in core temperature (Tc) were observed between SCT and WT mice during heat exposure. There was no correlation between peak Tc during heat exposure and levels of hemoglobin S in SCT mice. Basal levels of circulating inflammatory and stress-related markers were not significantly different between SCT and WT mice. Although heat exposure caused significant increases in plasma interleukins 1β and 6, and 8-isoprostane in SCT and WT mice, no differences were found between SCT and WT mice with similar thermal response profiles during heat exposure. SCT mice had significantly higher expression of heat shock protein 72 in heart, liver and gastrocnemius muscle than WT mice under control and post-heat conditions. In conclusion, there is neither thermoregulatory dysfunction nor abnormal stress-related response in SCT mice exposed to moderate heat. The hemoglobin variant in mice is associated with altered tissue stress protein homeostasis.

  4. Psychophysiological stress testing in postinfarction patients. Psychological correlates of cardiovascular arousal and abnormal cardiac responses.

    PubMed

    Zotti, A M; Bettinardi, O; Soffiantino, F; Tavazzi, L; Steptoe, A

    1991-04-01

    The psychophysiological responses to two mental stress tests (mental arithmetic and an interactive concentration task) were assessed in 168 unmedicated, male, postinfarction patients 36-69 years old. Patients also completed a standard battery of psychological tests. Psychophysiological responses were generally unrelated to age and education. Comparison of patients scoring high (more than 75%) and low (less than 25%) relative to the normal population on psychological measures indicated that heart rate and blood pressure responses to mental stress tests were significantly greater in those reporting low than in those reporting high neuroticism. The study population was subsequently divided into high, medium, and low cardiovascular responders on the basis of rate-pressure product reactions to the two stress tests. The three cardiovascular response groups did not differ in age, interval between myocardial infarction and stress testing, ejection fraction, incidence of exercise-induced ischemia, or ischemic signs during Holter monitoring. However, the high cardiovascular responders were more likely to manifest possible or definite electrocardiographic signs of ischemia or significant arrhythmia during mental stress testing than were the medium or low cardiovascular responders (50% versus 19.6% and 7%, respectively). High cardiovascular responders also reported lower levels of trait anxiety, neuroticism, psychophysiological symptoms, and depression.

  5. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  6. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm.

    PubMed

    Picard, Martin; Azuelos, Ilan; Jung, Boris; Giordano, Christian; Matecki, Stefan; Hussain, Sabah; White, Kathryn; Li, Tong; Liang, Feng; Benedetti, Andrea; Gentil, Benoit J; Burelle, Yan; Petrof, Basil J

    2015-05-01

    The diaphragm is a unique skeletal muscle designed to be rhythmically active throughout life, such that its sustained inactivation by the medical intervention of mechanical ventilation (MV) represents an unanticipated physiological state in evolutionary terms. Within a short period after initiating MV, the diaphragm develops muscle atrophy, damage, and diminished strength, and many of these features appear to arise from mitochondrial dysfunction. Notably, in response to metabolic perturbations, mitochondria fuse, divide, and interact with neighboring organelles to remodel their shape and functional properties-a process collectively known as mitochondrial dynamics. Using a quantitative electron microscopy approach, here we show that diaphragm contractile inactivity induced by 6 h of MV in mice leads to fragmentation of intermyofibrillar (IMF) but not subsarcolemmal (SS) mitochondria. Furthermore, physical interactions between adjacent organellar membranes were less abundant in IMF mitochondria during MV. The profusion proteins Mfn2 and OPA1 were unchanged, whereas abundance and activation status of the profission protein Drp1 were increased in the diaphragm following MV. Overall, our results suggest that mitochondrial morphological abnormalities characterized by excessive fission-fragmentation represent early events during MV, which could potentially contribute to the rapid onset of mitochondrial dysfunction, maladaptive signaling, and associated contractile dysfunction of the diaphragm.

  7. Sperm Chromatin Integrity: Etiologies and Mechanisms of Abnormality, Assays, Clinical Importance, Preventing and Repairing Damage

    PubMed Central

    Hekmatdoost, Azita; Lakpour, Niknam; Sadeghi, Mohammad Reza

    2009-01-01

    The standard semen analysis is the first line and the most popular laboratory test in the diagnosis of male fertility. It evaluates sperm concentration, motility, morphology and their vitality. However, it is well-known that normal results of semen analysis can not exclude men from the causes of couples′ infertility. One of the most important parameters of sperm in its fertilizing potential is “Sperm chromatin integrity” that has direct positive correlation with Assisted Reproductive Techniques (ART) outcomes including; fertilization rate, embryo quality, pregnancy and successful delivery rate. It seems that sperm DNA chromatin integrity provides better diagnostic and prognostic approaches than standard semen parameters. For these reasons under-standing the sperm chromatin structure, etiology of sperm chromatin abnormality, identification factors that disturbs sperm chromatin integrity and the mechanism of their action can help in recognizing the causes of couples′ infertility. Various methods of its evaluation, its importance in male fertility, clinical relevance in the outcomes of ART and application of laboratory and medical protocols to improve this integrity have valuable position in diagnosis and treatment of male infertility. There has recently been interest in the subject and its application in the field of andrology. Therefore, with regard to the above mentioned importance of sperm chromatin integrity, this review article describes details of the useful information pertaining to sperm DNA damage including the origins, assessments, etiologies, clinical aspects, and prevention of it. PMID:23408441

  8. Abnormal cortical mechanisms in voluntary muscle relaxation in de novo parkinsonian patients.

    PubMed

    Labyt, Etienne; Cassim, François; Devos, David; Bourriez, Jean-Louis; Destée, Alain; Guieu, Jean-Daiel; Defebvre, Luc; Derambure, Philippe

    2005-06-01

    This study aimed at elucidating how the cortical mechanism underlying the preparation and the postmovement phase of voluntary hand muscle relaxation is affected in Parkinson's disease. Event-related mu and beta (de)synchronization (ERD/S) related to voluntary muscle contraction and relaxation were recorded in 16 untreated, akineto-rigid, predominantly hemiparkinsonian patients. The results were compared with data from 10 age-matched, healthy subjects. In the muscle relaxation task, the subject held the wrist in an extended position and then let the hand drop by voluntarily relaxing wrist extensor contraction, i.e., without any overt, associated muscle contraction. In the muscle contraction task, subjects performed a self-initiated brief wrist extension. A same pattern of ERD/S was observed in control subjects and parkinsonian patients performing the motor tasks with their less affected limb. In contrast, related to voluntary relaxation performed with the more affected limb, a delayed mu and beta ERD and a disappearance of beta ERS were revealed. These results demonstrate that the pattern of cortical oscillatory activity in a relaxation task is abnormal in parkinsonian patients. The authors suggest that this may be due to anomalous activity in inhibitory motor cortical systems and impaired sensorimotor integration of afferent inputs from muscle and joint receptors.

  9. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  10. Measurements of residual stress in fracture mechanics coupons

    SciTech Connect

    Prime, Michael B; Hill, Michael R; Nav Dalen, John E

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  11. [Modern research progress regarding effect mechanism of acupuncture on post-traumatic stress disorder].

    PubMed

    Zhao, Zhongting; Zhang, Wei; Xing, Jiaming; Yan, Xingke

    2015-10-01

    From the TCM theoretical basis and the evidences of acupoint selection and acupuncture and moxibustion methods regarding acupuncture for post-traumatic stress disorder (PTSD), a theoretical discussion is made in this article, also a review regarding the key mechanism of experiment researches on acupuncture for PTSD is made from aspects of neurobiology and brain functional imaging, etc., which could further clarify the effect mechanism of acupuncture on PTSD. It is found that PTSD is a kind of stress syndrome accompanied with a variety of abnormal mental symptom , and acupuncture has superior effect on PTSD. Based on these, the research progress and deficiency on current mechanism study of PTSD are reviewed, hoping to offer ideas for upcoming research and to serve the clinical practice better.

  12. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  13. White Matter Abnormalities in Post-traumatic Stress Disorder Following a Specific Traumatic Event.

    PubMed

    Li, Lei; Lei, Du; Li, Lingjiang; Huang, Xiaoqi; Suo, Xueling; Xiao, Fenglai; Kuang, Weihong; Li, Jin; Bi, Feng; Lui, Su; Kemp, Graham J; Sweeney, John A; Gong, Qiyong

    2016-02-01

    Studies of posttraumatic stress disorder (PTSD) are complicated by wide variability in the intensity and duration of prior stressors in patient participants, secondary effects of chronic psychiatric illness, and a variable history of treatment with psychiatric medications. In magnetic resonance imaging (MRI) studies, patient samples have often been small, and they were not often compared to similarly stressed patients without PTSD in order to control for general stress effects. Findings from these studies have been inconsistent. The present study investigated whole-brain microstructural alterations of white matter in a large drug-naive population who survived a specific, severe traumatic event (a major 8.0-magnitude earthquake). Using diffusion tensor imaging (DTI), we explored group differences between 88 PTSD patients and 91 matched traumatized non-PTSD controls in fractional anisotropy (FA), as well as its component elements axial diffusivity (AD) and radial diffusivity (RD), and examined these findings in relation to findings from deterministic DTI tractography. Relations between white matter alterations and psychiatric symptom severity were examined. PTSD patients, relative to similarly stressed controls, showed an FA increase as well as AD and RD changes in the white matter beneath left dorsolateral prefrontal cortex and forceps major. The observation of increased FA in the PTSD group suggests that the pathophysiology of PTSD after a specific acute traumatic event is distinct from what has been reported in patients with several years duration of illness. Alterations in dorsolateral prefrontal cortex may be an important aspect of illness pathophysiology, possibly via the region's established role in fear extinction circuitry. Use-dependent myelination or other secondary compensatory changes in response to heightened demands for threat appraisal and emotion regulation may be involved.

  14. White Matter Abnormalities in Post-traumatic Stress Disorder Following a Specific Traumatic Event

    PubMed Central

    Li, Lei; Lei, Du; Li, Lingjiang; Huang, Xiaoqi; Suo, Xueling; Xiao, Fenglai; Kuang, Weihong; Li, Jin; Bi, Feng; Lui, Su; Kemp, Graham J.; Sweeney, John A.; Gong, Qiyong

    2016-01-01

    Studies of posttraumatic stress disorder (PTSD) are complicated by wide variability in the intensity and duration of prior stressors in patient participants, secondary effects of chronic psychiatric illness, and a variable history of treatment with psychiatric medications. In magnetic resonance imaging (MRI) studies, patient samples have often been small, and they were not often compared to similarly stressed patients without PTSD in order to control for general stress effects. Findings from these studies have been inconsistent. The present study investigated whole-brain microstructural alterations of white matter in a large drug-naive population who survived a specific, severe traumatic event (a major 8.0-magnitude earthquake). Using diffusion tensor imaging (DTI), we explored group differences between 88 PTSD patients and 91 matched traumatized non-PTSD controls in fractional anisotropy (FA), as well as its component elements axial diffusivity (AD) and radial diffusivity (RD), and examined these findings in relation to findings from deterministic DTI tractography. Relations between white matter alterations and psychiatric symptom severity were examined. PTSD patients, relative to similarly stressed controls, showed an FA increase as well as AD and RD changes in the white matter beneath left dorsolateral prefrontal cortex and forceps major. The observation of increased FA in the PTSD group suggests that the pathophysiology of PTSD after a specific acute traumatic event is distinct from what has been reported in patients with several years duration of illness. Alterations in dorsolateral prefrontal cortex may be an important aspect of illness pathophysiology, possibly via the region's established role in fear extinction circuitry. Use-dependent myelination or other secondary compensatory changes in response to heightened demands for threat appraisal and emotion regulation may be involved. PMID:26981581

  15. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism.

    PubMed Central

    Di Minno, G; Davì, G; Margaglione, M; Cirillo, F; Grandone, E; Ciabattoni, G; Catalano, I; Strisciuglio, P; Andria, G; Patrono, C

    1993-01-01

    Homocystinuria due to homozygous cystathionine beta-synthase deficiency is an inborn error of metabolism characterized by a high incidence of thrombosis and premature atherosclerosis. We evaluated TXA2 biosynthesis in vivo and several in vitro tests of platelet function in 11 homocystinuric patients and 12 healthy controls. In vitro, patients' platelet aggregation was within control values as were TXB2 formation, fibrinogen binding, and ATP secretion in response to thrombin. In contrast, the urinary excretion of 11-dehydro-TXB2, a major enzymatic derivative of TXA2, was > 2 SD of controls in all patients (1,724 +/- 828 pg/mg creatinine, mean +/- SD, in patients vs. 345 +/- 136 in controls, P < 0.001). The administration to four patients of low-dose aspirin (50 mg/d for 1 wk) reduced metabolite excretion by > 80%. The recovery of 11-dehydro-TXB2 excretion over the 10 d that followed aspirin cessation occurred with a pattern consistent with the entry into the circulation of platelets with intact cyclooxygenase activity. Prolonged partial reduction in the abnormally high excretion of both 11-dehydro-TXB2 and 2,3-dinor-TXB2, was also observed in seven patients who ingested 500 mg daily for 3 wk of the antioxidant drug probucol. These results provide evidence for enhanced thromboxane biosynthesis in homocystinuria and for its partial dependence on probucol-sensitive mechanisms. Furthermore, the elevated TXA2 formation in homocystinuria is likely to reflect, at least in part, in vivo platelet activation. PMID:8376592

  16. Emphysema and mechanical stress-induced lung remodeling.

    PubMed

    Suki, Béla; Sato, Susumu; Parameswaran, Harikrishnan; Szabari, Margit V; Takahashi, Ayuko; Bartolák-Suki, Erzsébet

    2013-11-01

    Transpulmonary pressure and the mechanical stresses of breathing modulate many essential cell functions in the lung via mechanotransduction. We review how mechanical factors could influence the pathogenesis of emphysema. Although the progression of emphysema has been linked to mechanical rupture, little is known about how these stresses alter lung remodeling. We present possible new directions and an integrated multiscale view that may prove useful in finding solutions for this disease.

  17. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    PubMed

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease.

  18. Abnormal serum lipid profile in Brazilian police officers with post-traumatic stress disorder

    PubMed Central

    Maia, Deborah Bezerra; Marmar, Charles R; Mendlowicz, Mauro V; Metzler, Thomas; Nóbrega, Augusta; Peres, Mhara C; Coutinho, Evandro S; Volchan, Eliane; Figueira, Ivan

    2013-01-01

    Background To measure the serum lipid composition of a sample of Brazilian police officers with and without PTSD regularly exposed to potentially traumatic situations. Methods A cross-sectional survey was conducted with 118 active duty male police officers. Serum concentrations for total cholesterol, LDL-C, HDL-C, and triglycerides were enzymatically determined. Body mass index (BMI) was obtained for each participant. Results Officers with PTSD exhibited significantly higher serum total cholesterol, LDL-C and triglycerides levels than those without PTSD. Total cholesterol and triglycerides, but not LDL-C, remained associated with PTSD diagnosis after controlling for confounding influences (i.e. socio-demographics, BMI, and tobacco, alcohol and medication use). Limitations The sample size was small. A nutritional interview was employed instead of established scales to assess alimentary habits, tobacco or alcohol consumption. A self-report screening tool was used to assess the prevalence of PTSD. Conclusions The association between PTSD and abnormal serum lipid profile and a tendency to exhibit higher BMI suggests that individuals with PTSD may be at increased risk for developing metabolic syndrome, a condition that by itself could account for many of the most serious PTSD-related physical health problems. PMID:17888517

  19. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  20. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  1. Dynamics of mechanical signal transmission through prestressed stress fibers.

    PubMed

    Hwang, Yongyun; Barakat, Abdul I

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  2. Magnetic Barkhausen noise: Stress-dependent mechanisms in steel

    SciTech Connect

    Krause, T.W.; Pulfer, N.; Weyman, P.; Atherton, D.L.

    1996-09-01

    Angular dependent magnetic Barkhausen noise energy signal measurements were performed on two similar pipeline steel samples up to tensile stresses of 330 MPa. Variations between the stress dependence of the energy signals at five investigated positions were interpreted in terms of the relative proportion of three stress-dependent mechanisms for modifying the magnetic properties of steel. These were: the change in the number and in the orientation of 180{degree} domain walls and the modification of pinning barriers.

  3. [Molecular mechanisms for signal-transmission of mechanical stress into bone-forming cells].

    PubMed

    Hakeda, Yoshiyuki; Kumegawa, Masayoshi

    2003-04-01

    One function of bone in organism is to mechanically support the body. The bone is always exposed to mechanical stress such as gravity and locomotion, and the shape of bone is adapted to the mechanical loading. Mechanical loading on bone generates extracellular deformation and fluid flow, and the mechanical stimuli are translated to mechanical signals such as mechanical strain and fluid shear stress. Bone-forming cells such as osteocytes and osteoblasts are mechanosensors. When these cells receive the mechanical stress, they stimulate the production of local regulators for bone metabolism such as prostaglandins, and various growth factors and cytokines. By the actions of these factors on bone-forming cells and bone-resorbing cells in bone microenvironment, the bone metabolism is turn over in conformity with the mechanical stress.

  4. Diverse system stresses: common mechanisms of chromosome fragmentation.

    PubMed

    Stevens, J B; Abdallah, B Y; Liu, G; Ye, C J; Horne, S D; Wang, G; Savasan, S; Shekhar, M; Krawetz, S A; Hüttemann, M; Tainsky, M A; Wu, G S; Xie, Y; Zhang, K; Heng, H H Q

    2011-06-30

    Chromosome fragmentation (C-Frag) is a newly identified MCD (mitotic cell death), distinct from apoptosis and MC (mitotic catastrophe). As different molecular mechanisms can induce C-Frag, we hypothesize that the general mechanism of its induction is a system response to cellular stress. A clear link between C-Frag and diverse system stresses generated from an array of molecular mechanisms is shown. Centrosome amplification, which is also linked to diverse mechanisms of stress, is shown to occur in association with C-Frag. This led to a new model showing that diverse stresses induce common, MCD. Specifically, different cellular stresses target the integral chromosomal machinery, leading to system instability and triggering of MCD by C-Frag. This model of stress-induced cell death is also applicable to other types of cell death. The current study solves the previously confusing relationship between the diverse molecular mechanisms of chromosome pulverization, suggesting that incomplete C-Frag could serve as the initial event responsible for forms of genome chaos including chromothripsis. In addition, multiple cell death types are shown to coexist with C-Frag and it is more dominant than apoptosis at lower drug concentrations. Together, this study suggests that cell death is a diverse group of highly heterogeneous events that are linked to stress-induced system instability and evolutionary potential.

  5. Surge Nozzle NDE Specimen Mechanical Stress Improvement Analysis

    SciTech Connect

    Fredette, Lee F.

    2011-07-14

    The purpose of this project was to perform a finite element analysis of a pressurized water reactor pressurizer surge nozzle mock-up to predict both the weld residual stresses created in its construction and the final stress state after the application of the Mechanical Stress Improvement Process (MSIP). Strain gages were applied to the inner diameter of the mock-up to record strain changes during the MSIP. These strain readings were used in an attempt to calculate the final stress state of the mock-up as well.

  6. Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    PubMed

    Joseph, Leroy C; Barca, Emanuele; Subramanyam, Prakash; Komrowski, Michael; Pajvani, Utpal; Colecraft, Henry M; Hirano, Michio; Morrow, John P

    2016-01-01

    Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  7. Physical activity, stress reduction, and mood: insight into immunological mechanisms.

    PubMed

    Hamer, Mark; Endrighi, Romano; Poole, Lydia

    2012-01-01

    Psychosocial factors, such as chronic mental stress and mood, are recognized as an important predictor of longevity and wellbeing. In particular, depression is independently associated with cardiovascular disease and all-cause mortality, and is often comorbid with chronic diseases that can worsen their associated health outcomes. Regular exercise is thought to be associated with stress reduction and better mood, which may partly mediate associations between depression, stress, and health outcomes. The underlying mechanisms for the positive effects of exercise on wellbeing remain poorly understood. In this overview we examine epidemiological evidence for an association between physical activity and mental health. We then describe the exercise withdrawal paradigm as an experimental protocol to study mechanisms linking exercise, mood, and stress. In particular we will discuss the potential role of the inflammatory response as a central mechanism.

  8. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    PubMed Central

    Miao, Xiao

    2017-01-01

    Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS) production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease. PMID:28265339

  9. Mechanisms of Abnormal Cell-Extracellular Matrix Interactions in Human Breast Cancer

    DTIC Science & Technology

    1999-09-01

    plectin, bullous pemphigoid antigen 1 (BPAG1) and envoplakin (30). While desmoplakin and BPAG1 are constituents of desmosome and hemidesomsome...coil proteins (30). Loss of plectin function, as in the case with BPAG1, has been linked to skin diseases such as epidermolysis bullosa possibly...caused by disruption of anchorage site of keratin filaments to hemidesmosomes (37). On the other hand, abnormal expression of desmosomal proteins such as

  10. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress

    PubMed Central

    Spencer, Sarah J.

    2013-01-01

    Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal) nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA) axis, the endocrine arm of the body's response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and/or stressful events during critical windows of early development can alter glucocorticoid (GC) regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors. PMID:23785312

  11. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    PubMed Central

    Sandi, Carmen; Pinelo-Nava, M. Teresa

    2007-01-01

    Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects) described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type) in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge) or extrinsic (induced by conditions completely unrelated to the cognitive task), tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner), while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect). Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects. PMID:18060012

  12. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  13. Disorders of sexual development and abnormal early development in domestic food-producing mammals: the role of chromosome abnormalities, environment and stress factors.

    PubMed

    Favetta, L A; Villagómez, D A F; Iannuzzi, L; Di Meo, G; Webb, A; Crain, S; King, W A

    2012-01-01

    The management of disorders of sexual development (DSD) in humans and domestic animals has been the subject of intense interest for decades. The association between abnormal chromosome constitutions and DSDs in domestic animals has been recorded since the beginnings of conventional cytogenetic analysis. Deviated karyotypes consisting of abnormal sex chromosome sets and/or the coexistence of cells with different sex chromosome constitutions in an individual seem to be the main causes of anomalies of sex determination and sex differentiation. In recent years, a growing interest has developed around the environmental insults, such as endocrine-disrupting compounds (EDC) and heat stressors, which affect fertility, early embryonic development and, in some instances, directly the sex ratio and/or the development of 1 specific sex versus the other. A variety of chemical compounds present in the environment at low doses has been shown to have major effects on the reproductive functions in human and domestic animals following prolonged exposure. In this review, we present an overview of congenital/chromosomal factors that are responsible for the DSDs and link them and the lack of proper embryonic development to environmental factors that are becoming a major global concern.

  14. Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease.

    PubMed

    Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista

    2016-11-01

    Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms.

  15. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  16. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    PubMed

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  17. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  18. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  19. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  20. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  1. Differential integrative omic analysis for mechanism insights and biomarker discovery of abnormal Savda syndrome and its unique Munziq prescription.

    PubMed

    Guo, Xia; Bakri, Iskandar; Abudula, Abulizi; Arken, Kalbinur; Mijit, Mahmut; Mamtimin, Batur; Upur, Halmurat

    2016-06-14

    Research has shown that many cancers have acommon pathophysiological origin and often present with similar symptoms. In terms of Traditional Uighur Medicine (TUM) Hilit (body fluid) theory, abnormal Savda syndrome (ASS) formed by abnormal Hilit is the common phenotype of complex diseases and in particular tumours. Abnormal Savda Munziq (ASMq), one representative of TUM, has been effective in the treatment of cancer since ancient times. Despite the physiopathology of ASS, the relationship between causative factors and the molecular mechanism of ASMq are not fully understood. The current study expanded upon earlier work by integrating traditional diagnostic approaches with others utilizing systems biology technology for the analysis of proteomic (iTRAQ) and metabolomic ((1)H-NMR) profiles of Uighur Medicine target organ lesion (liver) tumours. The candidate proteins were analyzed by enrichment analysis of the biological process and biomarker filters. Subsequently, 3Omics web-based tools were used to determine the relationships between proteins and appropriate metabolites. ELISA assay and IHC methods were used to verify the proteomic result; the protein von Willebrand factor (vWF) may be the "therapeutic window" of ASMq and biomarkers of ASS. This study is likely to be of great significance for the standardization and modernization of TUM.

  2. Differential integrative omic analysis for mechanism insights and biomarker discovery of abnormal Savda syndrome and its unique Munziq prescription

    PubMed Central

    Guo, Xia; Bakri, Iskandar; Abudula, Abulizi; Arken, Kalbinur; Mijit, Mahmut; Mamtimin, Batur; Upur, Halmurat

    2016-01-01

    Research has shown that many cancers have acommon pathophysiological origin and often present with similar symptoms. In terms of Traditional Uighur Medicine (TUM) Hilit (body fluid) theory, abnormal Savda syndrome (ASS) formed by abnormal Hilit is the common phenotype of complex diseases and in particular tumours. Abnormal Savda Munziq (ASMq), one representative of TUM, has been effective in the treatment of cancer since ancient times. Despite the physiopathology of ASS, the relationship between causative factors and the molecular mechanism of ASMq are not fully understood. The current study expanded upon earlier work by integrating traditional diagnostic approaches with others utilizing systems biology technology for the analysis of proteomic (iTRAQ) and metabolomic (1H-NMR) profiles of Uighur Medicine target organ lesion (liver) tumours. The candidate proteins were analyzed by enrichment analysis of the biological process and biomarker filters. Subsequently, 3Omics web-based tools were used to determine the relationships between proteins and appropriate metabolites. ELISA assay and IHC methods were used to verify the proteomic result; the protein von Willebrand factor (vWF) may be the “therapeutic window” of ASMq and biomarkers of ASS. This study is likely to be of great significance for the standardization and modernization of TUM. PMID:27296761

  3. Neuroendocrine mechanisms for immune system regulation during stress in fish.

    PubMed

    Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo

    2014-10-01

    In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production.

  4. Microstructural stress relaxation mechanics in functionally different tendons.

    PubMed

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

  5. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  6. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  7. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference.

    PubMed

    Melcher, Tobias; Falkai, Peter; Gruber, Oliver

    2008-11-01

    In the present article, we review functional neuroimaging studies on interference processing and performance monitoring in three groups of psychiatric disorders, (1) mood disorders, (2) schizophrenia, and (3) obsessive-compulsive disorder (OCD). Ad (1) Behavioral performance measures suggest an impaired interference resolution capability in symptomatic bipolar disorder patients. A series of neuroimaging analyses found alterations in the ACC-DLPFC system in mood disorder (unipolar depressed and bipolar) patients, putatively reflective of an abnormal interplay of monitoring and executive neurocognitive functions. Other studies of euthymic bipolar patients showed relatively decreased interference-related activation in rostroventral PFC which conceivably underlies defective inhibitory control. Ad (2) Behavioral Stroop studies revealed a specific performance pattern of schizophrenia patients (normal RT interference but increased error interference and RT facilitation) suggestive of a deficit in ignoring irrelevant (word) information. Moreover, reduced/absent behavioral post-error and post-conflict adaptation effects suggest alterations in performance monitoring and/or adjustment capability in these patients. Neuroimaging findings converge to suggest a disorder-related abnormal neurophysiology in ACC which consistently showed conflict- and error-related hypoactivation that, however, appeared to be modulated by different factors. Moreover, studies suggest a specific deficit in context processing in schizophrenia, evidently related to activation reduction in DLPFC. Ad (3) Behavioral findings provide evidence for impaired interference resolution in OCD. Neuroimaging results consistently showed conflict- and error-related ACC hyperactivation which--conforming OCD pathogenesis models--can be conclusively interpreted as reflecting overactive performance monitoring. Taken together, interference resolution and performance monitoring appeared to be fruitful concepts in the

  8. Intraplate stress field in South America from earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Assumpção, Marcelo; Dias, Fábio L.; Zevallos, Ivan; Naliboff, John B.

    2016-11-01

    We present an updated compilation of earthquake focal mechanisms in Brazil together with focal mechanisms from the sub-Andean region (mainly from global CMT catalogs). All earthquakes in the sub-Andean region show reverse (majority) or strike-slip faulting mechanisms. Focal mechanisms in Brazil show reverse, strike-slip and normal faulting. Focal mechanisms of nearby earthquakes in the same tectonic environment were grouped and inverted for the stress tensor. In the sub-Andean region, stresses are compressional, as expected, with the principal major compression (S1) roughly E-W, on average. A slight rotation of S1 can be observed and is controlled by the orientation of the Andean plateau. In the sub-Andean region, the intermediate principal stress (S2) is also compressional (i.e., larger than the lithostatic pressure, Sv), a feature that is not always reproduced in numerical models published in the literature. In mid-plate South America stresses seem to vary in nature and orientation. In SE Brazil and the Chaco-Pantanal basins, S1 tends to be oriented roughly E-W with S2 approximately equal to S3. This stress pattern changes to purely compressional (both SHmax and Shmin larger than Sv) in the São Francisco craton. A rotation of SHmax from E-W to SE-NW is suggested towards the Amazon region. Along the Atlantic margin, the regional stresses are very much affected by coastal effects (due to continent/ocean spreading stresses as well as flexural effects from sediment load at the continental margin). This coastal effect tends to make SHmax parallel to the coastline and Shmin (usually S3) perpendicular to the coastline. Few breakout data and in-situ measurements are available in Brazil and are generally consistent with the pattern derived from the earthquake focal mechanisms. Although numerical models of global lithospheric stresses tend to reproduce the main large-scale features in most mid-plate areas, the S1 rotation from ∼E-W in SE Brazil to SE-NW in the Amazon

  9. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves.

    PubMed

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-04-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.

  10. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    PubMed Central

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-01-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  11. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5.

  12. Elevated Shear Stress in Arteriovenous Fistulae: Is There Mechanical Homeostasis?

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2011-11-01

    Arteriovenous fistulae are created surgically to provide access for dialysis in patients with renal failure. The current hypothesis is that the rapid remodeling occurring after the fistula creation is in part a process to restore the mechanical stresses to some preferred level (i.e. mechanical homeostasis). Given that nearly 50% of fistulae require an intervention after one year, understanding the altered hemodynamic stress is important in improving clinical outcomes. We perform numerical simulations of four patient-specific models of functioning fistulae reconstructed from 3D Doppler ultrasound scans. Our results show that the vessels are subjected to `normal' shear stresses away from the anastomosis; about 1 Pa in the veins and about 2.5 Pa in the arteries. However, simulations show that part of the anastomoses are consistently subjected to very high shear stress (>10Pa) over the cardiac cycle. These elevated values shear stresses are caused by the transitional flows at the anastomoses including flow separation and quasiperiodic vortex shedding. This suggests that the remodeling process lowers shear stress in the fistula but that it is limited as evidenced by the elevated shear at the anastomoses. This constant insult on the arterialized venous wall may explain the process of late fistula failure in which the dialysis access become occluded after years of use. Supported by an R21 Grant from NIDDK (DK081823).

  13. [Mechanism of bone mass regulation by mechanical stress].

    PubMed

    Komori, Toshihisa

    2013-11-01

    Osteocytes establish an extensive intercellular and extracellular communication system via gap junction-coupled cell processes and canaliculi, through which cell processes pass throughout bone, and the communication system is extended to osteoblasts on the bone surface. The lacunocanalicular network formed by osteocytes is thought to be an ideal mechanosensory system and suitable for mechanotransduction, by which mechanical energy is converted into electrical and/or biochemical signals. The function of osteocytes cannot be estimated based on the events caused by osteocyte death, because apoptotic osteocytes are not phagocytosed, undergo secondary necrosis, and trigger a process of repair to replace the damaged bone. The analysis of the mice, in which both intercellular and extracellular communication systems are disturbed, shows that the osteocyte network mildly inhibits bone formation and mildly stimulates bone resorption in physiological condition. In unloaded condition, the functions of the osteocyte network are augmented, and it strongly inhibits bone formation and strongly stimulates bone resorption, at least in part, through the induction of Sost in osteocytes and Rankl in osteoblasts.

  14. Artery buckling affects the mechanical stress in atherosclerotic plaques

    PubMed Central

    2015-01-01

    Background Tortuous arteries are often seen in patients with hypertension and atherosclerosis. While the mechanical stress in atherosclerotic plaque under lumen pressure has been studied extensively, the mechanical stability of atherosclerotic arteries and subsequent effect on the plaque stress remain unknown. To this end, we investigated the buckling and post-buckling behavior of model stenotic coronary arteries with symmetric and asymmetric plaque. Methods Buckling analysis for a model coronary artery with symmetric and asymmetric plaque was conducted using finite element analysis based on the dimensions and nonlinear anisotropic materials properties reported in the literature. Results Artery with asymmetric plaque had lower critical buckling pressure compared to the artery with symmetric plaque and control artery. Buckling increased the peak stress in the plaque and led to the development of a high stress concentration in artery with asymmetric plaque. Stiffer calcified tissue and severe stenosis increased the critical buckling pressure of the artery with asymmetric plaque. Conclusions Arteries with atherosclerotic plaques are prone to mechanical buckling which leads to a high stress concentration in the plaques that can possibly make the plaques prone to rupture. PMID:25603490

  15. A model for hierarchical patterns under mechanical stresses

    NASA Astrophysics Data System (ADS)

    Corson, F.; Henry, H.; Adda-Bedia, M.

    2010-01-01

    We present a model for mechanically-induced pattern formation in growing biological tissues and discuss its application to the development of leaf venation networks. Drawing an analogy with phase transitions in solids, we use a phase field method to describe the transition between two states of the tissue, e.g. the differentiation of leaf veins, and consider a layered system where mechanical stresses are generated by differential growth. We present analytical and numerical results for one-dimensional systems, showing that a combination of growth and irreversibility gives rise to hierarchical patterns. Two-dimensional simulations suggest that such a mechanism could account for the hierarchical, reticulate structure of leaf venation networks, yet point to the need for a more detailed treatment of the coupling between growth and mechanical stresses.

  16. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  17. Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD).

    PubMed

    Mosconi, Matthew W; Luna, Beatriz; Kay-Stacey, Margaret; Nowinski, Caralynn V; Rubin, Leah H; Scudder, Charles; Minshew, Nancy; Sweeney, John A

    2013-01-01

    The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.

  18. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  19. Simultaneous generation of methane, carbon dioxide, and carbon monoxide from choline and ascorbic acid: a defensive mechanism against reductive stress?

    PubMed

    Ghyczy, Miklós; Torday, Csilla; Boros, Mihály

    2003-06-01

    Indirect evidence suggests that an abnormal increase in reducing power (reductive stress) may be associated with abnormal clinical states. We have recently proposed that under such conditions biomolecules with electrophilic methyl groups (EMGs) bound to positively charged nitrogen or sulfur moieties may act as electron acceptors and that this poising mechanism may entail the generation of methane gas. Here we report for the first time the generation of methane by rat liver mitochondria. We also report the formation of methane from choline in the presence of hydrogen peroxide, catalytic iron, and ascorbic acid. In this system, carbon monoxide and carbon dioxide are formed from the ascorbate molecule in parallel with methane generation. In view of these findings, we try to explain the essential role of biomolecules with EMG moiety. We hypothesize that this concerted reaction may be a defensive response to reductive stress and may provide the protection needed against redox imbalance in living systems.

  20. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M.

    2016-04-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes in the Dead Sea basin. The observed seismicity in the Dead Sea basin is divided into nine regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the adequate station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes, out of the 494 focal mechanisms, we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in agreement with the Eastern Boundary fault on the east side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of σ1 and σ2 or the switching of σ2 and σ3 as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  1. Nonlinear Viscoelastic Stress Transfer As a Possible Aftershock Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Shcherbakov, R.

    2014-12-01

    The earthquake dynamics can be modelled by employing the spring-block system [Burridge and Knopoff, 1967]. In this approach the earthquake fault is modelled by an array of blocks coupling the loading plate and the lower plate. The dynamics of the system is governed by the system of equations of motion for each block. It is possible to map this system into a cellular automata model, where the stress acting on each block is increased in each time step, and the failing process (frictional slip) is described by stress transfer rules [Olami et al, 1992]. The OFC model produces a power-law distribution for avalanche statistics but it is not capable of producing robust aftershock sequences which follow Omori's law.We propose a nonlinear viscoelastic stress transfer mechanism in the aftershock triggering. In a basic spring-block model setting, we introduce the nonlinear viscoelastic stress transfer between neighbouring blocks, as well as between blocks and the top loading plate. The shear stress of the viscous component is a power-law function of the velocity gradient with an exponent smaller or greater than 1 for the nonlinear viscoelasticity, or 1 for the linear case. The stress transfer function of this nonlinear viscoelastic model has a power-law time-dependent form. It features an instantaneous stress transmission triggering an instantaneous avalanche, which is the same as the original spring-block model; and a power-law relaxation term, which could trigger further aftershocks. We incorporate this nonlinear viscoelasticity mechanism in a lattice cellular automata model. The model could exhibit both the Gutenberg-Richter scaling for the frequency-magnitude distribution and a power-law time decay of aftershocks, which is in accordance with Omori's law. Our study suggests that the stress transfer function may play an important role in the aftershock triggering. We have found that the time decay curve of aftershocks is affected by the shape of the stress transfer function

  2. Mechanical stress-controlled tunable active frequency-selective surface

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  3. Microalbuminuria is associated with abnormal thoracic aortic mechanics in essential hypertension.

    PubMed

    Tsioufis, C P; Lambrou, S G; Stefanadis, C I; Antoniadis, D I; Kallikazaros, I E; Pitsavos, C E; Toutouzas, P K

    2000-10-01

    In a population of 162 patients with currently untreated essential hypertension, those with microalbuminuria (n = 75) had significantly impaired elastic properties of the proximal ascending thoracic aorta compared with their normoalbuminuric counterparts (n = 87), whereas urinary albumin excretion was a significant predictor of aortic mechanics in the entire population. Impaired aortic mechanics in microalbuminuric hypertensives were not fully accounted for by clustering of classic risk factors for atherosclerosis, and constitute a finding that may entail additional long-term cardiovascular risk in this subgroup of patients.

  4. Stress-strain state of mechanical rebar couplings

    SciTech Connect

    Klimenov, Vasilij; Ovchinnikov, Artem; Ustinov, Artem Danilson, Artem

    2016-01-15

    Mechanical rebar couplers are preferable in the advanced building construction and structural design of anti-seismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to-column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated anti-seismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.

  5. Cyclic Mechanical Stress and Trabecular Meshwork Cell Contractility

    PubMed Central

    Ramos, Renata F.; Sumida, Grant M.; Stamer, W. Daniel

    2009-01-01

    Purpose Ocular pulse decreases outflow facility of perfused anterior segments. However, the mechanism by which conventional outflow tissues respond to cyclic intraocular pressure oscillations is unknown. The purpose of the present study was to examine responses of trabecular meshwork (TM) cells to cyclic biomechanical stress in the presence and absence of compounds known to affect cell contractility. Methods To model flow in the juxtacanalicular region of the TM and to measure changes in transendothelial flow, human TM cell monolayers on permeable filters were perfused at a constant flow rate until reaching a stable baseline pressure and then were exposed to cyclic stress with an average amplitude of 2.7 mm Hg peak to peak at a 1-Hz frequency for 2 hours in the presence or absence of compounds known to affect cell contractility (isoproterenol, Y27632, pilocarpine, and nifedipine). Pressure was recorded continuously. Immunocytochemistry staining was used to determine filamentous actin stress fiber content, whereas Western blot analysis was used to measure the extent of myosin light chain (p-MLC) phosphorylation and ratio of filamentous to globular actin. Results Human TM cells respond to cyclic pressure oscillations by increasing mean intrachamber pressure (decreasing hydraulic conductivity) (126.13% ± 2.4%; P < 0.05), a response blocked in the presence of Y27632, a rho-kinase inhibitor (101.35 ± 0.59; P = 0.234), but not isoproterenol, pilocarpine, or nifedipine. Although mechanical stress appeared to have no effect, Y27632 decreased phosphorylated myosin light chain, filamentous/globular actin ratio, and stress fiber formation in TM cells. Conclusions Human TM cells respond to cyclic mechanical stress by increasing intrachamber pressure. Pulse-mediated effects are blocked by Y27632, implicating a role for Rho-kinase-mediated signaling and cellular contractility in ocular pulse-associated changes in outflow facility. PMID:19339745

  6. A redox mechanism underlying nucleolar stress sensing by nucleophosmin

    PubMed Central

    Yang, Kai; Wang, Ming; Zhao, Yuzheng; Sun, Xuxu; Yang, Yi; Li, Xie; Zhou, Aiwu; Chu, Huilin; Zhou, Hu; Xu, Jianrong; Wu, Mian; Yang, Jie; Yi, Jing

    2016-01-01

    The nucleolus has been recently described as a stress sensor. The nucleoplasmic translocation of nucleolar protein nucleophosmin (NPM1) is a hallmark of nucleolar stress; however, the causes of this translocation and its connection to p53 activation are unclear. Using single live-cell imaging and the redox biosensors, we demonstrate that nucleolar oxidation is a general response to various cellular stresses. During nucleolar oxidation, NPM1 undergoes S-glutathionylation on cysteine 275, which triggers the dissociation of NPM1 from nucleolar nucleic acids. The C275S mutant NPM1, unable to be glutathionylated, remains in the nucleolus under nucleolar stress. Compared with wild-type NPM1 that can disrupt the p53–HDM2 interaction, the C275S mutant greatly compromises the activation of p53, highlighting that nucleoplasmic translocation of NPM1 is a prerequisite for stress-induced activation of p53. This study elucidates a redox mechanism for the nucleolar stress sensing and may help the development of therapeutic strategies. PMID:27886181

  7. [Biologic mechanisms of mitotic abnormalities and chromosome number changes in malignant tumors].

    PubMed

    Hegyi, Katalin

    2015-12-01

    induction of aneuploid cell populations. These parallel effects finally increase the complexity of mitotic abnormalities and generate aneuploid cell populations.

  8. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy.

    PubMed

    Ornoy, Asher

    2007-07-01

    Reactive oxygen species (ROS) are involved in the etiology of numerous diseases including cardio-vascular diseases and diabetes mellitus. There is evidence that several teratogens affect the developing embryo by increasing its oxidative stress and, because of its relatively weak antioxidant defense, especially at the early stages of organogenesis, result in severe embryonic damage. This mechanism seems to operate in diabetes-induced embryonic damage as well as in the mechanism of teratogenicity caused by ionizing radiation, hypoxia, alcohol and cocaine use and cigarette smoking. We studied the role of oxidative stress in diabetic induced embryopathy, both in vivo and in vitro. Under diabetic condition there was a significant decrease in the activity of endogenous antioxidant enzymes and of vitamins C and E in the embryos and their yolk sacs. The lowest activity was observed in the malformed experimental embryos when compared to experimental embryos without anomalies. Similar results were obtained in the Cohen diabetic rats, where the diabetic prone (CDs) rats were unable to increase their antioxidant enzyme activity in spite of the diabetes. Studies performed by other investigators show similar results. Human and animal studies show that the main mechanism of fetal damage induced by high levels of ionizing irradiation, cocaine and alcohol abuse, hypoxia and cigarette smoking is also by increased embryonic oxidative stress. Similarly, several drugs exert their teratogenic activity via embryonic oxidative stress. Abnormal placentation may also cause enhanced placental oxidative stress, resulting in embryonic death, preeclampsia or congenital anomalies. Inability of the developing embryo to cope with that stress may result in embryonic death and/or congenital anomalies. Animal studies also show that a variety of antioxidants are effective in decreasing the damaging effects of heightened oxidative stress induced by teratogens. Effective antioxidants, which might also

  9. Endocrine mechanisms of stress-induced DHEA-secretion.

    PubMed

    Oberbeck, R; Benschop, R J; Jacobs, R; Hosch, W; Jetschmann, J U; Schürmeyer, T H; Schmidt, R E; Schedlowski, M

    1998-03-01

    Acute psychological stress of a first time parachute jump stimulated DHEA and cortisol secretion in healthy volunteers. A significant shift from cortisol to DHEA occurred during this stress exposure. This effect was more pronounced in subjects receiving the beta-adrenoceptor antagonist propranolol prior to the jump. In contrast, infusion of epinephrine (0.10 microgram/kg/min) or norepinephrine (0.15 microgram/kg/min) for 20 min neither affected DHEA plasma levels nor the DHEA/cortisol ratio. However, pretreatment with propranolol resulted in a significant increase of the DHEA/cortisol ratio upon infusion of the beta-adrenoceptor agonist epinephrine. These data demonstrate that during acute psychological stress stimulation of adrenal steroid release is accompanied by a shift towards DHEA. Augmentation of this effect by beta-adrenoceptor blockade indicates a beta-adrenoceptor-dependent mechanism affecting DHEA release.

  10. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth1

    PubMed Central

    Mainigi, Monica A.; Olalere, Devvora; Burd, Irina; Sapienza, Carmen; Bartolomei, Marisa; Coutifaris, Christos

    2013-01-01

    ABSTRACT Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes. PMID:24352558

  11. Decomposing mechanisms of abnormal saccade generation in schizophrenia patients: Contributions of volitional initiation, motor preparation, and fixation release.

    PubMed

    Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert

    2016-11-01

    Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task.

  12. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.

  13. Cellular Mechanisms of Oxidative Stress and Action in Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  14. Mechanical Stress Measurement During Thin-Film Fabrication

    NASA Technical Reports Server (NTRS)

    Broadway, David M. (Inventor)

    2017-01-01

    A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.

  15. Microtubules self-repair in response to mechanical stress

    NASA Astrophysics Data System (ADS)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  16. 2D FSI determination of mechanical stresses on aneurismal walls.

    PubMed

    Veshkina, Natalia; Zbicinski, Ireneusz; Stefańczyk, Ludomir

    2014-01-01

    In this study, a fluid-structure interaction analysis based on the application of patient-specific mechanical parameters of the aneurismal walls was carried out to predict the rupture side during an abdominal aortic aneurysm (AAA). Realistic geometry of the aneurysm was reconstructed from CT data acquired from the patient, and patient-specific flow conditions were applied as boundary conditions. A newly developed non-invasive methodology for determining the mechanical parameters of the patient-specific aortic wall was employed to simulate realistic aortic wall behaviors. Analysis of the results included time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and von Mises stress (VMS). Results of the TAWSS, OSI, and VMS were compared to identify the most probable region of the AAA's rupture. High OSI, which identified the region of wall degradation, coincided with the location of maximum VMS, meaning that the anterior part of the aneurismal wall was a potential region of rupture.

  17. Microtubules self-repair in response to mechanical stress

    PubMed Central

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-01-01

    Microtubules - which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport - can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of larger damages, which further decrease microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses. PMID:26343914

  18. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms.

    PubMed

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming.

  19. Stress Fracture Etiology as Dependent on Mechanically Induced Fluid Flow

    DTIC Science & Technology

    2004-08-01

    Martin, M . B. Schaffler, and C. H . Turner. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J.Bone Miner.Res. 12:6...ulnae (Adams et al., 1995). Endosteal and periosteal were labeled weekly using tetracycline solution (15 ing- new bone formation, as well as...Transport mechanism operating Huiskes, R.. Weinans, H ., Grootenboer, H.J., Dalstra, M ., Fudala. B., between blood supply and osteocytes in long bones

  20. Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets

    PubMed Central

    Hu, Xin; Tao, Chuanyuan; Gan, Qi; Zheng, Jun; Li, Hao; You, Chao

    2016-01-01

    Intracerebral hemorrhage (ICH) is associated with the highest mortality and morbidity despite only constituting approximately 10–15% of all strokes. Complex underlying mechanisms consisting of cytotoxic, excitotoxic, and inflammatory effects of intraparenchymal blood are responsible for its highly damaging effects. Oxidative stress (OS) also plays an important role in brain injury after ICH but attracts less attention than other factors. Increasing evidence has demonstrated that the metabolite axis of hemoglobin-heme-iron is the key contributor to oxidative brain damage after ICH, although other factors, such as neuroinflammation and prooxidases, are involved. This review will discuss the sources, possible molecular mechanisms, and potential therapeutic targets of OS in ICH. PMID:26843907

  1. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death.

  2. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis.

    PubMed

    Chapman, Gavin; Sparrow, Duncan B; Kremmer, Elisabeth; Dunwoodie, Sally L

    2011-03-01

    Mutations in the DELTA-LIKE 3 (DLL3) gene cause the congenital abnormal vertebral segmentation syndrome, spondylocostal dysostosis (SCD). DLL3 is a divergent member of the DSL family of Notch ligands that does not activate signalling in adjacent cells, but instead inhibits signalling when expressed in the same cell as the Notch receptor. Targeted deletion of Dll3 in the mouse causes a developmental defect in somite segmentation, and consequently vertebral formation is severely disrupted, closely resembling human SCD. In contrast to the canonical Notch signalling pathway, very little is known about the mechanism of cis-inhibition by DSL ligands. Here, we report that Dll3 is not presented on the surface of presomitic mesoderm (PSM) cells in vivo, but instead interacts with Notch1 in the late endocytic compartment. This suggests for the first time a mechanism for Dll3-mediated cis-inhibition of Notch signalling, with Dll3 targeting newly synthesized Notch1 for lysosomal degradation prior to post-translational processing and cell surface presentation of the receptor. An inhibitory role for Dll3 in vivo is further supported by the juxtaposition of Dll3 protein and Notch1 signalling in the PSM. Defining a mechanism for cis-inhibition of Notch signalling by Dll3 not only contributes greatly to our understanding of this ligand's function during the formation of the vertebral column, but also provides a paradigm for understanding how other ligands of Notch cis-inhibit signalling.

  3. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences.

    PubMed

    Tezel, Gülgün

    2006-09-01

    Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. In addition, oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma.

  4. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  5. Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience.

    PubMed

    Ménard, Caroline; Pfau, Madeline L; Hodes, Georgia E; Russo, Scott J

    2017-01-01

    Diagnostic criteria for mood disorders including major depressive disorder (MDD) largely ignore biological factors in favor of behavioral symptoms. Compounding this paucity of psychiatric biomarkers is a need for therapeutics to adequately treat the 30-50% of MDD patients who are unresponsive to traditional antidepressant medications. Interestingly, MDD is highly prevalent in patients suffering from chronic inflammatory conditions, and MDD patients exhibit higher levels of circulating pro-inflammatory cytokines. Together, these clinical findings suggest a role for the immune system in vulnerability to stress-related psychiatric illness. A growing body of literature also implicates the immune system in stress resilience and coping. In this review, we discuss the mechanisms by which peripheral and central immune cells act on the brain to affect stress-related neurobiological and neuroendocrine responses. We specifically focus on the roles of pro-inflammatory cytokine signaling, peripheral monocyte infiltration, microglial activation, and hypothalamic-pituitary-adrenal axis hyperactivity in stress vulnerability. We also highlight recent evidence suggesting that adaptive immune responses and treatment with immune modulators (exogenous glucocorticoids, humanized antibodies against cytokines) may decrease depressive symptoms and thus represent an attractive alternative to the current antidepressant treatments.

  6. Mechanisms involved in BACE upregulation associated to stress.

    PubMed

    Martisova, Eva; Solas, Maite; Gerenu, Gorka; Milagro, Fermin I; Campion, Javier; Ramirez, Maria J

    2012-09-01

    The objective of the present work was to study a purported involvement of stress in amyloid pathology through the modulation of BACE expression. Early-life stressed rats (maternal separation, MS) showed significant increases in corticosterone levels, BACE expression and Aβ levels. The CpG7 site of the BACE promoter was significantly hypomethylated in MS, and corticosterone levels negatively correlated to the methylation status of CpG7. The activation of the stress-activated protein kinase JNK was also increased in MS rats. In SHSY-5Y neuroblastoma cells, corticosterone induced a rapid increase in BACE expression that was abolished by specific inhibiton of JNK activation or by spironolactone, a mineralocorticoid receptor antagonist, but not by mifepristone, a glucocorticoid receptor antagonist. Corticosterone was also able to increase pJNK expression and this effect was fully reverted by spironolactone. Mice chronically treated with corticosterone showed increased BACE and pJNK expression. These increases were reverted by treatment with spironolactone or with a JNK inhibitor. It is suggested that increased corticosterone levels associated to stress lead to increase BACE transcription both through epigenetic mechanisms and activation of JNK.

  7. To explore the nature of mechanical stress of polymeric glass by stress relaxation tests

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Liu, Jianning; Lin, Panpan; Wang, Shi-Qing

    In a glassy polymer intermolecular interactions glue all segments into one single macroscopic piece thanks to attractive van der Waals bonding. The cohesive strength of such a primary structure is rather weak. If the molecular weight is sufficiently high, the covalent bonding can ''magically'' take part in the cohesion of the polymer glass through formation of a chain network. This picture of hybrid structure enables us to delineate the nature of mechanical stress. Under either extension or compression, we performed stress relaxation experiments in both pre-yield and post-yield regimes to illustrate how inter-segmental and intra-segmental components of stress emerge in the different regimes This work is supported, in part, by a NSF grant (DMR-EAGER-1444859).

  8. Reliability of OTFTs on flexible substrate: mechanical stress effect

    NASA Astrophysics Data System (ADS)

    Bensaid, B.; Boddaert, X.; Benaben, P.; Gwoziecki, R.; Coppard, R.

    2011-08-01

    Flexibility will significantly expand the application scope of electronics, particularly large-area electronics. Over the last 10 years, printed organic electronic is believed to be one of the next major technological breakthroughs in the field of microelectronic and the use of printing technology to process organic field-effect transistors (OFETs) opens promising perspectives for low-cost, large-area circuits integrated on flexible, plastic substrates. With amorphous polymer-based thin film transistors acceptable electrical performances are now achieved with relatively good stability at ambient air. In the literature a lot of work has been devoted to study degradation of device characteristics under bias stress conditions but only few papers deal with the mechanical behavior. In this paper, we review our first reliability results obtained on flexible organic thin film transistors under mechanical stresses. The variations of electrical characteristics under bending tests, both in compression and tension, have been studied. Using specific equipment, we have also evaluated the reliability of transistors under cyclic bending tests. The stress dependency of the transfer characteristic deviates from the one observed for inorganic material like silicon.

  9. Stress-dependent morphogenesis: continuum mechanics and truss systems.

    PubMed

    Muñoz, José J; Conte, Vito; Miodownik, Mark

    2010-08-01

    A set of equilibrium equations is derived for the stress-controlled shape change of cells due to the remodelling and growth of their internal architecture. The approach involves the decomposition of the deformation gradient into an active and a passive component; the former is allowed to include a growth process, while the latter is assumed to be hyperelastic and mass-preserving. The two components are coupled with a control function that provides the required feedback mechanism. The balance equations for general continua are derived and, using a variational approach, we deduce the equilibrium equations and study the effects of the control function on these equations. The results are applied to a truss system whose function is to simulate the cytoskeletal network constituted by myosin microfilaments and microtubules, which are found experimentally to control shape change in cells. Special attention is paid to the conditions that a thermodynamically consistent formulation should satisfy. The model is used to simulate the multicellular shape changes observed during ventral furrow invagination of the Drosophila melanogaster embryo. The results confirm that ventral furrow invagination can be achieved through stress control alone, without the need for other regulatory or signalling mechanisms. The model also reveals that the yolk plays a distinct role in the process, which is different to its role during invagination with externally imposed strains. In stress control, the incompressibility constraint of the yolk leads, via feedback, to the generation of a pressure in the ventral zone of the epithelium that eventually eases its rise and internalisation.

  10. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms

    PubMed Central

    Ramu, Vemanna S.; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses. PMID:27314499

  11. Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism.

    PubMed

    Baskin-Sommers, Arielle R; Foti, Dan

    2015-11-01

    A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. In the current review, we (a) describe the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotypes and improve the prediction of onset and recovery of these disorders.

  12. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms

    PubMed Central

    McGuinness, Adam John Anthony; Sapey, Elizabeth

    2017-01-01

    Markers of oxidative stress are increased in chronic obstructive pulmonary disease (COPD) and reactive oxygen species (ROS) are able to alter biological molecules, signaling pathways and antioxidant molecule function, many of which have been implicated in the pathogenesis of COPD. However, the involvement of ROS in the development and progression of COPD is not proven. Here, we discuss the sources of ROS, and the defences that have evolved to protect against their harmful effects. We address the role that ROS may have in the development and progression of COPD, as well as current therapeutic attempts at limiting the damage they cause. Evidence has indicated that the function of several key cells appears altered in COPD patients, and expression levels of important oxidant and antioxidant molecules may be abnormal. Therapeutic trials attempting to restore equilibrium to these molecules have not impacted upon all facets of disease and whilst the theory behind ROS influence in COPD appears sound, current models testing relevant pathways to tissue damage are limited. The heterogeneity seen in COPD patients presents a challenge to our understanding, and further research is essential to identify potential targets and stratified COPD patient populations where ROS therapies may be maximally efficacious. PMID:28212273

  13. Interpreting plant responses to clinostating. I - Mechanical stresses and ethylene

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Wheeler, Raymond M.

    1981-01-01

    The possibility that the clinostat mechanical stresses (leaf flopping) induces ethylene production and, thus, the development of epinasty was tested by stressing vertical plants by constant gentle horizontal or vertical shaking or by a quick back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated by turning plants so that their stems were horizontal, rotating them quickly about the stem axis, and returning them to the vertical, with the treatment repeated every four minutes. It was found that horizontal and vertical shaking, twisting, intermittent horizontal rotating, and gentle hand shaking failed to induce epinasties that approached those observed on the slow clinostat. Minor epinasties were generated by vigorous hand-shaking (120 sec/day) and by daily application of Ag(+). Reducing leaf displacements by inverting plants did not significantly reduce the minor epinasty generated by vigorous hand-shaking.

  14. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  15. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  16. Oxidative Stress in Glaucomatous Neurodegeneration: Mechanisms and Consequences

    PubMed Central

    Tezel, Gülgün

    2007-01-01

    Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. It is also evident that oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma. PMID:16962364

  17. Immune mechanisms linked to depression via oxidative stress and neuroprogression.

    PubMed

    Bakunina, Nataliia; Pariante, Carmine M; Zunszain, Patricia A

    2015-01-10

    Emerging evidence suggests the significant role of inflammation and oxidative stress as main contributors to the neuroprogression that is observed in major depressive disorder (MDD), where patients show increased inflammatory and oxidative stress biomarkers. The process of neuroprogression includes stage-related neurodegeneration, cell death, reduced neurogenesis, reduced neuronal plasticity and increased autoimmune responses. Oxidative stress is a consequence of the biological imbalance between Reactive Oxygen Species (ROS) and antioxidants, leading to the alteration of biomolecules and the loss of control of the intracellular redox-related signaling pathways. ROS serve as crucial secondary messengers in signal transduction and significantly affect inflammatory pathways by activating NF-κB and MAPK family stress kinases. When present in excess, ROS inflict damage, affecting cellular constituents with the formation of pro-inflammatory molecules, such as malondialdehyde, 4-Hydroxynonenal, neoepitopes and damage-associated molecular patterns promoting immune response, and ultimately leading to cell death. The failure of cells to adapt to the changes in redox homeostasis and the subsequent cell death, together with the damage caused by inflammatory mediators, have been considered as major causes of neuroprogression and hence MDD. Both an activated immune-inflammatory system and increased oxidative stress act synergistically, complicating our understanding of the pathogenesis of depression. The cascade of antioxidative and inflammatory events is orchestrated by several transcription factors, with Nrf2 and NF-κB having particular relevance to MDD. This review focuses on potential molecular mechanisms through which impaired redox homeostasis and neuroinflammation can affect the neuronal environment and contribute to depression This article is protected by copyright. All rights reserved.

  18. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  19. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  20. The cytotoxic mechanism of glyoxal involves oxidative stress.

    PubMed

    Shangari, Nandita; O'Brien, Peter J

    2004-10-01

    Glyoxal is a reactive alpha-oxoaldehyde that is a physiological metabolite formed by lipid peroxidation, ascorbate autoxidation, oxidative degradation of glucose and degradation of glycated proteins. Glyoxal is capable of inducing cellular damage, like methylglyoxal (MG), but may also accelerate the rate of glycation leading to the formation of advanced glycation end-products (AGEs). However, the mechanism of glyoxal cytotoxicity has not been precisely defined. In this study we have focused on the cytotoxic effects of glyoxal and its ability to overcome cellular resistance to oxidative stress. Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, e.g. fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.

  1. Oxidative Stress during HIV Infection: Mechanisms and Consequences

    PubMed Central

    Kochetkov, Sergey N.; Starodubova, Elizaveta S.; Bartosch, Birke

    2016-01-01

    It is generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition, we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4+/CD8+ T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies associated with the nitrosative stress. PMID:27829986

  2. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo

    PubMed Central

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M.; Fleming, Braden C.; Deng, Jin; Wei, Lei

    2016-01-01

    Background Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. Purpose/Hypothesis The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Study Design Controlled laboratory study. Methods In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase–13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase–1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in

  3. Distinct mechanisms are utilized to induce stress sensor gadd45b by different stress stimuli.

    PubMed

    Zumbrun, Steven D; Hoffman, Barbara; Liebermann, Dan A

    2009-12-01

    The GADD45 family of proteins consists of three small proteins, GADD45A, GADD45B, and GADD45G, implicated in modulating the cellular response to genotoxic/physiological stressors. Despite similarities in sequence, structure and function, each gadd45 gene is induced differentially by different stress stimuli. Studies on stress-mediated induction of the gadd45 genes have predominantly focused on gadd45a, with knowledge of gadd45b and gadd45g regulation lacking. To generate a more complete understanding of the regulation of gadd45 genes, a comprehensive analysis of stress-mediated induction of human gadd45b has been carried out using human RKO colorectal carcinoma cells as a model system. Novel data indicate that gadd45b induction in RKO cells is regulated by distinct mechanisms in a stress-specific manner. Methylmethane sulfonate (MMS), a DNA alkylating agent, induces gadd45b transcription through a cohort of both constitutive and inducible bound factors, including NFY, Sp1 and Egr1. In contrast, in a hyperosmotic environment generated with sorbitol, gadd45b mRNA is induced exclusively by mRNA stabilization. These findings indicate that the stress-mediated induction of gadd45b is largely distinct from gadd45a. Furthermore, data obtained provide a novel paradigm for stress-response gene induction, indicating that gadd45b induction by distinct stressors, in the same cell type and under the same experimental settings, is differentially regulated at the level of mRNA transcription or mRNA stability. Importantly, this study also provides the groundwork to further examine the regulation of gadd45b expression in in vivo settings using animal models and tissues obtained from normal individuals and cancer patients prior to and after chemotherapeutic intervention.

  4. Built-In Mechanical Stress in Viral Shells

    PubMed Central

    Carrasco, C.; Luque, A.; Hernando-Pérez, M.; Miranda, R.; Carrascosa, J.L.; Serena, P.A.; de Ridder, M.; Raman, A.; Gómez-Herrero, J.; Schaap, I.A.T.; Reguera, D.; de Pablo, P.J.

    2011-01-01

    Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the ϕ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated ϕ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the ϕ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration. PMID:21320456

  5. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle

  6. Differential stress response mechanisms in right and left ventricles.

    PubMed

    Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2016-01-01

    Right ventricular (RV) failure is the major cause of death among patients with pulmonary hypertension. However, differences between the RV and left ventricle (LV) of the adult heart have not been defined, despite myocytes from these two ventricles originate from different progenitor cells. The lack of such knowledge interferes with developing therapeutic strategies to protect the RV. The goal of this study was to identify possible differences between stress responses in the RV and LV free walls of adult rats. We found that levels of angiogenesis and autophagy/mitophagy proteins are higher in the LV than in the RV. Thus, the LV may be more resistant to stress-induced damage. To test this, isolated rat hearts were subjected to biventricular working heart perfusion and ischemia/reperfusion (I/R) injury. However, I/R was found to cause apoptosis in both LV and RV to a similar extent. One mechanism of cardiac apoptosis involves downregulation of GATA4 transcription factor that controls gene transcription of anti-apoptotic Bcl-xL. Interestingly, only in the RV, I/R caused downregulation of GATA4 and Bcl-xL, suggesting that mechanisms of apoptosis may be different between the two ventricles. Levels of tropomyosin and troponin T were also found to be decreased in response to I/R only in the RV, but not in the LV. Downregulation of the GATA4/Bcl-xL axis and the reduction of tropomyosin and troponin T are RV-specific events that occur in response to stress. This information may be useful for designing RV-specific therapeutic strategies to treat RV failure in pulmonary hypertension patients.

  7. Neurobiological Mechanisms Contributing to Alcohol-Stress-Anxiety Interactions

    PubMed Central

    Silberman, Yuval; Bajo, Michal; Chappell, Ann M.; Christian, Daniel T.; Cruz, Maureen; Diaz, Marvin R.; Kash, Thomas; Lack, Anna K.; Messing, Robert O.; Siggins, George R.; Winder, Danny; Roberto, Marisa; McCool, Brian A.; Weiner, Jeff L.

    2009-01-01

    This article summarizes the proceedings of a symposium that was presented at a conference entitled “Alcoholism and Stress: A Framework for Future Treatment Strategies”. The conference was held in Volterra, Italy on May 6–9, 2008 and this symposium was chaired by Jeff L. Weiner. The overall goal of this session was to review recent findings that may shed new light on the neurobiological mechanisms that underlie the complex relationships between stress, anxiety, and alcoholism. Dr. Danny Winder described a novel interaction between D1 receptor activation and the CRF system that leads to an increase in glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Dr. Marisa Roberto presented recent data describing how PKCε, ethanol, and CRF interact to alter GABAergic inhibition in the central nucleus of the amygdala. Dr. Jeff Weiner presented recent advances in our understanding of inhibitory circuitry within the basolateral amygdala and how acute ethanol exposure enhances GABAergic inhibition in these pathways. Finally, Dr. Brian McCool discussed recent findings on complementary glutamatergic and GABAergic adaptations to chronic ethanol exposure and withdrawal in the basolateral amygdala. Collectively, these investigators have identified novel mechanisms through which neurotransmitter and neuropeptide systems interact to modulate synaptic activity in stress and anxiety circuits. Their studies have also begun to describe how acute and chronic ethanol exposure influence excitatory and inhibitory synaptic communication in these pathways. These findings point toward a number of novel neurobiological targets that may prove useful for the development of more effective treatment strategies for alcohol use disorders. PMID:19913194

  8. Neurobiological mechanisms contributing to alcohol-stress-anxiety interactions.

    PubMed

    Silberman, Yuval; Bajo, Michal; Chappell, Ann M; Christian, Daniel T; Cruz, Maureen; Diaz, Marvin R; Kash, Thomas; Lack, Anna K; Messing, Robert O; Siggins, George R; Winder, Danny; Roberto, Marisa; McCool, Brian A; Weiner, Jeff L

    2009-11-01

    This article summarizes the proceedings of a symposium that was presented at a conference entitled "Alcoholism and Stress: A Framework for Future Treatment Strategies." The conference was held in Volterra, Italy on May 6-9, 2008 and this symposium was chaired by Jeff L. Weiner. The overall goal of this session was to review recent findings that may shed new light on the neurobiological mechanisms that underlie the complex relationships between stress, anxiety, and alcoholism. Dr. Danny Winder described a novel interaction between D1 receptor activation and the corticotrophin-releasing factor (CRF) system that leads to an increase in glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Dr. Marisa Roberto presented recent data describing how protein kinase C epsilon, ethanol, and CRF interact to alter GABAergic inhibition in the central nucleus of the amygdala. Dr. Jeff Weiner presented recent advances in our understanding of inhibitory circuitry within the basolateral amygdala (BLA) and how acute ethanol exposure enhances GABAergic inhibition in these pathways. Finally, Dr. Brian McCool discussed recent findings on complementary glutamatergic and GABAergic adaptations to chronic ethanol exposure and withdrawal in the BLA. Collectively, these investigators have identified novel mechanisms through which neurotransmitter and neuropeptide systems interact to modulate synaptic activity in stress and anxiety circuits. Their studies have also begun to describe how acute and chronic ethanol exposure influence excitatory and inhibitory synaptic communication in these pathways. These findings point toward a number of novel neurobiological targets that may prove useful for the development of more effective treatment strategies for alcohol use disorders.

  9. Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L.

    PubMed

    Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru

    2015-12-01

    In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs.

  10. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis].

    PubMed

    Yukata, Kiminori; Takahashi, Mitsuhiko; Yasui, Natsuo

    2009-05-01

    It is generally accepted that moderate mechanical stress influences the course of fracture healing. A flexible fixation of the fractured site can induce fracture callus formation, whereas an unstable fixation can lead to a nonunion. The relationship between mechanical stress and the process of bone regeneration or healing remains incompletely understood. Distraction osteogenesis is a surgical technique that, using appropriate mechanical tension-stress, does not break the callus but rather it stimulates and maintains osteogenesis. The common principles of distraction osteogenesis are osteotomy and slow progressive distraction by an external fixation device. Interest in bone regeneration associated with mechanical stress might lead to better understanding of the fracture healing process.

  11. Effects of Left Ventricular Wall Motion Abnormality on Global and Regional Diastolic Function of the Left and Right Ventricles at Rest and After Stress

    PubMed Central

    Sharif, Dawod; Sharif-Rasslan, Amal; Odeh, Majed; Shahla, Camilia; Khalil, Amin; Rosenschien, Uri

    2014-01-01

    Background Diastolic dysfunction precedes systolic dysfunction in patients with coronary artery disease. The aim of the study was to evaluate the effects of left ventricular (LV) wall motion abnormality (WMA) on diastolic LV and right ventricular (RV) function at rest and after stress. Methods Fifty-nine subjects, 15 with LV-WMA (abnormal group) and 44 without (normal group), underwent dobutamine stress echocardiography (DSE) studies, in addition to evaluation of LV and RV diastolic function before and after DSE. Results Resting mitral flow parameters were similar. DSE increased peak A-wave velocities in both groups, and mitral color slope only in normal subjects. After DSE, E-wave peak velocities and mitral color slope were higher in normal subjects, P < 0.05. At rest and after DSE systolic and diastolic pulmonary vein velocities were similar in both groups; however, DSE increased these velocities only in normal subjects, P < 0.05. Regional E-wave peak velocities of LV were higher at rest in normal subjects, P < 0.05. Both LV and RV, regional peak E-wave velocities were not affected by DSE. After DSE, regional A-wave peak velocities increased in all (P < 0.01), except at the lateral region (P = 0.07). DSE increased trans-tricuspid velocities in both groups, P < 0.05. Resting A-wave velocities were higher in normal subjects, P < 0.01. Conclusions Global LV early diastolic filling parameters were not affected by LV-WMA at rest. LV-WMA blunted the response after stress. RV E-wave velocities increased after DSE, and were not affected by LV-WMA. LV-WMA reduced regional LV-E’ velocities at rest but not the reserve. A-wave velocities were not affected by WMA and increased after DSE.

  12. Relations among Detection of Syllable Stress, Speech Abnormalities, and Communicative Ability in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kargas, Niko; López, Beatriz; Morris, Paul; Reddy, Vasudevi

    2016-01-01

    Purpose: To date, the literature on perception of affective, pragmatic, and grammatical prosody abilities in autism spectrum disorders (ASD) has been sparse and contradictory. It is interesting to note that the primary perception of syllable stress within the word structure, which is crucial for all prosody functions, remains relatively unexplored…

  13. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis

    PubMed Central

    Lee, Elaine C.; Kim, Heejung; Ditano, Jennifer; Manion, Dacie; King, Benjamin L.; Strange, Kevin

    2016-01-01

    Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs. PMID:27111894

  14. Coping Mechanisms Utah Agriculture Teachers Use to Manage Teaching Related Stress

    ERIC Educational Resources Information Center

    Lawver, Rebecca G.; Smith, Kasee L.

    2014-01-01

    The purpose of this study was to examine the level of occupational stress among Utah agriculture teachers, and to determine the coping mechanisms utilized to manage teaching related stressful events. Teachers were asked to rank their level of occupational stress according to the scale used by the American Psychological Association Stress in…

  15. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    PubMed Central

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-01-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal. PMID:27477236

  16. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-08-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.

  17. Mechanical Properties of Gels; Stress from Confined Fluids

    SciTech Connect

    George W. Scherer

    2009-12-01

    Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in some applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof. Stephen

  18. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  19. Daily oral intake of theanine prevents the decline of 5-bromo-2'-deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress.

    PubMed

    Takarada, Takeshi; Nakamichi, Noritaka; Kakuda, Takami; Nakazato, Ryota; Kokubo, Hiroshi; Ikeno, Shinsuke; Nakamura, Saki; Hinoi, Eiichi; Yoneda, Yukio

    2015-03-01

    Posttraumatic stress disorder is a long-lasting psychiatric disease with the consequence of hippocampal atrophy in humans exposed to severe fatal stress. We demonstrated a positive correlation between the transient decline of 5-bromo-2'-deoxyuridine (BrdU) incorporation in the hippocampal dentate gyrus (DG) and long-lasting behavioral abnormalities in mice with traumatic stress. Here, we investigated pharmacological properties of theanine on the declined BrdU incorporation and abnormal behaviors in mice with traumatic stress. Prior daily oral administration of theanine at 50-500 mg/kg for 5 days significantly prevented the decline of BrdU incorporation, while theanine significantly prevented the decline in the DG even when administered for 5 days after stress. Consecutive daily administration of theanine significantly inhibited the prolonged immobility in mice with stress in forced swimming test seen 14 days later. Although traumatic stress significantly increased spontaneous locomotor activity over 30 min even when determined 14 days later, the increased total locomotion was significantly ameliorated following the administration of theanine at 50 mg/kg for 14 days after stress. These results suggest that theanine alleviates behavioral abnormalities together with prevention of the transient decline of BrdU incorporation in the hippocampal DG in adult mice with severe traumatic stress.

  20. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  1. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.

    PubMed

    Li, Gang; Zhang, Jianhua; Wang, Kan; Wang, Mingyu; Gao, Changqing; Ma, Chao

    2016-04-01

    The objective of this paper is to investigate mechanical behavior of porcine brain tissue with a series of rotational shear stress control experiments. To this end, several experiments including stress sweep tests, frequency sweep tests and quasi-static creep tests were designed and conducted with a standard rheometer (HAAKE RheoStress6000). The effects of the loading stress rates to mechanical properties of brain tissue were also studied in stress sweep tests. The results of stress sweep tests performed on the same brain showed that brain tissue had an obvious regional inhomogeneity and the mechanical damage occurred at the rotational shear stress of 10-15Pa. The experimental data from three different loading stress rates demonstrated that the mechanical behavior of porcine brain tissue was loading stress rate dependent. With the decrease of loading stress rate, a stiffer mechanical characteristic of brain tissue was observed and the occurrence of mechanical damage can be delayed to a higher stress. From the results of frequency sweep tests we found that brain tissue had almost completely elastic properties at high frequency area. The nonlinear creep response under the rotational shear stress of 1, 3, 5, 7 and 9Pa was shown in results of creep tests. A new nonlinear viscoelastic solid model was proposed for creep tests and matched well with the test data. Considering the regional differences, loading stress rates and test conditions effects, loss tangent tan δ in porcine brain tissue showed a high uniformity of 0.25-0.45.

  2. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  3. Evolution and mechanisms of plant tolerance to flooding stress

    PubMed Central

    Jackson, Michael B.; Ishizawa, Kimiharu; Ito, Osamu

    2009-01-01

    Background In recognition of the 200th anniversary of Charles Darwin's birth, this short article on flooding stress acknowledges not only Darwin's great contribution to the concept of evolution but also to the study of plant physiology. In modern biology, Darwin-inspired reductionist physiology continues to shed light on mechanisms that confer competitive advantage in many varied and challenging environments, including those where flooding is prevalent. Scope Mild flooding is experienced by most land plants but as its severity increases, fewer species are able to grow and survive. At the extreme, a highly exclusive aquatic lifestyle appears to have evolved numerous times over the past 120 million years. Although only 1–2% of angiosperms are aquatics, some of their adaptive characteristics are also seen in those adopting an amphibious lifestyle where flooding is less frequent. Lowland rice, the staple cereal for much of tropical Asia falls into this category. But, even amongst dry-land dwellers, or certain of their sub-populations, modest tolerance to occasional flooding is to be found, for example in wheat. The collection of papers summarized in this article describes advances to the understanding of mechanisms that explain flooding tolerance in aquatic, amphibious and dry-land plants. Work to develop more tolerant crops or manage flood-prone environments more effectively is also included. The experimental approaches range from molecular analyses, through biochemistry and metabolomics to whole-plant physiology, plant breeding and ecology. PMID:19145714

  4. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  5. Controlling stress corrosion cracking in mechanism components of ground support equipment

    NASA Technical Reports Server (NTRS)

    Majid, W. A.

    1988-01-01

    The selection of materials for mechanism components used in ground support equipment so that failures resulting from stress corrosion cracking will be prevented is described. A general criteria to be used in designing for resistance to stress corrosion cracking is also provided. Stress corrosion can be defined as combined action of sustained tensile stress and corrosion to cause premature failure of materials. Various aluminum, steels, nickel, titanium and copper alloys, and tempers and corrosive environment are evaluated for stress corrosion cracking.

  6. Physiological mechanisms used by fish to cope with salinity stress.

    PubMed

    Kültz, Dietmar

    2015-06-01

    Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg(-1)). However, some species tolerate up to 130 g kg(-1) salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg(-1). The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex

  7. Abnormality in Wnt Signaling is Causatively Associated with Oxidative Stress-Induced Intestinal Tumorigenesis in MUTYH-Null Mice

    PubMed Central

    Isoda, Takuro; Nakatsu, Yoshimichi; Yamauchi, Kazumi; Piao, Jingshu; Yao, Takashi; Honda, Hiroshi; Nakabeppu, Yusaku; Tsuzuki, Teruhisa

    2014-01-01

    MUTYH is a DNA glycosylase that excises adenine paired with 8-oxoguanine to prevent mutagenesis in mammals. Biallelic germline mutations of MUTYH have been found in patients predisposed to a recessive form of familial adenomatous polyposis (MAP: MUTYH-associated polyposis). We previously reported that Mutyh-deficient mice showed a high susceptibility to spontaneous and oxidative stress-induced intestinal adenoma/carcinoma. Here, we performed mutation analysis of the tumor-associated genes including Apc, Ctnnb1, Kras and Trp53 in the intestinal tumors of Mutyh-deficient mice. In the 62 tumors, we identified 25 mutations in Apc of 18 tumors and 36 mutations in Ctnnb1 of 36 tumors. Altogether, 54 out of the 62 tumors (87.1%) had a mutation in either Apc or Ctnnb1; no tumor displayed mutations simultaneously in the both genes. Similar to MAP, 60 out of 61 mutations (98.3%) were identified as G:C to T:A transversions of which 85% occurred at either AGAA or TGAA sequences. Immunohistochemical analyses revealed the accumulation of β-catenin in the nuclei of tumors. No mutation was found in either Kras or Trp53 in the tumors. These results indicate that the uncontrolled activation of Wnt signaling pathway is causatively associated with oxidative stress-induced intestinal tumorigenesis in the Mutyh-deficient mice. PMID:25170306

  8. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    SciTech Connect

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  9. Stress Management in Education: Warning Signs and Coping Mechanisms

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Only in recent years have researchers begun to study stress in the workplace. Psychologists and other stress analysts have discovered that the most trying professions are those that involve high pressure and serious responsibilities, often beyond the control of the individuals employed. Most interesting, the American Institute of Stress revealed…

  10. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  11. Molecular Mechanisms of Stress-Induced Myocardial Injury in a Rat Model Simulating Posttraumatic Stress Disorder

    PubMed Central

    Liu, Mi; Xu, Feifei; Tao, Tianqi; Song, Dandan; Li, Dong; Li, Yuzhen; Guo, Yucheng; Liu, Xiuhua

    2016-01-01

    ABSTRACT Objective Posttraumatic stress disorder (PTSD) is an independent risk factor for cardiovascular diseases. This study investigated the molecular mechanisms underlying myocardial injury induced by simulated PTSD. Methods Sprague-Dawley rats were randomly divided into two groups: control group (n = 18) and PTSD group (n = 30). The PTSD model was replicated using the single prolonged stress (SPS) method. On the 14th day poststress, the apoptotic cells in myocardium were assessed using both TUNEL method and transmission electron microscopy; the protein levels of the endoplasmic reticulum stress (ERS) molecules were measured by using Western blotting analysis. Results Exposure to SPS resulted in characteristic morphologic changes of apoptosis in cardiomyocytes assessed by transmission electron microscopy. Moreover, TUNEL staining was also indicative of the elevated apoptosis rate of cardiomyocytes from the SPS rats (30.69% versus 7.26%, p < .001). Simulated PTSD also induced ERS in myocardium, demonstrated by up-regulation of protein levels of glucose-regulated protein 78 (0.64 versus 0.26, p = .017), calreticulin (p = .040), and CCAAT/enhancer-binding protein-homologous protein (0.95 versus 0.43, p = .047), phosphorylation of protein kinase RNA–like ER kinase (p = .003), and caspase 12 activation (0.30 versus 0.06, p < .001) in myocardium from the SPS rats. The ratio of Bcl-2 to Bax decreased significantly in myocardium from the SPS rats (p = .005). Conclusions The ERS-related apoptosis mediated by the protein kinase RNA–like ER kinase/CCAAT/enhancer-binding protein-homologous protein and caspase 12 pathways may be associated with myocardial injury in a rat model simulating PTSD. This study may advance our understanding of how PTSD contributes to myocardial injury on a molecular level. PMID:27359173

  12. Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse, Addiction, and Relapse

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0126 TITLE: Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse , Addiction, and Relapse...DATES COVERED 30 Sep 2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse , Addiction...address stress and PTSD mechanisms as targets for pharmacotherapy of PTSD and alcohol abuse are proceeding on schedule . 15. SUBJECT TERMS PTSD, alcohol

  13. Effect of Mechanical Stress on Cotton Growth and Development

    PubMed Central

    Zhang, Zhiyong; Zhang, Xin; Wang, Sufang; Xin, Wanwan; Tang, Juxiang; Wang, Qinglian

    2013-01-01

    Abstract Agricultural crops experience diverse mechanical stimuli, which may affect their growth and development. This study was conducted to investigate the effects of mechanical stresses caused by hanging labels from the flower petioles (HLFP) on plant shape and cotton yields in four cotton varieties: CCRI 41, DP 99B, CCRC 21, and BAI 1. HLFP significantly reduced plant height by between 7.8% and 36.5% in all four lines and also significantly reduced the number of fruiting positions per plant in the CCRI 41, DP 99B and CCRC 21 lines. However, the number of fruiting positions in BAI 1 was unaffected. HLFP also significantly reduced the boll weight for all four cultivars and the seed cotton yields for CCRI 41, DP 99B and BAI 1. Conversely, it significantly increased the seed cotton yield for CCRC 21 by 11.2%. HLFP treatment did not significantly affect the boll count in the fruiting branches of the 1st and 2nd layers in any variety, but did significantly reduce those on the 3rd and 4th fruiting branch layers for CCRI 41 and DP 99B. Similar trends were observed for the number of bolls per FP. In general, HLFP reduced plant height and boll weight. However, the lines responded differently to HLFP treatment in terms of their total numbers of fruiting positions, boll numbers, seed cotton yields, etc. Our results also suggested that HFLP responses might be delayed for some agronomy traits of some cotton genotypes, and that hanging labels from early-opening flowers might influence the properties related with those that opened later on. PMID:24363813

  14. Electrocardiogram abnormalities among men with stress-related psychiatric disorders: implications for coronary heart disease and clinical research.

    PubMed

    Boscarino, J A; Chang, J

    1999-01-01

    Research suggests psychological distress could result in arterial endothelial injury and coronary heart disease (CHD). Studies also show Posttraumatic Stress Disorder (PTSD) victims have higher circulating catecholamines and other sympathoadrenal-neuroendocrine bioactive agents implicated in arterial damage. Here we analyzed resting 12-lead electrocardiographic (ECG) results among a national sample of 4,462 nonhospitalized male veterans (mean age = 38) about 20 years after military service by current posttraumatic stress (n = 54), general anxiety (n = 186), and depression (n = 157) disorders. ECGs were interpreted by board-certified cardiologists and summarized using the Minnesota Code Manual of Electrocardiographic Findings. Psychiatric disorders were diagnosed based on the Diagnostic Interview Schedule, Version III. Controlling for age, place of service, illicit drug use, medication use, race, body mass index, alcohol use, cigarette smoking, and education, PTSD (odds ratio [OR] = 2.23, 95% confidence interval [CI] = 1.17-4.26, p < 0.05), anxiety (OR = 1.51, 95% CI = 1.03-2.22, p < 0.05), and depression (OR = 1.71, 95% CI = 1.13-2.58, p < 0.01) were associated with having a positive ECG finding. Specific results indicate PTSD was associated with atrioventricular (AV) conduction defects (OR = 2.81, 95% CI = 1.03-7.66, p < 0.05) and infarctions (OR = 4.44, 95% CI = 1.20-16.43, p < 0.05), while depression was associated with arrhythmias (OR = 1.98, 95% CI = 1.22-3.23, p < 0.01). The PTSD associations for AV conduction defects and infarctions held, even after controlling for current anxiety and depression. These findings suggest psychological distress may result in CHD, because we controlled for obvious biases and confounders, the men studied had current PTSD due to combat exposures 20 years ago, combat exposure was associated with anxiety and depression among these men, and the men were disease free a military induction. These findings suggest the need for clinical

  15. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    PubMed Central

    Melo, Ailton; Monteiro, Larissa; Lima, Rute M. F.; de Oliveira, Diêgo M.; de Cerqueira, Martins D.; El-Bachá, Ramon S.

    2011-01-01

    The incidence and prevalence of neurodegenerative diseases (ND) increase with life expectancy. This paper reviews the role of oxidative stress (OS) in ND and pharmacological attempts to fight against reactive oxygen species (ROS)-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials. PMID:22191013

  16. Focal-contact clusterization of osteoblasts under mechanical stresses

    NASA Astrophysics Data System (ADS)

    Guignandon, A.; Akhouayri, O.; Laroche, N.; Alexandre, C.; Vico, L.

    We compared quantitatively vinculin-related adhesion parameters in osteoblastic cells submitted to opposite mechanical stress (i.e. low deformation and frequency strain regimens (strained condition) and microgravity exposure (relaxed condition). In both ROS 17/2.8 and rat primary osteoblastic cells, 1% cyclic deformations at 0.05 Hz during a daily 10 min episode over 7 days stimulated cell growth whereas relaxed ROS proliferated similarly to static culture (BC). We studied short term (up to 24 hrs) adaptation of focal contact re-organization in these two conditions. Strain induced a biphasic response comprising new focal contacts formation followed by their clusterization in both ROS and primary osteoblasts. Microgravity exposure induced a reduction in focal contact number and clusterization in ROS cells. To relate the proliferation (strain) or the survival (relaxed) status of ROS cells with focal contact organization, we inhibited ERKs proliferative-dependent pathway. Inhibition of proliferation by PD98059 was overcome although not fully restored by strain and strain-induced clusterization of vinculin positive contact still occurs in presence of PD98059 whereas the increase in focal contact number is abolished. In conclusion, we showed that focal contacts are mechanoeffectors and we suggested that their morphological organization might serve as a discriminant functional parameter between survival and proliferation status in ROS 17/2.8 osteoblastic cells.

  17. Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1.

    PubMed

    Zhu, Hongyan; Mingler, Melissa K; McBride, Melissa L; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Williams, Michael T; Vorhees, Charles V; Rothenberg, Marc E

    2010-09-01

    NPSR1 is a G protein coupled receptor expressed in multiple brain regions involved in modulation of stress. Central administration of NPS, the putative endogenous ligand of NPSR1, can induce hyperlocomotion, anxiolytic effects and activation of the HPA axis. The role of NPSR1 in the brain remains unsettled. Here we used NPSR1 gene-targeted mice to define the functional role of NPSR1 under basal conditions on locomotion, anxiety- and/or depression-like behavior, corticosterone levels, acoustic startle with prepulse inhibition, learning and memory, and under NPS-induced locomotor activation, anxiolysis, and corticosterone release. Male, but not female, NPSR1-deficient mice exhibited enhanced depression-like behavior in a forced swim test, reduced acoustic startle response, and minor changes in the Morris water maze. Neither male nor female NPSR1-deficient mice showed alterations of baseline locomotion, anxiety-like behavior, or corticosterone release after exposure to a forced swim test or methamphetamine challenge in an open-field. After intracerebroventricular (ICV) administration of NPS, NPSR1-deficient mice failed to show normal NPS-induced increases in locomotion, anxiolysis, or corticosterone release compared with WT NPS-treated mice. These findings demonstrate that NPSR1 is essential in mediating NPS effects on behavior.

  18. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  19. Adult Literacy Education Program Administrators' Perceptions of Occupational Stress and Coping Mechanisms

    ERIC Educational Resources Information Center

    Engelmann, Stephanie

    2014-01-01

    Job performance may be adversely affected by stress. Job stress is a primary contributor to serious physical and emotional health consequences. This quantitative study examined adult literacy program administrator perceptions of occupational stress and coping mechanisms related to job satisfaction, job efficacy, career longevity, and overall…

  20. Quantum-mechanical theory of stress and force

    NASA Astrophysics Data System (ADS)

    Nielsen, O. H.; Martin, Richard M.

    1985-09-01

    The stress theorem presented previously by the present authors is derived in detail and is related to the virial and force theorems. Stress fields are considered in two alternative forms, both of which give the same macroscopic stress and forces on nuclei when integrated over appropriate surfaces. A crucial concept is interactions that ``cross'' surfaces. Explicit forms of the stress field within the local-density approximation are given, together with a generalization of the approximate Liberman form for pressure. Reciprocal-space expressions and ab initio calculations are considered in detail in an accompanying paper.

  1. Mechanisms and Management of Stress Fractures in Physically Active Persons

    PubMed Central

    Romani, William A.; Gieck, Joe H.; Perrin, David H.; Saliba, Ethan N.; Kahler, David M.

    2002-01-01

    Objective: To describe the anatomy of bone and the physiology of bone remodeling as a basis for the proper management of stress fractures in physically active people. Data Sources: We searched PubMed for the years 1965 through 2000 using the key words stress fracture, bone remodeling, epidemiology, and rehabilitation. Data Synthesis: Bone undergoes a normal remodeling process in physically active persons. Increased stress leads to an acceleration of this remodeling process, a subsequent weakening of bone, and a higher susceptibility to stress fracture. When a stress fracture is suspected, appropriate management of the injury should begin immediately. Effective management includes a cyclic process of activity and rest that is based on the remodeling process of bone. Conclusions/Recommendations: Bone continuously remodels itself to withstand the stresses involved with physical activity. Stress fractures occur as the result of increased remodeling and a subsequent weakening of the outer surface ofthe bone. Once a stress fracture is suspected, a cyclic management program that incorporates the physiology of bone remodeling should be initiated. The cyclic program should allow the physically active person to remove the source of the stress to the bone, maintain fitness, promote a safe return to activity, and permit the bone to heal properly. PMID:16558676

  2. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues.

    PubMed

    Gjorevski, Nikolce; Boghaert, Eline; Nelson, Celeste M

    2012-04-01

    Epithelial-mesenchymal transition (EMT) is a phenotypic shift wherein epithelial cells lose or loosen attachments to their neighbors and assume a mesenchymal-like morphology. EMT drives a variety of developmental processes, but may also be adopted by tumor cells during neoplastic progression. EMT is regulated by both biochemical and physical signals from the microenvironment, including mechanical stress, which is increasingly recognized to play a major role in development and disease progression. Biological systems generate, transmit and concentrate mechanical stress into spatial patterns; these gradients in mechanical stress may serve to spatially pattern developmental and pathologic EMTs. Here we review how epithelial tissues generate and respond to mechanical stress gradients, and highlight the mechanisms by which mechanical stress regulates and patterns EMT.

  3. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    PubMed Central

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  4. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats.

    PubMed

    Mairesse, Jerome; Silletti, Viviana; Laloux, Charlotte; Zuena, Anna Rita; Giovine, Angela; Consolazione, Michol; van Camp, Gilles; Malagodi, Marithe; Gaetani, Silvana; Cianci, Silvia; Catalani, Assia; Mennuni, Gioacchino; Mazzetta, Alessandro; van Reeth, Olivier; Gabriel, Cecilia; Mocaër, Elisabeth; Nicoletti, Ferdinando; Morley-Fletcher, Sara; Maccari, Stefania

    2013-03-01

    Agomelatine is a novel antidepressant acting as an MT1/MT2 melatonin receptor agonist/5-HT2C serotonin receptor antagonist. Because of its peculiar pharmacological profile, this drug caters the potential to correct the abnormalities of circadian rhythms associated with mood disorders, including abnormalities of the sleep/wake cycle. Here, we examined the effect of chronic agomelatine treatment on sleep architecture and circadian rhythms of motor activity using the rat model of prenatal restraint stress (PRS) as a putative 'aetiological' model of depression. PRS was delivered to the mothers during the last 10 d of pregnancy. The adult progeny ('PRS rats') showed a reduced duration of slow wave sleep, an increased duration of rapid eye movement (REM) sleep, an increased number of REM sleep events and an increase in motor activity before the beginning of the dark phase of the light/dark cycle. In addition, adult PRS rats showed an increased expression of the transcript of the primary response gene, c-Fos, in the hippocampus just prior to the beginning of the dark phase. All these changes were reversed by a chronic oral treatment with agomelatine (2000 ppm in the diet). The effect of agomelatine on sleep was largely attenuated by treatment with the MT1/MT2 melatonin receptor antagonist, S22153, which caused PRS-like sleep disturbances on its own. These data provide the first evidence that agomelatine corrects sleep architecture and restores circadian homeostasis in a preclinical model of depression and supports the value of agomelatine as a novel antidepressant that resynchronizes circadian rhythms under pathological conditions.

  5. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    PubMed

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N-Acetyl l-cysteine (NAC) and l-N(G)-Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N-terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca(2+), activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo.

  6. Determining the stress field in active volcanoes using focal mechanisms

    NASA Astrophysics Data System (ADS)

    Massa, Bruno; D'Auria, Luca; Cristiano, Elena; De Matteo, Ada

    2016-11-01

    Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs), Campi Flegrei (217 FPSs) and Long Valley Caldera (38,000 FPSs). The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  7. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    SciTech Connect

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-15

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (−10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  8. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    NASA Astrophysics Data System (ADS)

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-01

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (-10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  9. Stresses, coping mechanisms and job satisfaction in general practitioner registrars.

    PubMed Central

    Chambers, R; Wall, D; Campbell, I

    1996-01-01

    BACKGROUND: There is concern about the morale of general practitioner registrars. There may be stress-provoking factors that could be avoided or minimized. AIMS: The aims of the study were to assess the sources of stress and job satisfaction of general practitioner registrars, to compare registrars' job satisfaction with that of established principals using a recently published survey and to identify registrars' usual responses to stress. METHOD: A postal questionnaire survey was sent to all 143 general practitioner registrars in the West Midlands Region. The main measures were: self-rating scales of stresses associated with work and training; the Warr, Cook and Wall job satisfaction scale; and self-reported responses to stress. RESULTS: A total of 118 (83%) general practitioner registrars responded. The most potent sources of stress were family-job conflict, working for the Membership of the Royal College of General Practitioners, patients' unrealistic expectations and disruption of social life. Registrars practised good coping responses to stress. Registrars in this study had significantly greater job satisfaction than general practitioner principals in a 1993 survey for three out of 10 items measured (responsibility given, hours of work and the job as a whole) and significantly worse scores for three items (recognition for good work, rate of pay and variety of work). CONCLUSIONS: Registrars have additional stresses to those of established principals because they need to study for examinations, learn new tasks in general practice and carry out their service commitments at a stage in life when many are newly married or have a young family. Training in stress management for general practitioner registrars is recommended. PMID:8983252

  10. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism

    PubMed Central

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G.F.; van der Linden, C. Gerard; Bai, Yuling

    2016-01-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na+ and Cl− accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant’s performance under the combination of abiotic and biotic stress. PMID:27436279

  11. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  12. Assessment of the ability of myocardial contrast echocardiography with harmonic power Doppler imaging to identify perfusion abnormalities in patients with Kawasaki disease at rest and during dipyridamole stress.

    PubMed

    Ishii, M; Himeno, W; Sawa, M; Iemura, M; Furui, J; Muta, H; Sugahara, Y; Egami, K; Akagi, T; Ishibashi, M; Kato, H

    2002-01-01

    The aim of our study was to assess the ability of myocardial contrast echocardiography (MCE) with harmonic power Doppler imaging (HPDI) to identify perfusion abnormalities in patients with Kawasaki disease at rest and during pharmacological stress imaging with dipyridamole. Results were compared with those of 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) imaging as the clinical reference standard. MCE with HPDI was performed on 20 patients with a history of Kawasaki disease. Images were obtained at baseline and during dipyridamole infusion (0.56 mg x kg(-1)) in the apical two- and four-chamber views. Myocardial opacification suitable for the analysis was obtained in all patients. Nine patients with stenotic lesions had a reversible defect after dipyridamole infusion detected by both MCE with HPDI and SPECT, and 3 patients with a history of myocardial infarction had a partially or completely irreversible defect detected by both methods. Three patients with coronary aneurysm without stenotic lesion, 4 patients with regressed coronary aneurysm, and 2 patients with normal coronary artery in acute phase also had normal perfusion at rest and after pharmacological stress by both methods. A 96% concordance (kappa = 0.87) was obtained when comparing the respective segmental perfusion scores using the two methods at baseline, and an 86% concordance (kappa = 0.81) was obtained at postdipyridamole infusion. After combining baseline and postdipyridamole images, each segment was labeled as having normal perfusion, irreversible defects, or reversible defects. Using these classifications, concordance for the two methods was 92% (kappa = 0.87). MCE with HPDI is a safe and feasible method by which to detect asymptomatic ischemia due to severe stenotic lesion, and it may be an important addition to the modalities used to identify patients at risk for myocardial infarction as a complication of Kawasaki disease.

  13. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    PubMed Central

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus. PMID:27340622

  14. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease

    PubMed Central

    Deak, Terrence; Quinn, Matt; Cidlowski, John A.; Victoria, Nicole C.; Murphy, Anne Z.; Sheridan, John F.

    2016-01-01

    The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative, or antagonistic interactions between steroid hormone receptors (Estrogen and Glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function; and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies. PMID:26176590

  15. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease.

    PubMed

    Deak, Terrence; Quinn, Matt; Cidlowski, John A; Victoria, Nicole C; Murphy, Anne Z; Sheridan, John F

    2015-01-01

    The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.

  16. Autonomic mechanisms underpinning the stress response in borderline hypertensive rats

    PubMed Central

    Šarenac, Olivera; Lozić, Maja; Drakulić, Srdja; Bajić, Dragana; Paton, Julian F; Murphy, David; Japundžić-Žigon, Nina

    2011-01-01

    This study investigates blood pressure (BP) and heart rate (HR) short-term variability and spontaneous baroreflex functioning in adult borderline hypertensive rats and normotensive control animals kept on normal-salt diet. Arterial pulse pressure was recorded by radio telemetry. Systolic BP, diastolic BP and HR variabilities and baroreflex were assessed by spectral analysis and the sequence method, respectively. In all experimental conditions (baseline and stress), borderline hypertensive rats exhibited higher BP, increased baroreflex sensitivity and resetting, relative to control animals. Acute shaker stress (single exposure to 200 cycles min-1 shaking platform) increased BP in both strains, while chronic shaker stress (3-day exposure to shaking platform) increased systolic BP in borderline hypertensive rats alone. Low- and high-frequency HR variability increased only in control animals in response to acute and chronic shaker (single exposure to restrainer) stress. Acute restraint stress increased BP, HR, low- and high-frequency variability of BP and HR in both strains to a greater extent than acute shaker stress. Only normotensive rats exhibited a reduced ratio of low- to high-frequency HR variability, pointing to domination of vagal cardiac control. In borderline hypertensive rats, but not in control animals, chronic restraint stress (9-day exposure to restrainer) increased low- and high-frequency BP and HR variability and their ratio, indicating a shift towards sympathetic cardiovascular control. It is concluded that maintenance of BP in borderline hypertensive rats in basal conditions and during stress is associated with enhanced baroreflex sensitivity and resetting. Imbalance in sympathovagal control was evident only during exposure of borderline hypertensive rats to stressors. PMID:21421701

  17. Autonomic mechanisms underpinning the stress response in borderline hypertensive rats.

    PubMed

    Šarenac, Olivera; Lozić, Maja; Drakulić, Srdja; Bajić, Dragana; Paton, Julian F; Murphy, David; Japundžić-Žigon, Nina

    2011-06-01

    This study investigates blood pressure (BP) and heart rate (HR) short-term variability and spontaneous baroreflex functioning in adult borderline hypertensive rats and normotensive control animals kept on normal-salt diet. Arterial pulse pressure was recorded by radio telemetry. Systolic BP, diastolic BP and HR variabilities and baroreflex were assessed by spectral analysis and the sequence method, respectively. In all experimental conditions (baseline and stress), borderline hypertensive rats exhibited higher BP, increased baroreflex sensitivity and resetting, relative to control animals. Acute shaker stress (single exposure to 200 cycles min-1 shaking platform) increased BP in both strains, while chronic shaker stress (3-day exposure to shaking platform) increased systolic BP in borderline hypertensive rats alone. Low- and high-frequency HR variability increased only in control animals in response to acute and chronic shaker (single exposure to restrainer) stress. Acute restraint stress increased BP, HR, low- and high-frequency variability of BP and HR in both strains to a greater extent than acute shaker stress. Only normotensive rats exhibited a reduced ratio of low- to high-frequency HR variability, pointing to domination of vagal cardiac control. In borderline hypertensive rats, but not in control animals, chronic restraint stress (9-day exposure to restrainer) increased low- and high-frequency BP and HR variability and their ratio, indicating a shift towards sympathetic cardiovascular control. It is concluded that maintenance of BP in borderline hypertensive rats in basal conditions and during stress is associated with enhanced baroreflex sensitivity and resetting. Imbalance in sympathovagal control was evident only during exposure of borderline hypertensive rats to stressors.

  18. Differential expression of a stress-modulating gene, BRE, in the adrenal gland, in adrenal neoplasia, and in abnormal adrenal tissues.

    PubMed

    Miao, J; Panesar, N S; Chan, K T; Lai, F M; Xia, N; Wang, Y; Johnson, P J; Chan, J Y

    2001-04-01

    Genes that modulate the action of hormones and cytokines play a critical role in stress response, survival, and in growth and differentiation of cells. Many of these biological response modifiers are responsible for various pathological conditions, including inflammation, infection, cachexia, aging, genetic disorders, and cancer. We have previously identified a new gene, BRE, that is responsive to DNA damage and retinoic acid. Using multiple-tissue dot-blotting and Northern blotting, BRE was recently found to be strongly expressed in adrenal cortex and medulla, in testis, and in pancreas, whereas low expression was found in the thyroid, thymus, small intestine and stomach. In situ hybridization and immunohistochemical staining indicated that BRE was strongly expressed in the zona glomerulosa of the adrenal cortex, which synthesizes and secretes the mineralocorticoid hormones. It is also highly expressed in the glial and neuronal cells of the brain and in the round spermatids, Sertoli cells, and Leydig cells of the testis, all of which are associated with steroid hormones and/or TNF synthesis. However, BRE expression was downregulated in human adrenal adenoma and pheochromocytoma, whereas its expression was enhanced in abnormal adrenal tissues of rats chronically treated with nitrate or nitrite. These data, taken together, indicate that the expression of BRE is apparently associated with steroids and/or TNF production and the regulation of endocrine functions. BRE may play an important role in the endocrine and immune system, such as the cytokine-endocrine interaction of the adrenal gland.

  19. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  20. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance.

    PubMed

    Hossain, Zahed; Komatsu, Setsuko

    2014-03-07

    Dissecting molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. Like other legume crops, soybean, the world's most widely grown seed legume and an inexpensive source of protein and vegetable oil, is also extremely sensitive to abiotic stressors including flood and drought. Irrespective of the kind and severity of the water stress, soybean exhibits a tight control over the carbon metabolism to meet the cells required energy demand for alleviating stress effects. The present review summarizes the major proteomic findings related to changes in soybean proteomes in response to flood and drought stresses to get a clear insight into the complex mechanisms of stress tolerance. Furthermore, advantages and disadvantages of different protein extraction protocols and challenges and future prospects of soybean proteome study are discussed in detail to comprehend the underlying mechanism of water stress acclimation.

  1. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance

    PubMed Central

    Hossain, Zahed; Komatsu, Setsuko

    2014-01-01

    Dissecting molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. Like other legume crops, soybean, the world’s most widely grown seed legume and an inexpensive source of protein and vegetable oil, is also extremely sensitive to abiotic stressors including flood and drought. Irrespective of the kind and severity of the water stress, soybean exhibits a tight control over the carbon metabolism to meet the cells required energy demand for alleviating stress effects. The present review summarizes the major proteomic findings related to changes in soybean proteomes in response to flood and drought stresses to get a clear insight into the complex mechanisms of stress tolerance. Furthermore, advantages and disadvantages of different protein extraction protocols and challenges and future prospects of soybean proteome study are discussed in detail to comprehend the underlying mechanism of water stress acclimation. PMID:28250373

  2. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders

    PubMed Central

    Radley, Jason; Morilak, David; Viau, Victor; Campeau, Serge

    2015-01-01

    Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one’s safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans. PMID:26116544

  3. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation.

    PubMed

    Patel, Sachin; Hillard, Cecilia J

    2008-06-01

    Daily life stressors are a major environmental factor contributing to precipitation and exacerbation of mental illness. Animal models using repeated homotypic stress induce anxious and depressive phenotypes and are used to study the pathophysiology of affective disorders. Here we discuss data demonstrating that repeated homotypic stress produces temporally and anatomically distinct changes in endocannabinoid signaling components within stress-responsive brain regions. We also present evidence describing the neural and behavioral correlates of these adaptations in endocannabinoid signaling. These data support a role for endocannabinoid signaling in the central nervous system response to chronic, homotypic stress, and specifically in the process of stress-response habituation. The clinical implications of these findings for the pathophysiology and treatment of affective disorders are discussed.

  4. Simulation of Mechanical Stress on Stainless Steel for Pb-Bi Corrosion Test by Using ABAQUS

    NASA Astrophysics Data System (ADS)

    Irwanto, D.; Mustari, A. P. A.; Budiman, B. A.

    2017-03-01

    Pb-Bi eutectic with its advantageous is proposed to be utilized as a coolant in the GEN IV type of rSeactor. However, high temperature corrosion when contact with stainless steels is one of the issues of Pb-Bi eutectic utilization. It is known that in the environment of high temperature Pb-Bi, mechanical strength of stainless steel may decrease. Thus, simulation of mechanical stress working on stainless steel during in-situ bending test by using ABAQUS was conducted. Several bending degrees were simulated at high temperature to obtain the mechanical stress information. Temperature condition was strongly affect the stress vs. displacement profile. The reported mechanical strength reduction percentage was used to draw predicted mechanical stress under high temperature Pb-Bi environment.

  5. Stress Patterns in Northern Iraq and Surrounding Regions from Formal Stress Inversion of Earthquake Focal Mechanism Solutions

    NASA Astrophysics Data System (ADS)

    Abdulnaby, Wathiq; Mahdi, Hanan; Al-Shukri, Haydar; Numan, Nazar M. S.

    2014-09-01

    The collision zone between the Arabian and Eurasian plates is one of the most seismically active regions. Northern Iraq represents the northeastern part of the Arabian plate that has a suture zone with the Turkish and Iranian plates called the Bitlis-Zagros suture zone. The orientations of the principal stress axes can be estimated by the formal stress inversion of focal mechanism solutions. The waveform moment tensor inversion method was used to derive a focal mechanism solution of 65 earthquakes with magnitudes range from 3.5 to 5.66 in the study area. From focal mechanism solutions, the direction of slip and the orientations of the moment stress axes ( P, N, and T) on the causative fault surface during an earthquake were determined. The dataset of the moment stress axes have been used to infer the regional principal stress axes ( σ 1, σ 2, and σ 3) by the formal stress inversion method. Two inversion methods, which are the new right dihedron and the rotational optimization methods, were used. The results show that six stress regime categories exist in the study area. However, the most common tectonic regimes are the strike-slip faulting (43.94 %), unspecified oblique faulting (27.27 %), and thrust faulting (13.64 %) regimes. In most cases, the strike-slip movement on the fault surfaces consists of left-lateral (sinistral) movement. The normal faulting is located in one small area and is due to a local tensional stress regime that develops in areas of strike-slip displacements as pull-apart basins. The directions of the horizontal stress axes show that the compressional stress regime at the Bitlis-Zagros suture zone has two directions. One is perpendicular to the suture zone near the Iraq-Iran border and the second is parallel in places as well as perpendicular in others to the suture zone near the Iraq-Turkey border. In addition, the principal stress axes in the Sinjar area near the Iraq-Syria border have a E-W direction. These results are compatible with the

  6. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  7. Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration

    DTIC Science & Technology

    2010-08-01

    Jones (65) demonstrated that a menthol mouth rinse reduced RPE (com- pared with placebo) by 15% and improved TTE by 9% during exercise-heat stress...potentials. Appl Physiol Nutr Metab 35: 456–463, 2010. 65. Mundel T, Jones DA. The effects of swilling an l()- menthol solution during exercise in the

  8. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  9. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    PubMed

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress.

  10. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  11. An Integrated Review of Psychological Stress in Parkinson's Disease: Biological Mechanisms and Symptom and Health Outcomes.

    PubMed

    Austin, Kim Wieczorek; Ameringer, Suzanne Weil; Cloud, Leslie Jameleh

    2016-01-01

    Parkinson's disease (PD) is characterized by complex symptoms and medication-induced motor complications that fluctuate in onset, severity, responsiveness to treatment, and disability. The unpredictable and debilitating nature of PD and the inability to halt or slow disease progression may result in psychological stress. Psychological stress may exacerbate biological mechanisms believed to contribute to neuronal loss in PD and lead to poorer symptom and health outcomes. The purpose of this integrated review is to summarize and appraise animal and human research studies focused on biological mechanisms, symptom, and health outcomes of psychological stress in PD. A search of the electronic databases PubMed/Medline and CINAHL from 1980 to the present using the key words Parkinson's disease and stress, psychological stress, mental stress, and chronic stress resulted in 11 articles that met inclusion criteria. The results revealed significant associations between psychological stress and increased motor symptom severity and loss of dopamine-producing neurons in animal models of PD and between psychological stress and increased symptom severity and poorer health outcomes in human subjects with PD. Further research is needed to fully elucidate the underlying biological mechanisms responsible for these relationships, for the ultimate purpose of designing targeted interventions that may modify the disease trajectory.

  12. Surface stress relaxation of oxide glasses: The effects on mechanical strength

    NASA Astrophysics Data System (ADS)

    Lezzi, Peter Joseph

    A new glass strengthening mechanism based upon surface compressive stress formation by surface stress relaxation of glasses that were held under a tensile stress, at a temperature lower than the glass transition temperature, in low water vapor pressure, has been demonstrated. Although glass fibers are traditionally known to become mechanically weaker when heat-treated at a temperature lower than the glass transition temperature in the presence of water vapor, the strength was found to become greater than the as-received fiber strength when fibers were subjected to a sub-critical tensile stress during heat-treatment. The observed strengthening was attributed to surface compressive residual stress formation through surface stress relaxation during the sub-critical tensile stress application in the atmosphere containing water vapor. Surface stress relaxation of the same glass fibers was shown to take place under conditions identical to those experienced by the strengthened mechanical test specimens by observing permanent bending of the fiber. Furthermore, the magnitude and presence of the residual stresses formed during bending or tensile heat-treatments were confirmed by FTIR, fiber etching, and fiber slicing methods. The method can in principle be used to strengthen any oxide glass and is not subjected to the constraints of traditional strengthening methods such as a minimum thickness for tempering, or a glass containing alkali ions for ion-exchange. Thus far, the method has been successful in strengthening silica glass, E-glass, and soda-lime silicate glass by approximately 20-30%.

  13. An Integrated Review of Psychological Stress in Parkinson's Disease: Biological Mechanisms and Symptom and Health Outcomes

    PubMed Central

    2016-01-01

    Parkinson's disease (PD) is characterized by complex symptoms and medication-induced motor complications that fluctuate in onset, severity, responsiveness to treatment, and disability. The unpredictable and debilitating nature of PD and the inability to halt or slow disease progression may result in psychological stress. Psychological stress may exacerbate biological mechanisms believed to contribute to neuronal loss in PD and lead to poorer symptom and health outcomes. The purpose of this integrated review is to summarize and appraise animal and human research studies focused on biological mechanisms, symptom, and health outcomes of psychological stress in PD. A search of the electronic databases PubMed/Medline and CINAHL from 1980 to the present using the key words Parkinson's disease and stress, psychological stress, mental stress, and chronic stress resulted in 11 articles that met inclusion criteria. The results revealed significant associations between psychological stress and increased motor symptom severity and loss of dopamine-producing neurons in animal models of PD and between psychological stress and increased symptom severity and poorer health outcomes in human subjects with PD. Further research is needed to fully elucidate the underlying biological mechanisms responsible for these relationships, for the ultimate purpose of designing targeted interventions that may modify the disease trajectory. PMID:28058129

  14. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

  15. Emotion Dysregulation as a Mechanism Linking Stress Exposure to Adolescent Aggressive Behavior

    ERIC Educational Resources Information Center

    Herts, Kate L.; McLaughlin, Katie A.; Hatzenbuehler, Mark L.

    2012-01-01

    Exposure to stress is associated with a wide range of internalizing and externalizing problems in adolescents, including aggressive behavior. Extant research examining mechanisms underlying the associations between stress and youth aggression has consistently identified social information processing pathways that are disrupted by exposure to…

  16. Stress and Anxious-Depressed Symptoms among Adolescents: Searching for Mechanisms of Risk.

    ERIC Educational Resources Information Center

    Grant, Kathryn E., Compas, Bruce E.

    1995-01-01

    Examined the possible mechanisms of risk among adolescents (n=55) exposed to the stress associated with the diagnosis of cancer in a parent. Girls whose mothers had cancer reported significantly more anxious-depressed symptoms than girls whose fathers were ill or boys whose mothers or fathers had cancer. Examines possible causes of stress in the…

  17. Thermal mechanical stress modeling of GCtM seals

    SciTech Connect

    Dai, Steve Xunhu; Chambers, Robert

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  18. Mechanical Stress Regulation of Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1985-01-01

    Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.

  19. Critical review on the mechanisms of maturation stress generation in trees.

    PubMed

    Alméras, Tancrède; Clair, Bruno

    2016-09-01

    Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering.

  20. Critical review on the mechanisms of maturation stress generation in trees

    PubMed Central

    Clair, Bruno

    2016-01-01

    Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering. PMID:27605169

  1. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation and drug delivery

    PubMed Central

    Mpekris, Fotios; Angeli, Stelios; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos

    2015-01-01

    Oxygen supply plays a central role in cancer cell proliferation. While vascular density increases at the early stages of carcinogenesis, mechanical solid stresses developed during growth compress tumor blood vessels and, thus, drastically reduce the supply of oxygen, but also the delivery of drugs at inner tumor regions. Among other effects, hypoxia and reduced drug delivery compromise the efficacy of radiation and chemo/nano therapy, respectively. In the present study, we developed a mathematical model of tumor growth to investigate the interconnections among tumor oxygenation that supports cancer cell proliferation, the heterogeneous accumulation of mechanical stresses owing to tumor growth, the non-uniform compression of intratumoral blood vessels due to the mechanical stresses, and the insufficient delivery of oxygen and therapeutic agents because of vessel compression. We found that the high vascular density and increased cancer cell proliferation often observed in the periphery compared to the interior of a tumor can be attributed to heterogeneous solid stress accumulation. Highly vascularized peripheral regions are also associated with greater oxygenation compared with the compressed, less vascularized inner regions. We also modeled the delivery of drugs of two distinct sizes, namely chemotherapy and nanomedicine. Model predictions suggest that drug delivery is affected negatively by vessel compression independently of the size of the therapeutic agent. Finally, we demonstrated the applicability of our model to actual geometries, employing a breast tumor model derived from MR images. PMID:25968141

  2. Stress and Asthma: Novel Insights on Genetic, Epigenetic and Immunologic Mechanisms

    PubMed Central

    Rosenberg, Stacy L.; Miller, Gregory E.; Brehm, John M.; Celedón, Juan C.

    2014-01-01

    In the United States, the economically disadvantaged and some ethnic minorities are often exposed to chronic psychosocial stressors and disproportionately affected by asthma. Current evidence suggests a causal association between chronic psychosocial stress and asthma or asthma morbidity. Recent findings suggest potential mechanisms underlying this association, including changes in the methylation and expression of genes that regulate behavioral, autonomic, neuroendocrine, and immunologic responses to stress. There is also evidence suggesting the existence of susceptibility genes that predispose chronically stressed youth to both post-traumatic stress disorder and asthma. In this review, we critically examine published evidence and suggest future directions for research in this field. PMID:25129683

  3. [Advances in studies on growth metabolism and response mechanisms of medicinal plants under drought stress].

    PubMed

    Si, Can; Zhang, Jun-Yi; Xu, Hu-Chao

    2014-07-01

    Drought stress exerts a considerable effect on growth, physiology and secondary metabolisms of the medicinal plants. It could inhabit the growth of the medicinal plants but promote secretion of secondary metabolites. Other researches indicated that the medicinal plants could depend on the ABA signaling pathway and secreting osmotic substances to resist the drought stress and reduce the damage by it. The article concludes the changes in growth, physiology, secondary metabolisms and response mechanisms of medicinal plants to drought stress that provides a theoretical basis for exploring the relationship between medicinal plants and drought stress.

  4. The Influence of Mechanical Stress on the Growth of Crystals

    DTIC Science & Technology

    2001-01-01

    crystal surface. In Fig. 7 we present interferograms taken at various points during the straining of a paracetamol crystal28. In Fig. 7 we show the overall...dependence of growth rate on stress. The curvature observed fits well with the nature of the material. Paracetamol shows a well-defined plastic...0 6.6 -0.3 S13.5 4-0.7 21 *1 Fig. 6. Interferograms of the growth of a (001) surface of paracetamol as a function of applied tensile strain. 2.0

  5. The effect of fluid mechanical stress on cellular arachidonic acid metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R.

    1987-01-01

    The effect of sublytic levels of mechanical perturations of cells on cell metabolism were investigated by analyzing the products of arachidonic acid (used as a marker metabolite) in blood platelets, polymorphonuclear leucocytes, and cultured umbilical-vein endothelial cells after the suspensions of these cells were subjected to a shear stress in a modified viscometer. It is shown that the sublytic levels of mechanical stress stimulated the arachidonic acid metabolism in all these cell types. Possible biological implications of this stress-metabolism coupling are discussed.

  6. Mechanical stress-induced switching kinetics of ferroelectric thin films at the nanoscale

    NASA Astrophysics Data System (ADS)

    Alsubaie, A.; Sharma, P.; Liu, G.; Nagarajan, V.; Seidel, J.

    2017-02-01

    We investigate ferroelectric domain structure and piezoelectric response under variable mechanical compressive stress in Pb(Zr0.2TiO0.8)O3 (PZT) thin films using high-resolution piezoresponse force microscopy (PFM) and an in situ sample bending stage. Measurements reveal a drastic change in the ferroelectric domain structure which is presented along with details of the mediating switching process involving domain wall motion, nucleation, and domain wall roughening under an applied external mechanical stimulus. Furthermore, local PFM hysteresis loops reveal significant changes in the observed coercive biases under applied stress. The PFM hysteresis loops become strongly imprinted under increasing applied compressive stress.

  7. PERK-opathies: An Endoplasmic Reticulum Stress Mechanism Underlying Neurodegeneration.

    PubMed

    Bell, Michelle C; Meier, Shelby E; Ingram, Alexandria L; Abisambra, Jose F

    2016-01-01

    The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term "PERK-opathies" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders.

  8. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour

    PubMed Central

    Qin, Dong-dong; Rizak, Joshua; Feng, Xiao-li; Yang, Shang-chuan; Lü, Long-bao; Pan, Lei; Yin, Yong; Hu, Xin-tian

    2016-01-01

    Stress is associated with the onset of depressive episodes, and cortisol hypersecretion is considered a biological risk factor of depression. However, the possible mechanisms underlying stress, cortisol and depressive behaviours are inconsistent in the literature. This study examined the interrelationships among stress, cortisol and observed depressive behaviours in female rhesus macaques for the first time and explored the possible mechanism underlying stress and depressive behaviour. Female monkeys were video-recorded, and the frequencies of life events and the duration of huddling were analysed to measure stress and depressive behaviour. Hair samples were used to measure chronic cortisol levels, and the interactions between stress and cortisol in the development of depressive behaviour were further evaluated. Significant correlations were found between stress and depressive behaviour measures and between cortisol levels and depressive behaviour. Stress was positively correlated with cortisol levels, and these two factors interacted with each other to predict the monkeys’ depressive behaviours. This finding extends the current understanding of stress/cortisol interactions in depression, especially pertaining to females. PMID:27443987

  9. Impact of environment on Red Blood Cell ability to withstand mechanical stress.

    PubMed

    Tarasev, M; Chakraborty, S; Light, L; Davenport, R

    2016-11-04

    Susceptibility of red blood cells (RBC) to hemolysis under mechanical stress is represented by RBC mechanical fragility (MF), with different types or intensities of stress potentially emphasizing different perturbations of RBC membranes. RBC membrane mechanics were shown to depend on cell environment, with many details not yet understood. Here, stress was applied to RBC using a bead mill with oscillation up to 50 Hz, over durations up to 50 minutes. MF profiles plot percent lysis upon stresses of progressive durations. Supplementing media with polyethylene glycol (PEG) which interacts with the cell membrane, but not Dextran which does not, resulted in higher resistance to hemolysis. Albumin, and to a lesser extent fibrinogen and globulins (at physiological concentrations), significantly increased cell ability to withstand mechanical stress versus with un-supplemented buffer solution and with PEG. This is partly due to changes in rheology, per tests done including (PEG) and Dextran, but is mostly due to cell-protein interaction, noting the effect of pH on RBC MF with albumin but not with buffer. Presence of lipids reduced RBC resistance to potentially hemolytic stress with lypemic plasma effecting lower "protection" from induced hemolysis than essentially fatty-acid free plasma. This effect was less dependent on incubation than on fatty-acid presence during stressing. The reduced propensity for hemolysis afforded by plasma proteins also depended markedly on the speed of the bead, potentially reflecting changes from a predominantly Von Karman trail at lower frequencies to an increasingly disorganized turbulent wake at higher frequencies.

  10. The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves

    PubMed Central

    Sahaf, Michal; Sharon, Eran

    2016-01-01

    We study in situ the mechanics and growth of a leaf. Young Nicotiana tabacum leaves respond to applied mechanical stress by altering both their mechanical properties and the characteristics of their growth. We observed two opposite behaviours, each with its own typical magnitude and timescale. On timescales of the order of minutes, the leaf deforms in response to applied tensile stress. During this phase we found a high correlation between the applied stress field and the local strain field throughout the leaf surface. For times over 12 hours the mechanical properties of the leaf become anisotropic, making it more resilient to deformation and restoring a nearly isotropic growth field despite the highly anisotropic load. These observations suggest that remodelling of the tissue allows the leaf to respond to mechanical perturbations by changing its properties. We discuss the relevance of the observed behaviour to the growth regulation that leads to proper leaf shape during growth. PMID:27651350

  11. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses.

    PubMed

    Myers, Brent; Scheimann, Jessie R; Franco-Villanueva, Ana; Herman, James P

    2017-03-01

    In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.

  12. The sex differences in nature of vascular endothelial stress: nitrergic mechanisms

    NASA Astrophysics Data System (ADS)

    Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana

    2016-04-01

    Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.

  13. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Mitchell, C. A.

    1989-01-01

    A 40-50% reduction in soybean [Glycine max (L.) Merr. cv. Century 84] hypocotyl elongation occurred 24 h after application of mechanical stress. Exogenous Ca2+ at 10 mM inhibited growth by 28% if applied with the Ca2+ ionophore A23187 to the zone of maximum hypocotyl elongation. La3+ was even more inhibitory than Ca2+, especially above 5 mM. Treatment with ethyleneglycol-bis-(beta-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) alone had no effect on growth of non-stressed seedlings at the concentrations used but negated stress-induced growth reduction by 36% at 4 mM when compared to non-treated, stressed controls. Treatment with EDTA was ineffective in negating stress-induced growth inhibition. Calmodulin antagonists calmidazolium, chlorpromazine, and 48/80 also negated stress-induced growth reduction by 23, 50, and 35%, respectively.

  14. Sensitivity of stress inversion of focal mechanisms to pore pressure changes

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, Patricia; Vavryčuk, Václav; Kwiatek, Grzegorz; Bohnhoff, Marco

    2016-08-01

    We investigate the sensitivity of stress inversion from focal mechanisms to pore pressure changes. Synthetic tests reveal that pore pressure variations can cause apparent changes in the retrieved stress ratio R relating the magnitude of the intermediate principal stress with respect to the maximum and minimum principal stresses. Pore pressure and retrieved R are negatively correlated when R is low (R < 0.6). The spurious variations in retrieved R are suppressed when R > 0.6. This observation is independent of faulting style, and it may be related to different performance of the fault plane selection criterion and variability in orientation of activated faults under different pore pressures. Our findings from synthetic data are supported by results obtained from induced seismicity at The Geysers geothermal field. Therefore, the retrieved stress ratio variations can be utilized for monitoring pore pressure changes at seismogenic depth in stress domains with overall low R.

  15. Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration.

    PubMed

    Libby, Richard T; Gould, Douglas B

    2010-01-01

    Age-related macular degeneration (AMD) is a multi-factorial disease and a leading cause of blindness. Proteomic and genetic data suggest that activation or de-repression of the alternate complement cascade of innate immunity is involved in end-stage disease. Several lines of evidence suggest that production of reactive oxygen species and chronic oxidative stress lead to protein and lipid modifications that initiate the complement cascade. Understanding the triggers of these pathogenic pathways and the site of the primary insult will be important for development of targeted therapeutics. Endoplasmic reticulum (ER) stress from misfolded mutant proteins and other sources are an important potential tributary mechanism. We propose that misfolded-protein-induced ER stress in the retinal-pigmented epithelium and/or choroid could lead to chronic oxidative stress, complement deregulation and AMD. Small molecules targeted to ER stress and oxidative stress could allow for a shift from disease treatment to disease prevention.

  16. Stress: perceptions, manifestations, and coping mechanisms of student registered nurse anesthetists.

    PubMed

    Chipas, Anthony; Cordrey, Dan; Floyd, David; Grubbs, Lindsey; Miller, Sarah; Tyre, Brooks

    2012-08-01

    Stress is a response to change from the norm. Stress affects all individuals to varying degrees and can be positive, such as eustress, or negative, such as distress. The purpose of this qualitative, cross-sectional study was to investigate the stressors of the typical student registered nurse anesthetist (SRNA), with the objective of identifying trends in the perceptions, manifestations, and coping mechanisms of stress. An online (SurveyMonkey) questionnaire composed of 54 study-specific questions was developed to assess stress in the SRNA population. The questionnaire was sent to members of the American Association of Nurse Anesthetists via email invitation. The study yielded a sample of 1,282 SRNA participants. Analysis revealed statistically significant relationships between self-reported stress and negative outcomes, such as increased sick days, decreased health and wellness, and depression. The study demonstrated that SRNAs perceive their stress as above average, and it remains a central concern for them.

  17. Monitoring the effect of mechanical stress on mesenchymal stem cell collagen production by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Chang, Chia-Cheng; Chiou, Ling-Ling; Li, Tsung-Hsien; Liu, Yuan; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Tissue engineering is emerging as a promising method for repairing damaged tissues. Due to cartilage's common wear and injury, in vitro production of cartilage replacements have been an active area of research. Finding the optimal condition for the generation of the collagen matrix is crucial in reproducing cartilages that closely match those found in human. Using multiphoton autofluorescence and second-harmonic generation (SHG) microscopy we monitored the effect of mechanical stress on mesenchymal stem cell collagen production. Bone marrow mesenchymal stem cells in the form of pellets were cultured and periodically placed under different mechanical stress by centrifugation over a period of four weeks. The differently stressed samples were imaged several times during the four week period, and the collagen production under different mechanical stress is characterized.

  18. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training.

    PubMed

    Schoenfeld, Brad J

    2013-03-01

    It is well established that regimented resistance training can promote increases in muscle hypertrophy. The prevailing body of research indicates that mechanical stress is the primary impetus for this adaptive response and studies show that mechanical stress alone can initiate anabolic signalling. Given the dominant role of mechanical stress in muscle growth, the question arises as to whether other factors may enhance the post-exercise hypertrophic response. Several researchers have proposed that exercise-induced metabolic stress may in fact confer such an anabolic effect and some have even suggested that metabolite accumulation may be more important than high force development in optimizing muscle growth. Metabolic stress pursuant to traditional resistance training manifests as a result of exercise that relies on anaerobic glycolysis for adenosine triphosphate production. This, in turn, causes the subsequent accumulation of metabolites, particularly lactate and H(+). Acute muscle hypoxia associated with such training methods may further heighten metabolic buildup. Therefore, the purpose of this paper will be to review the emerging body of research suggesting a role for exercise-induced metabolic stress in maximizing muscle development and present insights as to the potential mechanisms by which these hypertrophic adaptations may occur. These mechanisms include increased fibre recruitment, elevated systemic hormonal production, alterations in local myokines, heightened production of reactive oxygen species and cell swelling. Recommendations are provided for potential areas of future research on the subject.

  19. Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot.

    PubMed

    Jan, Yih-Kuen; Shen, Sa; Foreman, Robert D; Ennis, William J

    2013-09-01

    Diabetic foot ulcers are one of the most common complications in diabetics, causing significant disabilities and decreasing the quality of life. Impaired microvascular reactivity contributes to the development of diabetic foot ulcers. However, underlying physiological mechanisms responsible for the impaired microvascular reactivity in response to extrinsic causative factors of foot ulcers such as mechanical and thermal stresses have not been well investigated. A total of 26 participants were recruited into this study, including 18 type 2 diabetics with peripheral neuropathy and 8 healthy controls. Laser Doppler flowmetry was used to measure skin blood flow at the first metatarsal head in response to a mechanical stress at 300mmHg and a fast thermal stress at 42°C. Wavelet analysis of skin blood flow oscillations was used to assess metabolic, neurogenic and myogenic controls. Our results indicated that diabetics have significantly decreased metabolic, neurogenic and myogenic responses to thermal stress, especially in the neurogenic and myogenic controls during the first vasodilatory response and in the metabolic control during the second vasodilatory response. Diabetics have a significantly decreased myogenic response to mechanical stress during reactive hyperemia. Our findings demonstrate that locally applied mechanical and thermal stresses can be used to assess microvascular reactivity and risk of diabetic foot ulcers.

  20. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes

    PubMed Central

    Maniam, Jayanthi; Antoniadis, Christopher; Morris, Margaret J.

    2014-01-01

    Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be

  1. Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns.

    PubMed

    Barkhausen, Tanja; van Griensven, Martijn; Zeichen, Johannes; Bosch, Ulrich

    2003-09-01

    Mechanical stress is a factor that is thought to play an essential role in tissue generation and reparation processes. The aim of the present study was to investigate the influence of different repetitive cyclic longitudinal stress patterns on proliferation, apoptosis and expression of heat shock protein (HSP) 72. To perform this study, human tendon fibroblasts were seeded on flexible silicone dishes. After adherence to the dish, cells were longitudinally stressed with three different repetitive stress patterns having a frequency of 1 Hz and an amplitude of 5%. The proliferation and apoptosis rates were investigated 0, 6, 12 and 24 hours after application of cyclic mechanical longitudinal strain. Expression of HSP 72 was tested after 0, 2, 4 and 8 hours. Control cells were also grown on silicone dishes, but did not receive any stress. Stress patterns applied during one day resulted in a significant increase in proliferation and a slight increase in apoptosis. HSP 72 expression was rather unchanged. A stress pattern applied during two days resulted in a reduced proliferation and apoptosis rate whereas the expression of HSP 72 showed a significant increase. This study shows that different stress patterns result in different cellular reactions dependent on the strength of applied stress. Repetitive stress applied during one day stimulated proliferation and apoptosis in contrast to an extended stress duration. The latter induced an inhibition of proliferation and apoptosis probably through an increased HSP 72 activity. This may be related to an excess of applied stress. Our results may implicate future modulation techniques for tissue reparation and tissue engineering.

  2. Understanding the fluid mechanics behind transverse wall shear stress.

    PubMed

    Mohamied, Yumnah; Sherwin, Spencer J; Weinberg, Peter D

    2017-01-04

    The patchy distribution of atherosclerosis within arteries is widely attributed to local variation in haemodynamic wall shear stress (WSS). A recently-introduced metric, the transverse wall shear stress (transWSS), which is the average over the cardiac cycle of WSS components perpendicular to the temporal mean WSS vector, correlates particularly well with the pattern of lesions around aortic branch ostia. Here we use numerical methods to investigate the nature of the arterial flows captured by transWSS and the sensitivity of transWSS to inflow waveform and aortic geometry. TransWSS developed chiefly in the acceleration, peak systolic and deceleration phases of the cardiac cycle; the reverse flow phase was too short, and WSS in diastole was too low, for these periods to have a significant influence. Most of the spatial variation in transWSS arose from variation in the angle by which instantaneous WSS vectors deviated from the mean WSS vector rather than from variation in the magnitude of the vectors. The pattern of transWSS was insensitive to inflow waveform; only unphysiologically high Womersley numbers produced substantial changes. However, transWSS was sensitive to changes in geometry. The curvature of the arch and proximal descending aorta were responsible for the principal features, the non-planar nature of the aorta produced asymmetries in the location and position of streaks of high transWSS, and taper determined the persistence of the streaks down the aorta. These results reflect the importance of the fluctuating strength of Dean vortices in generating transWSS.

  3. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    PubMed

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  4. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo

    2016-08-01

    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  5. Torsional bridge setup for the characterization of integrated circuits and microsensors under mechanical shear stress.

    PubMed

    Herrmann, M; Gieschke, P; Ruther, P; Paul, O

    2011-12-01

    We present a torsional bridge setup for the electro-mechanical characterization of devices integrated in the surface of silicon beams under mechanical in-plane shear stress. It is based on the application of a torsional moment to the longitudinal axis of the silicon beams, which results in a homogeneous in-plane shear stress in the beam surface. The safely applicable shear stresses span the range of ±50 MPa. Thanks to a specially designed clamping mechanism, the unintended normal stress typically stays below 2.5% of the applied shear stress. An analytical model is presented to compute the induced shear stress. Numerical computations verify the analytical results and show that the homogeneity of the shear stress is very high on the beam surface in the region of interest. Measurements with piezoresistive microsensors fabricated using a complementary metal-oxide-semiconductor process show an excellent agreement with both the computational results and comparative measurements performed on a four-point bending bridge. The electrical connection to the silicon beam is performed with standard bond wires. This ensures that minimal forces are applied to the beam by the electrical interconnection to the external instrumentation and that devices with arbitrary bond pad layout can be inserted into the setup.

  6. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  7. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala

    PubMed Central

    Aubry, Antonio V.; Serrano, Peter A.; Burghardt, Nesha S.

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research. PMID:27818625

  8. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala.

    PubMed

    Aubry, Antonio V; Serrano, Peter A; Burghardt, Nesha S

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  9. Compensation of externally applied mechanical stress by stacking of ultrathin chips

    NASA Astrophysics Data System (ADS)

    Endler, Stefan; Rempp, Horst; Harendt, Christine; Burghartz, Joachim N.

    2012-08-01

    A new concept for compensating mechanical stress on CMOS devices in ultrathin chips is demonstrated. By glue-attaching a bare silicon chip on top of an active CMOS chip the neutral line of the entire flexible system is forced to match the active layer, thus reducing the mechanical bending stress on the CMOS devices. The optimum thickness of the top chip for perfect stress compensation is determined analytically and confirmed by experimental results. Moreover, the effect of the intermediate adhesive layer on the level of compensation is investigated. It is shown, that the viscoelastic behaviour of the glue layer is indeed negligible, but the layer thickness has to be controlled accurately. Finally, the mechanical stability of the stacked flexible system is characterized and compared to the strength of the uncompensated single-chip. Due to the considerably higher mechanical stability of the bare top chip the maximum curvature of the chip-stack is even higher compared to the single CMOS chip.

  10. Investigating feedback mechanisms between stress and grain-size: preliminary findings from finite-element modelling

    NASA Astrophysics Data System (ADS)

    Cross, A. J.; Prior, D. J.; Ellis, S. M.

    2012-12-01

    It is widely accepted that changes in stress and grain size can induce a switch between grain-size insensitive (GSI) and sensitive (GSS) creep mechanisms. Under steady-state conditions, grains evolve to an equilibrium size in the boundary region between GSS and GSI, described by the paleopiezometer for a given material. Under these conditions, significant rheological weakening is not expected, as grain size reduction processes are balanced by grain growth processes. However, it has been shown that the stress field surrounding faults varies through the seismic cycle, with both rapid loading and unloading of stress possible in the co- and post-seismic stages. We propose that these changes in stress in the region of the brittle-ductile transition zone may be sufficient to force a deviation from the GSI-GSS boundary and thereby cause a change in grain size and creep mechanism prior to system re-equilibration. Here we present preliminary findings from numerical modelling of stress and grain size changes in response to loading of mechanical inhomogeneities. Our results are attained using a grain-size evolution (GSE) subroutine incorporated into the SULEC finite-element code developed by Susan Ellis and Susanne Buiter, which utilises an iterative approach of solving for spatial and temporal changes in differential stress, grain size and active creep mechanism. Preliminary models demonstrate that stress changes in response to the opening of a fracture in a flowing medium can be significant enough to cause a switch from GSI to GSS creep. These results are significant in the context of understanding spatial variations and feedback between stress, grain size and deformation mechanisms through the seismic cycle.

  11. Vegetation stress as a feedback mechanism in midlatitude drought

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the Simplified Simple Biosphere Model is used to investigate the effect of soil moisture and vegetation stress on drought in the mid-latitudes. An idealized land-sea distribution with simple topography is used to remove as many external sources of climate variation as possible. The land consists of a single, flat, rectangular continent covered with prairie vegetation and centered on 44 deg N of an aqua planet. A control integration of 4 years is performed, and several sets of seasonal anomaly integrations are made to test the sensitivity of seasonal climate to low initial (1 April) soil moisture and dormant vegetation like what would occur during a severe drought. It is found that the inclusion of dormant vegetation during the spring and early summer greatly reduces evapotranspiration by eliminating transpiration. This affects local climate more strongly as summer progresses. Low initial soil moisture, combined with dormant vegetation, leads to a severe drought. The reduction in precipitation is much greater in magnitude than that due to low soil moisture alone, and greater than the sum of the effects computed separately. Although the short-term drought is more severe, the dormancy of the vegetation prevents further depletion of moisture in the root zone of the soil, so soil moisture begins to rebound toward the middle of summer.

  12. Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation.

    PubMed

    Stamenović, Dimitrije; Lazopoulos, Konstantinos A; Pirentis, Athanassios; Suki, Béla

    2009-12-01

    It is well documented in a variety of adherent cell types that in response to anisotropic signals from the microenvironment cells alter their cytoskeletal organization. Previous theoretical studies of these phenomena were focused primarily on the elasticity of cytoskeletal actin stress fibers (SFs) and of the substrate while the contribution of focal adhesions (FAs) through which the cytoskeleton is linked to the external environment has not been considered. Here we propose a mathematical model comprised of a single linearly elastic SF and two identical linearly elastic FAs of a finite size at the endpoints of the SF to investigate cytoskeletal realignment in response to uniaxial stretching of the substrate. The model also includes the contribution of the chemical potential energies of the SF and the FAs to the total potential energy of the SF-FA assembly. Using the global (Maxwell's) stability criterion, we predict stable configurations of the SF-FA assembly in response to substrate stretching. Model predictions obtained for physiologically feasible values of model parameters are consistent with experimental data from the literature. The model shows that elasticity of SFs alone can not predict their realignment during substrate stretching and that geometrical and elastic properties of SFs and FAs need to be included.

  13. Development of mechanical stress in CuNi(Mn) films during temperature ramping: Related mechanisms

    SciTech Connect

    Brueckner, W.; Baunack, S.; Pitschke, W.; Thomas, J.

    1998-12-31

    This paper focuses on the development of biaxial stress in Cu{sub 0.57}Ni{sub 0.42}Mn{sub 0.01} thin films during annealing in Ar and, for comparison, in vacuum. Besides stress-temperature measurements also resistance-temperature investigations as well as chemical and microstructural characterization by Auger electron spectroscopy, scanning and transmission electron microscopy, and X-ray diffraction were carried out. To explain the stress evolution, atomic rearrangement (excess-vacancy annihilation, grain-boundary relaxation, and shrinkage of grain-boundary voids) and oxidation were considered. Up to 250--300 C grain-boundary relaxation was found to be the dominating process. A sharp transition from compressive to tensile stress between 300 C and 380 C is explained by the formation of a NiO surface layer.

  14. The stress raisers effects on the materials mechanical characteristics, analyzed by local microhardness measurements

    NASA Astrophysics Data System (ADS)

    Goanţă, V.; Mareş, M.; Axinte, T.

    2016-08-01

    There have been few studies on the effects of stress raisers on the parts that are plastically deformed, at least into a certain extent of their volume. Such a situation may arrive near a stress raiser, when the peak stress value rises over the material yield stress limit. Some tensile tests are described in the paper, on flat aluminum specimens, with and without the presence of a stress raiser on their surface, namely a through frontal hole, at the center of their calibrated region. Some of the mechanical characteristics (yield limit, elongation at break, Young's modulus) were affected by the stress raiser presence, but its ductile behavior and tensile strength were not. The effective values of stress and strain concentration coefficients were calculated using the Neuber's rule, but the results may be considered as overestimated. The plastic strain enlargement in the specimen volume was also evaluated by measuring the Vickers microhardness values in the stress raiser vicinity. The tests results were shown that the plastic deformation is more pronounced for the measuring points that are closer to the hole's edge; that fact was confirmed by the specimens appearance, after the material failure. A hardness values ratio is finally proposed as an evaluation of the effective stress concentration coefficient.

  15. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression

    PubMed Central

    Liu, Qiang; Hu, Xiaoqing; Zhang, Xin; Duan, Xiaoning; Yang, Peng; Zhao, Fengyuan; Ao, Yingfang

    2016-01-01

    Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM. PMID:27853300

  16. Focal mechanisms and the state of stress on the San Andreas Fault in southern California

    NASA Astrophysics Data System (ADS)

    Jones, Lucile M.

    1988-08-01

    Focal mechanisms have been determined from P wave first motion polarities for 138 small to moderate (2.6 ≤ M ≤ 4.3) earthquakes that occurred within 10 km of the surface trace of the San Andreas fault in southern California between 1978 and 1985. On the basis of these mechanisms the southern San Andreas fault has been divided into five segments with different stress regimes. Earthquakes in the Fort Tejon segment show oblique reverse sup on east-west and northwest striking faults. The Mojave segment has earthquakes with oblique reverse and right-lateral strikesup motion on northwest strikes. The San Bernardino segment has normal faulting earthquakes on north-south striking planes, while the Banning segment has reverse, strike-sup, and normal faulting events all occurring in the same area. The earthquakes in the Indio segment show strike-slip and oblique normal faulting on northwest to north-south striking planes. These focal mechanism data have been inverted to determine how the stresses acting on the San Andreas fault in southern California vary with position along strike of the fault. One of the principal stresses is vertical in all of the regions. The vertical stress is the minimum principal stress in Fort Tejon and Mojave, the intermediate principal stress in Banning and Indio, and the maximum principal stress in San Bernardino. The orientations of the horizontal principal stresses also vary between the regions. The trend of the maximum horizontal stress rotates over 35°, from N15°W at Fort Tejon to N20° at Indio. Except for the San Bernardino segment, the trend of the maximum horizontal stress is at a constant angle of about 65° to the local strike of the San Andreas fault, implying a weak fault. The largest change in the present stress state occurs at the end of the rupture zone of the 1857 Fort Tejon earthquake. It appears that the 1857 rupture ended when it propagated into an area of low stress amplitude, possibly caused by the 15° angle between the

  17. An analytical model of the mechanical properties of bulk coal under confined stress

    USGS Publications Warehouse

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Reproduction in shark-attacked sea turtles is supported by stress-reduction mechanisms.

    PubMed

    Jessop, Tim; Sumner, Joanna; Lance, Val; Limpus, Col

    2004-02-07

    Vertebrates exhibit varied behavioural and physiological tactics to promote reproductive success. We examined mechanisms that could enable female loggerhead turtles to undertake nesting activities and maintain seasonal reproduction despite recent shark injuries of varying severity. We proposed that endocrinal mechanisms that regulate both a turtle's stress response and reproductive ability are modified to promote successful and continued reproduction. Irrespective of the degree of injury, females did not exhibit increased levels of the stress hormone corticosterone, nor decreased levels of the reproductive steroid testosterone; hormone responses consistent with stress. When exposed to a capture stressor, females with shark injury did not exhibit any greater corticosterone response than controls. In addition, breeding females showed a reduced corticosterone stress response compared to non-breeding females. Reduced endocrinal responses following shark injury, and during breeding in general may, in part, enable females to maintain behavioural and physiological commitment to reproduction.

  19. Long-term effects of early life stress exposure: Role of epigenetic mechanisms.

    PubMed

    Silberman, Dafne M; Acosta, Gabriela B; Zorrilla Zubilete, María A

    2016-07-01

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.

  20. Oxidative stress-related mechanisms affecting response to aspirin in diabetes mellitus.

    PubMed

    Santilli, Francesca; Lapenna, Domenico; La Barba, Sara; Davì, Giovanni

    2015-03-01

    Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Persistent platelet activation plays a key role in atherothrombosis in T2DM. However, current antiplatelet treatments appear less effective in T2DM patients vs nondiabetics at similar risk. A large body of evidence supports the contention that oxidative stress, which characterizes DM, may be responsible, at least in part, for less-than-expected response to aspirin, with multiple mechanisms acting at several levels. This review discusses the pathophysiological mechanisms related to oxidative stress and contributing to suboptimal aspirin action or responsiveness. These include: (1) mechanisms counteracting the antiplatelet effect of aspirin, such as reduced platelet sensitivity to the antiaggregating effects of NO, due to high-glucose-mediated oxidative stress; (2) mechanisms interfering with COX acetylation especially at the platelet level, e.g., lipid hydroperoxide-dependent impaired acetylating effects of aspirin; (3) mechanisms favoring platelet priming (lipid hydroperoxides) or activation (F2-isoprostanes, acting as partial agonists of thromboxane receptor), or aldose-reductase pathway-mediated oxidative stress, leading to enhanced platelet thromboxane A2 generation or thromboxane receptor activation; (4) mechanisms favoring platelet recruitment, such as aspirin-induced platelet isoprostane formation; (5) modulation of megakaryocyte generation and thrombopoiesis by oxidative HO-1 inhibition; and (6) aspirin-iron interactions, eventually resulting in impaired pharmacological activity of aspirin, lipoperoxide burden, and enhanced generation of hydroxyl radicals capable of promoting protein kinase C activation and platelet aggregation. Acknowledgment of oxidative stress as a major contributor, not only of vascular complications, but also of suboptimal response to antiplatelet agents in T2DM, may open the way to designing and testing novel antithrombotic strategies, specifically targeting

  1. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    PubMed Central

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  2. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse

    PubMed Central

    Yap, Choon Hwai; Liu, Xiaoqin; Pekkan, Kerem

    2014-01-01

    Introduction Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Methods Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. Results In normal mouse fetuses between E14.5–18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Conclusion Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels. PMID:24475188

  3. Assessment of intravascular and extravascular mechanisms of myocardial perfusion abnormalities in obstructive hypertrophic cardiomyopathy by myocardial contrast echocardiography

    PubMed Central

    Soliman, Osama I I; Knaapen, Paul; Geleijnse, Marcel L; Dijkmans, Pieter A; Anwar, Ashraf M; Nemes, Attila; Michels, Michelle; Vletter, Wim B; Lammertsma, Adriaan A

    2007-01-01

    Objectives To assess mechanisms of myocardial perfusion impairment in patients with hypertrophic cardiomyopathy (HCM). Methods Fourteen patients with obstructive HCM (mean (SD) age 53 (10) years, 11 men) underwent intravenous adenosine myocardial contrast echocardiography (MCE), positron emission tomography (PET) and cardiac catheterisation. Fourteen healthy volunteers (mean age 31 (4) years, 11 men) served as controls. Relative myocardial blood volume (rBV), exchange flow velocity (β), myocardial blood flow (MBF), MBF reserve (MFR) and endocardial‐to‐subepicardial (endo‐to‐epi) MBF ratio were measured from the steady state and contrast replenishment time–intensity curves. Results Patients with HCM had lower rest MBF (for LVRPP‐corrected)—mean (SD) (0.92 (0.12) vs 1.13 (0.25) ml/min/g, p<0.01)—and hyperaemic MBF—(2.56 (0.49) vs 4.34 (0.78) ml/min/g, p<0.01) than controls. Resting rBV was lower in patients with HCM (0.094 (0.016) vs 0.138 (0.014) ml/ml), and during hyperaemia (0.104 (0.018) ml/ml vs 0.185 (0.024) ml/ml) (all p<0.001) than in controls. β tended to be higher in HCM at rest (9.4 (4.6) vs 7.7 (4.2) ml/min) and during hyperaemia (25.8 (6.4) vs 23.1 (6.2) ml/min) than in controls. Septal endo‐to‐epi MBF decreased during hyperaemia (0.86 (0.15) to 0.64 (0.18), p<0.01). rBV was inversely correlated with left ventricular (LV) mass index (p<0.05). Both hyperaemic and endo‐to‐epi MBF were inversely correlated with LV end‐diastolic pressure, LV mass index, and LV outflow tract pressure gradient (all p<0.05). MCE‐derived MBF correlated well with PET at rest (r = 0.84) and hyperaemia (r = 0.87) (all p<0.001). Conclusions In patients with HCM, LV end‐diastolic pressure, LV outflow tract pressure gradient, and LV mass index are independent predictors of rBV and hyperaemic MBF. PMID:17488767

  4. Lithospheric buckling and intra-arc stresses: A mechanism for arc segmentation

    NASA Technical Reports Server (NTRS)

    Nelson, Kerri L.

    1989-01-01

    Comparison of segment development of a number of arcs has shown that consistent relationships between segmentation, volcanism and variable stresses exists. Researchers successfully modeled these relationships using the conceptual model of lithospheric buckling of Yamaoka et al. (1986; 1987). Lithosphere buckling (deformation) provides the needed mechanism to explain segmentation phenomenon; offsets in volcanic fronts, distribution of calderas within segments, variable segment stresses and the chemical diversity seen between segment boundary and segment interior magmas.

  5. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    PubMed

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-02-10

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage.

  6. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness

    PubMed Central

    van Bussel, Bas C. T.; van de Poll, Marcel C. G.; Schalkwijk, Casper G.; Bergmans, Dennis C. J. J.

    2017-01-01

    Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone) that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care. PMID:28178202

  7. Tuning the tunneling probability by mechanical stress in Schottky barrier based reconfigurable nanowire transistors

    NASA Astrophysics Data System (ADS)

    Baldauf, Tim; Heinzig, André; Trommer, Jens; Mikolajick, Thomas; Weber, Walter Michael

    2017-02-01

    Mechanical stress is an established and important tool of the semiconductor industry to improve the performance of modern transistors. It is well understood for the enhancement of carrier mobility but rather unexplored for the control of the tunneling probability for injection dominated research devices based on tunneling phenomena, such as tunnel FETs, resonant tunnel FETs and reconfigurable Schottky FETs. In this work, the effect of stress on the tunneling probability and overall transistor characteristics is studied by three-dimensional device simulations in the example of reconfigurable silicon nanowire Schottky barrier transistors using two independently gated Schottky junctions. To this end, four different stress sources are investigated. The effects of mechanical stress on the average effective tunneling mass and on the multi-valley band structure applying the deformation potential theory are being considered. The transfer characteristics of strained transistors in n- and p-configuration and corresponding charge carrier tunneling are analyzed with respect to the current ratio between electron and hole conduction. For the implementation of these devices into complementary circuits, the mandatory current ratio of unity can be achieved by appropriate mechanical stress either by nanowire oxidation or the application of a stressed top layer.

  8. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness.

    PubMed

    van Bussel, Bas C T; van de Poll, Marcel C G; Schalkwijk, Casper G; Bergmans, Dennis C J J

    2017-02-07

    Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone) that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care.

  9. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    PubMed Central

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  10. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.

    PubMed

    Dahlsten, Elias; Lindström, Miia; Korkeala, Hannu

    2015-05-01

    Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions.

  11. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia.

    PubMed

    Xie, Wenrui; Strong, Judith A; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-08-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.

  12. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Belasque, J., Jr.; Gasparoto, M. C. G.; Marcassa, L. G.

    2008-04-01

    We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees.

  13. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  14. Thermo-Mechanical Behaviour of Turbine Disc Assembly in the Presence of Residual Stresses

    NASA Astrophysics Data System (ADS)

    Maricic, Luke Anthony

    A comprehensive three dimensional coupled thermo-mechanical finite element study is performed on turbine blade attachments in gas turbine engines. The effects of the self-generated centrifugal forces of the disc and the associated blades, thermal loads, and shot peening residual are all considered in this thesis. Three aspects of the work were accordingly examined. The first was concerned with the coupled thermo-mechanical stress analysis and load sharing between the teeth of the fir-tree root. The second was devoted to the development of a complete model incorporating the effect of shot peening residual stresses upon the developed stress state. The effectiveness of shot peening treatment in response to cyclic thermo-mechanical loadings at the contact interface has also been studied. The third was concerned with the validation of some aspects of the developed models analytically using closed form solutions and experimentally using photoelasticity.

  15. Social buffering of the stress response: diversity, mechanisms, and functions.

    PubMed

    Hennessy, Michael B; Kaiser, Sylvia; Sachser, Norbert

    2009-10-01

    Protracted or repeated activation of the hypothalamic-pituitary-adrenocortical (HPA) system is associated with a variety of physical and psychological pathologies. Studies dating back to the 1970s have documented many cases in which the presence of a social companion can moderate HPA responses to stressors. However, there also are many cases in which this "social buffering" of the HPA axis is not observed. An examination of the literature indicates that the nature of the relationship between individuals is crucial in determining whether or not social buffering of the HPA response will occur. Other factors that affect social buffering, either directly or by influencing the social relationship, include the social organization of the species, previous experience, gender, integration into a social unit, and the developmental stage at which individuals are examined. Current evidence suggests that social buffering involves mechanisms acting at more than one level of the CNS. It is suggested that, in addition to promoting health, social buffering may have evolved to direct the establishment of social relationships, and to facilitate developmental transitions in social interactions appropriate for different life stages.

  16. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  17. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.

  18. A biomechanical study on burst mechanisms of plant fruit: stress analysis of pericarps before bursting.

    PubMed

    Endo, Yasuhiro; Sakamoto, Jiro; Kashiwano, Yuki; Yokota, Hideo; Nakamura, Sakiko; Kinoshita, Eichiro

    2010-10-01

    Bursting of fruit is a very interesting biomechanical phenomenon because its mechanism is directly related to the plant's reproduction. A plant that produces fruit that bursts powerfully and spreads the seeds widely has the advantage of reproduction without relying on other mechanisms such as transportation of fruit by insects. The structures of many types of fruit have likely been optimized by evolution, although the structure itself appears rather simplistic. Strain energy is stored in each pericarp because of growth deformation, swelling or desiccation just before bursting. Throughout these changes, the mechanical stress of the pericarps is at equilibrium. At the instant of bursting, the stored strain energy is released very rapidly. Quick and wide motion of the pericarps in a certain direction is advantageous for throwing the seed a long distance. The motion and deformation of bursting pericarps depend on their tissue structure and mechanical stress condition just before the burst. We tracked the bursting motion by using a high-speed camera. Then we calculated the pre-burst stress generated in a pericarp of Impatiens by using the finite-element method. The boundary condition obtained by experiments using a high-speed video camera is given, and the stress was calculated using reverse deformation analysis. The stress distribution of the pericarp is effective in causing the pericarp motion to throw the seeds far away.

  19. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  20. Mechanical-Stress Induced Nd:YAG Active Quarter-Wave Plate

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Akatsuka, Masanori; Ishikawa, Koji; Naito, Kenta; Yonezawa, Yoshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    1994-09-01

    A quarter-wave retardation was obtained by mechanically induced stress in a Nd:YAG laser rod and a laser gain of 1.15 at 1064 nm was obtained by pumping with a quasi-CW 300 W laser-diode array at 808 nm. The laser rod was held in a brass heatsink in which the mechanical stress was induced horizontally by means of screws. The effective quarter-wave area was measured to be 1 mm (vertical)×2 mm (horizontal) in the center of the 4 mm-diameter Nd:YAG rod by means of a newly constructed polarimeter.

  1. Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics

    USGS Publications Warehouse

    Major, J.J.

    2013-01-01

    This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.

  2. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing.

    PubMed

    Makthal, Nishanth; Rastegari, Sheila; Sanson, Misu; Ma, Zhen; Olsen, Randall J; Helmann, John D; Musser, James M; Kumaraswami, Muthiah

    2013-06-21

    Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR.

  3. Crystal Structure of Peroxide Stress Regulator from Streptococcus pyogenes Provides Functional Insights into the Mechanism of Oxidative Stress Sensing*

    PubMed Central

    Makthal, Nishanth; Rastegari, Sheila; Sanson, Misu; Ma, Zhen; Olsen, Randall J.; Helmann, John D.; Musser, James M.; Kumaraswami, Muthiah

    2013-01-01

    Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR. PMID:23645680

  4. Constraints on the mechanics of the Southern San Andreas fault system from GPS velocity and stress

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Hardebeck, J. L.; Anderson, G.

    2003-12-01

    We use Global Positioning System (GPS) derived velocities and stress-orientations to study the distribution of long-term slip on the system of faults comprising the southern California plate boundary region. Of particular interest is how slip is partitioned over multiple earthquake cycles between the San Andreas Fault (SAF), the San Jacinto Fault (SJF) and the Eastern California Shear Zone. Some prior paleoseismologic and geodetic work places the majority of slip on the SAF. Other studies, however, find that the SJF accommodates about half of the slip in the south, implying half as much slip on the San Bernardino segment of the SAF. Two new data sets are used to further constrain the mechanics of the SAF. The first is the Southern California Earthquake Center's geodetic velocity field version 3 (Shen et al., 2003), which includes much improved coverage over prior models. The second is a regional map of stress field orientations at seismogenic depths, as determined from an inversion of earthquake focal mechanisms. While GPS data has been used in similar studies, this is the first application of stress field observations to this problem. We construct a simplified version of the southern California fault system, and model the surface velocities using a block model with elastic strain accumulation, following Meade et al. (2002). Additionally, we model the stress orientations at seismogenic depths, assuming that the stress field results from the loading of active faults. An inversion for fault slip rates is performed to simultaneously fit the GPS and stress observations. The model fit to the data is good in general, indicating that a simple mechanical model can capture both observed interseismic strain and stress accumulation. We evaluate the sensitivity of the slip rate solutions to the different datasets and identify "anomalous" fault segments with stresses that deviate from our simple loading model.

  5. Earthquake focal mechanisms and the present-day stress field in northwestern Arabia

    NASA Astrophysics Data System (ADS)

    Yassminh, R.; Daoud, M.; Gomez, F. G.; Bagh, S.

    2011-12-01

    The present-day, regional stress field in the northwestern Arabian plate reflects influences from transform tectonics associated with the Dead Sea fault system and the Arabian-Eurasian collision. In an effort to assess spatial variations in the regional stress field, this study analyzes focal mechanism for small and moderate earthquakes in the region. Specifically, fault-plane solutions are determined for more than 130 recent earthquakes that occurred from 1995 to 2011 in the northwestern Arabian plate. These mechanisms were obtained from first-motion P waves recorded primarily by stations in the national seismic network managed by the Syrian National Earthquake Center. Focal mechanisms are sorted by region and rated by quality. Subsequently, stress inversion analysis are applied to each subset in order to examine general spatial patterns of the present-day stress field in the northern Arabian plate. General regions included: (1) the northern Dead Sea fault, (2) the central Dead Sea fault (Lebanese bend), (3) western Palmyrides, (4) eastern Palmyrides, and (5) the northern Arabian platform. Whereas the Dead Sea fault subsets and northern Arabia subset show stress-fields characteristic of strike-slip and thrust environments, respectively, the Palmyride subsets appear to depict stress fields that transition between these two plate boundaries. Stress patterns may also reflect influences of older, reactivated structures in the Palmyride fold belt, which is a Mesozoic rift basin. These stress data are combined with recent GPS velocities for a more complete view deformation within the northwestern Arabian plate, and along the nearby plate boundaries.

  6. Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems

    PubMed Central

    2015-01-01

    The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping. PMID:25644121

  7. Effects of mechanical contact stress on magnetic properties of ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Lee, Sungae; He, Muyang; Yeo, Chang-Dong; Abo, Gavin; Hong, Yang-Ki; Ho You, Jeong

    2012-10-01

    Mechanical and magnetic degradation of ferromagnetic films under contact stress was systematically investigated through novel experiments and analytical simulations. Permalloy (Ni80Fe20) film was deposited onto silicon substrate, and two different thicknesses of permalloy film (50 nm for sample A and 300 nm for sample B) were examined in this study. Magnetic properties were obtained from B-H loop tracer hysteresis measurement, while the mechanical properties (i.e., hardness and elastic modulus) were measured using nanoindentation techniques. It was observed that the 50 nm thick permalloy film showed weaker magnetic strength (lower coercivity and saturation magnetic flux values) and lower hardness than the 300 nm thick permalloy film. To apply mechanical contact stress on the permalloy film samples, nanoscratch experiments were performed using ramp and constant loading scratch profiles. Then, the resulting mechanical degradation (surface physical damage) of the two samples was determined from atomic force microscope measurements, and the corresponding magnetic degradation was analyzed using magnetic force microscope measurements. It was found that the magnetic degradation was more sensitive to the applied contact stress than the mechanical degradation. Comparing the two permalloy film samples, it was observed that the 50 nm thick permalloy film showed more magnetic degradation under the same contact stress, which could be attributed to its lower material strength.

  8. Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Emad K.; Hassoup, A.; Abou Elenean, K. M.; Othman, Adel A. A.; Hamed, Diaa-Eldin M. K.

    2015-12-01

    Egypt is characterized by moderate size seismicity where earthquakes are distributed within several active regions. In the present study, we investigated the source mechanism of earthquakes using the digital waveform data recorded by the Egyptian National Seismic Network (ENSN) during the period from 2004 to 2008. The focal mechanisms are constructed with high reliability based on the polarity of the first motion of P-wave. These solutions are used to examine the mode of tectonic deformation and the present-day stress field pattern affecting on different tectonic provinces in the northern part of Egypt. The results demonstrate mainly a normal faulting mechanism with minor strike slip component generally trending parallel to the northern Red Sea, the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and the Gulf of Suez and Cairo-Alexandria trend. The inversion technique scheme is used also in the present study for determining the regional stress field parameters for earthquake focal mechanism solutions based on the grid search method of Gephart and Forsyth (1984). The Results of the stress tensor using focal mechanisms of recent earthquakes show a prevailed tension stress field in N52°E, N41°E and N52°E for the northern Red Sea, Gulf of Suez and Gulf of Aqaba zone respectively.

  9. [COMPARATIVE STUDY OF MECHANICAL STRESS EFFECT ON HUMAN AND ANIMAL ERYTHROCYTES].

    PubMed

    Shpakova, N M; Orlova, N V; Nipot, E E; Aleksandrova, D I

    2015-01-01

    Sensitivity of human and animal (bovine, rat, rabbit, equine) erythrocytes to the effect of mechanical stress has been studied. Mechanical stress effect was demonstrated to result in a time-dependent (5-60 min) release of potassium cations out of mammalian erythrocytes and a partial hemolytic cell damage. Herewith the release levels of potassium ions and hemolysis did not coincide for erythrocytes of all the mammals except rabbit ones. The most sensitive to mechanical stress (60 min) by the parameters of hemolytic damage and potassium ion release were rat (32%) and bovine (66%) erythrocytes respectively, the lowest sensitive by both parameters were rabbit ones (about 20%). Implemented correlation analysis has demonstrated a statistically significant negative relation between the values of mechanical hemolysis of mammalian erythrocytes and surface-volumetric ratio of cells (rs = -0.900, P = 0.037). A feasible relationship between the content of phosphatidylethanolamine in mammalian erythrocyte membranes and the level of potassium cation loss under mechanical stress effect is under discussion.

  10. The complex distribution of arterial system mechanical properties, pulsatile hemodynamics, and vascular stresses emerges from three simple adaptive rules.

    PubMed

    Nguyen, Phuc H; Coquis-Knezek, Sarah F; Mohiuddin, Mohammad W; Tuzun, Egemen; Quick, Christopher M

    2015-03-01

    Arterial mechanical properties, pulsatile hemodynamic variables, and mechanical vascular stresses vary significantly throughout the systemic arterial system. Although the fundamental principles governing pulsatile hemodynamics in elastic arteries are widely accepted, a set of rules governing stress-induced adaptation of mechanical properties can only be indirectly inferred from experimental studies. Previously reported mathematical models have assumed mechanical properties adapt to achieve an assumed target stress "set point." Simultaneous prediction of the mechanical properties, hemodynamics, and stresses, however, requires that equilibrium stresses are not assumed a priori. Therefore, the purpose of this work was to use a "balance point" approach to identify the simplest set of universal adaptation rules that simultaneously predict observed mechanical properties, hemodynamics, and stresses throughout the human systemic arterial system. First, we employed a classical systemic arterial system model with 121 arterial segments and removed all parameter values except vessel lengths and peripheral resistances. We then assumed vessel radii increase with endothelial shear stress, wall thicknesses increase with circumferential wall stress, and material stiffnesses decrease with circumferential wall stress. Parameters characterizing adaptive responses were assumed to be identical in all arterial segments. Iteratively predicting local mechanical properties, hemodynamics, and stresses reproduced five trends observed when traversing away from the aortic root towards the periphery: decrease in lumen radii, wall thicknesses, and pulsatile flows and increase in wall stiffnesses and pulsatile pressures. The extraordinary complexity of the systemic arterial system can thus arise from independent adaptation of vessels to local stresses characterized by three simple adaptive rules.

  11. Comment on “Models of stochastic, spatially varying stress in the crust compatible with focal‐mechanism data, and how stress inversions can be biased toward the stress rate” by Deborah Elaine Smith and Thomas H. Heaton

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2015-01-01

    This model makes specific predictions about the orientations and heterogeneity of earthquake focal mechanisms. Smith and Heaton (2011) attempt to validate this heterogeneous stress model using observations of earthquake focal‐mechanism variability from Hardebeck (2006). They then demonstrate that the model predicts a bias in the orientations of earthquake focal mechanisms, which are biased away from the background stress and toward the stressing rate. They suggest the focal‐mechanism bias in this model invalidates the large body of work over the last several decades, that has inferred stress orientations from the inversion of earthquake focal mechanisms. The question of whether or not the Smith and Heaton (2011) model is applicable to the real Earth is therefore important not only for understanding spatial stress variability but also for evaluating the numerous studies that have inferred crustal stress orientations from earthquake focal mechanisms (e.g., as compiled by Heidbach et al., 2008).

  12. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  13. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  14. Piezoelectric circular diaphragm with mechanically induced pre-stress for energy harvesting

    NASA Astrophysics Data System (ADS)

    Palosaari, J.; Leinonen, M.; Juuti, J.; Hannu, J.; Jantunen, H.

    2014-08-01

    This paper presents the results of a piezoelectric circular diaphragm harvester utilising a unique measurement setup with tailored input force (walk profile), adjustable mechanical pre-stress, and simultaneous measurement of the harvested energy output and input force pressure. The harvester, incorporating the pre-stressing mechanism, consisted of a 191 μm thick PZ-5A piezoelectric disc (Ø 34.5 mm) and a 100 μm thick steel plate (Ø 45.5 mm). Its performance was measured with pressure cycles at a frequency of 0.96 Hz. Harvested energy was measured as a function of the pre-stressing state, the applied force, and the pressure profile. The optimal bending pre-stress was found to improve the efficiency of harvesting by ˜141% compared to the case without pre-stress. The maximum obtained efficiency was 14.7%, and the maximum average power density of 6.06 mW cm-3 was measured for a unimorph diaphragm energy harvester. The results show that the pre-stressing technique is an effective method to improve the efficiency and generated power in this type of piezoelectric harvester, potentially enabling it to power different portable devices and sensors in future applications.

  15. Shaken, not stirred: mechanical stress testing of an IgG1 antibody.

    PubMed

    Kiese, Sylvia; Papppenberger, Astrid; Friess, Wolfgang; Mahler, Hanns-Christian

    2008-10-01

    Protein aggregation is known to occur under different stress conditions and displays a wide variety of morphologies. In this work, the aggregation behavior of a monoclonal antibody (IgG1) was investigated using two different mechanical stress methods namely stirring and shaking at two temperatures, various fill volumes and headspaces and different amounts of polysorbate present in the formulation. The detection of aggregates in terms of size and number was carried out using various analytical techniques including visible particle inspection, turbidity, sub-visible particle analysis, size exclusion chromatography and dynamic light scattering. The data showed that shaking and stirring resulted in different species of aggregates both qualitatively and quantitatively, where stirring was found more stressful than shaking on the IgG1 formulation. Mechanical stress testing performed at 5 and 25 degrees C only showed a difference on samples stressed by shaking and not by stirring. The headspace in the vials had great influence on the stability of the protein formulation when stressed by shaking. The presence of polysorbate had a protective effect on the antibody, however certain polysorbate concentrations even resulted in increased protein aggregation. An array of analytical methods was essential in order to cover the vast aggregate morphologies, which occurred during agitation.

  16. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  17. Stress, burnout and depression: A systematic review on DNA methylation mechanisms.

    PubMed

    Bakusic, Jelena; Schaufeli, Wilmar; Claes, Stephan; Godderis, Lode

    2017-01-01

    Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible mediator linking individual response to stress and psychopathology and could be considered as a potential biomarker of stress-related mental disorders. Thus, the aim of this review is to provide an overview of DNA methylation mechanisms in stress, burnout and depression. In addition to state-of-the-art overview, the goal of this review is to provide a scientific base for burnout biomarker research. We performed a systematic literature search and identified 25 pertinent articles. Among these, 15 focused on depression, 7 on chronic stress and only 3 on work stress/burnout. Three epigenome-wide studies were identified and the majority of studies used the candidate-gene approach, assessing 12 different genes. The glucocorticoid receptor gene (NR3C1) displayed different methylation patterns in chronic stress and depression. The serotonin transporter gene (SLC6A4) methylation was similarly affected in stress, depression and burnout. Work-related stress and depressive symptoms were associated with different methylation patterns of the brain derived neurotrophic factor gene (BDNF) in the same human sample. The tyrosine hydroxylase (TH) methylation was correlated with work stress in a single study. Additional, thoroughly designed longitudinal studies are necessary for revealing the cause-effect relationship of work stress, epigenetics and burnout, including its overlap with depression.

  18. Mechanical stress induces neuroendocrine and immune responses of sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Tan, Jie; Li, Fenghui; Sun, Huiling; Gao, Fei; Yan, Jingping; Gai, Chunlei; Chen, Aihua; Wang, Qingyin

    2015-04-01

    Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunological response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopus japonicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immune connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity functions. Therefore, these effects should be considered for developing better husbandry procedures.

  19. Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires.

    PubMed

    Li, Binsong; Wen, Xiaodong; Li, Ruipeng; Wang, Zhongwu; Clem, Paul G; Fan, Hongyou

    2014-06-24

    One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.

  20. Shedding Light on the Mechanisms Underlying Health Disparities Through Community Participatory Methods: The Stress Pathway

    PubMed Central

    Schetter, Christine Dunkel; Schafer, Peter; Lanzi, Robin Gaines; Clark-Kauffman, Elizabeth; Raju, Tonse N. K.; Hillemeier, Marianne M.

    2015-01-01

    Health disparities are large and persistent gaps in the rates of disease and death between racial/ethnic and socioeconomic status subgroups in the population. Stress is a major pathway hypothesized to explain such disparities. The Eunice Kennedy Shriver National Institute of Child Health and Human Development formed a community/research collaborative—the Community Child Health Network—to investigate disparities in maternal and child health in five high-risk communities. Using community participation methods, we enrolled a large cohort of African American/Black, Latino/Hispanic, and non-Hispanic/White mothers and fathers of newborns at the time of birth and followed them over 2 years. A majority had household incomes near or below the federal poverty level. Home interviews yielded detailed information regarding multiple types of stress such as major life events and many forms of chronic stress including racism. Several forms of stress varied markedly by racial/ethnic group and income, with decreasing stress as income increased among Caucasians but not among African Americans; other forms of stress varied by race/ethnicity or poverty alone. We conclude that greater sophistication in studying the many forms of stress and community partnership is necessary to uncover the mechanisms underlying health disparities in poor and ethnic-minority families and to implement community health interventions. PMID:26173227

  1. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.

    PubMed

    Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien

    2010-03-01

    Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

  2. Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress?

    PubMed

    Rinaldi, Carlos; Brenner, Howard

    2002-03-01

    The Maxwell stress tensor (MST) T(M) plays an important role in the dynamics of continua interacting with external fields, as in the commercially and scientifically important case of "ferrofluids." As a conceptual entity in quasistatic systems, the MST derives from the definition f(M)def=inverted Delta x T(M), where f(M)(x) is a physically objective volumetric external body-force density field at a point x of a continuum, derived from the solution of the pertinent governing equations. Beginning with the fact that T(M) is not uniquely defined via the preceding relationship from knowledge of f(M), we point out in this paper that the interpretation of T(M) as being a physical stress is not only conceptually incorrect, but that in commonly occuring situations this interpretation will result in incorrect predictions of the physical response of the system. In short, by elementary examples, this paper emphasizes the need to maintain the classical physical distinction between the notions of body forces f and stresses T. These examples include calculations of the torque on bodies, the work required to deform a fluid continuum, and the rate of interchange of energy between mechanical and other modes.

  3. Computational modeling of the mechanism of hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals

    NASA Astrophysics Data System (ADS)

    Cendales, E. D.; Orjuela, F. A.; Chamarraví, O.

    2016-02-01

    In this article theoretical models and some existing data sets were examined in order to model the two main causes (hydrogen embrittlement and corrosion-cracking under stress) of the called environmentally assisted cracking phenomenon (EAC). Additionally, a computer simulation of flat metal plate subject to mechanical stress and cracking due both to hydrogen embrittlement and corrosion was developed. The computational simulation was oriented to evaluate the effect on the stress-strain behavior, elongation percent and the crack growth rate of AISI SAE 1040 steel due to three corrosive enviroments (H2 @ 0.06MPa; HCl, pH=1.0; HCl, pH=2.5). From the computer simulation we conclude that cracking due to internal corrosion of the material near to the crack tip limits affects more the residual strength of the flat plate than hydrogen embrittlement and generates a failure condition almost imminent of the mechanical structural element.

  4. Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies

    PubMed Central

    Choi, Min Hee; Ow, Jin Rong; Yang, Nai-Di

    2016-01-01

    Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-κB pathway, autophagy, telomere shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant therapies in preclinical and clinical trials is examined. PMID:26798425

  5. Techniques for studying the mechanical properties of materials in complex stress states

    NASA Astrophysics Data System (ADS)

    Dietrich, Lech; Turski, Karol; Waniewski, Maciej; Dziankowski, Zygmunt; Kiryk, Romuald

    In this article the authors describe an experimental technique suitable for determining the mechanical properties of materials in complex stress states. The studies were conducted so as to allow determination of elastic characteristics defined by two elasticity constants, plastic flow coefficients defined by a hardening curve, mechanical property anisotropy characteristics defined by the form and values of material anisotropy constants, and the evolution of these properties under deformation. The realization of such an extensive program for materials in complex stress states requires very accurate measurements, precise and automatic control of the loading of the specimen, and the collection and processing of a large volume of digital measurements results. The program also requires the right instrumentation and computer software to control the strength testing machine for materials in a complex stress state and software to process and graph the measurement results and reflect them in a desired graphic form. These are extremely important elements of the article, which, in addition to the traditional mechanical element, also discusses preparing the specimens, fastening and loading them, measuring the components of stress and strain, and determining the quality of the research and the value of the results. This article covers all these aspects of testing materials in complex stress states in a planar stress state, while specific parts of the article include a discussion of the literature in the field, the method used for complex stress state tests, the software used to control the strength testing machine, the software used to process the measurement results, and the results obtained for several series of tests performed on tubular specimens of PA6 aluminum alloy and 18G2 steel.

  6. Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain

    PubMed Central

    Stefano, George B.

    2010-01-01

    Stress can facilitate disease processes and causes strain on the health care budgets. It is responsible or involved in many human ailments of our time, such as cardiovascular illnesses, particularly related to the psychosocial stressors of daily life, including work. Besides pharmacological or clinical medical treatment options, behavioral stress reduction is much-needed. These latter approaches rely on an endogenous healing potential via life-style modification. Hence, research has suggested different ways and approaches to self-treat stress or buffer against stressors and their impacts. These self-care-centred approaches are sometimes referred to as mind-body medicine or multi-factorial stress management strategies. They consist of various cognitive behavioral techniques, as well as relaxation exercises and nutritional counselling. However, a critical and consistent element of modern effective stress reduction strategies are exercise practices. With regard to underlying neurobiological mechanisms of stress relief, reward and motivation circuitries that are imbedded in the limbic regions of the brain are responsible for the autoregulatory and endogenous processing of stress. Exercise techniques clearly have an impact upon these systems. Thereby, physical activities have a potential to increase mood, i.e., decrease psychological distress by pleasure induction. For doing so, neurobiological signalling molecules such as endogenous morphine and coupled nitric oxide pathways get activated and finely tuned. Evolutionarily, the various activities and autoregulatory pathways are linked together, which can also be demonstrated by the fact that dopamine is endogenously converted into morphine which itself leads to enhanced nitric oxide release by activation of constitutive nitric oxide synthase enzymes. These molecules and mechanisms are clearly stress-reducing. PMID:22371784

  7. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance

    PubMed Central

    2013-01-01

    Background In a previous study we have shown that wounding of Arabidopsis thaliana leaves induces a strong and transient immunity to Botrytis cinerea, the causal agent of grey mould. Reactive oxygen species (ROS) are formed within minutes after wounding and are required for wound–induced resistance to B. cinerea. Results In this study, we have further explored ROS and resistance to B. cinerea in leaves of A. thaliana exposed to a soft form of mechanical stimulation without overt tissue damage. After gentle mechanical sweeping of leaf surfaces, a strong resistance to B. cinerea was observed. This was preceded by a rapid change in calcium concentration and a release of ROS, accompanied by changes in cuticle permeability, induction of the expression of genes typically associated with mechanical stress and release of biologically active diffusates from the surface. This reaction to soft mechanical stress (SMS) was fully independent of jasmonate (JA signaling). In addition, leaves exposed soft mechanical stress released a biologically active product capable of inducing resistance to B. cinerea in wild type control leaves. Conclusion Arabidopsis can detect and convert gentle forms of mechanical stimulation into a strong activation of defense against the virulent fungus B. cinerea. PMID:24033927

  8. Sealing of large leaks in high-vacuum systems subject to mechanical and thermal stresses

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1974-01-01

    The use of silicone rubber adhesive (particularly, G.E. RTV-108) for sealing large leaks in high vacuum systems subject to mechanical and thermal stresses is shown to be more effective than that of epoxy cements. The sealant is applied externally to the leak while the system is partially evacuated so that it is drawn into the hole.

  9. Focal mechanisms and variations in tectonic stress fields in eastern Canada (western Quebec and southern Ontario)

    NASA Astrophysics Data System (ADS)

    Asgharzadeh Sadegh, Parisa

    Earthquakes in western Quebec and southern Ontario present a major contribution to the natural hazards in south eastern Canada due to their proximity to major population centres. However, the seismic characteristics of the events in these regions have not been well documented. Improved knowledge of earthquake distribution and seismic controlling mechanisms provides a great benefit for earthquake hazard analysis in eastern Canada. The available information about the tectonic stress indicators, including focal mechanisms, was compiled for Canada prior to 1994. The present research is concentrated mainly on determination of the focal mechanisms and hypocentre locations of the earthquakes after 1993 with M > 3.5 to characterize the present-day regional and local stress fields in southern Ontario and western Quebec. An attempt was also made to differentiate local zones with comparatively homogeneous tectonic stresses orientation and seismic regimes, thus providing information for future re-assessment of the seismic hazard in each region. Considering seismic parameters such as the trend of the epicentres, focal depths and the state of stress of the events along with their tectonic settings, ten distinct clusters have been proposed for western Quebec and two clusters of events were determined for southern Ontario with comparatively consistent focal mechanisms. The locations and characteristics of seismicity clusters appear to be consistent with the hypothesis that they are near the locations of large historic and prehistoric events, and represent exceptionally persistent aftershocks of past large earthquakes.

  10. Characteristics of Focal Mechanisms and the Stress Field in the Southeastern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Zhao, Cui-ping; Lü, Jian; Zhou, Lian-qing; Zheng, Si-hua

    2016-08-01

    Crustal earthquake focal mechanisms are investigated in the southeastern margin of the Tibetan Plateau, where the Tibetan Plateau and stable South China Block merge. An updated database of focal mechanisms has been compiled by selecting 132 Global Centroid Moment Tensor solutions and by adding the 173 new solutions (3.5 ≤ Ms ≤ 7.4) estimated by waveform inversion in this study. A total of 305 mechanisms are included in this database. These solutions show regionally specific distributions with dominant strike-slip faulting and some normal and reverse faulting. Focal mechanism solutions have also been inverted for the stress tensor orientation to obtain the principal stress axes over the study region. Results show that the horizontal maximum principal σ 1 axes rotate clockwise with a wider range than the geodetically measured surface motion in the east, which is not limited to the Xianshuihe-Xiaojiang fault, but has some overlap with the Zhaotong-Lianfeng fault. Localized normal faulting stress regimes are observed in the Jinshajiang-Litang fault areas and the Baoshan sub-block. The minimum principal axes are oriented with a gradually changing trend from north-south to northwest-southeast, from north to south, indicating diverse compression stress patterns. Significant changes in the crustal stress field after the Wenchuan earthquake are preliminarily observed in the Baoshan sub-block where orientations of two principal axes have changed, and in the Jinggu-Ximeng sub-block areas where the strike-slip faulting stress pattern has transformed to normal faulting.

  11. Understanding the microscopic deformation mechanism and macroscopic mechanical behavior of nanocrystalline Ni by the long-term stress relaxation test

    NASA Astrophysics Data System (ADS)

    Shen, Xixun; Zhang, Congcong; Zeng, Tao; Cheng, Danhong; Lian, Jianshe

    2014-05-01

    The long-term stress relaxation tests with a relaxation time of about 7 h are performed on the bulk dense nanocrystalline Ni (with a mean grain size of 27 nm) pre-deformed at strain rate from 4.17 s-1- 4.17 × 10-6 s-1, where a phenomenon that the initial relaxation behavior of nc Ni depends on itself deformation history. That is, the nc Nis pre-deformed at higher strain rate (not less than 4.17 × 10-3 s-1) exhibit a three-staged relaxation process from the initial near linear rapidly stress delayed (LRSD) stage and the subsequent lumber nonlinear stress delayed (LNSD) one and the final near linear slowly stress delayed (LSSD) one while only the later two stages are observed for the nc Nis pre-deformed at low strain rate. The three-stage relaxation behavior is attributed to the transition from the initial dislocation-dominated plasticity to the mixture of dislocation motion and diffusion-based GB activity and finally to the entire diffusion-based GB activity including GB sliding or grain rotation in the rate-controlling deformation mechanism, which was illuminated by the attained three-staged strain rate sensitivity and activation volume and the exhaustion of mobile density of deformed nc Ni in the first two stages of relaxation. Such rate-controlling deformation mechanism well interpreted the macroscopic tensile mechanical behavior of nc Ni and simultaneously an optimizing strategy in improving the ductility of nc Ni is also mentioned.

  12. Intracellularly-retained decorin lacking the C-terminal ear repeat causes ER stress: a cell-based etiological mechanism for congenital stromal corneal dystrophy.

    PubMed

    Chen, Shoujun; Sun, Mei; Iozzo, Renato V; Kao, Winston W-Y; Birk, David E

    2013-07-01

    Decorin, a small leucine-rich proteoglycan (SLRP), is involved in the pathophysiology of human congenital stromal corneal dystrophy (CSCD). This disease is characterized by corneal opacities and vision impairment. In reported cases, the human gene encoding decorin contains point mutations in exon 10, generating a truncated form of decorin lacking the C-terminal 33 amino acid residues. We have previously described a transgenic mouse model carrying a similar mutation in the decorin gene that leads to an ocular phenotype characterized by corneal opacities identical to CSCD in humans. We have also identified abnormal synthesis and secretion of various SLRPs in mutant mouse corneas. In the present study, we found that mutant C-terminal truncated decorin was retained in the cytoplasm of mouse keratocytes in vivo and of transfected human embryonic kidney cells. This resulted in endoplasmic reticulum stress and an unfolded protein response. Thus, we propose a novel cell-based mechanism underlying CSCD in which a truncated SLRP protein core is retained intracellularly, its accumulation triggering endoplasmic reticulum stress that results in abnormal SLRP synthesis and secretion, which ultimately affects stromal structure and corneal transparency.

  13. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  14. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K; Chouhan, Vikrant Singh; Maurya, V P; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups (n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest (P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest (P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  15. Interactive effects of mechanical stress, sand burial and defoliation on growth and mechanical properties in Cynanchum komarovii.

    PubMed

    Xu, L; Yu, F-H; Werger, M; Dong, M; Anten, N P R

    2013-01-01

    In drylands, wind, sand burial and grazing are three important factors affecting growth and mechanical properties of plants, but their interactive effects have not yet been investigated. Plants of the semi-shrub Cynanchum komarovii, common in semi-arid parts of NE Asia, were subjected to brushing, burial and defoliation. We measured biomass allocation and relative increment rates of dry mass (RGR(m)), height (RGR(h)) and basal diameter (RGR(d)). We also measured the stem mechanical properties, Young's modulus (E), second moment of area (I), flexural stiffness (EI) and breaking stress (σ(b)), and scaled these traits to the whole-plant level to determine the maximum lateral force (F(lateral)) and the buckling safety factor (BSF). Brushing increased RGR(m); neither burial nor defoliation independently affected RGR(m), but together they reduced it. Among buried plants, brushing positively affected stem rigidity and strength through increasing RGR(d), E, I and EI, and at whole plant level this resulted in a larger BSF and F(lateral). However, among unburied plants this pattern was not observed. Our results thus show that effects of mechanical stress and grazing on plants can be strongly modified by burial, and these interactions should be taken into account when considering adaptive significance of plant mechanical traits in drylands.

  16. Abnormalities in α/β-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice.

    PubMed

    Musazzi, Laura; Di Daniel, Elena; Maycox, Peter; Racagni, Giorgio; Popoli, Maurizio

    2011-08-01

    Lysophosphatidic acid (LPA) is a natural lysophospholipid that regulates neuronal maturation. In mice, the deletion of the LPA1 receptor causes some phenotypic defects partly overlapping with those found in schizophrenia. In this study, we identified molecular abnormalities in hippocampal synaptic mechanisms involved in glutamatergic neurotransmission, which allow further characterization of synaptic aberrations in LPA1 knockout (KO) mice. At the synaptic level, we found dysregulation of Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) activity and phosphorylation, with markedly higher Ca2+-dependent kinase activity, probably related to increased expression levels of the β isoform of CaMKII. Conversely, although the synaptic Ca2+-independent activity of the enzyme was unchanged, autophosphorylation levels of both α and β isoforms were significantly increased in LPA1 KO mice. Moreover, in LPA1 KO mice the α/β isoform ratio of CaMKII, which plays a key role in neuronal maturation during development, was markedly decreased, as found previously in schizophrenia patients. At post-synaptic level, LPA1 KO mice showed changes in expression, phosphorylation and interactions of NMDA and AMPA receptor subunits that are consistent with basal strengthening of glutamatergic synapses. However, we measured a reduction of nuclear cAMP responsive element-binding protein phosphorylation, suggesting that activation of the NMDA receptor does not occur at the intracellular signalling level. At the presynaptic level, in line with previous evidence from schizophrenia patients and animal models of pathology, LPA1 KO mice showed accumulation of SNARE protein complexes. This study shows that CaMKII and related synaptic mechanisms at glutamatergic synapses are strongly dysregulated in LPA1 KO mice.

  17. Epigenetic Silencing of the Key Antioxidant Enzyme Catalase in Karyotypically Abnormal Human Pluripotent Stem Cells

    PubMed Central

    Konki, Mikko; Pasumarthy, Kalyan; Malonzo, Maia; Sainio, Annele; Valensisi, Cristina; Söderström, Mirva; Emani, Maheswara Reddy; Stubb, Aki; Närvä, Elisa; Ghimire, Bishwa; Laiho, Asta; Järveläinen, Hannu; Lahesmaa, Riitta; Lähdesmäki, Harri; Hawkins, R. David; Lund, Riikka J.

    2016-01-01

    Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells, however, the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase, a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues. PMID:26911679

  18. Does Apparent Stress Vary With Earthquake Size? Possible Mechanism of Artificial Size Dependency

    NASA Astrophysics Data System (ADS)

    Ide, S.; Beroza, G. C.; Prejean, S. G.; Ellsworth, W. L.

    2001-12-01

    The energy radiated from the seismic source (Es) has been estimated for a wide range of earthquake sizes. Many studies have found that the ratio between Es and seismic moment (apparent stress) increases as seismic moment increases. Es is distributed across a wide frequency band, reliable estimates require broadband recordings relative to the corner frequency. There are several possible mechanisms that could bias estimates of Es: 1) data bandwidth is too narrow, 2) a constant upper cutoff on the corner frequency affects event selection, and 3) unmodeled elastic/anelastic wave propagation effects may obscure source properties. We can attempt to account for 1) by estimating the missing energy based on the assumption of an omega-square spectral model. For 2) we know the minimum energy of missing events and can show where these events should be located in the moment-apparent stress relation. These two factors act to diminish the size dependency of apparent stress suggested by previous studies. For 3), we re-examined the data of Prejean and Ellsworth (2001) from a 2-km deep borehole in Long Valley Caldera, California. First, assuming an omega-square model with a constant Q, we determined the stress drop and apparent stress of 41 events (0.5 < Mw < 5.0). We find that some small events have small apparent stresses of about 0.003-0.03 MPa, and also find that these events have low stress drops of 0.01 to 0.1 MPa. Most larger events have both larger stress drops of 1-10 MPa and larger apparent stresses. This analysis supports the decline of Es with declining moment. It is natural that stress drop would have a strong relationship to the apparent stress---we find (apparent stress) = 0.3 x (stress drop)---since we assumed an omega-square model. Insofar as no systematic change in the spectral shape is observed with seismic moment in the data, it is unlikely that stress drop and apparent stress will have different dependencies on seismic moment. We also estimated stress drops

  19. The Effects of Antidepressants “Fluoxetine and Imipramine” on Vascular Abnormalities and Toll Like Receptor-4 Expression in Diabetic and Non-Diabetic Rats Exposed to Chronic Stress

    PubMed Central

    Habib, Mohamed; Shaker, Safaa; El-Gayar, Nesreen; Aboul-Fotouh, Sawsan

    2015-01-01

    Several studies reveal that diabetes doubles the odds of comorbid depression with evidence of a pro-inflammatory state underlying its vascular complications. Indeed, little information is available about vascular effects of antidepressant drugs in diabetes. Method: We investigated the effect of chronic administration of fluoxetine “FLU” and imipramine “IMIP” on behavioral, metabolic and vascular abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS). Results: Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP in a comparable manner. Diabetic and non-diabetic rats exposed to CRS exhibited abnormalities in glucose homeostasis, lipid profile and vascular function, manifested by decreased endothelium-dependent relaxation, increased systolic blood pressure and histopathological atherosclerotic changes. Vascular and metabolic dysfunctions were associated with significant increase in aortic expression of TLR-4, and pro-inflammatory cytokines (TNF-α and IL-1ß). FLU ameliorated these metabolic, vascular and inflammatory abnormalities, while IMIP induced either no change or even worsening of some parameters. Conclusion: FLU has favorable effect over IMIP on metabolic, vascular and inflammatory aberrations associated with DM and CRS in Wistar rats, clarifying the preference of FLU over IMIP in management of comorbid depression in diabetic subjects. PMID:25826421

  20. The State of Stress in the Afar Region From Inversion of Earthquake Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Hagos, L.; Lund, B.; Roberts, R.

    2006-12-01

    The state of stress in the Afar region, where the Arabian, Nubian, and Somalian plates meet, is investigated by inversion of earthquake focal mechanisms. Based on earlier studies in the region, we compiled a catalogue of 93 earthquakes, M > 4, with focal mechanisms, spanning the time period from 1969 to present. From this data set we select three clusters suitable for inversion: one along the EW trending Gulf of Aden and Tadjoura rift, one in central Afar, and one on the western margin of the Afar depression. Using the grid-search based inversion of Lund and Slunga (1999), we assess how the choice of fault plane from the nodal planes affect the results and include known fault data where possible. The resulting stress states show an overall normal faulting stress regime. This especially pronounced in the cluster on the western margin of the Afar depression, whereas the southern two clusters have more oblique stress states with significant strike-slip components. The estimated directions of the minimum principal stress vary from NE on the Danakil -Somalia plate boundary to an approximate EW direction at the western margin of the Afar depression. Although the data is scarce, we discuss the temporal consistency of the stress field through the studied time period. The broad zone of active extensional deformation at the Afar Depression, a triple junction where the Red Sea, the Gulf of Aden and the Main Ethiopian rift systems meet, constitutes a complicated tectonic region and we discuss our results in this context. We also compare the stress estimates to available deformation data in the region.

  1. Modeling of Mechanical Stress Exerted by Cholesterol Crystallization on Atherosclerotic Plaques

    PubMed Central

    Cui, Dongyao; Yu, Xiaojun; Chen, Si; Liu, Xinyu; Tang, Hongying; Wang, Xianghong; Liu, Linbo

    2016-01-01

    Plaque rupture is the critical cause of cardiovascular thrombosis, but the detailed mechanisms are not fully understood. Recent studies have found abundant cholesterol crystals in ruptured plaques, and it has been proposed that the rapid expansion of cholesterol crystals in a limited space during crystallization may contribute to plaque rupture. To evaluate the effect of cholesterol crystal growth on atherosclerotic plaques, we modeled the expansion of cholesterol crystals during the crystallization process in the necrotic core and estimated the stress on the thin cap with different arrangements of cholesterol crystals. We developed a two-dimensional finite element method model of atherosclerotic plaques containing expanding cholesterol crystals and investigated the effect of the magnitude and distribution of crystallization on the peak circumferential stress born by the cap. Using micro-optical coherence tomography (μOCT), we extracted the cross-sectional geometric information of cholesterol crystals in human atherosclerotic aorta tissue ex vivo and applied the information to the model. The results demonstrate that (1) the peak circumference stress is proportionally dependent on the cholesterol crystal growth; (2) cholesterol crystals at the cap shoulder impose the highest peak circumference stress; and (3) spatial distributions of cholesterol crystals have a significant impact on the peak circumference stress: evenly distributed cholesterol crystals exert less peak circumferential stress on the cap than concentrated crystals. PMID:27149381

  2. Physiological reactions of the denture-bearing mucosa following mechanical stress

    NASA Astrophysics Data System (ADS)

    Niedermeier, Wilhelm; Gutmann, F.; Kessler, Manfred D.; Frank, K. H.

    1994-02-01

    The mucosa of the edentulous ridges and the hard palate is used to bear denture bases. While the etiology of mucosal disorders caused by material and microbiological factors is well known, the effects of mechanical stress on denture bearing mucosa are comparatively unexplored. To learn more about reactions of compensation against mechanical stress of the denture bearing mucosa we studied physiology of the tissues covering the alveolar ridge and the hard palate. We took non-invasive measurements of the concentration and oxygenation of hemoglobin in several places of the mucosa by using a micro-lightguide spectrophotometer (EMPHO). On this occasion the magnitude and duration of the force, the frequency of the loading and the interval of rest have been varied. The result was that the concentration of hemoglobin decreased significantly inside the mucosa when the denture bearing mucosa was stressed already by a slight but constant compression load. However, a total ischemia was not seen even in great mechanical loads. After the stress ended a reactive hyperemia took place spontaneously.

  3. Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism

    NASA Astrophysics Data System (ADS)

    Goswami, Sumita; Nandy, Suman; Calmeiro, Tomás R.; Igreja, Rui; Martins, Rodrigo; Fortunato, Elvira

    2016-01-01

    Mechano-electrical writing and reading in polyaniline (PANI) thin film are demonstrated via metal-polymer contact electrification mechanism (CEM). An innovative conception for a non-destructive self-powered writable-readable data sheet is presented which can pave the way towards new type of stress induced current harvesting devices. A localized forced deformation of the interface has been enacted by pressing the atomic force microscopic probe against the polymer surface, allowing charge transfer between materials interfaces. The process yields a well-defined charge pattern by transmuting mechanical stress in to readable information. The average of output current increment has been influenced from 0.5 nA to 15 nA for the applied force of 2 nN to 14 nN instead of electrical bias. These results underscore the importance of stress-induced current harvesting mechanism and could be scaled up for charge patterning of polymer surface to writable-readable data sheet. Time evolutional current distribution (TECD) study of the stress-induced patterned PANI surface shows the response of readability of the recorded data with time.

  4. Genetic mechanism for building evolution reflecting stress histories of residents and environmental factors

    NASA Astrophysics Data System (ADS)

    Nishikawa, Saya; Mita, Akira

    2014-03-01

    Conventional architectural design has a lot to do with the intuition and experience of designers. And residences are not always suit to its residents and surrounding environment. If we can extract residents' preferences and demands about comfort of each resident from histories of past life and reflect these information in next design, it's possible to make living space more comfortable. This thesis proposes genetic and evolutional system for architectural design information, which is applied evolutionary adaption. Specifically, I applied genetic mechanism which base sequence of DNA plays a role, epigenetic mechanism which chemical modification plays a role and evolutionary mechanism with natural selection. Proposed system firstly accumulates discomfort of residents, shortcoming of living space and usage of equipment as "comfort stress", "safety stress" and "energy saving stress", and modifies performance value of related performance items of building depending on the stress accumulation. Then this system processes selection according to the characteristics of the site for candidates of next generation of architectural design information which are generated via crossing and mutation. The data-set selected in this way is regarded as the performance value of next architectural design, and system suggests architectural specification to the residents.

  5. Focal Mechanisms and Stress Environment of the 12 May 2008 Wenchuan, China, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Luo, Y.; Ni, S.

    2012-12-01

    The 12 May 2008 Wenchuan earthquake (Mw=7.9) was the largest earthquake in China ever recorded by modern seismic instruments. It generated numerous moderate sized aftershocks that were well recorded by both permanent stations as well as portable instruments deployed after the mainshock. These waveform records yield high-quality data for the determination of focal mechanisms of aftershocks, which in turn provide important information for the investigation of regional stress field and the seismogenic environment in the Wenchuan earthquake source region. In this study, we determine the focal mechanisms, depths and moment magnitudes of moderate-sized (Mw ≥ 4.0) Wenchuan aftershocks using broadband waveform records. The focal mechanism results are then used to obtain the orientation and ratio of the principle stresses by the damped linear stress inversion method of Hardebeck & Michael (2006). Our results show that the majority of the moderate aftershocks occur at a depth range of 10-20 km and outside of the major rupture zones of the mainshock. The Wenchuan source region remains under a nearly horizontal compression with mostly thrust and occasional strike-slip faulting, especially towards the two ends of the rupture of the main shock. There is also clearly local variations in the orientation of the principle stresses.

  6. Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism

    PubMed Central

    Goswami, Sumita; Nandy, Suman; Calmeiro, Tomás R.; Igreja, Rui; Martins, Rodrigo; Fortunato, Elvira

    2016-01-01

    Mechano-electrical writing and reading in polyaniline (PANI) thin film are demonstrated via metal-polymer contact electrification mechanism (CEM). An innovative conception for a non-destructive self-powered writable-readable data sheet is presented which can pave the way towards new type of stress induced current harvesting devices. A localized forced deformation of the interface has been enacted by pressing the atomic force microscopic probe against the polymer surface, allowing charge transfer between materials interfaces. The process yields a well-defined charge pattern by transmuting mechanical stress in to readable information. The average of output current increment has been influenced from 0.5 nA to 15 nA for the applied force of 2 nN to 14 nN instead of electrical bias. These results underscore the importance of stress-induced current harvesting mechanism and could be scaled up for charge patterning of polymer surface to writable-readable data sheet. Time evolutional current distribution (TECD) study of the stress-induced patterned PANI surface shows the response of readability of the recorded data with time. PMID:26786701

  7. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  8. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  9. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans.

    PubMed

    Masson, Ingrid; Beaussier, Hélène; Boutouyrie, Pierre; Laurent, Stéphane; Humphrey, Jay D; Zidi, Mustapha

    2011-12-01

    The goal of this study was to model the in vivo non-linear mechanical behavior of human common carotid arteries (CCAs) and then to compare wall stresses and associated contributions of micro-constituents in normotensive (NT) and treated hypertensive (HT) subjects. We used an established theoretical model of 3D arterial mechanics that assumes a hyperelastic, anisotropic, active-passive, and residually stressed wall. In vivo data were obtained non-invasively from CCAs in 16 NT (21-64 years old) and 25 treated HT (44-69 years old) subjects. The associated quasi-static boundary value problem was solved semi-analytically over a cardiac cycle while accounting for surrounding perivascular tissue. Best-fit values of model parameters, including those describing contributions by intramural elastin, fibrillar collagen, and vascular smooth muscle, were estimated by a non-linear least-squares method. The model (1) captured temporal changes in intraluminal pressure, (2) estimated wall stress fields that appeared to reflect the presence or absence of age and disease, and (3) suggested changes in mechanical characteristics of wall micro-constituents despite medical treatment of hypertension. For example, age was positively correlated with residual stresses and altered fibrillar collagen in NT subjects, which indirectly validated the modeling, and HT subjects had higher levels of stresses, increased smooth muscle tone, and a stiffer elastin-dominated matrix despite treatment. These results are consistent with prior reports on effects of age and hypertension, but provide increased insight into evolving contributions of cell and matrix mechanics to arterial behavior in vivo.

  10. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-10-01

    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  11. The Stress and Vascular Catastrophes in Newborn Rats: Mechanisms Preceding and Accompanying the Brain Hemorrhages

    PubMed Central

    Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen

    2016-01-01

    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health. PMID:27378933

  12. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  13. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes ...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  14. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime

    NASA Astrophysics Data System (ADS)

    Berer, M.; Major, Z.; Pinter, G.; Constantinescu, D. M.; Marsavina, L.

    2014-11-01

    Due to its outstanding mechanical performance both in static and dynamic loading and its resistance up to very high temperatures, Polyetheretherketone (PEEK) has attracted many practical applications. The loaded contact state for the application of PEEK rolls as bearing elements was recently analyzed by the corresponding author. High irreversible deformations on the mantle side were caused by the rolling contact and thus the rolling performance is supposed to be strongly affected by the dynamic mechanical properties of this irreversibly deformed material. Tensile fatigue tests at various stress levels up to the thermally dominated fatigue regime were conducted in order to get information regarding the dynamic mechanical material behavior at high stress regimes. Two types of PEEK (annealed and untreated) were investigated and two load ratios, R, were used (0.1 and 0.5). During the fatigue tests extensometer strain, load and surface temperature were recorded and a quantitative hysteresis loop analysis with calculated secant modulus and dynamic modulus was performed. Furthermore, the concept of isocyclic stress-strain diagrams was applied to enlarge and confirm the results obtained from the hysteresis loop analysis. A sharp transition between thermally dominated and mechanically dominated fatigue regimes was found for both PEEK types (annealed and untreated) and for both load ratios. Moreover, the annealed PEEK was stiffer in the tensile fatigue tests than the untreated material. Both examined PEEK types showed distinct hardening throughout the fatigue tests which made them "more elastic" (higher stiffness and less damping).

  15. Mechanical load-assisted dissolution of metallic implant surfaces: influence of contact loads and surface stress state.

    PubMed

    Mitchell, Andrew; Shrotriya, Pranav

    2008-03-01

    Mechanical load-assisted dissolution is identified as one of the key mechanisms governing material removal in fretting and crevice corrosion of biomedical implants. In the current study, material removal on a stressed surface of cobalt-chromium-molybdenum (CoCrMo) subjected to single asperity contact is investigated in order to identify the influence of contact loads and in-plane stress state on surface damage mechanisms. The tip of an atomic force microscope is used as a well-characterized "asperity" to apply controlled contact forces and mechanically stimulate the loaded specimen surface in different aqueous environments from passivating to corroding. The volume of the material removed is measured to determine the influence of contact loads, in-plane stresses and the environment on the material dissolution rate. Experimental results indicate that surface damage is initiated at all the contact loads studied and as expected in a wear situation, removal rate increases with increase in contact loads. Removal rates display a complex dependence on residual stresses and the environment. In a passivating environment, the material removal rate is linearly dependent on the stress state such that surface damage is accelerated under compressive stresses and suppressed under tensile stresses. In a corrosive environment, the dissolution rate demonstrates a quadratic dependence on stress, with both compressive and tensile stresses accelerating material dissolution. A surface damage mechanism based on stress-assisted dissolution is proposed to elucidate the experimental observations.

  16. Reversible and Rapid Transfer-RNA Deactivation as a Mechanism of Translational Repression in Stress

    PubMed Central

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-01-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3′-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs. PMID:24009533

  17. A mechanical property and stress corrosion evaluation of 431 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties of type 431 stainless steel in two conditions: annealed bar and hardened and tempered bar are presented. Test specimens, manufactured from approximately 1.0 inch (2.54 cm) diameter bar stock, were tested at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C). The test data indicated excellent tensile strength, notched/unnotched tensile ratio, ductility, shear, and impact properties at all testing temperatures. Results of the alternate immersion stress corrosion tests on stressed and unstressed longitudinal tensile specimens 0.1250 inch (0.3175 cm) diameter and transverse C-ring specimens, machined from 1.0 inch (2.54 cm) diameter bar stock, indicated that the material is not susceptible to stress corrosion cracking when tested in a 3.5 percent NaCl solution for 180 days.

  18. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    PubMed

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  19. ER-stress and apoptosis: molecular mechanisms and potential relevance in infection.

    PubMed

    Häcker, Georg

    2014-10-01

    During ER-stress, one of the responses a cell can choose is apoptosis. Apoptosis generally is a cell's preferred response when other control mechanisms are overwhelmed. We now have a reasonably clear molecular picture what is happening once the apoptotic apparatus has been started. Unclear however are the majority of the upstream pathways that connect other signalling to apoptosis. During ER-stress, confirmed apoptosis-regulating targets are pro- and anti-apoptotic proteins of the Bcl-2-family, whose concerted action induces apoptosis. I will here discuss how mitochondrial apoptosis is triggered, how this is linked to the ER-stress response and in what way this may be relevant during microbial infections.

  20. Self-curable solid-state elastic dye lasers capable of mechanical stress probing.

    PubMed

    Yang, Yu; Liao, Zhifu; Zhou, Yuan; Cui, Yuanjing; Qian, Guodong

    2013-05-15

    Herein, a highly sensitive stress probe is reported based on pyrromethene 597 (PM597) doped elastic polydimethylsiloxane films. By sandwiching the dye doped elastic film with two plano dichromatic mirrors, a solid-sate microcavity laser with low laser threshold (~0.2 μJ) is presented as a straightforward probing method for mechanical stress, which is monitored by the laser output spectra, demonstrating a resolution limit higher than 0.01 MPa. The photostability of PM597 doped into the microcavity laser is higher than 7222 GJ/mol, which is among the highest record ever reported to our knowledge and a fast self-recovery on the laser output in less than 1 h, attributed to diffusion of dye molecules is observed, indicating a practical durability for such stress probes.

  1. Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats

    PubMed Central

    Bambico, F R; Bregman, T; Diwan, M; Li, J; Darvish-Ghane, S; Li, Z; Laver, B; Amorim, B O; Covolan, L; Nobrega, J N; Hamani, C

    2015-01-01

    Chronic ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) improves depressive-like behaviour in rats via serotonergic and neurotrophic-related mechanisms. We hypothesise that, in addition to these substrates, DBS-induced increases in hippocampal neurogenesis may also be involved. Our results show that stress-induced behavioural deficits in the sucrose preference test, forced swim test, novelty-suppressed feeding test (NSFT) and elevated plus maze were countered by chronic vmPFC DBS. In addition, stressed rats receiving stimulation had significant increases in hippocampal neurogenesis, PFC and hippocampal brain-derived neurotrophic factor levels. To block neurogenesis, stressed animals given DBS were injected with temozolomide. Such treatment reversed the anxiolytic-like effect of stimulation in the NSFT without significantly affecting performance in other behavioural tests. Taken together, our findings suggest that neuroplastic changes, including neurogenesis, may be involved in specific anxiolytic effects of DBS without affecting its general antidepressant-like response. PMID:26529427

  2. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress.

    PubMed

    Muratov, Alexander; Baulin, Vladimir A

    2015-12-01

    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism.

  3. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  4. How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nermoen, Anders; Korsnes, Reidar; Aursjø, Olav; Madland, Merete; Kjørslevik, Trygve Alexander; Østensen, Geir

    2016-02-01

    We report the results from a series of chalk flow-through-compaction experiments performed at three effective stresses (0.5 MPa, 3.5 MPa and 12.3 MPa) and two temperatures (92° and and 130°). The results show that both stress and temperature are important to both chemical alteration and mechanical deformation. The experiments were conducted on cores drilled from the same block of outcrop chalks from the Obourg quarry within the Saint Vast formation (Mons, Belgium). The pore pressure was kept at 0.7 MPa for all experiments with a continuous flow of 0.219 M MgCl2 brine at a constant flow rate; 1 original pore volume (PV) per day. The experiments have been performed in tri-axial cells with independent control of the external stress (hydraulic pressure in the confining oil), pore pressure, temperature, and the injected flow rate. Each experiment consists of two phases; a loading phase where stress-strain dependencies are investigated (approx. 2 days), and a creep phase that lasts for more than 150-160 days. During creep, the axial deformation was logged, and the effluent samples were collected for ion chromatography analyses. Any difference between the injected and produced water chemistry gives insight into the rock-fluid interactions that occur during flow through of the core. The observed effluent concentration shows a reduction in Mg2+, while the Ca2+ concentration is increased. This, together with SEM-EDS analysis, indicates that magnesium-bearing mineral phases are precipitated leading to dissolution of calcite, an observation . This is in-line with other flow-through experiments reported earlier. The observed dissolution and precipitation are sensitive to the effective stress and test temperature. Typically. H, higher stress and temperature lead to increased concentration differences of Mg2+ and Ca2+ concentration changes.. The observed strain can be partitioned additively into a mechanical and chemical driven component.

  5. Increased global transcription activity as a mechanism of replication stress in cancer

    PubMed Central

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M.; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-01-01

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. PMID:27725641

  6. Mechanism for the Protective Effect of Resveratrol against Oxidative Stress-Induced Neuronal Death

    PubMed Central

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2010-01-01

    Oxidative stress can induce cytotoxicity in neurons, which plays an important role in the etiology of neuronal damage and degeneration. The present study seeks to determine the cellular and biochemical mechanisms underlying resveratrol’s protective effect against oxidative neuronal death. The cultured HT22 cells, an immortalized mouse hippocampal neuronal cell line, were used as an in vitro model, and the oxidative stress and neurotoxicity in these neuronal cells were induced by exposure to high concentrations of glutamate. Resveratrol strongly protected HT22 cells from glutamate-induced oxidative cell death. Resveratrol’s neuroprotective effect was independent of its direct radical-scavenging property, but instead was dependent on its ability to selectively induce the expression of mitochondrial superoxide dismutase (SOD2), and subsequently, reduce mitochondrial oxidative stress and damage. The induction of the mitochondrial SOD2 by resveratrol was mediated through the activation of the PI3K/Akt and GSK-3β/β-catenin signaling pathways. Taken together, the results of this study show that up-regulation of the mitochondrial SOD2 by resveratrol represents an important mechanism for its protection of neuronal cells against oxidative cytotoxicity resulting form mitochondrial oxidative stress. PMID:20542495

  7. The stress corrosion resistance and the cryogenic temperature mechanical properties of annealed Nitronic 60 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    Ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of annealed, straightened, and centerless ground Nitronic 60 stainless steel alloy bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -196 C. Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens and transverse C-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse C-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. Additional stress corrosion tests were performed on transverse tensile specimens. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments

  8. Increased global transcription activity as a mechanism of replication stress in cancer.

    PubMed

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-10-11

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRAS(V12) promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRAS(V12), elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer.

  9. Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wilt, Thomas E.

    1992-01-01

    Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.

  10. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method

    NASA Astrophysics Data System (ADS)

    Kulak, S. M.; Novikov, V. F.; Baranov, A. V.

    2016-10-01

    Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.

  11. Interspecies diversity of erythrocyte mechanical stability at various combinations in magnitude and duration of shear stress, and osmolality.

    PubMed

    Nemeth, Norbert; Sogor, Viktoria; Kiss, Ferenc; Ulker, Pinar

    2016-10-05

    We hypothesized that the results of red blood cell mechanical stability test show interspecies differences. The comparative investigations were performed on blood samples obtained from rats, beagle dogs, pigs and healthy volunteers. Mechanical stress was applied in nine combinations: 30, 60 or 100 Pa shear stress for 100, 200 or 300 seconds. Generally, rat erythrocytes showed the highest capability of resistance. With the applied combinations of mechanical stress pig erythrocytes were the most sensitive. On human erythrocytes 60 Pa for 200 s was the minimum combination to result significant deformability deterioration. By increasing the magnitude and duration of the applied mechanical stress we experienced escalating deformability impairment in all species. 100 Pa shear stress for 300 seconds on human erythrocytes showed the largest deformability impairment. The mechanical stability test results were also dependent on osmolality. At hypoosmolar range (200 mOsmol/kg) the mechanical stress improved EI data mostly in rat and porcine blood. At higher osmolality (500 mOsmol/kg), the test did not show detectable difference, while in 250-300 mOsmol/kg range the differences were well observable. In summary, erythrocytes' capability of resistance against mechanical stress shows interspecies differences depending on the magnitude and duration of the applied stress, and on the osmolality.

  12. Acoustic and Electrical Signal Emission recordings when marble specimens are subjected to compressional mechanical stress

    NASA Astrophysics Data System (ADS)

    Triantis, Dimos; Stavrakas, Ilias; Hloupis, George; Ninos, Konstantinos; Vallianatos, Filippos

    2013-04-01

    The detection of Acoustic Emissions (AE) and Electrical Signals (ES) has been proved as a valuable experimental method to characterize the mechanical status of marble specimens when subjected to mechanical stress. In this work, marble specimens with dimensions 10cm x 4cm x 4cm where subjected to sequential loading cycles. The maximum stress of each loading was near the vicinity of fracture and was maintained for a relatively long time (th=200s). Concurrently to the mechanical tests, AE and ES were recorded. Specifically, two AE sensors and five ES sensors were installed on the surface of the specimens and the detected emissions were stored on a PC. The recordings show that AE and ES provide information regarding the damage spreading and location in the bulk of the specimen. Specifically, when the mechanical stress was maintained constant at the high stress value during each loading cycle the cumulative number of the AE hits become gradually less reaching a minimum after the first three loading cycles, indicating the existence of the Kaiser effect. During the eighth loading cycle the AE hits show a significant increase that became maximum at the ninth cycle before where failure occured. A similar behavior was observed for the cumulative energy. A b-value analysis was conducted following both Aki's and Gutenberg-Richter relations on the amplitudes of the AE hits. The b-values were found to increase during the three first loading cycles while consequently they were practically constant until reaching the two final loading cycles where they became gradually lower. The ES significantly increases during the stress increase of each cycle and gradually restores at a background level when the applied stress is maintained constant near the vicinity of fracture. It was observed that the background restoration level becomes gradually higher during the first four loading cycles. Consequently, during the next three loading cycles the background level is maintained practically

  13. Mechanical evaluation and fem analysis of stress in fixed partial dentures zirconium-ceramic

    PubMed Central

    CARDELLI, P.L.; VERTUCCI, V.; BALESTRA, F.; MONTANI, M.; ARCURI, C.

    2013-01-01

    SUMMARY Objective. Over the last several years, the Finite Element Analysis (FEM) has been widely recognized as a reference method in different fields of study, to simulate the distribution of mechanical stress, in order to evaluate the relative distribution of loads of different nature. The aim of this study is to investigate through the FEM analysis the stress distribution in fixed prostheses that have a core in Zirconia and a ceramic veneer supported by implants. Materials and methods. In this work we investigated the mechanical flexural strength of a ceramic material (Noritake®) and a of zirconium framework (Zircodent®) and the effects of the manufacturing processes of the material commonly performed during the production of fixed prostheses with CAD/CAM technology. Specifically three point bending mechanical tests were performed (three-point-bending) (1–3), using a machine from Test Equipment Instron 5566®, on two structures in zirconium framework-ceramic (structures supported by two implant abutments with pontic elements 1 and 2). A further in-depth analysis on the mechanical behavior in flexure of the specimens was conducted carrying out FEM studies in order to compare analog and digital data. Results. The analysis of the data obtained showed that the stresses are distributed in a different way according to the intrinsic elasticity of the structure. The analysis of FPD with four elements, the stresses are mainly concentrated on the surface of the load, while, in the FPD of three elements, much more rigid, the stresses are concentrated near the inner margins of the abutments. The concentration of many stresses in this point could be correlated to chipping (4) that is found in the outer edges of the structure, as a direct result of the ceramic brittleness which opposes the resilience of the structure subjected to bending. Conclusions. The analysis of the UY linear displacement confirms previous data, showing, in a numerical way, that the presence of the

  14. Hepatic expression patterns in psychosocially high-stressed pigs suggest mechanisms following allostatic principles.

    PubMed

    Oster, M; Muráni, E; Ponsuksili, S; D'Eath, R B; Turner, S P; Evans, G; Thölking, L; Kurt, E; Klont, R; Foury, A; Mormède, P; Wimmers, K

    2014-04-10

    Psychosocial challenges are known to introduce cellular and humoral adaptations in various tissues and organs, including parts of the sympatho-adrenal-medullary system and hypothalamic-pituitary-adrenal axis as well as other peripheral tissue being responsive to cortisol and catecholamines. The liver is of particular interest given its vital roles in maintaining homeostasis and health as well as regulating nutrient utilization and overall metabolism. We aimed to evaluate whether and how response to psychosocial stress is reflected by physiological molecular pathways in liver tissue. A pig mixing experiment was conducted to induce psychosocial stress culminating in skin lesions which reflect the involvement in aggressive behavior and fighting. At 27 weeks of age, animals prone to psychosocially low- and high-stress were assigned to mixing groups. Skin lesions were counted before mixing and after slaughter on the carcass. Individual liver samples (n=12) were taken. The isolated RNA was hybridized on Affymetrix GeneChip porcine Genome Arrays. Relative changes of mRNA abundances were estimated via variance analyses. Molecular routes related to tRNA charging, urea cycle, acute phase response, galactose utilization, and steroid receptor signaling were found to be increased in psychosocially high-stressed animals, whereas catecholamine degradation and cholesterol biosynthesis were found to be decreased. In particular, psychosocially high-stressed animals show decreased expression of catechol-O-methyltransferase (COMT) which has been linked to molecular mechanisms regulating aggressiveness and stress response. The expression patterns of high-stressed animals revealed metabolic alterations of key genes related to energy-mobilizing processes at the expense of energy consuming processes. Thus, the coping following psychosocial challenges involves transcriptional alterations in liver tissue which may be summarized with reference to the concept of allostasis, a strategy which

  15. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars

    PubMed Central

    Izanloo, Ali; Condon, Anthony G.; Langridge, Peter; Tester, Mark; Schnurbusch, Thorsten

    2008-01-01

    In the South Australian wheat belt, cyclic drought is a frequent event represented by intermittent periods of rainfall which can occur around anthesis and post-anthesis in wheat. Three South Australian bread wheat (Triticum aestivum L.) cultivars, Excalibur, Kukri, and RAC875, were evaluated in one greenhouse and two growth-room experiments. In the first growth-room experiment, where plants were subjected to severe cyclic water-limiting conditions, RAC875 and Excalibur (drought-tolerant) showed significantly higher grain yield under cyclic water availability compared to Kukri (drought-susceptible), producing 44% and 18% more grain compared to Kukri, respectively. In the second growth-room experiment, where plants were subjected to a milder drought stress, the differences between cultivars were less pronounced, with only RAC875 showing significantly higher grain yield under the cyclic water treatment. Grain number per spike and the percentage of aborted tillers were the major components that affected yield under cyclic water stress. Excalibur and RAC875 adopted different morpho-physiological traits and mechanisms to reduce water stress. Excalibur was most responsive to cyclic water availability and showed the highest level of osmotic adjustment (OA), high stomatal conductance, lowest ABA content, and rapid recovery from stress under cyclic water stress. RAC875 was more conservative and restrained, with moderate OA, high leaf waxiness, high chlorophyll content, and slower recovery from stress. Within this germplasm, the capacity for osmotic adjustment was the main physiological attribute associated with tolerance under cyclic water stress which enabled plants to recover from water deficit. PMID:18703496

  16. The influence of acute stress on attention mechanisms and its electrophysiological correlates.

    PubMed

    Sänger, Jessica; Bechtold, Laura; Schoofs, Daniela; Blaszkewicz, Meinolf; Wascher, Edmund

    2014-01-01

    FOR THE SELECTION OF RELEVANT INFORMATION OUT OF A CONTINUOUS STREAM OF INFORMATION, WHICH IS A COMMON DEFINITION OF ATTENTION, TWO CORE MECHANISMS ARE ASSUMED: a competition-based comparison of the neuronal activity in sensory areas and the top-down modulation of this competition by frontal executive control functions. Those control functions are thought to bias the processing of information toward the intended goals. Acute stress is thought to impair these frontal functions through the release of cortisol. In the present study, subjects had to detect a luminance change of a stimulus and ignore more salient but task irrelevant orientation changes. Before the execution of this task, subjects underwent a socially evaluated cold pressor test (SECPT) or a non-stressful control situation. The SECPT revealed reliable stress response with a significant increase of cortisol and alpha-amylase. Stressed subjects showed higher error rates than controls, particularly in conditions which require top-down control processing to bias the less salient target feature against the more salient and spatially separated distracter. By means of the EEG, subjects who got stressed showed a reduced allocation to the relevant luminance change apparent in a modulation of the N1pc. The following N2pc, which reflects a re-allocation of attentional resources, supports the error pattern. There was only an N2pc in conditions, which required to bias the less salient luminance change. Moreover, this N2pc was decreased as a consequence of the induced stress. These results allow the conclusion that acute stress impairs the intention-based attentional allocation and enhances the stimulus-driven selection, leading to a strong distractibility during attentional information selection.

  17. The influence of acute stress on attention mechanisms and its electrophysiological correlates

    PubMed Central

    Sänger, Jessica; Bechtold, Laura; Schoofs, Daniela; Blaszkewicz, Meinolf; Wascher, Edmund

    2014-01-01

    For the selection of relevant information out of a continuous stream of information, which is a common definition of attention, two core mechanisms are assumed: a competition-based comparison of the neuronal activity in sensory areas and the top-down modulation of this competition by frontal executive control functions. Those control functions are thought to bias the processing of information toward the intended goals. Acute stress is thought to impair these frontal functions through the release of cortisol. In the present study, subjects had to detect a luminance change of a stimulus and ignore more salient but task irrelevant orientation changes. Before the execution of this task, subjects underwent a socially evaluated cold pressor test (SECPT) or a non-stressful control situation. The SECPT revealed reliable stress response with a significant increase of cortisol and alpha-amylase. Stressed subjects showed higher error rates than controls, particularly in conditions which require top-down control processing to bias the less salient target feature against the more salient and spatially separated distracter. By means of the EEG, subjects who got stressed showed a reduced allocation to the relevant luminance change apparent in a modulation of the N1pc. The following N2pc, which reflects a re-allocation of attentional resources, supports the error pattern. There was only an N2pc in conditions, which required to bias the less salient luminance change. Moreover, this N2pc was decreased as a consequence of the induced stress. These results allow the conclusion that acute stress impairs the intention-based attentional allocation and enhances the stimulus-driven selection, leading to a strong distractibility during attentional information selection. PMID:25346669

  18. A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Prasad, K. Sajun; Gupta, Amit Kumar; Singh, Yashjeet; Singh, Swadesh Kumar

    2016-12-01

    This paper presents a modified mechanical threshold stress (m-MTS) constitutive model. The m-MTS model incorporates variable athermal and dynamic strain aging (DSA) Components to accurately predict the flow stress behavior of austenitic stainless steels (ASS)-316 and 304. Under strain rate variations between 0.01-0.0001 s-1, uniaxial tensile tests were conducted at temperatures ranging from 50-650 °C to evaluate the material constants of constitutive models. The test results revealed the high dependence of flow stress on strain, strain rate and temperature. In addition, it was observed that DSA occurred at elevated temperatures and very low strain rates, causing an increase in flow stress. While the original MTS model is capable of predicting the flow stress behavior for ASS, statistical parameters point out the inefficiency of the model when compared to other models such as Johnson Cook model, modified Zerilli-Armstrong (m-ZA) model, and modified Arrhenius-type equations (m-Arr). Therefore, in order to accurately model both the DSA and non-DSA regimes, the original MTS model was modified by incorporating variable athermal and DSA components. The suitability of the m-MTS model was assessed by comparing the statistical parameters. It was observed that the m-MTS model was highly accurate for the DSA regime when compared to the existing models. However, models like m-ZA and m-Arr showed better results for the non-DSA regime.

  19. Stress, sex and neural adaptation to a changing environment: mechanisms of neuronal remodeling

    PubMed Central

    McEwen, Bruce S.

    2010-01-01

    The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in hippocampus and to a lesser extent in prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodelling of dendrites and synapses in the hippocampus, amygdala and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions. PMID:20840167

  20. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments

    NASA Astrophysics Data System (ADS)

    Gopinath, Abhay; Lim, Andre; Nagarajan, Balasubramanian; Cher Wong, Chow; Maiti, Rajarshi; Castagne, Sylvie

    2016-11-01

    Mechanical surface treatments such as Shot Peening (SP) and Deep Cold Rolling (DCR) are being used to introduce Compressive Residual Stress (CRS) at the surface and subsurface layers of aerospace components, respectively. This paper investigates the feasibility of a combined introduction of both the surface and sub-surface compressive residual stress on Ti6Al4V material through a successive application of the two aforementioned processes, one after the other. CRS profiles between individual processes were compared to that of combination of processes to validate the feasibility. It was found out that shot peening introduces surface compressive residual stress into the already deep cold rolled sample, resulting in both surface and sub-surface compressive residual stresses in the material. However the drawback of such a combination would be the increased surface roughness after shot peening a deep cold rolled sample which can be critical especially in compressor components. Hence, a new technology, Vibro-Peening (VP) may be used as an alternative to SP to introduce surface stress at reduced roughness.

  1. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    SciTech Connect

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. This compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.

  2. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves

    PubMed Central

    Zhang, Xinhua; Teixeira da Silva, Jaime A.; Niu, Meiyun; Li, Mingzhi; He, Chunmei; Zhao, Jinhui; Zeng, Songjun; Duan, Jun; Ma, Guohua

    2017-01-01

    Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0–48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance. PMID:28169358

  3. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    USGS Publications Warehouse

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  4. Combining clinical studies and analogue experiments to investigate cognitive mechanisms in posttraumatic stress disorder

    PubMed Central

    Ehring, Thomas; Kleim, Birgit; Ehlers, Anke

    2013-01-01

    Research into cognitive mechanisms in posttraumatic stress disorder (PTSD) typically comprises two types of studies. The first group of studies is conducted with survivors of traumatic events and assesses the association between PTSD and cognitive variables with questionnaires and/or information processing paradigms. In the second group of studies, healthy non-traumatized individuals are exposed to an analogue stressor (e.g., a stressful film) and cognitive variables of interest are usually experimentally manipulated to investigate their effects on analogue PTSD symptoms. This review illustrates how studies of trauma survivors and analogue studies with non-traumatized populations can be usefully combined. Two examples for this approach are presented: (1) research into the role of perceptual priming for trauma-related stimuli and (2) research into trauma-related rumination. The advantages and limitations of both types of studies are discussed and it is argued that a combination of both approaches is needed to investigate cognitive mechanisms in PTSD. PMID:23814633

  5. Stress changes, focal mechanisms, and earthquake scaling laws for the 2000 dike at Miyakejima (Japan)

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Rivalta, Eleonora; Cesca, Simone; Aoki, Yosuke

    2015-06-01

    Faulting processes in volcanic areas result from a complex interaction of pressurized fluid-filled cracks and conduits with the host rock and local and regional tectonic setting. Often, volcanic seismicity is difficult to decipher in terms of the physical processes involved, and there is a need for models relating the mechanics of volcanic sources to observations. Here we use focal mechanism data of the energetic swarm induced by the 2000 dike intrusion at Miyakejima (Izu Archipelago, Japan), to study the relation between the 3-D dike-induced stresses and the characteristics of the seismicity. We perform a clustering analysis on the focal mechanism (FM) solutions and relate them to the dike stress field and to the scaling relationships of the earthquakes. We find that the strike and rake angles of the FMs are strongly correlated and cluster on bands in a strike-rake plot. We suggest that this is consistent with optimally oriented faults according to the expected pattern of Coulomb stress changes. We calculate the frequency-size distribution of the clustered sets finding that focal mechanisms with a large strike-slip component are consistent with the Gutenberg-Richter relation with a b value of about 1. Conversely, events with large normal faulting components deviate from the Gutenberg-Richter distribution with a marked roll-off on its right-hand tail, suggesting a lack of large-magnitude events (Mw > 5.5). This may result from the interplay of the limited thickness and lower rock strength of the layer of rock above the dike, where normal faulting is expected, and lower stress levels linked to the faulting style and low confining pressure.

  6. Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse, Addiction, and Relapse

    DTIC Science & Technology

    2015-10-01

    alcohol and other drug abuse , b) the results of this investigation will facilitate translating prazosin treatment to clinical implementation in the...Exp Res 36:594-603. Koob GF, Le Moal M. (1997) Drug abuse : hedonic homeostatic dys- regulation. Science 278:52-8. Krystal JH, Webb E, Grill on C et al...AWARD NUMBER: W81XWH-13-1-0126 TITLE: Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse , Addiction, and Relapse

  7. Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels

    NASA Astrophysics Data System (ADS)

    Takigawa, T.; Araki, H.; Takahashi, K.; Masuda, T.

    2000-11-01

    The effects of mechanical stress on the volume phase transition of a poly(N-isopropylacrylamide) (PNIPA) gel as well as a copolymer gel composed of N-isopropylacrylamide (NIPA) and sodium acrylate (SA) were investigated in the relatively low stress region. The PNIPA gel without elongational stress showed the behavior close to the second order phase transition. The character of the first order transition became clear under tension, and the transition temperature increased with increasing applied stress. Similar behavior was observed for the NIPA-SA copolymer gel, but the copolymer gel showed the first order transition in the whole stress range investigated. The thermodynamical linear region, where the transition temperature varies linearly with applied stress, was narrower than the mechanical linear region determined by the stress-strain relation of the gels. The change in the transition behavior by the application of the mechanical stress originated chiefly from the volume change in the gels by the applied mechanical stress. It was found that the curve of the transition temperature against applied stress corresponds to the phase boundary between the swollen and collapsed phases for the gels. On the basis of the experimental data, a phenomenological model describing the volume phase transition of the polymer gels is proposed in the frame of the Landau-type free energy expression.

  8. A study of thermo-mechanical stress and its impact on through-silicon vias

    NASA Astrophysics Data System (ADS)

    Ranganathan, N.; Prasad, K.; Balasubramanian, N.; Pey, K. L.

    2008-07-01

    The BOSCH etch process, which is commonly used in microelectromechanical system fabrication, has been extensively investigated in this work for implementation in through-silicon via (TSV) technology for 3D-microsystems packaging. The present work focuses on thermo-mechanical stresses caused by thermal loading due to post-TSV processes and their impact on the electrical performance of through-silicon copper interconnects. A test vehicle with deep silicon copper-plated comb structure was designed to study and evaluate different deep silicon via etch processes and its effect on the electrical leakage characteristics under various electrical and thermal stress conditions. It has been shown that the leakage current between the comb interconnect structures increases with an increase in sidewall roughness and that it can be significantly lowered by smoothening the sidewalls. It was also shown that by tailoring a non-BOSCH etch process with the normal BOSCH process, a similar leakage current reduction can be achieved. It was also shown through thermo-mechanical simulation studies that there is a clear correlation between high leakage current behavior due to non-uniform Ta barrier deposition over the rough sidewalls and the thermo-mechanical stress induced by post-TSV processes.

  9. Effects of mechanical stresses on sperm function and fertilization rate in mice.

    PubMed

    Shi, Xiao; Wang, Ting; Qiu, Zhuo Lin; Li, Ke; Li, Liu; Chan, Carol Pui Shan; Chan, Si Mei; Li, Tian-Chiu; Quan, Song

    2016-01-01

    In this study, we investigated whether any of the observed changes in mouse sperm function tests secondary to mechanical stresses (centrifugation and pipetting) correlate with sperm fertilization ability. Chinese Kunming mice were used as sperm and oocyte donors. Sperm samples were allocated evenly into centrifugation, pipette, and control groups. Sperm plasma membrane integrity (PMI), mitochondrial membrane permeability (MMP), baseline and stimulated intracellular ROS, and sperm fertilization ability were measured by hypo-osmotic swelling, flow cytometry, and fertilization tests. Parallel studies were conducted and all tests were repeated six times. Our results showed that after centrifugation, the progressive motility, average path velocity, and overall sperm motility and PMI decreased significantly (p < 0.05). In addition, the MMP level decreased significantly in viable sperm when the centrifugation condition reached 1,400 g × 15 minutes (p < 0.05). When pipetting was performed two or more times, progressive motility, average path velocity, and overall sperm motility decreased significantly (p < 0.05); when it was performed four or more times, sperm membrane integrity and intracellular basal ROS level of viable sperm was also significantly decreased (p < 0.05). In conclusion, various mechanical stresses seem to affect sperm function, however this does not appear to alter fertilization rate. Laboratory handling steps should be minimized to avoid unnecessary mechanical stresses being applied to sperm samples.

  10. A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1972-01-01

    The mechanical and stress corrosion properties are presented of vacuum melted Custom 455 stainless steel alloy bar (1.0-inch diameter) and sheet (0.083-inch thick) material aged at 950 F, 1000 F, and 1050 F. Low temperature mechanical properties were determined at temperatures of 80 F, 0 F, -100 F, and -200 F. For all three aging treatments, the ultimate tensile and 0.2 percent offset yield strengths increased with decreasing test temperatures while the elongation held fairly constant down to -100 F and decreased at -200 F. Reduction in Area decreased moderately with decreasing temperature for the longitudinal round (0.250-inch diameter) specimens. Notched tensile strength and charpy V-notched impact strength decreased with decreasing test temperature. For all three aging treatments, no failures were observed in the unstressed specimens or the specimens stressed to 50, 75, and 100 percent of their yield strengths for 180 days of alternate immersion testing in a 3.5 percent NaCl solution. As indicated by the results of tensile tests performed after alternate immersion testing, the mechanical properties of Custom 455 alloy were not affected by stress or exposure under the conditions of the evaluation.

  11. Determination of hysteresis loops in thermo-mechanical fatigue using isothermal stress-strain data

    NASA Astrophysics Data System (ADS)

    Skelton, R. P.

    1994-04-01

    Thermo-mechanical fatigue stress-strain data on ferritic/austenitic steels and superalloys from a variety of sources are analyzed with regard to hysteresis loop stress asymmetry. This arises from a decoupling of the thermal and mechanical strain signals in the test technique so that many tension-compression load combinations are possible. Data from simplified isothermal and bithermal tests are also examined. Taking a typical example of an 'out-of-phase' thermo-mechanical loop on a 1/2CrMoV steel cycled between 200 and 550 C, isothermal stress-strain data were generated at 50 C intervals on material from the same cast and, used in conjunction with the elastic characteristics of the apparatus, an attempt was made to re-create this loop. The methods employed were: (1) a graphical construction between appropriate isothermal yield contours; (2) a tangent modulus calculation; and (3) a secant modulus calculation. Method (1) appeared to give the closest agreement in the present case.

  12. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    PubMed Central

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  13. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures

    PubMed Central

    Hoshijima, Masahiko

    2011-01-01

    Cardiac muscle is equipped with intricate intrinsic mechanisms to regulate adaptive remodeling. Recent and extensive experimental findings powered by novel strategies for screening protein-protein interactions, improved imaging technologies, and versatile transgenic mouse methodologies reveal that Z disks and titin filaments possess unexpectedly complicated sensory and modulatory mechanisms for signal reception and transduction. These mechanisms employ molecules such as muscle-enriched LIM domain proteins, PDZ-LIM domain proteins, myozenin gene family members, titin-associated ankyrin repeat family proteins, and muscle-specific ring finger proteins, which have been identified as potential molecular sensor components. Moreover, classic transmembrane signaling processes, including mitogen-activated kinase, protein kinase C, and calcium signaling, also involve novel interactions with the Z disk/titin network. This compartmentalization of signaling complexes permits alteration of receptor-dependent transcriptional regulation by direct sensing of intrinsic stress. Newly identified mechanical stress sensors are not limited to Z-disk region and to I-band and M-band regions of titin but are also embedded in muscle-specific membrane systems such as the costamere, intercalated disks, and caveolae-like microdomains. This review summarizes current knowledge of this rapidly developing area with focus on how the heart adjusts physiological remodeling process to meet with mechanical demands and how this process fails in cardiac pathologies. PMID:16537787

  14. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    SciTech Connect

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  15. Role of mechanical loads in inducing in-cycle tensile stress in thermally grown oxide

    SciTech Connect

    Diaz, R.; Jansz, M.; Mossaddad, M.; Raghavan, S.; Okasinski, J.S.; Almer, J.D.; Perez, H.P.; Imbrie, P.

    2012-01-01

    Experimental in situ synchrotron x-ray diffraction results tracking the strain behavior of the various layers during a cycle, under thermo-mechanical conditions are presented in this work. The quantitative strain measurements here show that the thermally grown oxide briefly experiences in-plane tensile stress ({sigma}{sub 22} = +36.4 MPa) with increased mechanical loading during ramp-up in the thermal cycle. These findings are the first in situ experimental observations of these strains under thermo-mechanical conditions, envisaged to serve as a catalyst for crack initiation. The depth resolved measurements of strain taken during applied thermal and mechanical load in this work are a significant step towards achieving realistic testing conditions.

  16. Early life stress interactions with the epigenome: potential mechanisms driving vulnerability towards psychiatric illness

    PubMed Central

    Olive, Michael Foster

    2014-01-01

    Throughout the 20th century a body of literature concerning the long lasting effects of early environment was produced. Adverse experiences in early life, or early life stress (ELS), is associated with a higher risk for developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions. PMID:25003947

  17. Effect of grease type on abnormal vibration of ball bearing

    NASA Astrophysics Data System (ADS)

    Itagaki, Takayoshi; Ohta, Hiroyuki; Igarashib, Teruo

    2003-12-01

    The abnormal vibration of ball bearings lubricated with grease was studied. The test bearings were lubricated with three types of grease: Li soap/silicone oil grease, Na soap/mineral oil grease and Li soap/mineral oil grease. In the experiments, the axial-loaded ball bearings were operated at a constant rotational speed, and the vibration and the outer ring temperatures of the test bearings were measured. In addition, the shear stress and shear rate of the greases were measured by a rheometer. The experimental results showed that the abnormal vibration occurs on the test bearings lubricated with all three types of grease. Based on the experimental results, the generating mechanisms of the abnormal vibrations were discussed. From the discussions, it seems reasonable to conclude: (1) Li soap/silicone oil grease and Na soap/mineral oil grease both have a negative damping moment characteristic. The abnormal vibrations of the ball bearings lubricated with these greases are generated by the negative damping moment. (2) The abnormal vibration of the ball bearings lubricated with Li soap/mineral oil grease is generated by the decreasing positive damping moment of the grease due to the rising temperature.

  18. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    PubMed Central

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-01-01

    Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Conclusion Under thermal

  19. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  20. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    PubMed

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions.

  1. Orientation effect on the giant stress field induced in a single Ni nanowire by mechanical strain

    NASA Astrophysics Data System (ADS)

    Melilli, G.; Madon, B.; Clochard, M.-C.; Wegrowe, J.-E.

    2015-09-01

    The change of magnetization (i.e. using the inverse magnetostriction effect) allows to investigate at the nanoscale the effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW). The magnetization state is measured locally by anisotropic magnetoresitance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. Due to the inverse magnetostriction, a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≍ 10 K has been evidenced. The coplanarity of the vectors between the magnetization and the magnetic field is broken. A way of studying the effect of the geometry on such a system, is to fabricate oriented polymer templates. Track-etched polymer membranes were thus irradiated at various angles (αirrad) leading, after electrodeposition, to embedded Ni NWs of different orientations. With cylindrical Ni NW oriented normally to the template surface, the induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification results in three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. When the Ni NWs are tilted from the polymer template surface normality, the induced stress field is reduced and the amplification phenomenon is less important.

  2. Overlapping Mechanisms of Stress-Induced Relapse to Opioid Use Disorder and Chronic Pain: Clinical Implications

    PubMed Central

    Ghitza, Udi E.

    2016-01-01

    Over the past two decades, a steeply growing number of persons with chronic non-cancer pain have been using opioid analgesics chronically to treat it, accompanied by a markedly increased prevalence of individuals with opioid-related misuse, opioid use disorders, emergency department visits, hospitalizations, admissions to drug treatment programs, and drug overdose deaths. This opioid misuse and overdose epidemic calls for well-designed randomized-controlled clinical trials into more skillful and appropriate pain management and for developing effective analgesics that have lower abuse liability and are protective against stress induced by chronic non-cancer pain. However, incomplete knowledge regarding effective approaches to treat various types of pain has been worsened by an under-appreciation of overlapping neurobiological mechanisms of stress, stress-induced relapse to opioid use, and chronic non-cancer pain in patients presenting for care for these conditions. This insufficient knowledge base has unfortunately encouraged common prescription of conveniently available opioid pain-relieving drugs with abuse liability, as opposed to treating underlying problems using team-based multidisciplinary, patient-centered, collaborative-care approaches for addressing pain and co-occurring stress and risk for opioid use disorder. This paper reviews recent neurobiological findings regarding overlapping mechanisms of stress-induced relapse to opioid misuse and chronic non-cancer pain, and then discusses these in the context of key outstanding evidence gaps and clinical-treatment research directions that may be pursued to fill these gaps. Such research directions, if conducted through well-designed randomized-controlled trials, may substantively inform clinical practice in general medical settings on how to effectively care for patients presenting with pain-related distress and these common co-occurring conditions. PMID:27199787

  3. Prochlorococcus and Synechococcus have Evolved Different Adaptive Mechanisms to Cope with Light and UV Stress

    PubMed Central

    Mella-Flores, Daniella; Six, Christophe; Ratin, Morgane; Partensky, Frédéric; Boutte, Christophe; Le Corguillé, Gildas; Marie, Dominique; Blot, Nicolas; Gourvil, Priscillia; Kolowrat, Christian; Garczarek, Laurence

    2012-01-01

    Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO2 fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field. PMID:23024637

  4. Abnormal positive bias stress instability of In–Ga–Zn–O thin-film transistors with low-temperature Al{sub 2}O{sub 3} gate dielectric

    SciTech Connect

    Chang, Yu-Hong; Yu, Ming-Jiue; Lin, Ruei-Ping; Hsu, Chih-Pin; Hou, Tuo-Hung

    2016-01-18

    Low-temperature atomic layer deposition (ALD) was employed to deposit Al{sub 2}O{sub 3} as a gate dielectric in amorphous In–Ga–Zn–O thin-film transistors fabricated at temperatures below 120 °C. The devices exhibited a negligible threshold voltage shift (ΔV{sub T}) during negative bias stress, but a more pronounced ΔV{sub T} under positive bias stress with a characteristic turnaround behavior from a positive ΔV{sub T} to a negative ΔV{sub T}. This abnormal positive bias instability is explained using a two-process model, including both electron trapping and hydrogen release and migration. Electron trapping induces the initial positive ΔV{sub T}, which can be fitted using the stretched exponential function. The breakage of residual AlO-H bonds in low-temperature ALD Al{sub 2}O{sub 3} is triggered by the energetic channel electrons. The hydrogen atoms then diffuse toward the In–Ga–Zn–O channel and induce the negative ΔV{sub T} through electron doping with power-law time dependence. A rapid partial recovery of the negative ΔV{sub T} after stress is also observed during relaxation.

  5. Stress Field in Brazil with Focal Mechanism: Regional and Local Patterns

    NASA Astrophysics Data System (ADS)

    Dias, F.; Assumpcao, M.

    2013-05-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation but also in the study of intraplate seismicity. The stress field in Brazil has been determined mainly using focal mechanisms and a few breakout data and in-situ measurements. However the stress field still is poorly known in Brazil. The focal mechanisms of recent earthquakes (magnitude lower than 5 mb) were studied using waveform modeling. We stacked the record of several teleseismic stations ( delta > 30°) stacked groups of stations separated according to distance and azimuth. Every record was visually inspected and those with a good signal/noise ratio (SNR) were grouped in windows of ten degrees distance and stacked. The teleseismic P-wave of the stacked signals was modeled using the hudson96 program of Herrmann seismology package (Herrmann, 2002) and the consistency of focal mechanism with the first-motion was checked. Some events in central Brazil were recorded by closer stations (~ 1000 km) and the moment tensor was determined with the ISOLA code (Sokos & Zahradnik, 2008). With the focal mechanisms available in literature and those obtained in this work, we were able to identify some patterns: the central region shows a purely compressional pattern (E-W SHmax), which is predicted by regional theoretical models (Richardson & Coblentz, 1996 and the TD0 model of Lithgow & Bertelloni, 2004). Meanwhile in the Amazon we find an indication of SHmax oriented in the SE-NW direction, probably caused by the Caribbean plate interaction (Meijer, 1995). In northern coastal region, the compression rotates following the coastline, which indicates an important local component related to spreading effects at the continental/oceanic transition (Assumpção, 1998) and flexural stresses caused by sedimentary load in Amazon Fan. We determine the focal mechanism of several events in Brazil using different techniques according to the available data. The major difficulty is to

  6. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  7. An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2016-01-01

    Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic-pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxiety-related behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms.

  8. Endoplasmic Reticulum Stress-Sensing Mechanism Is Activated in Entamoeba histolytica upon Treatment with Nitric Oxide

    PubMed Central

    Santi-Rocca, Julien; Smith, Sherri; Weber, Christian; Pineda, Erika; Hon, Chung-Chau; Saavedra, Emma; Olivos-García, Alfonso; Rousseau, Sandrine; Dillies, Marie-Agnès; Coppée, Jean-Yves; Guillén, Nancy

    2012-01-01

    The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR). The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO) triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO) and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i) dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii) induction of DNA repair and redox gene expression and iii) up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis. PMID:22384074

  9. Focal mechanisms and stress variations in the Caucasus and Northeast Turkey from constraints of regional waveforms

    NASA Astrophysics Data System (ADS)

    Tseng, Tai-Lin; Hsu, Hsin-Chih; Jian, Pei-Ru; Huang, Bor-Shouh; Hu, Jyr-Ching; Chung, Sun-Lin

    2016-11-01

    The continental collision between Arabia and Eurasia created large strike-slip faults in Turkey as well as mountains in the Caucasus and the volcanic plateau between them. In this study, we use regional waveforms of a new seismic array deployed between 2008 and 2012 to constrain the focal mechanisms and depths of small to moderate sized earthquakes occurring in the western part of the Central Caucasus and northeast Turkey. The distribution of aftershocks and the twelve focal mechanisms involved in the sequence of the 2009 earthquake in Racha are clearly a reactivation of a deeper segment of the 1991 M7 Racha rupture zone. The deeper segment is not well connected to the shallower décollement separating the basement and sedimentary basin. The earthquakes we determined in northeastern Turkey and southern Georgia are related to the strike-slip fault system. We further combined all of the reliably determined focal mechanisms over the last 30 years to investigate the current stress status of the crust in three areas: Racha in the western Greater Caucasus, Javakheti near the Lesser Caucasus and in Northeast Turkey. Our results show that the directions of maximum compressional stress consistently fall within - 2 to 14°N throughout the entire study region. This appears to be controlled by the continental collision. Nonetheless, the minimum compression switches from vertical (in the Greater Caucasus) to the east-west direction (in northeastern Turkey), due to the westward extrusion of the Anatolia block, which is driven partly by the Hellenic subduction. The transition of the stress field is close to the Javakheti volcanic plateau in the Lesser Caucasus, where the relative magnitude between the principal stresses appears to be strongly variable.

  10. Clonal Plasticity of Aquatic Plant Species Submitted to Mechanical Stress: Escape versus Resistance Strategy

    PubMed Central

    Puijalon, Sara; Bouma, Tjeerd J.; Van Groenendael, Jan; Bornette, Gudrun

    2008-01-01

    Background and Aims The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. Methods The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. Key Results For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. Conclusions This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy. PMID:18854376

  11. Influence of fault geometry and tectonic driving stress orientation on the mechanics of multifault earthquakes

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Maerten, F.; Pollard, D. D.

    2012-12-01

    The M 7.3 28 June 1992 Landers, California earthquake was a well-documented event that highlighted the complex relationship between the earthquake and the multiple faults on which it occurred. Not only was fault slip data mapped in the field in detail, due to good exposure in the arid conditions of the Mojave Desert, but also it was one of the first earthquakes for which the surface displacement field was captured by satellite technology. In addition, precise aftershock relocations and fault plane solutions provide information about stress and fault behavior at depth. Study of fault interactions leading to the linkage of five right-lateral, strike-slip faults at Landers is aided by this abundance of available surface and subsurface data. While mapped near-field surface data often are restricted to the realm of the geologist, and subsurface data, such as aftershocks, often are restricted to the realm of the geophysicist, we find that integrating these data in mechanical forward models provides good constraint on the three-dimensional structures of the faults involved. Mechanical models also reveal that fault geometry and the orientation of the tectonic driving stress greatly influence whether or not slip is promoted across the extensional step between two of the faults along the southern-central rupture and elucidate the role of a crossing fault located within the step. Unfortunately, the orientation of the principal stresses are not well constrained near Landers or in many regions around the world. Previous determinations of the tectonic driving stress at Landers range from 7 degrees to 45 degrees, measured clockwise from North. We introduce a new stress inversion method that honors mechanical relationships among the remote stress state that is being inverted for, mainshock fault slip, the resulting total stress field following fault slip, and aftershocks. Use of the principal of superposition in this new algorithm obviates the need for the prohibitive computation

  12. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed Central

    2011-01-01

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1). Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate

  13. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed

    Sagai, Masaru; Bocci, Velio

    2011-12-20

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative

  14. Mechanical Stress as the Common Denominator between Chronic Inflammation, Cancer, and Alzheimer’s Disease

    PubMed Central

    Levy Nogueira, Marcel; da Veiga Moreira, Jorgelindo; Baronzio, Gian Franco; Dubois, Bruno; Steyaert, Jean-Marc; Schwartz, Laurent

    2015-01-01

    The pathogenesis of common diseases, such as Alzheimer’s disease (AD) and cancer, are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This is in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age, such as cardiomyopathy, atherosclerosis, and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD, and cancer. PMID:26442209

  15. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G. G.; Holdcroft, S.; Kjeang, E.

    2014-07-01

    A cyclic open circuit voltage (COCV) accelerated stress test (AST) is designed to screen the simultaneous effect of chemical and mechanical membrane degradation in polymer electrolyte fuel cells. The AST consists of a steady state OCV phase to accelerate chemical degradation and periodic wet/dry cycles to provide mechanical degradation. The membrane degradation process induced by COCV AST operation is analyzed using a standard MEA with PFSA ionomer membrane. The OCV shows an initially mild decay rate followed by a higher decay rate in the later stages of the experiment. Membrane failure, defined by a threshold convective hydrogen leak rate, is obtained after 160 h of operation. Uniform membrane thinning is observed with pinhole formation being the primary cause of failure. Mechanical tensile tests reveal that the membrane becomes stiffer and more brittle during AST operation, which contributes to mechanical failure upon cyclic humidity induced stress. Solid state 19F NMR spectroscopy and fluoride emission measurements demonstrate fluorine loss from both side chain and main chain upon membrane exposure to high temperature and low humidity OCV condition.

  16. Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism

    PubMed Central

    Sahoo, Pabitra K.; Murawala, Prayag; Sawale, Pravin T.; Sahoo, Manas R.; Tripathi, Mukesh M.; Gaikwad, Swati R.; Seshadri, Vasudevan; Joseph, Jomon

    2012-01-01

    Summary Cells often respond to diverse environmental stresses by inducing stress granules (SGs) as an adaptive mechanism. SGs are generally assembled as a result of aggregation of mRNAs stalled in a translational pre-initiation complex, mediated by a set of RNA-binding proteins such as G3BP and TIA-1. SGs may serve as triage centres for storage, translation re-initiation or degradation of specific mRNAs. However, the mechanism involved in the modulation of their assembly/disassembly is unclear. Here we report that Wnt signalling negatively regulates SG assembly through Dishevelled (Dvl), a cytoplasmic Wnt effector. Overexpression of Dvl2, an isoform of Dvl, leads to impairment of SG assembly through a DEP domain dependent mechanism. Intriguingly, the Dvl2 mutant K446M, which corresponds to an analogous mutation in Drosophila Dishevelled DEP domain (dsh1) that results in defective PCP pathway, fails to antagonize SG assembly. Furthermore, we show that Dvl2 exerts the antagonistic effect on SG assembly through a mechanism involving Rac1-mediated inhibition of RhoA. Dvl2 interacts with G3BP, a downstream component of Ras signalling involved in SG assembly, and functional analysis suggests a model wherein the Dvl-Rac1-RhoA axis regulates G3BP's SG-nucleating activity. Collectively, these results define an antagonistic effect of Wnt signalling on SG assembly, and reveal a novel role for Wnt/Dvl pathway in the modulation of mRNA functions. PMID:23213403

  17. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems

    PubMed Central

    Landrein, Benoît; Kiss, Annamaria; Sassi, Massimiliano; Chauvet, Aurélie; Das, Pradeep; Cortizo, Millan; Laufs, Patrick; Takeda, Seiji; Aida, Mitsuhiro; Traas, Jan; Vernoux, Teva; Boudaoud, Arezki; Hamant, Olivier

    2015-01-01

    The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem. DOI: http://dx.doi.org/10.7554/eLife.07811.001 PMID:26623515

  18. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.

    PubMed

    Chen, Zheng-Long; Song, Yuan-Lin; Hu, Zhao-Yan; Zhang, Su; Chen, Ya-Zhu

    2015-08-01

    Alveolar overdistension and mechanical stresses generated by repetitive opening and closing of small airways and alveoli have been widely recognized as two primary mechanistic factors that may contribute to the development of ventilator-induced lung injury. A long-duration exposure of alveolar epithelial cells to even small, shear stresses could lead to the changes in cytoskeleton and the production of inflammatory mediators. In this paper, we have made an attempt to estimate in situ the magnitudes of mechanical stresses exerted on the alveolar walls during repetitive alveolar reopening by using a tape-peeling model of McEwan and Taylor (35). To this end, we first speculate the possible ranges of capillary number (Ca) ≡ μU/γ (a dimensionless combination of surface tension γ, fluid viscosity μ, and alveolar opening velocity U) during in vivo alveolar opening. Subsequent calculations show that increasing respiratory rate or inflation rate serves to increase the values of mechanical stresses. For a normal lung, the predicted maximum shear stresses are <15 dyn/cm(2) at all respiratory rates, whereas for a lung with elevated surface tension or viscosity, the maximum shear stress will notably increase, even at a slow respiratory rate. Similarly, the increased pressure gradients in the case of elevated surface or viscosity may lead to a pressure drop >300 dyn/cm(2) across a cell, possibly inducing epithelial hydraulic cracks. In addition, we have conceived of a geometrical model of alveolar opening to make a prediction of the positive end-expiratory pressure (PEEP) required to splint open a collapsed alveolus, which as shown by our results, covers a wide range of pressures, from several centimeters to dozens of centimeters of water, strongly depending on the underlying pulmonary conditions. The establishment of adequate regional ventilation-to-perfusion ratios may prevent recruited alveoli from reabsorption atelectasis and accordingly, reduce the required levels of

  19. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  20. Mechanisms of microbubble–vessel interactions and induced stresses: A numerical study

    PubMed Central

    Hosseinkhah, N.; Chen, H.; Matula, T. J.; Burns, P. N.; Hynynen, K.

    2013-01-01

    Oscillating microbubbles within microvessels could induce stresses that lead to bioeffects or vascular damage. Previous work has attributed vascular damage to the vessel expansion or bubble jet. However, ultra-high speed images of recent studies suggest that it could happen due to the vascular invagination. Numerical simulations of confined bubbles could provide insight into understanding the mechanism behind bubble–vessel interactions. In this study, a finite element model of a coupled bubble/fluid/vessel system was developed and validated with experimental data. Also, for a more realistic study viscoelastic properties of microvessels were assessed and incorporated into this comprehensive numerical model. The wall shear stress (WSS) and circumferential stress (CS), metrics of vascular damage, were calculated from these simulations. Resultant amplitudes of oscillation were within 15% of those measured in experiments (four cases). Among the experimental cases, it was numerically found that maximum WSS values were between 1.1–18.3 kPa during bubble expansion and 1.5–74 kPa during bubble collapse. CS was between 0.43–2.2 MPa during expansion and 0.44–6 MPa while invaginated. This finding confirmed that vascular damage could occur during vascular invaginations. Predicted thresholds in which these stresses are higher during vessel invagination were calculated from simulations. PMID:23967921

  1. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice

    PubMed Central

    Mostofa, Mohammad Golam; Hossain, Mohammad Anwar; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    In this study, we examined the possible mechanisms of trehalose (Tre) in improving copper-stress (Cu-stress) tolerance in rice seedlings. Our findings indicated that pretreatment of rice seedlings with Tre enhanced the endogenous Tre level and significantly mitigated the toxic effects of excessive Cu on photosynthesis- and plant growth-related parameters. The improved tolerance induced by Tre could be attributed to its ability to reduce Cu uptake and decrease Cu-induced oxidative damage by lowering the accumulation of reactive oxygen species (ROS) and malondialdehyde in Cu-stressed plants. Tre counteracted the Cu-induced increase in proline and glutathione content, but significantly improved ascorbic acid content and redox status. The activities of major antioxidant enzymes were largely stimulated by Tre pretreatment in rice plants exposed to excessive Cu. Additionally, increased activities of glyoxalases I and II correlated with reduced levels of methylglyoxal in Tre-pretreated Cu-stressed rice plants. These results indicate that modifying the endogenous Tre content by Tre pretreatment improved Cu tolerance in rice plants by inhibiting Cu uptake and regulating the antioxidant and glyoxalase systems, and thereby demonstrated the important role of Tre in mitigating heavy metal toxicity. Our findings provide a solid foundation for developing metal toxicity-tolerant crops by genetic engineering of Tre biosynthesis. PMID:26073760

  2. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system.

    PubMed

    Torzilli, P A; Grigiene, R; Huang, C; Friedman, S M; Doty, S B; Boskey, A L; Lust, G

    1997-01-01

    A new mechanical explant test system was used to study the metabolic response (via proteoglycan biosynthesis) of mature, weight-bearing canine articular cartilage subjected to static and dynamic compressive stresses. Stresses ranging from 0.5 to 24 MPa were applied sinusoidally at 1 Hz for intervals of 2-24 h. The explants were loaded in unconfined compression and compared to age-matched unloaded explants. Both static and dynamic compressive stress significantly decreased proteoglycan biosynthesis (range 25-85%) for all loading time intervals. The inhibition was proportional to the applied stress but was independent of loading time. After rehydration upon load removal, the measured water content of the loaded explants was not different from the unloaded explants for all test variables. Autoradiographic and electron microscopic analysis of loaded explants showed viable chondrocytes throughout the matrix. Our results suggest that the decreased metabolic response of cyclically loaded explants may be dominated by the static component (RMS) of the dynamic load. Furthermore, the observed decreased metabolism may be more representative of the in situ tissue response than that of unloaded explants, in which we found an increasing rate of metabolism for up to 6 days after explant removal.

  3. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    SciTech Connect

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  4. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  5. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    DOE PAGES

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  6. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    PubMed Central

    Shelden, Megan C.; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance. PMID:23717314

  7. An Assessment of Five Modeling Approaches for Thermo-Mechanical Stress Analysis of Laminated Composite Panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Malik, M.

    2000-01-01

    A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.

  8. Mechanical characterization of IM7/8551-7 carbon/epoxy under biaxial stress: (Final report)

    SciTech Connect

    Colvin, G.E. Jr.; Swanson, S.R.

    1987-11-13

    This is the final report on an investigation to evaluate the mechanical response of Hercules IM7/8551-7 carbon/epoxy, which is a high strength, high elongation fiber and a high toughness resin system used in a prepreg form. The material characterization involved testing both laminate and lamina forms under a wide range of biaxial stress states. Tubular specimens were employed that have been designed to eliminate undesirable end effects, permitting uniform stress states to be achieved. Quasi-isotropic (90/+-45/0)/sub ns/laminates and (90)/sub 16T/ lamina specimens were loaded under combinations of internal pressure, axial load, and torsion. Both stiffness and strength data were obtained under these multiaxial stress conditions. The measured laminate stiffnesses correlated well using classical laminated plate theory, and that laminate failure occurred in the two separate modes of matrix cracking and fiber failure. Like the previously examined carbon/epoxy systems, laminate failure could be predicted by using a fiber failure criterion to identify the critical plies and critical load levels. It was found that either maximum fiber stress or fiber direction strain could be used as a failure criterion on a ply level. 16 refs., 10 figs., 3 tabs.

  9. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    PubMed

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  10. A study of the mechanism of primary water stress corrosion cracking of Alloy 600

    SciTech Connect

    Gourgues, A.F.; Andrieu, E.; Scott, P.M.

    1995-12-31

    Two aspects of the mechanism of stress corrosion cracking of Alloy 600 in pressurized water reactors (PWR) primary water have been studied in detail. Results are presented showing that grain boundaries of Alloy 600 are embrittled to a depth of several microns by exposure to primary water in an unstressed condition. It has been established that this embrittlement is not reversible by high temperature degassing and cannot be directly due to hydrogen. The results seem to support the hypothesis that oxygen atom penetration of grain boundaries is possible. However, no evidence of formation of grain boundary gas bubbles or oxides has been found. It is envisaged that this embrittlement process could sequentially act at the tip of a growing stress corrosion crack. The second phenomenon under study has been the plastic deformation behavior of Alloy 600 since it is known that cold work and stress have an important effect on stress corrosion cracking sensitivity. Results of plastic deformation during cyclic straining at various controlled strain rates are presented showing that Alloy 600 is not very sensitive to loading history and that cold work is of an essentially kinematic nature.

  11. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    SciTech Connect

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures of dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.

  12. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  13. Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels.

    PubMed

    Batra, Nidhi; Burra, Sirisha; Siller-Jackson, Arlene J; Gu, Sumin; Xia, Xuechun; Weber, Gregory F; DeSimone, Douglas; Bonewald, Lynda F; Lafer, Eileen M; Sprague, Eugene; Schwartz, Martin A; Jiang, Jean X

    2012-02-28

    The connexin 43 (Cx43) hemichannel (HC) in the mechanosensory osteocytes is a major portal for the release of factors responsible for the anabolic effects of mechanical loading on bone formation and remodeling. However, little is known about how the Cx43 molecule responds to mechanical stimulation leading to the opening of the HC. Here, we demonstrate that integrin α5β1 interacts directly with Cx43 and that this interaction is required for mechanical stimulation-induced opening of the Cx43 HC. Direct mechanical perturbation via magnetic beads or conformational activation of integrin α5β1 leads to the opening of the Cx43 HC, and this role of the integrin is independent of its association with an extracellular fibronectin substrate. PI3K signaling is responsible for the shear stress-induced conformational activation of integrin α5β1 leading to the opening of the HC. These results identify an unconventional function of integrin that acts as a mechanical tether to induce opening of the HC and provide a mechanism connecting the effect of mechanical forces directly to anabolic function of the bone.

  14. Noradrenergic and Serotonergic Mechanisms in the Neurobiology of Posttraumatic Stress Disorder and Resilience

    PubMed Central

    Krystal, John H.; Neumeister, Alexander

    2009-01-01

    Posttraumatic stress disorder (PTSD) is characterized mainly by symptoms of re-experiencing, avoidance and hyperarousal as a consequence of catastrophic and traumatic events that are distinguished from ordinary stressful life events. Although extensive research has already been done, the etiology of PTSD remains unclear. Research on the impact of trauma on neurobiological systems can be expected to inform the development of treatments that are directed specifically to symptoms of PTSD. During the past 25 years there has been a dramatic increase in the knowledge about noradrenergic and serotonergic mechanisms in stress response, PTSD and more recently in resilience and this knowledge has justified the use of antidepressants with monoaminergic mechanisms of action for patients with PTSD. Nevertheless, available treatments of PTSD are only to some extent effective and enhanced understanding of the neurobiology of PTSD may lead to the development of improved treatments for these patients. In the present review, we aim to close existing gaps between basic research in psychopathology, neurobiology and treatment development with the ultimate goal to translate basic research into clinically relevant findings which may directly benefit patients with PTSD. PMID:19332037

  15. Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress

    PubMed Central

    Wang, Xinkun; Zaidi, Asma; Pal, Ranu; Garrett, Alexander S; Braceras, Rogelio; Chen, Xue-wen; Michaelis, Mary L; Michaelis, Elias K

    2009-01-01

    Background Oxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches. Results In this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons. Conclusion Low energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons. PMID:19228403

  16. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    SciTech Connect

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  17. Clarification on Mechanical Characteristic in State of Stress of Osteoarthritis of the Hip Joint Using Stress Freezing Method

    NASA Astrophysics Data System (ADS)

    Maezaki, Nobutaka; Ezumi, Tsutomu; Hachiya, Masashi

    In this research, the Osteoarthritis of Hip Joint was pick up, the 3-dimensional stress freezing method of photoelastic method was applied, and the state of the stress in the normality hip joint and the transformable hip joint was examined. The direction and the singular point of principal stress and stress distribution were experimentally examined. At result, The Osteoarthritis of Hip Joint touches by 2 points, Osteoarthritis of Hip Joint occurrence of the new singular point with flat of the femoral head, They change the direction of the principal stress line in an existing singular point is cause.

  18. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    NASA Astrophysics Data System (ADS)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2015-04-01

    The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.

  19. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  20. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  1. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  2. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  3. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  4. Abnormal behavior of threshold voltage shift in bias-stressed a-Si:H thin film transistor under extremely high intensity illumination.

    PubMed

    Han, Sang Youn; Park, Kyung Tea; Kim, Cheolkyu; Jeon, Sanghyun; Yang, Sung-Hoon; Kong, Hyang-Shik

    2015-07-22

    We report on the unusual behavior of threshold voltage turnaround in a hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) when biased under extremely high intensity illumination. The threshold voltage shift changes from negative to positive gate bias direction after ∼30 min of bias stress even when the negative gate bias stress is applied under high intensity illumination (>400 000 Cd/cm(2)), which has not been observed in low intensity (∼6000 Cd/cm(2)). This behavior is more pronounced in a low work function gate metal structure (Al: 4.1-4.3 eV), compared to the high work function of Cu (4.5-5.1 eV). Also this is mainly observed in shorter wavelength of high photon energy illumination. However, this behavior is effectively prohibited by embedding the high energy band gap (∼8.6 eV) of SiOx in the gate insulator layer. These imply that this behavior could be originated from the injection of electrons from gate electrode, transported and trapped in the electron trap sites of the SiNx/a-Si:H interface, which causes the shift of threshold voltage toward positive gate bias direction. The results reported here can be applicable to the large-sized outdoor displays which are usually exposed to the extremely high intensity illumination.

  5. Abnormal Threshold Voltage Shifts in P-Channel Low-Temperature Polycrystalline Silicon Thin Film Transistors Under Negative Bias Temperature Stress.

    PubMed

    Kim, Sang Sub; Choi, Pyung Ho; Baek, Do Hyun; Lee, Jae Hyeong; Choi, Byoung Deog

    2015-10-01

    In this research, we have investigated the instability of P-channel low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS TFTs) with double-layer SiO2/SiNx dielectrics. A negative gate bias temperature instability (NBTI) stress was applied and a turn-around behavior phenomenon was observed in the Threshold Voltage Shift (Vth). A positive threshold voltage shift occurs in the first stage, resulting from the negative charge trapping at the SiNx/SiO2 dielectric interface being dominant over the positive charge trapping at dielectric/Poly-Si interface. Following a stress time of 7000 s, the Vth switches to the negative voltage direction, which is "turn-around" behavior. In the second stage, the Vth moves from -1.63 V to -2 V, overwhelming the NBTI effect that results in the trapping of positive charges at the dielectric/Poly-Si interface states and generating grain-boundary trap states and oxide traps.

  6. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  7. Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    During this period work was carried out on three fronts relevant to the understanding of intraplate deformation, stress in the lithosphere, and the driving mechanisms for plate motions: (1) observational constraints, using GPS geodesy on the deformation in the region of the boundry between the Pacific and North American plates in central and southern California; (2) numerical modeling of the effects of temperature dependent lithospheric viscosity on the stress and strain history of extensional regimes; and (3) improvement of estimates of mantle viscosity variation, the long-wave-length density variations in the mantle, and the topography of the core-mantel boundary from modeling of geoid anomalies, nutation, and changes in length of day. These projects are described in more detail, followed by a discussion of meetings attended and a list of abstracts and papers submitted and/or published.

  8. [Oxidative stress in patients with mechanical jaundice of different origin and severity].

    PubMed

    Silina, E V; Stupin, V A; Gakhramanov, T V; Khokonov, M A; Bolevich, S B; Men'shova, N I; Sinel'nikova, T G

    2011-01-01

    This randomized clinical study included 118 patients with mechanical jaundice (MJ) of different origin and severity. It highlighted the role of free radical-generation processes (FRP) in the development of the disease within 1 day after its onset. Disbalance of FRP affects oxygen and lipid components of oxidative stress and is especially well pronounced in severe cases and in patients with tumours. It becomes increasingly apparent with time from the onset of jaundice and endotoxicosis. FRP disbalance precedes clinical manifestation of jaundice and persists for a long time even after alleviation of its clinical symptoms. Certain signs have a prognostic values. Therapy with reamberin at a daily dose of 400 ml is shown to effectively correct oxidative stress associated with MJ of tumorous and non-tumorous origin regardless of the severity of the disease. Positive effect of antioxidative therapy is accompanied by the improvement of laboratory characteristics, clinical picture, and outcome of the disease.

  9. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  10. Study of Tectonic Tremor in Depth: Triggering Stress Observation and Model of the Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Tien-Huei

    Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events