Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.
Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve
2015-05-01
Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435
Villeneuve, Lance M; Purnell, Phillip R; Stauch, Kelly L; Callen, Shannon E; Buch, Shilpa J; Fox, Howard S
2016-10-01
With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.
Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J
2016-07-13
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.
Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny
2016-01-01
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149
Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases
Reddy, P. Hemachandra; Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Shirendeb, Ulziibat; Mao, Peizhong
2010-01-01
The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355
McAfee, John L; Warren, Christine B; Prayson, Richard A
2017-08-01
Ultrastructural evaluation of skin biopsies has been utilized for diagnosis of mitochondrial disease. This study investigates how frequently skin biopsies reveal mitochondrial abnormalities, correlates skin and muscle biopsy findings, and describes clinical diagnoses rendered following the evaluation. A retrospective review of surgical pathology reports from 1990 to 2015 identified skin biopsies examined by electron microscopy for suspected metabolic disease. A total of 630 biopsies were included from 615 patients. Of these patients, 178 also underwent a muscle biopsy. Of the 630 skin biopsies, 75 (12%) showed ultrastructural abnormalities and 34 (5%) specifically showed mitochondrial abnormalities including increased size (n=27), reduced or abnormal cristae (n=23), dense matrices (n=20), and increased number (n=8). Additional findings included lysosomal abnormalities (n=13), lipid accumulation (n=2) or glycogen accumulation (n=1). Of the 34 patients with mitochondrial abnormalities on skin biopsy, 20 also had muscle biopsies performed and nine showed abnormalities suggestive of a mitochondrial disorder including absent cytochrome oxidase staining (n=2), increased subsarcolemmal NADH, SDH, or cytochrome oxidase staining (n=1), or ultrastructural findings including large mitochondrial size (n=5), abnormal mitochondrial structure (n=5), and increased mitochondrial number (n=4). The most common presenting symptoms were intellectual disability (n=13), seizures (n=12), encephalopathy (n=9), and gastrointestinal disturbances (n=9). At last known follow-up, 12 patients had a definitive diagnosis of a mitochondrial disorder. One patient each had Complex I deficiency, Complex III deficiency, Charcot-Marie-Tooth disease, pyruvate dehydrogenase deficiency, and Phelan-McDermid syndrome. Our results suggest that skin biopsy sometimes yields diagnostic clues suggestive of a mitochondrial cytopathy in cases with a negative muscle biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.
The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy
Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin
2016-01-01
Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553
Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients.
Delic, Vedad; Kurien, Crupa; Cruz, Josean; Zivkovic, Sandra; Barretta, Jennifer; Thomson, Avery; Hennessey, Daniel; Joseph, Jaheem; Ehrhart, Jared; Willing, Alison E; Bradshaw, Patrick; Garbuzova-Davis, Svitlana
2018-08-01
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease. © 2018 Wiley Periodicals, Inc.
Chen, Michael L.; Logan, T. Daniel; Hochberg, Maryann L.; Shelat, Suresh G.; Yu, Xiang; Wilding, Gregory E.; Tan, Wei; Kujoth, Gregory C.; Prolla, Tomas A.; Selak, Mary A.; Kundu, Mondira; Carroll, Martin
2009-01-01
Recent reports describe hematopoietic abnormalities in mice with targeted instability of the mitochondrial genome. However, these abnormalities have not been fully described. We demonstrate that mutant animals develop an age-dependent, macrocytic anemia with abnormal erythroid maturation and megaloblastic changes, as well as profound defects in lymphopoiesis. Mice die of severe fatal anemia at 15 months of age. Bone-marrow transplantation studies demonstrate that these abnormalities are intrinsic to the hematopoietic compartment and dependent upon the age of donor hematopoietic stem cells. These abnormalities are phenotypically similar to those found in patients with refractory anemia, suggesting that, in some cases, the myelodysplastic syndromes are caused by abnormalities of mitochondrial function. PMID:19734452
MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y
2016-01-01
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong
2013-01-01
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.
Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria
2011-01-01
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588
Boots, C.E.; Boudoures, A.; Zhang, W.; Drury, A.; Moley, K.H.
2016-01-01
STUDY QUESTION Does supplementation with co-enzyme Q10 (CoQ10) improve the oocyte mitochondrial abnormalities associated with obesity in mice? SUMMARY ANSWER In an obese mouse model, CoQ10 improves the mitochondrial function of oocytes. WHAT IS KNOWN ALREADY Obesity impairs oocyte quality. Oocytes from mice fed a high-fat/high-sugar (HF/HS) diet have abnormalities in mitochondrial distribution and function and in meiotic progression. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to a normal, chow diet or an isocaloric HF/HS diet for 12 weeks. After 6 weeks on the diet, half of the mice receiving a normal diet and half of the mice receiving a HF/HS diet were randomly assigned to receive CoQ10 supplementation injections for the remaining 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Dietary intervention was initiated on C57Bl6 female mice at 4 weeks of age, CoQ10 versus vehicle injections were assigned at 10 weeks, and assays were conducted at 16 weeks of age. Mice were super-ovulated, and oocytes were collected and stained to assess mitochondrial distribution, quantify reactive oxygen species (ROS), assess meiotic spindle formation, and measure metabolites. In vitro fertilization was performed, and blastocyst embryos were transferred into control mice. Oocyte number, fertilization rate, blastulation rate and implantation rate were compared between the four cohorts. Bivariate statistics were performed appropriately. MAIN RESULTS AND THE ROLE OF CHANCE HF/HS mice weighed significantly more than normal diet mice (29 versus 22 g, P< 0.001). CoQ10 supplementation did not influence weight. Levels of ATP, citrate, and phosphocreatine were lower and ROS levels were higher in HF/HS mice than in controls (P< 0.001). CoQ10 supplementation significantly increased the levels of metabolites and decreased ROS levels in oocytes from normal diet mice but not in oocytes from HF/HS mice. However, CoQ10 completely prevented the mitochondrial distribution abnormalities observed in the HF/HS mice. Overall, CoQ10 supplementation significantly increased the percentage of normal spindle and chromosome alignment (92.3 versus 80.2%, P= 0.039). In the sub-analysis by diet, the difference did not reach statistical significance. When undergoing IVF, there were no statistically significant differences in the number of mature oocytes, the fertilization rate, blastocyst formation rates, implantation rates, resorption rates or litter size between HF/HS mice receiving CoQ10 or vehicle injections. LIMITATIONS, REASONS FOR CAUTION Experiments were limited to one species and strain of mice. The majority of experiments were performed after ovulation induction, which may not represent natural cycle fertility. WIDER IMPLICATIONS OF THE FINDINGS Improvement in oocyte mitochondrial distribution and function of normal, chow-fed mice and HF/HS-fed mice demonstrates the importance of CoQ10 and the efficiency of the mitochondrial respiratory chain in oocyte competence. Clinical studies are now needed to evaluate the therapeutic potential of CoQ10 in women's reproductive health. STUDY FUNDING/COMPETING INTEREST(S) C.E.B. received support from the National Research Training Program in Reproductive Medicine sponsored by the National Institute of Health (T32 HD040135-13) and the Scientific Advisory Board of Vivere Health. K.H.M received support from the American Diabetes Association and the National Institute of Health (R01 HD083895). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This study is not a clinical trial. PMID:27432748
Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)
Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda
2015-01-01
The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658
Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease.
Lin, Doris D M; Crawford, Thomas O; Barker, Peter B
2003-01-01
Mitochondrial diseases are a group of inherited disorders caused by a derangement of mitochondrial respiration. The clinical manifestations are heterogeneous, and the diagnosis is often based on information acquired from multiple levels of inquiry. MR spectroscopy has previously been shown to help detect an abnormal accumulation of lactate in brain parenchyma and CSF in association with mitochondrial disorders, but the frequency of detection is largely unknown. We sought to examine the frequency of detectable elevations of CNS lactate by proton MR spectroscopy in a population of children and young adults with suspected mitochondrial disease. MR spectroscopy data evaluated for the presence or absence of abnormal brain or CSF lactate were compared with other clinical indicators of mitochondrial dysfunction for 29 patients with suspected mitochondrial disease during the years 1990 to 2000. Based on an independent review of the final diagnoses, the patients were divided into groups based on the probability of mitochondrial disorder. A total of 32 scans from 29 patients were reviewed. Of eight patients thought to have a definitive mitochondrial disorder on the basis of genetic, biochemical, or pathologic features, five were found to have abnormal brain or CSF lactate levels revealed by MR spectroscopy (for one patient in whom two images were acquired, one was negative and the other positive). Among the studies conducted using a multisection spectroscopic imaging technique, five of six showed elevated lactate in the brain parenchyma, six of six showed elevated lactate in the CSF, and five of six showed elevated lactate in both brain and CSF. Of 16 patients who were highly suspected of having mitochondrial disorders on the basis of clinical grounds alone but who were lacking genetic, biochemical, or pathologic confirmation, four had abnormal lactate levels shown by MR spectroscopy. Mitochondrial disorder was excluded for five patients, none of whom had CNS lactate shown by MR spectroscopy. Detection of CNS lactate by MR spectroscopy is useful in the diagnosis of mitochondrial disease. In our series of patients with confirmed mitochondrial disease, a high level of lactate shown by MR spectroscopy correlated well with other markers of mitochondrial disease. As with all other means used to diagnose mitochondrial disorders, MR spectroscopy does not depict elevated lactate in all cases. Abnormal CNS concentrations of lactate may be undetected by MR spectroscopy because of differences in the type of mitochondrial disorder, timing, severity, or location of the affected tissues and the site of interrogation.
Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold.
Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K; Oshima, Yoshiteru; Homma, Yoshimi
2015-01-01
Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.
Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning
2017-06-01
microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.
Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis
Rossignol, D A; Frye, R E
2012-01-01
A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD. PMID:21263444
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.
2016-01-01
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320
Xu, Shangcheng; Pi, Huifeng; Zhang, Lei; Zhang, Nixian; Li, YuMing; Zhang, Huiliang; Tang, Ju; Li, Huijuan; Feng, Min; Deng, Ping; Guo, Pan; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Wang, Wang; Reiter, Russel J; Yu, Zhengping; Zhou, Zhou
2016-04-01
Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Weight Loss by Ppc-1, a Novel Small Molecule Mitochondrial Uncoupler Derived from Slime Mold
Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K.; Oshima, Yoshiteru; Homma, Yoshimi
2015-01-01
Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity. PMID:25668511
Rocca, Maria A; Bianchi-Marzoli, Stefania; Messina, Roberta; Cascavilla, Maria Lucia; Zeviani, Massimo; Lamperti, Costanza; Milesi, Jacopo; Carta, Arturo; Cammarata, Gabriella; Leocani, Letizia; Lamantea, Eleonora; Bandello, Francesco; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo
2015-05-01
Using advanced MRI techniques, we investigated the presence and topographical distribution of brain grey matter (GM) and white matter (WM) alterations in dominant optic atrophy (DOA) patients with genetically proven OPA1 mutation as well as their correlation with clinical and neuro-ophthalmologic findings. Nineteen DOA patients underwent neurological, neuro-ophthalmologic and brainstem auditory evoked potentials (BAEP) evaluations. Voxel-wise methods were applied to assess regional GM and WM abnormalities in patients compared to 20 healthy controls. Visual acuity was reduced in 16 patients. Six DOA patients (4 with missense mutations) had an abnormal I peripheral component (auditory nerve) at BAEP. Compared to controls, DOA patients had significant atrophy of the optic nerves (p < 0.0001). Voxel-based morphometry (VBM) analysis showed that, compared to controls, DOA patients had significant WM atrophy of the chiasm and optic tracts; whereas no areas of GM atrophy were found. Tract-based spatial statistics (TBSS) analysis showed that compared to controls, DOA patients had significantly lower mean diffusivity, axial and radial diffusivity in the WM of the cerebellum, brainstem, thalamus, fronto-occipital-temporal lobes, including the cingulum, corpus callosum, corticospinal tract and optic radiation bilaterally. No abnormalities of fractional anisotropy were detected. No correlations were found between volumetric and diffusivity abnormalities quantified with MRI and clinical and neuro-ophthalmologic measures of disease severity. Consistently with pathological studies, tissue loss in DOA patients is limited to anterior optic pathways reflecting retinal ganglion cell degeneration. Distributed abnormalities of diffusivity indexes might reflect abnormal intracellular mitochondrial morphology as well as alteration of protein levels due to OPA1 mutations.
Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines
Rose, S; Frye, R E; Slattery, J; Wynne, R; Tippett, M; Melnyk, S; James, S J
2014-01-01
There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors. PMID:24690598
Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R
2016-09-01
Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.
Sakharova, A V; Kalashnikova, L A; Chaĭkovskaia, R P; Mir-Kasimov, M F; Nazarova, M A; Pykhtina, T N; Dobrynina, L A; Patrusheva, N L; Patrushev, L I; Protskiĭ, S V
2012-01-01
Skin and muscles biopsy specimens of a patient harboring A3243G mutation in mitochondrial DNA, with dissection of internal carotid and vertebral arteries, associated with MELAS were studied using histochemical and electron-microscopy techniques. Ragged red fibers, regional variability of SDH histochemical reaction, two types of morphologically atypical mitochondria and their aggregation were found in muscle. There was correlation between SDH histochemical staining and number of mitochondria revealed by electron microscopy in muscle tissue. Similar mitochondrial abnormality, their distribution and cell lesions followed by extra-cellular matrix mineralization were found in the blood vessel walls. In line with generalization of cytopathy process caused by gene mutation it can be supposed that changes found in skin and muscle microvessels also exist in large cerebral vessels causing the vessel wall "weakness", predisposing them to dissection.
Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R
2004-02-01
This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.
Rose, Shannon; Frye, Richard E.; Slattery, John; Wynne, Rebecca; Tippett, Marie; Pavliv, Oleksandra; Melnyk, Stepan; James, S. Jill
2014-01-01
There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors. PMID:24416410
Barbiroli, B; Iotti, S; Lodi, R
1999-01-01
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.
Redox imbalance and mitochondrial abnormalities in the diabetic lung.
Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun
2017-04-01
Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in diabetes. The objective of this study was to evaluate NADH/NAD + redox status, oxidative stress, and mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase (PAPR-1), NAD + content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD + dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results demonstrate that NADH/NAD + redox imbalance occurs in the diabetic lung. This redox imbalance upregulates the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung, demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in diabetes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease
ERIC Educational Resources Information Center
Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.
2010-01-01
Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…
Frye, Richard E.; Rose, Shannon; Slattery, John; MacFabe, Derrick F.
2015-01-01
Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut–brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction. PMID:25956238
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Mitochondrial Contribution to Parkinson's Disease Pathogenesis
Schapira, Anthony H. V.; Gegg, Matthew
2011-01-01
The identification of the etiologies and pathogenesis of Parkinson's disease (PD) should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy) has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis. PMID:21687805
Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes
TANAKA, Hiroshi; TAKEO, Shun; ABE, Takahito; KIN, Airi; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka
2016-01-01
The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts. PMID:26832309
Tanaka, Hiroshi; Takeo, Shun; Abe, Takahito; Kin, Airi; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka
2016-06-17
The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts.
Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao
2016-01-01
ABSTRACT Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production.1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance. PMID:27575019
Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao
2016-11-01
Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production. 1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.
Mitochondrial function as a therapeutic target in heart failure
Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai
2017-01-01
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807
Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity.
Carraro, Rodrigo S; Souza, Gabriela F; Solon, Carina; Razolli, Daniela S; Chausse, Bruno; Barbizan, Roberta; Victorio, Sheila C; Velloso, Licio A
2018-01-15
Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ohshima, Yohei; Takata, Natsuhiko; Suzuki-Karasaki, Miki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro
2017-10-01
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment. Recently, we demonstrated that mitochondrial Ca2+ removal increased TRAIL efficacy toward malignant melanoma and osteosarcoma cells. Here we report that mitochondrial Ca2+ overload leads to tumor-selective sensitization to TRAIL cytotoxicity. Treatment with the mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157 and oxidative phosphorylation inhibitor antimycin A and FCCP resulted in a rapid and persistent mitochondrial Ca2+ rise. These agents also increased TRAIL sensitivity in a tumor-selective manner with a switching from apoptosis to a nonapoptotic cell death. Moreover, we found that mitochondrial Ca2+ overload led to increased mitochondrial fragmentation, while mitochondrial Ca2+ removal resulted in mitochondrial hyperfusion. Regardless of their reciprocal actions on the mitochondrial dynamics, both interventions commonly exacerbated TRAIL-induced mitochondrial network abnormalities. These results expand our previous study and suggest that an appropriate level of mitochondrial Ca2+ is essential for maintaining the mitochondrial dynamics and the survival of these cells. Thus, disturbing mitochondrial Ca2+ homeostasis may serve as a promising approach to overcome the TRAIL resistance of these cancers with minimally compromising the tumor-selectivity.
Kawamata, Hibiki; Manfredi, Giovanni
2010-11-01
Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.
Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni
2012-01-01
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285
Vergeade, Aurélia; Mulder, Paul; Vendeville-Dehaudt, Cathy; Estour, François; Fortin, Dominique; Ventura-Clapier, Renée; Thuillez, Christian; Monteil, Christelle
2010-09-01
The goal of this study was to assess mitochondrial function and ROS production in an experimental model of cocaine-induced cardiac dysfunction. We hypothesized that cocaine abuse may lead to altered mitochondrial function that in turn may cause left ventricular dysfunction. Seven days of cocaine administration to rats led to an increased oxygen consumption detected in cardiac fibers, specifically through complex I and complex III. ROS levels were increased, specifically in interfibrillar mitochondria. In parallel there was a decrease in ATP synthesis, whereas no difference was observed in subsarcolemmal mitochondria. This uncoupling effect on oxidative phosphorylation was not detectable after short-term exposure to cocaine, suggesting that these mitochondrial abnormalities were a late rather than a primary event in the pathological response to cocaine. MitoQ, a mitochondrial-targeted antioxidant, was shown to completely prevent these mitochondrial abnormalities as well as cardiac dysfunction characterized here by a diastolic dysfunction studied with a conductance catheter to obtain pressure-volume data. Taken together, these results extend previous studies and demonstrate that cocaine-induced cardiac dysfunction may be due to a mitochondrial defect. Copyright 2010 Elsevier Inc. All rights reserved.
Zeharia, Avraham; Friedman, Jonathan R; Tobar, Ana; Saada, Ann; Konen, Osnat; Fellig, Yacov; Shaag, Avraham; Nunnari, Jodi; Elpeleg, Orly
2016-12-01
The mitochondrial inner membrane possesses distinct subdomains including cristae, which are lamellar structures invaginated into the mitochondrial matrix and contain the respiratory complexes. Generation of inner membrane domains requires the complex interplay between the respiratory complexes, mitochondrial lipids and the recently identified mitochondrial contact site and cristae organizing system (MICOS) complex. Proper organization of the mitochondrial inner membrane has recently been shown to be important for respiratory function in yeast. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with a neurodegenerative disorder accompanied by hyperlactatemia, 3-methylglutaconic aciduria, disturbed hepatocellular function with abnormal cristae morphology in liver and cerebellar and vermis atrophy, which suggest mitochondrial dysfunction. Using homozygosity mapping and exome sequencing the patients were found to be homozygous for the p.(Gly15Glufs*75) variant in the QIL1/MIC13 (C19orf70) gene. QIL1/MIC13 is a constituent of MICOS, a six subunit complex that helps to form and/or stabilize cristae junctions and determine the placement, distribution and number of cristae within mitochondria. In patient fibroblasts both MICOS subunits QIL1/MIC13 and MIC10 were absent whereas MIC60 was present in a comparable abundance to that of the control. We conclude that QIL1/MIC13 deficiency in human, is associated with disassembly of the MICOS complex, with the associated aberration of cristae morphology and mitochondrial respiratory dysfunction. 3-Methylglutaconic aciduria is associated with variants in genes encoding mitochondrial inner membrane organizing determinants, including TAZ, DNAJC19, SERAC1 and QIL1/MIC13.
Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.
Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E
2016-09-15
Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR. ©2016 American Association for Cancer Research.
Abnormal mitochondrial respiration in failed human myocardium.
Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N
2000-12-01
Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merwe, Celia van der, E-mail: celiavdm@sun.ac.za; Loos, Ben; Swart, Chrisna
Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies showmore » conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD pathogenesis will have important implications for the design of new and more effective therapies.« less
Mitochondrial Dynamics in Diabetic Cardiomyopathy
Galloway, Chad A.
2015-01-01
Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230
ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.
Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong
2018-01-01
While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1 G93A -mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression. Copyright © 2017 Elsevier Inc. All rights reserved.
He, Bin; Guo, Huiduo; Gong, Yabin; Zhao, Ruqian
2017-01-01
Lipopolysaccharide (LPS) has been reported to exert detrimental effects on boar sperm viability. In the present study, LPS was detected in boar semen samples at an average level of 0.62 ± 0.14 μg/mL. We treated boar sperm with 1 μg/mL LPS for 6 hours and examined alterations in sperm motility and apoptosis, together with mitochondrial functionality and mitochondrial reactive oxygen species generation. The expression and the location of toll-like receptor 4 (TLR4) and mitochondrial transcription factor A (TFAM) were determined to reveal possible mechanisms. LPS-treated sperm showed significant reduction in motility (P < 0.05) and viability (P < 0.05). LPS induced sperm mitochondrial damage via oxidative stress which is indicated by marked ultrastructural changes in the mitochondria including swelling, disorientation and vacuole, a decrease of mitochondrial membrane potential (ΔΨm; P < 0.05), as well as an increase of malondialdehyde levels (P < 0.01). Moreover, the production of mitochondrial reactive oxygen species through oxidative phosphorylation (OXPHOS) was significantly (P < 0.05) increased, which leads to oxidative stress. The copy number of mitochondrial DNA was significantly (P < 0.05) higher in LPS-treated sperm. Moreover, cytochrome c oxidase subunit IV (COXIV), an important subunit in mitochondrial electron transport chain and OXPHOS, was significantly (P < 0.05) upregulated after LPS treatment. TFAM, the key transcription factor that activates mitochondrial DNA replication and transcription, was translocated from the head to the midpiece of sperm where mitochondria are distributed in LPS-treated sperm. Taken together, these results indicate that LPS-induced decrease of motility and viability in boar sperm is mediated by abnormal activation of OXPHOS and mitochondrial membrane lipid peroxidation. These findings may provide new insights in understanding the mechanisms underlying the bacterial infection-induced sperm damage. Copyright © 2016 Elsevier Inc. All rights reserved.
Sleep disorders associated with primary mitochondrial diseases.
Ramezani, Ryan J; Stacpoole, Peter W
2014-11-15
Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.
Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E
2003-01-20
Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.
Gibson, Gary E.; Karuppagounder, Saravanan S.; Shi, Qingli
2009-01-01
Considerable data supports the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid (TCA) cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimer's Disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed. The conclusions are consistent with the hypothesis that the AD-related abnormalities result from oxidative stress. The selection of compounds for reversal is complex because the actions of the relevant compounds vary under different conditions such as cell redox states and acute vs chronic changes. However, the models that have been developed are useful for testing the effectiveness of the potential medications. The results suggest that the reversal of the mitochondrial deficits and a reduction in oxidative stress will reduce the clinical and pathological changes and benefit patients. PMID:19076444
Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.
Sebastián, David; Palacín, Manuel; Zorzano, Antonio
2017-03-01
Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Mitochondrial leukoencephalopathy of infancy: is it an early expression of Leigh syndrome?].
Rouco Axpe, I; Garaizar Axpe, C; Labairu Echevarría, M; Sanjurjo Crespo, P; Aldamiz Echevarría, L; Prats Viñas, J M
2003-06-01
Leigh syndrome is probably the most frequent metabolic disorder in infancy and childhood. The classic form of the disease is characterized by bilateral lesions of basal ganglia and brainstem. The extensive involvement of white matter, without radiological basal ganglia abnormalities, is an unusual manifestation of the disease. Four patients who presented the disease during the first year of life are described. The four patients presented a stereotyped clinical picture, consisting of regression of already acquired psychomotor abilities and very prominent pyramidal signs. These clinical manifestations and results of neuroimaging studies suggested a primary leukodystrophy. Increased values of lactic and piruvic acids suggested a mitochondrial disorder. Enzymatic studies confirmed a mitochondrial respiratory chain deficiency in two patients, and a pyruvate dehydrogenase complex defect in the remaining two patients. The pathological findings in the latter two sisters were consistent with the characteristic microscopic lesions of Leigh syndrome, but with atypical distribution. Diagnosis of Leigh syndrome must be taken into consideration in infants presenting with a leukodystrophic clinical and radiological pattern, despite the lack of basal ganglia involvement.
Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease
Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing
2017-01-01
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480
Banerjee, Kalpita; Munshi, Soumyabrata; Frank, David E.; Gibson, Gary E.
2015-01-01
Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer’s disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies. PMID:26077923
Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei
2011-01-01
SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675
Chao, Honglu; Liu, Yinlong; Fu, Xian; Xu, Xiupeng; Bao, Zhongyuan; Lin, Chao; Li, Zheng; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing
2018-02-01
iPLA 2 γ, calcium-independent phospholipase A 2 γ, discerningly hydrolyses glycerophospholipids to liberate free fatty acids. iPLA 2 γ-deficiency has been associated with abnormal mitochondrial function. More importantly, the iPLA 2 family is causative proteins in mitochondrial neurodegenerative disorders such as parkinsonian disorders. However, the mechanisms by which iPLA 2 γ affects Parkinson's disease (PD) remain unknown. Mitochondrion stress has a key part in rotenone-induced dopaminergic neuronal degeneration. The present evaluation revealed that lowered iPLA 2 γ function provokes the parkinsonian phenotype and leads to the reduction of dopamine and its metabolites, lowered survival, locomotor deficiencies, and organismal hypersensitivity to rotenone-induced oxidative stress. In addition, lowered iPLA 2 γ function escalated the amount of mitochondrial irregularities, including mitochondrial reactive oxygen species (ROS) regeneration, reduced ATP synthesis, reduced glutathione levels, and abnormal mitochondrial morphology. Further, lowered iPLA 2 γ function was tightly linked with strengthened lipid peroxidation and mitochondrial membrane flaws following rotenone treatment, which can cause cytochrome c release and eventually apoptosis. These results confirmed the important role of iPLA 2 γ, whereby decreasing iPLA 2 γ activity aggravates mitochondrial degeneration to induce neurodegenerative disorders in a rotenone rat model of Parkinson's disease. These findings may be useful in the design of rational approaches for the prevention and treatment of PD-associated symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.
Monteiro-Vitorello, C B; Bell, J A; Fulbright, D W; Bertrand, H
1995-01-01
Mutations causing mitochondrial defects were induced in a virulent strain of the chestnut blight fungus Cryphonectria parasitica (Murr.) Barr. Virulence on apples and chestnut trees was reduced in four of six extensively characterized mutants. Relative to the virulent progenitor, the attenuated mutants had reduced growth rates, abnormal colony morphologies, and few asexual spores, and they resembled virus-infected strains. The respiratory defects and attenuated virulence phenotypes (hypovirulence) were transmitted from two mutants to a virulent strain by hyphal contact. The infectious transmission of hypovirulence occurred independently of the transfer of nuclei, did not involve a virus, and dynamically reflects fungal diseases caused by mitochondrial mutations. In these mutants, mitochondrial mutations are further implicated in generation of the attenuated state by (i) uniparental (maternal) inheritance of the trait, (ii) presence of high levels of cyanide-insensitive mitochondrial alternative oxidase activity, (iii) cytochrome deficiencies, and (iv) structural abnormalities in the mtDNA. Hence, cytoplasmically transmissible hypovirulence phenotypes found in virus-free strains of C. parasitica from recovering trees may be caused by mutant forms of mtDNA. Images Fig. 2 Fig. 4 PMID:11607549
Gao, Jie; Ding, Xuan-sheng; Zhang, Yu-mao; Dai, De-zai; Liu, Mei; Zhang, Can; Dai, Yin
2013-12-01
Hypoxia/oxidative stress can alter the pharmacokinetics (PK) of CPU86017-RS, a novel antiarrhythmic agent. The aim of this study was to investigate the mechanisms underlying the alteration of PK of CPU86017-RS by hypoxia/oxidative stress. Male SD rats exposed to normal or intermittent hypoxia (10% O2) were administered CPU86017-RS (20, 40 or 80 mg/kg, ig) for 8 consecutive days. The PK parameters of CPU86017-RS were examined on d 8. In a separate set of experiments, female SD rats were injected with isoproterenol (ISO) for 5 consecutive days to induce a stress-related status, then CPU86017-RS (80 mg/kg, ig) was administered, and the tissue distributions were examined. The levels of Mn-SOD (manganese containing superoxide dismutase), endoplasmic reticulum (ER) stress sensor proteins (ATF-6, activating transcription factor 6 and PERK, PRK-like ER kinase) and activation of NADPH oxidase (NOX) were detected with Western blotting. Rat liver microsomes were incubated under N2 for in vitro study. The Cmax, t1/2, MRT (mean residence time) and AUC (area under the curve) of CPU86017-RS were significantly increased in the hypoxic rats receiving the 3 different doses of CPU86017-RS. The hypoxia-induced alteration of PK was associated with significantly reduced Mn-SOD level, and increased ATF-6, PERK and NOX levels. In ISO-treated rats, the distributions of CPU86017-RS in plasma, heart, kidney, and liver were markedly increased, and NOX levels in heart, kidney, and liver were significantly upregulated. Co-administration of the NOX blocker apocynin eliminated the abnormalities in the PK and tissue distributions of CPU86017-RS induced by hypoxia/oxidative stress. The metabolism of CPU86017-RS in the N2-treated liver microsomes was significantly reduced, addition of N-acetylcysteine (NAC), but not vitamin C, effectively reversed this change. The altered PK and metabolism of CPU86017-RS induced by hypoxia/oxidative stress are produced by mitochondrial abnormalities, NOX activation and ER stress; these abnormalities are significantly alleviated by apocynin or NAC.
The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders
Liao, Yajin; Dong, Yuan; Cheng, Jinbo
2017-01-01
The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618
Whiteman, Ineka T; Minamide, Laurie S; Goh, De Lian; Bamburg, James R; Goldsbury, Claire
2011-01-01
Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies--AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422--raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD.
Mechanisms of Mitochondrial Defects in Gulf War Syndrome
2012-08-01
oxidized; POR: porin; TCA: Tricarboxylic acid cycle ( Kreb cycle ). Page 2 Body: YEAR 1 of research (10/13/2009-7/14/2010) (9 months): Human... mitochondria , fatigue, myalgias 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...abnormalities in genes that are related to mitochondrial function. Hence, investigation of mitochondrial dysfunction in GWS is a priority. Mitochondria
Gibson, Gary E; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T; Shi, Qingli
2012-06-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. Copyright © 2012 Elsevier Inc. All rights reserved.
Gibson, Gary E.; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T.; Shi, Qingli
2011-01-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer’s Disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K+ -depolarization that occur in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long term (days) or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that effect ER calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. PMID:22169199
Kalmar, Bernadett; Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y; Reilly, Mary M; Schiavo, Giampietro; Greensmith, Linda
2017-09-01
Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. © The Author 2017. Published by Oxford University Press.
Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y.; Reilly, Mary M.; Schiavo, Giampietro; Greensmith, Linda
2017-01-01
Abstract Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. PMID:28595321
Coenzyme Q supplementation in pulmonary arterial hypertension
Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.
2014-01-01
Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165
Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein
2013-02-01
Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.
Role of Mitochondrial Homeostasis and Dynamics in Alzheimer’s Disease
Selfridge, J. Eva; Lezi, E; Lu, Jianghua; Swerdlow, Russell H.
2012-01-01
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects a staggering percentage of the aging population and causes memory loss and cognitive decline. Mitochondrial abnormalities can be observed systemically and in brains of patients suffering from AD, and may account for part of the disease phenotype. In this review, we summarize some of the key findings that indicate mitochondrial dysfunction is present in AD-affected subjects, including cytochrome oxidase deficiency, endophenotype data, and altered mitochondrial morphology. Special attention is given to recently described perturbations in mitochondrial autophagy, fission-fusion dynamics, and biogenesis. We also briefly discuss how mitochondrial dysfunction may influence amyloidosis in Alzheimer’s disease, why mitochondria are a valid therapeutic target, and strategies for addressing AD-specific mitochondrial dysfunction. PMID:22266017
Calderón-Garcidueñas, A L; Pérez-Loria, O; Alberto-Sagástegui, J; Farías-García, R
2000-01-01
Progressive limitation of occular motility, accompanied by ptosis but usually without diplopia, occurs in many pathologic states, including mitochondrial diseases. A case with chronic progressive external ophthalmoplegia with onset during childhood, associated with proximal myopathy and dysphasia is presented. The muscle biopsy showed a myopathic pattern and abnormal subsarcolemmal mitochondrial deposits. Muscle biopsy for important in the correct diagnosis of this entity.
Florian, Anca; Ludwig, Anna; Stubbe-Dräger, Bianca; Boentert, Matthias; Young, Peter; Waltenberger, Johannes; Rösch, Sabine; Sechtem, Udo; Yilmaz, Ali
2015-05-22
Mitochondrial myopathies (MM) are a heterogeneous group of inherited conditions resulting from a primary defect in the mitochondrial respiratory chain with consecutively impaired cellular energy metabolism. Small sized studies using mainly electrocardiography (ECG) and echocardiography have revealed cardiac abnormalities ranging from conduction abnormalities and arrhythmias to hypertrophic or dilated cardiomyopathy in these patients. Recently, characteristic patterns of cardiac involvement were documented by cardiovascular magnetic resonance (CMR) in patients with chronic progressive external ophthalmoplegia (CPEO)/Kearns-Sayre syndrome (KSS) and with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS). The present study aimed to characterize the prevalence and pattern of cardiac abnormalities and to test the additional diagnostic value of CMR in this patient population. The hypothesis that different neuromuscular MM syndromes present with different cardiac disease phenotypes was evaluated. Sixty-four MM patients (50 ± 15 years, 44% male) and 25 matched controls (52 ± 14 years, 36% male) prospectively underwent cardiac evaluations including CMR (comprising cine- and late-gadolinium-enhancement (LGE) imaging). Based on the neuromuscular phenotype and genotype, the patients were grouped: (a) CPEO/KSS (N = 33); (b) MELAS/-like (N = 11); c) myoclonic epilepsy with ragged-red fibers (MERRF) (N = 3) and d) other non-specific MM forms (N = 17). Among the 64 MM patients, 34 (53%) had at least one abnormal CMR finding: 18 (28%) demonstrated an impaired left ventricular ejection-fraction (LV-EF <60%), 14 (22%) had unexplained LV hypertrophy and 21 (33%) were LGE-positive. Compared to controls, MM patients showed significantly higher maximal wall thickness (10 ± 3 vs. 8 ± 2 mm, p = 0.005) and concentricity (LV mass to end-diastolic volume: 0.84 ± 0.27 vs. 0.67 ± 0.11, p < 0.0001) with frequent presence of non-ischemic LGE (30% vs. 0%, p = 0.001). CPEO/KSS showed a predominantly intramural pattern of LGE mostly confined to the basal LV inferolateral wall (8/10; 80%) in addition to a tendency toward concentric remodelling. MELAS/-like patients showed the highest frequency of cardiac disease (in 10/11 (91%)), a mostly concentric LV hypertrophy (6/9; 67%) with or without LV systolic dysfunction and a predominantly focal, patchy LGE equally distributed among LV segments (8/11; 73%). Patients with MERRF and non-specific MM had no particular findings. Pathological CMR findings indicating cardiac involvement were detected significantly more often than pathological ECG results or elevated cardiac serum biomarkers (34 (53%) vs. 18 (28%) vs. 21 (33%); p = 0.008). Cardiac involvement is a frequent finding in MM patients - and particularly present in KSS/CPEO as well as MELAS/-like patients. Despite a high variability in clinical presentation, CPEO/KSS patients typically show an intramural pattern of LGE in the basal inferolateral wall whereas MELAS patients are characterized by overt concentric hypertrophy and a rather unique, focally accentuated and diffusely distributed LGE.
Manczak, Maria; Kandimalla, Ramesh; Yin, Xiangling; Reddy, P Hemachandra
2018-04-15
The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in 12-month-old APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-month-old APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.
Shelley, Piran; Tarry-Adkins, Jane; Martin-Gronert, Malgorzata; Poston, Lucilla; Heales, Simon; Clark, John; Ozanne, Susan; McConnell, Josie
2007-01-01
We have recently reported that maternal dietary imbalance during pregnancy and lactation can reduce the lifespan of offspring. Rats that were growth restricted in utero by maternal protein restriction and underwent rapid weight gain when suckled by control fed dams died earlier than animals whose mothers were fed a control diet throughout pregnancy and lactation. We demonstrate here that mitochondrial abnormalities and DNA damage occur in the kidney of offspring who die prematurely. We have established by direct measurement and by in vitro supplementation that mitochondrial abnormalities occur because of a functional deficit of the mitochondrial cofactor coenzyme Q9 (CoQ9). These data provide molecular insight into the association between maternal nutrition and determination of offspring lifespan, and identify, a potential dietary intervention to prevent detrimental consequences of imbalanced maternal nutrition.
Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul
2011-01-01
Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen
2013-01-01
Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495
MitoQ administration prevents endotoxin-induced cardiac dysfunction
Murphy, M. P.; Callahan, L. A.
2009-01-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6′-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg·kg−1·day−1), saline + MitoQ (500 μM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction. PMID:19657095
MitoQ administration prevents endotoxin-induced cardiac dysfunction.
Supinski, G S; Murphy, M P; Callahan, L A
2009-10-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.
Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal
2017-01-06
Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery.
Taivassalo, Tanja; Ayyad, Karen; Haller, Ronald G
2012-01-01
Human skeletal muscle respiratory chain defects restrict the ability of working muscle to extract oxygen from blood, and result in a hyperkinetic circulation during exercise in which oxygen delivery is excessive relative to oxygen uptake and oxygen levels within contracting muscle are abnormally high. To investigate the role of the muscle microcirculation in this anomalous circulatory response and possible implications for the regulation of muscle angiogenesis, we assessed muscle oxidative capacity during cycle exercise and determined capillary levels and distribution and vascular endothelial growth factor expression in quadriceps muscle biopsies in patients with mitochondrial myopathy attributable to heteroplasmic mitochondrial DNA mutations. We found that in patients with mitochondrial myopathy, muscle capillary levels were twice that of sedentary healthy subjects (3.0 ± 0.9% compared with 1.4 ± 0.3%, P < 0.001) despite the fact that oxygen utilization during peak cycle exercise was half that of control subjects (11.1 ± 4.0 ml/kg/min compared with 20.7 ± 7.9 ml/kg/min, P < 0.01); that capillary area was greatest in patients with the most severe muscle oxidative defects and was more than two times higher around muscle fibre segments with defective (i.e. cytochrome oxidase negative/succinic dehydrogenase-positive or 'ragged-red' fibres) compared with more preserved respiratory chain function; and that vascular endothelial growth factor expression paralleled capillary distribution. The increased muscle capillary levels in patients correlated directly (r(2) = 0.68, P < 0.05) with the severity of the mismatch between systemic oxygen delivery (cardiac output) and oxygen utilization during cycle exercise. Our results suggest that capillary growth is increased as a result of impaired muscle oxidative phosphorylation in mitochondrial myopathy, thus promoting increased blood flow to respiration-incompetent muscle fibres and a mismatch between oxygen delivery and utilization during exercise. Furthermore, the finding of high capillary levels despite elevated tissue oxygen levels during exercise in respiration-deficient muscle fibres implies that mitochondrial metabolism activates angiogenesis in skeletal muscle by a mechanism that is independent of hypoxia.
Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo
2010-06-24
Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.
Dell'Aquila, Maria Elena; Ambruosi, Barbara; De Santis, Teresa; Cho, Yoon Sung
2009-01-01
To analyze the effects of GnRH agonists versus antagonists on mitochondrial distribution and activity in human mature oocytes. Randomized research experimental study. Academic basic research laboratory and hospital-based fertility center. Two hundred twenty-five supernumerary mature oocytes from 44 patients. Fluorescent staining and confocal laser scanning microscopy on oocytes after the use of either GnRH agonist (group A) or GnRH antagonist (group B). Oocyte mitochondrial distribution pattern and activity using MitoTracker Orange CMTM Ros. More oocytes showing polarized mitochondrial distribution pattern were found in group A than in group B (35% vs. 14%). In group B, hCG rather than GnRH agonist, for ovulation induction, resulted in more oocytes showing heterogeneous (57% vs. 14%), in particular polarized (24% vs. 0) mitochondrial distribution. In groups A and B, fluorescence intensity did not vary according to mitochondrial distribution pattern. However, fluorescence intensity was higher in oocytes with polarized and large granules configurations in group B compared to group A. The GnRH agonist and antagonist may have different effects on oocyte mitochondrial distribution pattern and activity. The GnRH antagonist may induce mitochondrial hyperactivity, which may be detrimental to the oocyte.
Young, Tim M; Blakely, Emma L; Swalwell, Helen; Carter, Janet E; Kartsounis, Luke D; O'Donovan, Dominic G; Turnbull, Douglass M; Taylor, Robert W; de Silva, Rajith N
2010-11-01
Mitochondrial diseases are characterized by wide phenotypic and genetic variability, but presentations in adults with akinetic rigidity and hyperkinetic movement disorders are rare. To describe clinically a subject with progressive neurodegeneration characterized by psychosis, dementia, and akinesia-rigidity, and to associate this phenotype with a novel mitochondrial transfer RNA(Phe) (tRNA(Phe)) (MTTF) mutation. Case description and detailed laboratory investigations of a 57-year-old woman at a university teaching hospital and a specialist mitochondrial diagnostic laboratory. Histopathological findings indicated that an underlying mitochondrial abnormality was responsible for the subject's progressive neurological disorder, with mitochondrial genome sequencing revealing a novel m.586G>A MTTF mutation. The clinical phenotypes associated with mitochondrial disorders may include akinesia-rigidity and psychosis. Our findings further broaden the spectrum of neurological disease associated with mitochondrial tRNA(Phe) mutations.
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu
2014-01-01
Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD+/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD+ precursor, was previously shown to boost NAD+ levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD+ levels are a promising treatment strategy for mitochondrial myopathy. PMID:24711540
Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter
2015-01-01
Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886
Ciammola, Andrea; Sassone, Jenny; Sciacco, Monica; Mencacci, Niccolò E; Ripolone, Michela; Bizzi, Caterina; Colciago, Clarissa; Moggio, Maurizio; Parati, Gianfranco; Silani, Vincenzo; Malfatto, Gabriella
2011-01-01
Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty-five HD subjects and twenty-five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. Copyright © 2010 Movement Disorder Society.
qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch
2012-07-06
Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.« less
'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'.
Abeti, R; Parkinson, M H; Hargreaves, I P; Angelova, P R; Sandi, C; Pook, M A; Giunti, P; Abramov, A Y
2016-05-26
Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure.
Oxidative stress and mitochondrial dysfunction in Kindler syndrome.
Zapatero-Solana, Elisabeth; García-Giménez, Jose Luis; Guerrero-Aspizua, Sara; García, Marta; Toll, Agustí; Baselga, Eulalia; Durán-Moreno, Maria; Markovic, Jelena; García-Verdugo, Jose Manuel; Conti, Claudio J; Has, Cristina; Larcher, Fernando; Pallardó, Federico V; Del Rio, Marcela
2014-12-21
Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.
Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B
2016-03-01
There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.
Mechanisms of Mitochondrial Defects in Gulf War Syndrome
2011-08-01
complaining of exercise limitations due to fatigue . An abnormal maximum oxygen uptake (VO2 max) and anaerobic threshold (AT) significantly increases...syndromes, muscle complaints that include fatigue and myalgias, as well as other neurological symptoms. Approximately 100,000 individuals have...pyruvate (> 0.90 mg/dl) (14/57) Abnormal Anaerobic Threshold (≤50% predicted VO2 max) 78.4% (40/51) Abnormal Alanine (>563 µmol/L) 10.2% (6
Horvath, Susanne E; Daum, Günther
2013-10-01
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.
Frye, Richard E.; Rossignol, Daniel A.
2016-01-01
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities. PMID:27330338
Mitochondrial control of cell bioenergetics in Parkinson’s disease
Requejo-Aguilar, Raquel; Bolaños, Juan P.
2016-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics. PMID:27091692
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu
2014-06-01
Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy. © 2014 The Authors. Published under the terms of the CC BY license.
Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M
2016-08-06
Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.
Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P
2018-04-25
The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and Aβ causes mitochondrial, synaptic and autophagy/mitophagy abnormalities in hippocampal neurons, leading to neuronal dysfunction.
Ohno, Ayami; Mori, Akira; Doi, Ryuichiro; Yonenaga, Yoshikuni; Asano, Noboru; Uemoto, Shinji
2010-09-01
Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like syndrome (MELAS) is a rare, fetal disease caused by a mutation in mitochondrial DNA that leads to impaired oxidative metabolism in skeletal muscle, the central nervous system, and liver function. This report presents the case of a 50-year-old woman with biliary cystadenocarcinoma complicated by MELAS who underwent a successful left hemihepatectomy. In this case, the diagnostic key for the malignant tumor was an (18)F-fluorodeoxyglucose positron emission tomography study, which was useful even in a patient with MELAS, which causes abnormal glucose metabolism. The perioperative management of such patients includes special precautions to prevent lactic acidosis and deterioration of the reserved liver function after a hepatectomy, since the mitochondrial function in MELAS patients is abnormal. The patient in this report has remained free of liver dysfunctions and cancer recurrence for 2 years following the hepatectomy. This is the first report of a successful major hepatectomy for a patient with MELAS.
Leigh Syndrome and the Mitochondrial m.13513G>A Mutation: Expanding the Clinical Spectrum.
Monlleo-Neila, Laura; Toro, Mireia Del; Bornstein, Belen; Garcia-Arumi, Elena; Sarrias, Axel; Roig-Quilis, Manuel; Munell, Francina
2013-11-01
The mitochondrial DNA m.13513G>A mutation in the ND5 subunit gene is a frequent cause of Leigh syndrome. Patients harboring this mutation typically present with ptosis and cardiac conduction abnormalities, particularly Wolff-Parkinson-White syndrome, and have a late clinical onset, which contrasts with the typical infantile form. The authors describe a patient presenting with intrauterine growth retardation and visual impairment at 3 months of age, followed by infantile spasms, severe gastrointestinal dysmotility, and neurological regression. The patient had hyperlactacidemia and bilateral basal ganglia and brainstem lesions on MRI. Although he did not present cardiac conduction abnormalities, his mother had been diagnosed with Wolff-Parkinson-White syndrome. The m.13513G>A mutation was found in the patient's muscle and in several tissues of his mother. The present results expand the phenotype of Leigh syndrome associated with the m.13513G>A mutation, which should be suspected in patients with early-onset mitochondrial encephalopathy with infantile spasms or prominent gastrointestinal smooth muscle involvement.
Song, Zhenyuan; Zhou, Zhanxiang; Song, Ming; Uriarte, Silvia; Chen, Theresa; Deaciuc, Ion; McClain, Craig J
2007-08-01
Hepatocytes are resistant to tumor necrosis factor-alpha- (TNF) induced killing/apoptosis under normal circumstances, but primary hepatocytes from rats chronically fed alcohol have increased TNF cytotoxicity. Therefore, there must be mechanism(s) by which alcohol exposure "sensitizes" to TNF hepatotoxicity. Abnormal metabolism of methionine and S-adenosylmethionine (SAM) are well-documented acquired metabolic abnormalities in ALD. S-adenosylhomocysteine (SAH) is the product of SAM in hepatic transmethylation reactions, and SAH hydrolase (SAHH) is the only enzyme to metabolize SAH to homocysteine and adenosine. Our previous studies demonstrated that chronic intracellular accumulation of SAH sensitized hepatocytes to TNF cytotoxicity in vitro. In the current study, we extended our previous observations by further characterizing the effects of chronic alcohol intake on mitochondrial SAM levels in liver and examining its possible involvement in SAH sensitization to TNF hepatotoxicity. Chronic alcohol consumption in mice not only increased cytosolic SAH levels, but also decreased mitochondrial SAM concentration, leading to decreased mitochondrial SAM to SAH ratio. Moreover, accumulation of hepatic SAH induced by administration of 3-deaza-adenosine (DZA-a potent inhibitor of SAHH) enhanced lipopolysaccharide (LPS)/TNF hepatotoxicity in mice in vivo. Inhibition of SAHH by DZA resulted not only in accumulation of cytoplasmic SAH, but also in depletion of the mitochondrial SAM pool. Further studies using mitochondrial SAM transporter inhibitors showed that inhibition of SAM transport into mitochondria sensitized HepG2 cells to TNF cytotoxicity. In conclusion, our results demonstrate that depletion of the mitochondrial SAM pool by SAH, which is elevated during chronic alcohol consumption, plays a critical role in SAH induced sensitization to TNF hepatotoxicity.
Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma.
Srinivasainagendra, Vinodh; Sandel, Michael W; Singh, Bhupendra; Sundaresan, Aishwarya; Mooga, Ved P; Bajpai, Prachi; Tiwari, Hemant K; Singh, Keshav K
2017-03-29
Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer.
Mitochondrial Pyruvate Carrier Function and Cancer Metabolism
Rauckhorst, Adam J.
2016-01-01
Metabolic reprograming in cancer supports the increased biosynthesis required for unchecked proliferation. Increased glucose utilization is a defining feature of many cancers that is accompanied by altered pyruvate partitioning and mitochondrial metabolism. Cancer cells also require mitochondrial tricarboxylic acid cycle activity and electron transport chain function for biosynthetic competency and proliferation. Recent evidence demonstrates that mitochondrial pyruvate carrier (MPC) function is abnormal in some cancers and that increasing MPC activity may decrease cancer proliferation. Here we examine recent findings on MPC function and cancer metabolism. Special emphasis is placed on the compartmentalization of pyruvate metabolism and the alternative routes of metabolism that maintain the cellular biosynthetic pools required for unrestrained proliferation in cancer. PMID:27269731
Ohtake, A; Murayama, K; Mori, M; Harashima, H; Yamazaki, T; Tamaru, S; Yamashita, Y; Kishita, Y; Nakachi, Y; Kohda, M; Tokuzawa, Y; Mizuno, Y; Moriyama, Y; Kato, H; Okazaki, Y
2014-04-01
Mitochondrial disorders have the highest incidence among congenital metabolic diseases, and are thought to occur at a rate of 1 in 5000 births. About 25% of the diseases diagnosed as mitochondrial disorders in the field of pediatrics have mitochondrial DNA abnormalities, while the rest occur due to defects in genes encoded in the nucleus. The most important function of the mitochondria is biosynthesis of ATP. Mitochondrial disorders are nearly synonymous with mitochondrial respiratory chain disorder, as respiratory chain complexes serve a central role in ATP biosynthesis. By next-generation sequencing of the exome, we analyzed 104 patients with mitochondrial respiratory chain disorders. The results of analysis to date were 18 patients with novel variants in genes previously reported to be disease-causing, and 27 patients with mutations in genes suggested to be associated in some way with mitochondria, and it is likely that they are new disease-causing genes in mitochondrial disorders. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
CLUH couples mitochondrial distribution to the energetic and metabolic status.
Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim
2017-06-01
Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.
Kazdal, Daniel; Harms, Alexander; Endris, Volker; Penzel, Roland; Kriegsmann, Mark; Eichhorn, Florian; Muley, Thomas; Stenzinger, Albrecht; Pfarr, Nicole; Weichert, Wilko; Warth, Arne
2017-07-11
Mitochondria are considered relevant players in many tumour entities and first data indicate beneficial effects of mitochondria-targeted antioxidants in both cancer prevention and anticancer therapies. To further dissect the potential roles of mitochondria in NSCLC we comprehensively analysed somatic mitochondrial mutations, determined the spatial distribution of mitochondrial DNA within complete tumour sections and investigated the mitochondrial load in a large-scale approach. Whole mitochondrial genome sequencing of 26 matched tumour and non-neoplastic tissue samples extended by reviewing published data of 326 cases. Systematical stepwise real-time PCR quantification of mitochondrial DNA covering 16 whole surgical tumour sections. Immunohistochemical determination of the mitochondrial load in 171 adenocarcinoma and 145 squamous cell carcinoma. Our results demonstrate very low recurrences (max. 1.7%) and a broad distribution of 456 different somatic mitochondrial mutations. Large inter- and intra-tumour heterogeneity were seen for mitochondrial DNA copy numbers in conjunction with a correlation to the predominant histological growth pattern. Furthermore, tumour cells had significantly higher mitochondrial level compared to adjacent stroma, whereas differences between tumour entities were negligible. Non-evident somatic mitochondrial mutations and highly varying mitochondrial DNA level delineate challenges for the approach of mitochondria-targeted anticancer therapies in NSCLC.
Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease
Nguyen, Tammy T.; Oh, Sang S.; Weaver, David; Lewandowska, Agnieszka; Maxfield, Dane; Schuler, Max-Hinderk; Smith, Nathan K.; Macfarlane, Jane; Saunders, Gerald; Palmer, Cheryl A.; Debattisti, Valentina; Koshiba, Takumi; Pulst, Stefan; Feldman, Eva L.; Hajnóczky, György; Shaw, Janet M.
2014-01-01
Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease. PMID:25136135
Conca Dioguardi, Carola; Uslu, Bahar; Haynes, Monique; Kurus, Meltem; Gul, Mehmet; Miao, De-Qiang; De Santis, Lucia; Ferrari, Maurizio; Bellone, Stefania; Santin, Alessandro; Giulivi, Cecilia; Hoffman, Gloria; Usdin, Karen; Johnson, Joshua
2016-06-01
We hypothesized that the mitochondria of granulosa cells (GC) and/or oocytes might be abnormal in a mouse model of fragile X premutation (FXPM). Mice heterozygous and homozygous for the FXPM have increased death (atresia) of large ovarian follicles, fewer corpora lutea with a gene dosage effect manifesting in decreased litter size(s). Furthermore, granulosa cells (GC) and oocytes of FXPM mice have decreased mitochondrial content, structurally abnormal mitochondria, and reduced expression of critical mitochondrial genes. Because this mouse allele produces the mutant Fragile X mental retardation 1 (Fmr1) transcript and reduced levels of wild-type (WT) Fmr1 protein (FMRP), but does not produce a Repeat Associated Non-ATG Translation (RAN)-translation product, our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. Mitochondrial dysfunction has been detected in somatic cells of human and mouse FX PM carriers and mitochondria are essential for oogenesis and ovarian follicle development, FX-associated primary ovarian insufficiency (FXPOI) is seen in women with FXPM alleles. These alleles have 55-200 CGG repeats in the 5' UTR of an X-linked gene known as FMR1. The molecular basis of the pathology seen in this disorder is unclear but is thought to involve either some deleterious consequence of overexpression of RNA with long CGG-repeat tracts or of the generation of a repeat-associated non-AUG translation (RAN translation) product that is toxic. Analysis of ovarian function in a knock-in FXPM mouse model carrying 130 CGG repeats was performed as follows on WT, PM/+, and PM/PM genotypes. Histomorphometric assessment of follicle and corpora lutea numbers in ovaries from 8-month-old mice was executed, along with litter size analysis. Mitochondrial DNA copy number was quantified in oocytes and GC using quantitative PCR, and cumulus granulosa mitochondrial content was measured by flow cytometric analysis after staining of cells with Mitotracker dye. Transmission electron micrographs were prepared of GC within small growing follicles and mitochondrial architecture was compared. Quantitative RT-PCR analysis of key genes involved in mitochondrial structure and recycling was performed. A defect was found in follicle survival at the large antral stage in PM/+ and PM/PM mice. Litter size was significantly decreased in PM/PM mice, and corpora lutea were significantly reduced in mice of both mutant genotypes. Mitochondrial DNA copy number was significantly decreased in GC and metaphase II eggs in mutants. Flow cytometric analysis revealed that PM/+ and PM/PM animals lack the cumulus GC that harbor the greatest mitochondrial content as found in wild-type animals. Electron microscopic evaluation of GC of small growing follicles revealed mitochondrial structural abnormalities, including disorganized and vacuolar cristae. Finally, aberrant mitochondrial gene expression was detected. Mitofusin 2 (Mfn2) and Optic atrophy 1 (Opa1), genes involved in mitochondrial fusion and structure, respectively, were significantly decreased in whole ovaries of both mutant genotypes. Mitochondrial fission factor 1 (Mff1) was significantly decreased in PM/+ and PM/PM GC and eggs compared with wild-type controls. Data from the mouse model used for these studies should be viewed with some caution when considering parallels to the human FXPOI condition. Our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. FXPM disease states, including FXPOI, may share mitochondrial dysfunction as a common underlying mechanism. Not applicable. Studies were supported by NIH R21 071873 (J.J./G.H), The Albert McKern Fund for Perinatal Research (J.J.), NIH Intramural Funds (K.U.), and a TUBITAK Research Fellowship Award (B.U.). No conflict(s) of interest or competing interest(s) are noted. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mice Lacking TR4 Nuclear Receptor Develop Mitochondrial Myopathy with Deficiency in Complex I
Liu, Su; Lee, Yi-Fen; Chou, Samuel; Uno, Hideo; Li, Gonghui; Brookes, Paul; Massett, Michael P.; Wu, Qiao; Chen, Lu-Min
2011-01-01
The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4−/−) suffered mitochondrial myopathy, and histological examination of TR4−/− soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4−/− mice. Restoration of TR4 into TR4−/− myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4−/− myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches. PMID:21622535
Mitochondrial maintenance failure in aging and role of sexual dimorphism
Tower, John
2014-01-01
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation. PMID:25447815
Pardo Andreu, Gilberto; Delgado, René; Velho, Jesus; Inada, Natalia M; Curti, Carlos; Vercesi, Anibal E
2005-05-01
The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.
Muscle wasting in cancer: the role of mitochondria.
Argilés, Josep M; López-Soriano, Francisco J; Busquets, Silvia
2015-05-01
The aim of the present review is to examine the impact of mitochondrial dysfunction in cancer cachexia. Oxidative pathways are altered in this tissue during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. An alteration of energy balance is the immediate cause of cachexia. Both alterations in energy intake and expenditure are responsible for the wasting syndrome associated with different types of pathological conditions, such as cancer. Different types of molecular mechanisms contribute to energy expenditure and, therefore, involuntary body weight loss, one of which is mitochondrial dysfunction.
Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M
2016-01-01
Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975
Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming
2018-04-20
Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study is conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method is performed. Immunohistochemistry (IHC) and western blot are performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. A total of 1372 proteins were quantified and 132 altering expressed proteins were screened, including 86 downregulated expression proteins and 46 upregulated expression proteins (p < 0.05). Bioinformatics analysis showed that differentially expressed proteins participated in numerous biological processes, including oxidation-reduction process, respiratory electron transport chain, and oxidative phosphorylation. Especially, mitochondria-related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM, and NDUFV1, are involved in energy-production process in the matrix and membrane of mitochondria. Results of the experiment show that abnormal electron transport, excessive oxidative stress, and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and is related to the pathogenesis of EOS-PE. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vivo functional investigations of lactic acid in patients with respiratory chain disorders
Touati, G; Rigal, O; Lombes, A; Frachon, P; Giraud, M; de Baulny, H O.
1997-01-01
Accepted 4 September 1996 OBJECTIVE—To assess the prevalence of in vivo detectable abnormalities of lactate metabolism in mitochondrial disorders. DESIGN—Retrospective study in a metabolic investigation unit. PATIENTS—28 patients with a respiratory chain disorder identified from biochemical or genetic analyses, or both, and 133 age matched controls. Controls were children in whom causes of secondary hyperlactataemia and/or disorders, affecting the energy pathways could be excluded. METHODS—Lactate and pyruvate were measured in blood, together with other intermediary metabolism indices, before and one hour after four meals each day. Lactate and creatinine in a 24 hour urine sample collected at the same time were analysed. When basal hyperlactataemia was not evident, an intravenous glucose or pyruvate loading test was performed as a provocative test. RESULTS—Abnormal lactate metabolism was found in 25 of 28 patients thus demonstrating the potential usefulness of these investigations in the diagnosis of mitochondrial diseases. Moderate lactate accumulation was present in relatively mild disease, associated with a mitochondrial DNA mutation and combined respiratory complexes deficiency. By contrast, high lactate concentrations were observed in very young children, with severe disease, isolated complex deficiency, and no apparent mitochondrial DNA defect. PMID:9059154
Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588
Steenweg, Marjan E; Ghezzi, Daniele; Haack, Tobias; Abbink, Truus E M; Martinelli, Diego; van Berkel, Carola G M; Bley, Annette; Diogo, Luisa; Grillo, Eugenio; Te Water Naudé, Johann; Strom, Tim M; Bertini, Enrico; Prokisch, Holger; van der Knaap, Marjo S; Zeviani, Massimo
2012-05-01
In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation.
Wilnai, Yael; Seaver, Laurie H; Enns, Gregory M
2012-09-01
Amyoplasia congenita is a distinct form of arthrogryposis with characteristic features including internally rotated and adducted shoulders, extended elbows, flexion, and ulnar deviation of the wrists, and adducted thumbs. Fetal hypokinesia, secondary to a variety of genetic conditions, neuromuscular disorders, and environmental agents, is associated with contractures. In order to increase our understanding of the phenotypic spectrum associated with SURF 1 deficiency, a common cause of mitochondrial respiratory chain complex IV deficiency and Leigh syndrome, we describe a now 6-year-old boy who presented in the neonatal period with amyoplasia congenita. His development was normal until age 10.5 months, at which time he developed severe hypotonia and choreoathetosis following an episode of viral gastroenteritis. Following the onset of neurological symptoms, he gradually developed severe kyphosis and lower limb contractures. Blood and cerebrospinal fluid lactate levels were elevated and head imaging showed characteristic features of Leigh syndrome. He was found to harbor two pathogenic heterozygous mutations in the SURF 1 gene. In this case, mitochondrial dysfunction and the resultant energy deficiency may have played a role in causing abnormal neuronal development during embryogenesis, causing arthrogryposis. A variety of mitochondrial respiratory chain complex deficiencies have been associated with contractures of varying severity. Therefore, mitochondrial disorders should be considered in the differential diagnosis of neonatal arthrogryposis, especially if other characteristic findings such as lactic acidemia or basal ganglia abnormalities are present. Copyright © 2012 Wiley Periodicals, Inc.
Simon, Mariella T.; Ng, Bobby G.; Friederich, Marisa W.; Wang, Raymond Y.; Boyer, Monica; Kircher, Martin; Collard, Renata; Buckingham, Kati J.; Chang, Richard; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Van Hove, Johan L.K.; Freeze, Hudson H.; Abdenur, Jose E.
2017-01-01
We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency. PMID:28216230
Mitochondrial Aging: Is There a Mitochondrial Clock?
Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y
2017-09-01
Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mitochondrial Disorders of DNA Polymerase γ Dysfunction
Zhang, Linsheng; Chan, Sherine S. L.; Wolff, Daynna J.
2011-01-01
Context Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources Review of pertinent published literature and relevant Internet databases. Conclusions Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis. PMID:21732785
Kain, Vasundhara; Sawant, Mithila A; Dasgupta, Aparajita; Jaiswal, Gaurav; Vyas, Alok; Padhye, Subhash; Sitasawad, Sandhya L
2016-03-01
A key contributor to the pathophysiology of diabetic cardiomyopathy, mitochondrial superoxide can be adequately countered by Mn-superoxide dismutase, which constitutes the first line of defense against mitochondrial oxidative stress. Our group has recently synthesized low molecular weight SOD mimics, demonstrating superior protection against oxidative damages to kidney cells. In the current study, we sought to evaluate the protective effect of the SOD mimic ML1 against high glucose induced cardiomyopathy in diabetes. Mechanistic studies using rat cardiac myoblast H9c2 showed that ML1 markedly inhibited High Glucose (HG) induced cytotoxicity. This was associated with increased Mn-SOD expression along with decreased mitochondrial [Formula: see text], ONOO- and Ca 2+ accumulation, unveiling its anti-oxidant potentials. ML1 also attenuated HG-induced loss of mitochondrial membrane potential (Δ Ψ m ) and release of cytochrome c, suggesting that ML1 effectuates its cytoprotective action via the preservation of mitochondrial function. In an ex-vivo model normal adult rat ventricular myocytes (ARVMs) were isolated and cultured in either normal glucose (5.5 mmol/l glucose) or HG (25.5 mmol/l glucose) conditions and the efficiency of ML-1 was analyzed by studying contractile function and calcium indices. Mechanical properties were assessed using a high-speed video-edge detection system, and intracellular Ca 2+ transients were recorded in fura-2-loaded myocytes. Pretreatment of myocytes with ML1 (10 nM) ameliorated HG induced abnormalities in relaxation including depressed peak shortening, prolonged time to 90% relenghthening, and slower Ca 2+ transient decay. Thus, ML1 exhibits significant cardio protection against oxidative damage, perhaps through its potent antioxidant action via activation of Mn-SOD.
Amiri, Shayan; Yousefi-Ahmadipour, Aliakbar; Hosseini, Mir-Jamal; Haj-Mirzaian, Arya; Momeny, Majid; Hosseini-Chegeni, Heshmat; Mokhtari, Tahmineh; Kharrazi, Sharmin; Hassanzadeh, Gholamreza; Amini, Seyed Mohammad; Jafarinejad, Somayeh; Ghazi-Khansari, Mahmoud
2018-05-01
Silver nanoparticles (Ag-NPs) are currently used in a wide range of consumer products. Considering the small size of Ag-NPs, they are able to pass through variety of biological barriers and exert their effects. In this regard, the unique physicochemical properties of Ag-NPs along with its high application in the industry have raised concerns about their negative effects on human health. Therefore, it investigated whether prenatal exposure to low doses of Ag-NPs is able to induce any abnormality in the cognitive and behavioral performance of adult offspring. We gavaged pregnant NMRI mice with, 1) Deionized water as vehicle, 2) Ag-NPs 10 nm (0.26 mg/kg/day), 3) Ag-NPs 30 nm (0.26 mg/kg/day), and 4) AgNO 3 (0.26 mg/kg/day) from gestational day (GD) 0 until delivery day. At the postnatal day (PD) 1, our results showed that high concentration of silver is present in the brain of pups. Further, we observed mitochondrial dysfunction and upregulation of the genes relevant to innate immune system in the brain. At PD 60, results revealed that prenatal exposure to Ag-NPs provoked severe cognitive and behavioral abnormalities in male offspring. In addition, we found that prenatal exposure to Ag-NPs was associated with abnormal mitochondrial function and significant up-regulation of the genes relevant to innate immunity in the brain. Although the Ag-NPs have been considered as safe compounds at low doses, our results indicate that prenatal exposure to low doses of Ag-NPs is able to induce behavioral and cognitive abnormalities in adulthood. Also, we found that these effects are at least partly associated with hippocampal mitochondrial dysfunction and the activation of sterile inflammation during early stages of life. Copyright © 2018 Elsevier B.V. All rights reserved.
Profound bioenergetic abnormalities in peri-infarct myocardial regions.
Hu, Qingsong; Wang, Xiaohong; Lee, Joseph; Mansoor, Abdul; Liu, Jingbo; Zeng, Lepeng; Swingen, Cory; Zhang, Ge; Feygin, Julia; Ochiai, Koichi; Bransford, Toni L; From, Arthur H L; Bache, Robert J; Zhang, Jianyi
2006-08-01
Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.
Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro
Trushina, Eugenia; Dyer, Roy B.; Badger, John D.; Ure, Daren; Eide, Lars; Tran, David D.; Vrieze, Brent T.; Legendre-Guillemin, Valerie; McPherson, Peter S.; Mandavilli, Bhaskar S.; Van Houten, Bennett; Zeitlin, Scott; McNiven, Mark; Aebersold, Ruedi; Hayden, Michael; Parisi, Joseph E.; Seeberg, Erling; Dragatsis, Ioannis; Doyle, Kelly; Bender, Anna; Chacko, Celin; McMurray, Cynthia T.
2004-01-01
Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction. PMID:15340079
Potential Therapeutic Benefits of Strategies Directed to Mitochondria
Lesnefsky, Edward J.; Stowe, David F.
2010-01-01
Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744
Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W
2007-11-30
Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.
d'Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana
2014-01-01
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients. PMID:24876913
Sunny, Nishanth E.; Parks, Elizabeth J.; Browning, Jeffrey D.; Burgess, Shawn C.
2013-01-01
Summary Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using 2H and 13C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ∼2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage. PMID:22152305
Mitochondrial tRNAPhe mutation as a cause of end-stage renal disease in childhood
D’Aco, Kristin E; Manno, Megan; Clarke, Colleen; Ganesh, Jaya; Meyers, Kevin EC; Sondheimer, Neal
2012-01-01
Background We identified a mitochondrial tRNA mutation (m.586G>A) in a patient with renal failure and symptoms consistent with a mitochondrial cytopathy. This mutation was of unclear significance because there were neither consistent reports of linkage to specific disease phenotypes nor an existing analysis of effects upon mitochondrial function. Case-Diagnosis/Treatment A 16-month-old girl with failure-to-thrive, developmental regression, persistent lactic acidosis, hypotonia, GI dysmotility, adrenal insufficiency and hematologic abnormalities developed hypertension and renal impairment with chronic tubulointerstitial fibrosis, progressing to renal failure with need for peritoneal dialysis. Evaluation of her muscle and blood identified a mutation of the mitochondrial tRNA for phenylalanine, m.586G>A. Conclusions The m.586G>A mutation is pathogenic and is a cause of end-stage renal disease in childhood. The mutation interferes with the stability of tRNAPhe and affects the translation of mitochondrial proteins and the stability of the electron transport chain. PMID:23135609
Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons.
Drerup, Catherine M; Herbert, Amy L; Monk, Kelly R; Nechiporuk, Alex V
2017-04-17
Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10 , a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.
Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.
2015-01-01
The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253
Rolland, Stéphane G.; Motori, Elisa; Memar, Nadin; Hench, Jürgen; Frank, Stephan; Winklhofer, Konstanze F.; Conradt, Barbara
2013-01-01
Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC–deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain. PMID:23878239
Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease
Cai, Qian; Tammineni, Prasad
2016-01-01
Alzheimer’s disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategy for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD. PMID:27767992
ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.
Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi
2016-07-15
Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. Copyright © 2016, American Association for the Advancement of Science.
Mitochondrial abnormalities in Alzheimer’s disease: Possible targets for therapeutic intervention
Silva, Diana F.; Selfridge, J. Eva; Lu, Jianghua; Lezi, E; Cardoso, Sandra M.; Swerdlow, Russell H.
2013-01-01
Mitochondria from persons with Alzheimer’s disease (AD) differ from those of age-matched, control subjects. Differences in mitochondrial morphology and function are well-documented, and are not brain-limited. Some of these differences are present during all stages of AD, and are even seen in individuals who are without AD symptoms and signs but who have an increased risk of developing AD. This chapter considers the status of mitochondria in AD subjects, the potential basis for AD subject mitochondrial perturbations, and the implications of these perturbations. Data from multiple lines of investigation, including epidemiologic, biochemical, molecular, and cytoplasmic hybrid studies are reviewed. The possibility that mitochondria could potentially constitute a reasonable AD therapeutic target is discussed, as are several potential mitochondrial medicine treatment strategies. PMID:22840745
Fu, Yue; Xu, Wen; Jiang, Longyuan; Huang, Zitong
2014-01-01
Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA. PMID:24696844
The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).
Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki
2018-05-10
Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.
Sen, Aditya; Karasik, Agnes; Shanmuganathan, Aranganathan; Mirkovic, Elena; Koutmos, Markos; Cox, Rachel T
2016-07-27
Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies.
Bartsakoulia, Marina; Mϋller, Juliane S; Gomez-Duran, Aurora; Yu-Wai-Man, Patrick; Boczonadi, Veronika; Horvath, Rita
2016-08-30
Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.
Webb, J; Whaley, K; MacSween, R N; Nuki, G; Dick, W C; Buchanan, W W
1975-01-01
Inter-relationships of biochemical and immunological tests of liver function have been studied in a prospective study of 216 patients with rheumatoid arthritis (RA), 32 patients with Sjogren's syndrome, and 27 patients with the sicca syndrome, and these results have been compared with those obtained 289 patients with osteoarthrosis or with a form of seronegative polyarthropathy. In general the prevalence of abnormalities in serum alkaline phosphatase, bromsulphthalein excretion, smooth muscle antibody, and mitochondrial antibody in the former three groups was higher than in patients with osteoarthrosis. Patients with Sjogren's syndrome with RA had a higher prevalence of abnormalities of bromsulphthalein excretion, salivary duct antibody than patients with the sicca syndrome. Patients with RA had a higher pervalence of rheumatoid factor than those with the sicca syndrome. Patients with a positive smooth muscle or mitochondrial antibody were found to have a higher prevalence of hepatomegaly and splenomegaly, of abnormal liver function tests, of other autoantibodies, and of histological abnromalitis of liver than those in whom these tests were negative. PMID:1092275
Fatal breathing dysfunction in a mouse model of Leigh syndrome.
Quintana, Albert; Zanella, Sebastien; Koch, Henner; Kruse, Shane E; Lee, Donghoon; Ramirez, Jan M; Palmiter, Richard D
2012-07-01
Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with gliosis in several brain regions that usually results in infantile death. Loss of murine Ndufs4, which encodes NADH dehydrogenase (ubiquinone) iron-sulfur protein 4, results in compromised activity of mitochondrial complex I as well as progressive neurodegenerative and behavioral changes that resemble LS. Here, we report the development of breathing abnormalities in a murine model of LS. Magnetic resonance imaging revealed hyperintense bilateral lesions in the dorsal brain stem vestibular nucleus (VN) and cerebellum of severely affected mice. The mutant mice manifested a progressive increase in apnea and had aberrant responses to hypoxia. Electrophysiological recordings within the ventral brain stem pre-Bötzinger respiratory complex were also abnormal. Selective inactivation of Ndufs4 in the VN, one of the principle sites of gliosis, also led to breathing abnormalities and premature death. Conversely, Ndufs4 restoration in the VN corrected breathing deficits and prolonged the life span of knockout mice. These data demonstrate that mitochondrial dysfunction within the VN results in aberrant regulation of respiration and contributes to the lethality of Ndufs4-knockout mice.
Leigh and Leigh-like syndrome in children and adults.
Finsterer, Josef
2008-10-01
Leigh syndrome (also termed subacute, necrotizing encephalopathy) is a devastating neurodegenerative disorder, characterized by almost identical brain changes, e.g., focal, bilaterally symmetric lesions, particularly in the basal ganglia, thalamus, and brainstem, but with considerable clinical and genetic heterogeneity. Clinically, Leigh syndrome is characterized by a wide variety of abnormalities, from severe neurologic problems to a near absence of abnormalities. Most frequently the central nervous system is affected, with psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also present with peripheral nervous system involvement, including polyneuropathy or myopathy, or non-neurologic abnormalities, e.g., diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). In the majority of cases, onset is in early childhood, but in a small number of cases, adults are affected. In the majority of cases, dysfunction of the respiratory chain (particularly complexes I, II, IV, or V), of coenzyme Q, or of the pyruvate dehydrogenase complex are responsible for the disease. Associated mutations affect genes of the mitochondrial or nuclear genome. Leigh syndrome and Leigh-like syndrome are the mitochondrial disorders with the largest genetic heterogeneity.
Wilson, Emma R; Kugathasan, Umaiyal; Abramov, Andrey Y; Clark, Alex J; Bennett, David L H; Reilly, Mary M; Greensmith, Linda; Kalmar, Bernadett
2018-05-18
Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca 2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca 2+ channels. The changes in intracellular Ca 2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca 2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.
2009-01-01
Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378
Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao
2017-01-29
Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.
Kim, Jinho; Moody, Jennifer P; Edgerly, Christina K; Bordiuk, Olivia L; Cormier, Kerry; Smith, Karen; Beal, M Flint; Ferrante, Robert J
2010-10-15
Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD.
The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.
Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian
2014-02-01
Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Rossignol, D A; Frye, R E
2012-01-01
Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation of trends between the four major areas and the four comparison areas demonstrated that the largest relative growth was in immune dysregulation/inflammation, oxidative stress, toxicant exposures, genetics and neuroimaging. Research on mitochondrial dysfunction started growing in the last 5 years. Theory of mind and neuropathology research has declined in recent years. Although most publications implicated an association between the four major areas and ASD, publication bias may have led to an overestimation of this association. Further research into these physiological areas may provide insight into general or subset-specific processes that could contribute to the development of ASD and other psychiatric disorders. PMID:22143005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi
Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics inmore » oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.« less
Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu
2014-01-17
Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.
Barroso, G.; Blesa, S.; Labarere, J.
1995-01-01
We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984
Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue
Boengler, Kerstin; Kosiol, Maik; Mayr, Manuel; Schulz, Rainer
2017-01-01
Abstract Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best‐known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high‐energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed. PMID:28432755
Interaction theory of mammalian mitochondria.
Nakada, K; Inoue, K; Hayashi, J
2001-11-09
We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit. Copyright 2001 Academic Press.
Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel
2016-01-01
Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. DOI: http://dx.doi.org/10.7554/eLife.17163.001 PMID:27623147
Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc
2017-06-06
Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.
WEINBERG, JOEL M.; VENKATACHALAM, MANJERI A.; ROESER, NANCY F.; SAIKUMAR, POTHANA; DONG, ZHENG; SENTER, RUTH A.; NISSIM, ITZHAK
2010-01-01
We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with α-ketoglutarate (α-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c loss. Anaerobic metabolism of α-KG + aspartate generated ATP and maintained mitochondrial membrane potential. Other citric-acid cycle intermediates that can promote anaerobic metabolism (malate and fumarate) were also effective singly or in combination with α-KG. Succinate, the end product of these anaerobic pathways that can bypass complex I, was not protective when provided only during hypoxia. However, during reoxygenation, succinate also rescued the tubules, and its benefit, like that of α-KG + malate, persisted after the extra substrate was withdrawn. Thus proximal tubules can be salvaged from hypoxia-reoxygenation mitochondrial injury by both anaerobic metabolism of citric-acid cycle intermediates and aerobic metabolism of succinate. These results bear on the understanding of a fundamental mode of mitochondrial dysfunction during tubule injury and on strategies to prevent and reverse it. PMID:11053054
Forsgren, L; Libelius, R; Holmberg, M; von Döbeln, U; Wibom, R; Heijbel, J; Sandgren, O; Holmgren, G
1996-12-01
The autosomal dominant cerebellar ataxias (ADCA) are a group of neurodegenerative disorders with ataxia and dysarthria as early and dominant signs. In ADCA type II, retinal degeneration causes severe visual impairment. ADCA type II has recently been mapped to chromosome 3p by three independent groups. In the family with ADCA type II studied here, the disease has been mapped to chromosome 3p12-p21.1. Histochemical examination of muscle biopsies in 5 cases showed slight neurogenic atrophy and irregular lobulated appearance or focal decreases of enzyme activity when staining for NADH dehydrogenase, succinic dehydrogenase and cytochrome oxidase. Ragged-red fibres were scarce. Electron microscopic examination showed uneven distribution of mitochondria with large fibre areas devoid of mitochondria and/or large subsarcolemmal accumulations of small rounded mitochondria, and frequent autophagic vacuoles. These vacuoles contained remnants of multiple small rounded organelles, possibly mitochondria, and had a remarkably consistent ultrastructural appearance. Biochemical investigation of mitochondrial function showed reduced activity of complex IV and slightly reduced activity of complex I in the respiratory chain in a severely affected child while no abnormalities were found in his affected uncle.
Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.
Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062
Mitochondria and heart failure.
Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran
2007-11-01
Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.
Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.
Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil
2015-06-01
Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease.
Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami; Ohnishi, Jun; Ohki, Takehiro; Tsuda, Shinya
2009-08-01
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami
2009-08-01
The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the secondmore » putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.« less
Dobson, Philip F; Rocha, Mariana C; Grady, John P; Chrysostomou, Alexia; Hipps, Daniel; Watson, Sharon; Greaves, Laura C; Deehan, David J; Turnbull, Doug M
2016-08-24
Fragility fractures caused by osteoporosis affect millions of people worldwide every year with significant levels of associated morbidity, mortality and costs to the healthcare economy. The pathogenesis of declining bone mineral density is poorly understood but it is inherently related to increasing age. Growing evidence in recent years, especially that provided by mouse models, suggest that accumulating somatic mitochondrial DNA mutations may cause the phenotypic changes associated with the ageing process including osteoporosis. Methods to study mitochondrial abnormalities in individual osteoblasts, osteoclasts and osteocytes are limited and impair our ability to assess the changes seen with age and in animal models of ageing. To enable the assessment of mitochondrial protein levels, we have developed a quadruple immunofluorescence method to accurately quantify the presence of mitochondrial respiratory chain components within individual bone cells. We have applied this technique to a well-established mouse model of ageing and osteoporosis and show respiratory chain deficiency.
Campbell, M A; Lopéz, J A
2014-02-01
Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median-joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum. © 2014 The Fisheries Society of the British Isles.
Zhou, Zhi-Dong; Saw, Wuan-Ting; Tan, Eng-King
2017-09-01
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto
2016-07-01
To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.
Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A
2016-09-01
Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam
2011-01-01
Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID:22002056
Amini-Khoei, Hossein; Mohammadi-Asl, Ali; Amiri, Shayan; Hosseini, Mir-Jamal; Momeny, Majid; Hassanipour, Mahsa; Rastegar, Mojgan; Haj-Mirzaian, Arya; Mirzaian, Arvin Haj-; Sanjarimoghaddam, Hossein; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza
2017-06-02
Mother-infant contact has a critical role on brain development and behavior. Experiencing early-life adversities (such as maternal separation stress or MS in rodents) results in adaptations of neurotransmission systems, which may subsequently increase the risk of depression symptoms later in life. In this study, we show that Oxytocin (OT) exerted antioxidant and anti-inflammatory properties. Previous studies indicate that neuroinflammation and mitochondrial dysfunction are associated with the pathophysiology of depression. To investigate the antidepressant-like effects of OT, we applied MS paradigm (as a valid animal model of depression) to male mice at postnatal day (PND) 2 to PND 14 (3h daily, 9AM to 12AM) and investigated the depressive-like behaviors of these animals at PND 60 in different groups. Animals in this work were divided into 4 experimental groups: 1) saline-treated, 2) OT-treated, 3) atosiban (OT antagonist)-treated and, 4) OT+ atosiban-treated mice. We used forced swimming test (FST), splash test, sucrose preference test (SPT) and open field test (OFT) for behavioral assessment. Additionally, we used another set of animals to investigate the effects of MS and different treatments on mitochondrial function and the expression of the relevant genes for neuroinflammation. Our results showed that MS provoked depressive- like behaviors in the FST, SPT and splash test. In addition, our molecular findings revealed that MS is capable of inducing abnormal mitochondrial function and immune-inflammatory response in the hippocampus. Further, we observed that treating stressed animals with OT (intracerebroventricular, i.c.v. injection) attenuated the MS-induced depressive-like behaviors through improving mitochondrial function and decreasing the hippocampal expression of immune-inflammatory genes. In conclusion, we showed that MS-induced depressive-like behaviors in adult male mice are associated with abnormal mitochondrial function and immune-inflammatory responses in the hippocampus, and activation of OTergic system has protective effects against negative effects of MS on brain and behavior of animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Associations between male infertility and ancestry in South Americans: a case control study.
Skowronek, Maria Fernanda; Velazquez, Tatiana; Mut, Patricia; Figueiro, Gonzalo; Sans, Monica; Bertoni, Bernardo; Sapiro, Rossana
2017-07-26
Infertility affects 15% of human couples, with men being responsible in approximately 50% of cases. Moreover, the aetiology of male factor infertility is poorly understood. The majority of male factor infertility remains idiopathic and potentially genetic in origin. The association of the Y chromosome and mitochondrial haplogroups with male infertility has been previously reported. This association differs between studied populations and their geographical distributions. These effects have been only rarely analysed in mixed populations, such as South Americans. In this study, we analysed the contributions of the Y chromosome and mitochondrial haplogroups to male infertility in a mixed population. A case control study was conducted. Regular PCR and high-resolutionmelting- real-time PCR were performed to type haplogroups from fertile and infertile men. The sperm parameters from infertile men were compared in each haplogroup by logistic regression analysis and ANOVA. The genotyping confirmed the known admixture characteristic of the Uruguayan population. The European paternal contribution was higher than the maternal contribution in both fertile and infertile men. Neither maternal nor paternal ancestry presented differences between the cases and controls. Men belonging to the Y chromosome haplogroup F(xK) more frequently presented with an abnormal sperm morphology than men from other haplogroups. The sperm parameters were not associated with the mitochondrial haplogroups. The data presented in this study showed an association between male infertility and ancestry in the Uruguayan population. Specifically, abnormal sperm morphology was associated with the Y chromosome haplogroup F(xK). Since the Y chromosome lacks recombination, these data suggest that some genes that determine sperm morphology might be inherited in blocks with the region that determines specific haplogroups. However, the possible association between the Y chromosome haplogroup F(xK) and sperm morphology requires further confirmatory testing. Data linking infertility with ancestry are needed to establish the possible causes of infertility and define male populations susceptible to infertility. Whether the admixed characteristics of the Uruguayan population exert any pressure on male fertility potential must be further investigated.
Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.
Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun
2018-05-02
Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.
Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics.
Baba, Takashi; Kashiwagi, Yuriko; Arimitsu, Nagisa; Kogure, Takeshi; Edo, Ayumi; Maruyama, Tomohiro; Nakao, Kazuki; Nakanishi, Hiroki; Kinoshita, Makoto; Frohman, Michael A; Yamamoto, Akitsugu; Tani, Katsuko
2014-04-18
Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.
Stangenberg, Stefanie; Nguyen, Long T; Chen, Hui; Al-Odat, Ibrahim; Killingsworth, Murray C; Gosnell, Martin E; Anwer, Ayad G; Goldys, Ewa M; Pollock, Carol A; Saad, Sonia
2015-07-01
An adverse in-utero environment is increasingly recognized to predispose to chronic disease in adulthood. Maternal smoking remains the most common modifiable adverse in-utero exposure leading to low birth weight, which is strongly associated with chronic kidney disease (CKD) in later life. In order to investigate underlying mechanisms for such susceptibility, female Balb/c mice were sham or cigarette smoke-exposed (SE) for 6 weeks before mating, throughout gestation and lactation. Offspring kidneys were examined for oxidative stress, expression of mitochondrial proteins, mitochondrial structure as well as renal functional parameters on postnatal day 1, day 20 (weaning) and week 13 (adult age). From birth throughout adulthood, SE offspring had increased renal levels of mitochondrial-derived reactive oxygen species (ROS), which left a footprint on DNA with increased 8-hydroxydeoxyguanosin (8-OHdG) in kidney tubular cells. Mitochondrial structural abnormalities were seen in SE kidneys at day 1 and week 13 along with a reduction in oxidative phosphorylation (OXPHOS) proteins and activity of mitochondrial antioxidant Manganese superoxide dismutase (MnSOD). Smoke exposure also resulted in increased mitochondrial DNA copy number (day 1-week 13) and lysosome density (day 1 and week 13). The appearance of mitochondrial defects preceded the onset of albuminuria at week 13. Thus, mitochondrial damage caused by maternal smoking may play an important role in development of CKD at adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun
2014-11-01
Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Gait analysis in a mouse model resembling Leigh disease.
de Haas, Ria; Russel, Frans G; Smeitink, Jan A
2016-01-01
Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Potestio, C P; Check, J H; Mitchell-Williams, J
2014-01-01
To evaluate the efficacy of sympathomimetic amine therapy on a mitochondrial abnormality known as the mitochondrial encephalopathy lactic acidosis and stroke-like symptoms syndrome (MELAS syndrome). Dextroamphetamine sulfate 15 mg extended release capsule was prescribed to a woman with a 25 year history of MELAS syndrome refractory to most other therapies. Within one month of therapy the woman noticed considerable improvement in her chronic fatigue, pain, and edema. The MELAS syndrome is thus another condition to add to the list of various chronic refractory disorders that improve considerably after dextroamphetamine therapy. This is the first mitochondrial disorder shown to improve with sympathomimetic amines which could suggest that dextroamphetamine could prove useful in decreasing the risk of aneuploidy in women of advanced reproductive age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvaritch, Elena; MacLennan, David H., E-mail: david.maclennan@utoronto.ca
Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmedmore » for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.« less
MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria
Dalla Rosa, Ilaria; Cámara, Yolanda; Durigon, Romina; Moss, Chloe F.; Vidoni, Sara; Akman, Gokhan; Hunt, Lilian; Johnson, Mark A.; Grocott, Sarah; Wang, Liya; Thorburn, David R.; Hirano, Michio; Poulton, Joanna; Taylor, Robert W.; Elgar, Greg; Martí, Ramon; Voshol, Peter; Holt, Ian J.; Spinazzola, Antonella
2016-01-01
MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients’ quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway. PMID:26760297
Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming
2017-07-15
Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Sproule, Douglas M; Kaufmann, Petra
2008-10-01
Since the initial description almost 25 years ago, the syndrome of mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) has been a useful model to study the complex interplay of factors that define mitochondrial disease. This syndrome, most commonly caused by an A-to-G transition mutation at position 3243 of the mitochondrial genome, is typified by characteristic neurological manifestations including seizures, encephalopathy, and strokelike episodes, as well as other frequent secondary manifestations including short stature, cognitive impairment, migraines, depression, cardiomyopathy, cardiac conduction defects, and diabetes mellitus. In this review, we discuss the history, pathogenesis, clinical features, and diagnostic and management strategies of mitochondrial disease in general and of MELAS in particular. We explore features of mitochondrial genetics, including the concepts of heteroplasmy, mitotic segregation, and threshold effect, as a basis for understanding the variability and complicated inheritance patterns seen with this group of diseases. We also describe systemic manifestations of MELAS-associated mutations, including cardiac, renal, endocrine, gastrointestinal, and endothelial abnormalities and pathology, as well as the hypothetical role of derangements to COX enzymatic function in driving the unique pathology and clinical manifestations of MELAS. Although therapeutic options for MELAS and other mitochondrial diseases remain limited, and recent trials have been disappointing, we also consider current and potential therapeutic modalities.
Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs.
Takeda, Kumiko
2013-04-01
Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.
Merkle, A N; Nascene, D R; McKinney, A M
2012-03-01
Hepatocerebral MPV17-MDS is quite rare (<30 confirmed cases), with limited findings described on MR imaging. We report 2 siblings having abnormalities within the reticular formation of the lower brain stem and within the reticulospinal tracts at the cervicocranial junction on T2WI. The presence of these MR imaging findings (relative to previous reports) raises the possibility that they represent subtle but characteristic findings corresponding to clinically observed abnormalities of tone encountered with this recently described disorder.
[Two patients with mitochondrial respiratory chain disease].
Bangma, H R; Smit, G P A; Kuks, J B M; Grevink, R G; Wolffenbuttel, B H R
2008-10-18
A 23-year-old woman and a 13-year-old boy were diagnosed with mitochondrial respiratory chain disease. The woman had muscle pain, fatigue and bilateral ophthalmoplegia--symptoms consistent with Kearns-Sayre syndrome. The boy had aspecific symptoms; eventually, reduced activity of complex 1 was found to be the cause of the mitochondrial respiratory chain disease in the boy and his mother, who had suffered from unexplained fatigue and muscle pain for 15 years. Mitochondrial diseases often involve several organ systems. Diagnosis can be difficult, because laboratory tests such as serum and urinary lactate and creatine kinase have low sensitivity and specificity. Biochemical assessment of muscle biopsy can reveal reduced oxidation ATP synthesis and sometimes specific abnormalities in individual protein complexes. DNA analysis may be helpful in demonstrating mitochondrial or nuclear mutations or deletions. The goal of treatment is to increase mitochondrial ATP production, improve clinical symptoms and enhance stamina. Replacement of the following substances (also referred to as cofactors) may be attempted: co-enzyme Q10, antioxidants (lipoic acid, vitamins C and E), riboflavin, thiamine, creatine and carnitine. Evidence regarding the optimal treatment approach is lacking; one usually has to rely on observing effects in the individual patient.
Lu, Gang; Ren, Shuxun; Korge, Paavo; Choi, Jayoung; Dong, Yuan; Weiss, James; Koehler, Carla; Chen, Jau-nian; Wang, Yibin
2007-01-01
Mitochondria play a central role in the regulation of programmed cell death signaling. Here, we report the finding of a mitochondrial matrix-targeted protein phosphatase 2C family member (PP2Cm) that regulates mitochondrial membrane permeability transition pore (MPTP) opening and is essential for cell survival, embryonic development, and cardiac function. PP2Cm is highly conserved among vertebrates, with the highest expression levels detected in the heart and brain. Small hairpin RNA (shRNA)-mediated knockdown of PP2Cm resulted in cell death associated with loss of mitochondrial membrane potential in cultured cardiac mycoytes and an induction of hepatocyte apoptosis in vivo. PP2Cm-deficient mitochondria showed elevated susceptibility to calcium-induced MPTP opening, whereas mitochondrial oxidative phosphorylation activities were not affected. Finally, inactivation of PP2Cm in developing zebrafish embryos caused abnormal cardiac and neural development as well as heart failure associated with induced apoptosis. These data suggest that PP2Cm is a novel mitochondrial protein phosphatase that has a critical function in cell death and survival, and may play a role in regulating the MPTP opening. PMID:17374715
Li, Yang; He, Lina; Zeng, Ni; Sahu, Divya; Cadenas, Enrique; Shearn, Colin; Li, Wei; Stiles, Bangyan L.
2013-01-01
Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism. PMID:23836899
Martino, Nicola A; Dell'Aquila, Maria E; Filioli Uranio, Manuel; Rutigliano, Lucia; Nicassio, Michele; Lacalandra, Giovanni M; Hinrichs, Katrin
2014-10-11
Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression of mitochondrial distribution pattern and there were no significant differences in oocyte energy/redox parameters between these oocytes and controls. Mitochondrial distribution in equine GV-stage oocytes is correlated with chromatin configuration within the GV. Progression of chromatin configuration and mitochondrial status during holding are dependent on temperature. EH holding at 25°C maintains meiotic arrest, viability and mitochondrial potential of equine oocytes. This is the first report on the effects of EH treatment on oocyte mitochondrial energy/redox potential.
Thermal adaptation and clinal mitochondrial DNA variation of European anchovy
Silva, Gonçalo; Lima, Fernando P.; Martel, Paulo; Castilho, Rita
2014-01-01
Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy. PMID:25143035
Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury
Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.
2011-01-01
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063
Usage of mitochondrial D-loop variation to predict risk for Huntington disease.
Mousavizadeh, Kazem; Rajabi, Peyman; Alaee, Mahsa; Dadgar, Sepideh; Houshmand, Massoud
2015-08-01
Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.
Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe
2009-01-01
Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401
Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy.
Barel, Ortal; Malicdan, May Christine V; Ben-Zeev, Bruria; Kandel, Judith; Pri-Chen, Hadass; Stephen, Joshi; Castro, Inês G; Metz, Jeremy; Atawa, Osama; Moshkovitz, Sharon; Ganelin, Esther; Barshack, Iris; Polak-Charcon, Sylvie; Nass, Dvora; Marek-Yagel, Dina; Amariglio, Ninette; Shalva, Nechama; Vilboux, Thierry; Ferreira, Carlos; Pode-Shakked, Ben; Heimer, Gali; Hoffmann, Chen; Yardeni, Tal; Nissenkorn, Andreea; Avivi, Camila; Eyal, Eran; Kol, Nitzan; Glick Saar, Efrat; Wallace, Douglas C; Gahl, William A; Rechavi, Gideon; Schrader, Michael; Eckmann, David M; Anikster, Yair
2017-03-01
Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder. © Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the US.
PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
Park, Yun Sun; Choi, Su Eun; Koh, Hyun Chul
2018-03-01
Mitochondrial dynamics and mitophagy are critical processes for regulating mitochondrial homeostasis. Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein that plays crucial roles in apoptosis and necroptosis, but the roles of PGAM5 in mitochondrial dynamics and mitophagy remain unclear. In this study, we investigated the role of PGAM5 in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced mitochondrial damage and the correlation between mitochondrial dynamics and mitophagy using SH-SY5Y cells. We found that CCCP decreased mitochondrial membrane potential, resulting in mitochondrial dysfunction. CCCP increased PGAM5, dynamin-related protein 1 (DRP1), and optic atrophy 1 (OPA1) expression of the mitochondrial fraction in a time-dependent manner. Knockdown of PGAM5 inhibited DRP1 translocation without a change in OPA1 expression in CCCP-treated cells. Furthermore, knockdown of PGAM5 and DRP1 significantly blocked the increase of PTEN-induced putative protein kinase 1 (PINK1) and Parkin expression in the mitochondrial fraction of CCCP-treated cells. Interestingly, CCCP did not alter PINK1/Parkin expression in the mitochondrial fraction of OPA1 knockdown cells. Inhibiting mitophagy by PGAM5 knockdown accelerated CCCP-induced apoptosis. CCCP treatment also results in PINK1 stabilization on the mitochondrial membrane, which subsequently increases Parkin recruitment from the cytosol to abnormal mitochondria. In addition, we found that CCCP increased the level of mitochondrial LC3II, indicating that Parkin recruitment of PINK1 is a result of mitophagy. We propose that activation of PGAM5 is associated with DRP1 recruitment and PINK1 stabilization, which contribute to the modulation of mitophagy in CCCP-treated cells with mitochondrial dysfunction. In conclusion, we demonstrated that PGAM5 regulates PINK1-Parkin-mediated mitophagy, which can exert a neuroprotective effect against CCCP-induced apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical and molecular survey in 124 Chinese patients with Leigh or Leigh-like syndrome.
Zhang, Y; Yang, Y L; Sun, F; Cai, X; Qian, N; Yuan, Y; Wang, Z X; Qi, Y; Xiao, J X; Wang, X Y; Zhang, Y H; Jiang, Y W; Qin, J; Wu, X R
2007-04-01
Leigh syndrome is the most common mitochondrial disorder in children characterized by necrotic lesions in the central nervous system. Both mitochondrial DNA (mtDNA) and nuclear DNA defects in the mitochondrial respiratory chain can lead to this disease. To characterize the clinical and genetic traits of Leigh or Leigh-like syndrome patients in China, 124 unrelated cases were collected between 1992 and 2005. Seventy-seven cases (62.1%) met the typical criteria of Leigh syndrome, including symmetrical bilateral abnormal signals in the basal ganglia, thalamus and brain stem, etc. Other cases (37.9%) belonged to Leigh-like syndrome with atypical clinical or radiological manifestations. Late-onset patients accounted for 20.2%, which is more than previously reported. Movement disorder was the most common symptoms in our patients. Thirty-two patients (25.8%) were confirmed to carry mutant genes. Among them, six cases (4.8%) have been demonstrated to have point mutations in mitochondrial DNA. Two separate patients were detected to have mutations on A8344G and A3243G. The T8993G point mutation was identified in one patient and T8993C in one other patient. SURF1 mutations associated with cytochrome-c oxidase deficiency were identified in 25 patients (20.2%). Four unreported variations have been identified in SURF1 gene from three patients. G604C was found in 22 patients. Only one patient had C214T mutation in the pyruvate dehydrogenase E1alpha subunit gene. In the remaining 92 patients (74.2%), a specific molecular dysfunction or underlying metabolic abnormality could not be identified.
Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul
2010-01-01
OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Palacín, Manuel; Mingrone, Geltrude
2010-01-01
Muscle mitochondrial metabolism is regulated by a number of factors, many of which are responsible for the transcription of nuclear genes encoding mitochondrial proteins such as PPARdelta, PGC-1alpha or PGC-1beta. Recent evidence indicates that proteins participating in mitochondrial dynamics also regulate mitochondrial metabolism. Thus, in cultured cells the mitochondrial fusion protein mitofusin 2 (Mfn2) stimulates respiration, substrate oxidation and the expression of subunits involved in respiratory complexes. Mitochondrial dysfunction has been reported in skeletal muscle of type 2 diabetic patients. Reduced mitochondrial mass and defective activity has been proposed to explain this dysfunction. Alterations in mitochondrial metabolism may be crucial to account for some of the pathophysiological traits that characterize type 2 diabetes. Skeletal muscle of type 2 diabetic patients shows reduced expression of PGC-1alpha, PGC-1beta, and Mfn2. In addition, a differential response to bilio-pancreatic diversion-induced weight loss in non-diabetic and type 2 diabetic patients has been reported. While non-diabetic morbidly obese subjects showed an increased expression of genes encoding Mfn2, PGC-1alpha, PGC-1beta, PPARdelta or SIRT1 in response to bariatric surgery-induced weight loss, no effect was detected in type 2 diabetic patients. These observations suggest the existence of a heritable component responsible for the abnormal control of the expression of genes encoding for modulators of mitochondrial biogenesis/metabolism, and which may participate in the development of the disease. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Jia; Xue, Jin; Ruan, Jingsong; Zhao, Juan; Tang, Beisha; Duan, Ranhui
2017-12-01
Mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70-interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase-dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild-type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.-Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. © FASEB.
Cackovic, Juliana; Gutierrez-Luke, Susana; Call, Gerald B; Juba, Amber; O'Brien, Stephanie; Jun, Charles H; Buhlman, Lori M
2018-01-01
Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park ( Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.
Chen, Ying; Huang, Liyong; Zhang, Huiyong; Diao, Xiling; Zhao, Shuyang; Zhou, Wenke
2017-01-01
Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca 2+ concentration ([Ca 2+ ] i ) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca 2+ concentration ([Ca 2+ ] m ) overload via mitochondrial Ca 2+ uniporter (MCU). The attenuated [Ca 2+ ] i and [Ca 2+ ] m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.
Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine.
Cox, Rachel; Platt, Julia; Chen, Li Chieh; Tang, Sha; Wong, Lee-Jun; Enns, Gregory M
2012-03-01
Leigh syndrome is a severe neurodegenerative disease with heterogeneous genetic etiology. We report a novel m.4296G>A variant in the mitochondrial tRNA isoleucine gene in a child with Leigh syndrome, mitochondrial proliferation, lactic acidosis, and abnormal respiratory chain enzymology. The variant is present at >75% heteroplasmy in blood and cultured fibroblasts from the proband, <5% in asymptomatic maternal relatives, and is absent in 3000 controls. It is located in the highly conserved anticodon region of tRNA(Ile) where three other pathogenic changes have been described. We conclude that there is strong evidence to classify m.4296G>A as a pathogenic mutation causing Leigh syndrome. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Mitochondrial dynamics and the cell cycle
USDA-ARS?s Scientific Manuscript database
Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...
Mitochondrial dysfunction in autism.
Giulivi, Cecilia; Zhang, Yi-Fan; Omanska-Klusek, Alicja; Ross-Inta, Catherine; Wong, Sarah; Hertz-Picciotto, Irva; Tassone, Flora; Pessah, Isaac N
2010-12-01
Impaired mitochondrial function may influence processes highly dependent on energy, such as neurodevelopment, and contribute to autism. No studies have evaluated mitochondrial dysfunction and mitochondrial DNA (mtDNA) abnormalities in a well-defined population of children with autism. To evaluate mitochondrial defects in children with autism. Observational study using data collected from patients aged 2 to 5 years who were a subset of children participating in the Childhood Autism Risk From Genes and Environment study in California, which is a population-based, case-control investigation with confirmed autism cases and age-matched, genetically unrelated, typically developing controls, that was launched in 2003 and is still ongoing. Mitochondrial dysfunction and mtDNA abnormalities were evaluated in lymphocytes from 10 children with autism and 10 controls. Oxidative phosphorylation capacity, mtDNA copy number and deletions, mitochondrial rate of hydrogen peroxide production, and plasma lactate and pyruvate. The reduced nicotinamide adenine dinucleotide (NADH) oxidase activity (normalized to citrate synthase activity) in lymphocytic mitochondria from children with autism was significantly lower compared with controls (mean, 4.4 [95% confidence interval {CI}, 2.8-6.0] vs 12 [95% CI, 8-16], respectively; P = .001). The majority of children with autism (6 of 10) had complex I activity below control range values. Higher plasma pyruvate levels were found in children with autism compared with controls (0.23 mM [95% CI, 0.15-0.31 mM] vs 0.08 mM [95% CI, 0.04-0.12 mM], respectively; P = .02). Eight of 10 cases had higher pyruvate levels but only 2 cases had higher lactate levels compared with controls. These results were consistent with the lower pyruvate dehydrogenase activity observed in children with autism compared with controls (1.0 [95% CI, 0.6-1.4] nmol × [min × mg protein](-1) vs 2.3 [95% CI, 1.7-2.9] nmol × [min × mg protein](-1), respectively; P = .01). Children with autism had higher mitochondrial rates of hydrogen peroxide production compared with controls (0.34 [95% CI, 0.26-0.42] nmol × [min × mg of protein](-1) vs 0.16 [95% CI, 0.12-0.20] nmol × [min × mg protein](-1) by complex III; P = .02). Mitochondrial DNA overreplication was found in 5 cases (mean ratio of mtDNA to nuclear DNA: 239 [95% CI, 217-239] vs 179 [95% CI, 165-193] in controls; P = 10(-4)). Deletions at the segment of cytochrome b were observed in 2 cases (ratio of cytochrome b to ND1: 0.80 [95% CI, 0.68-0.92] vs 0.99 [95% CI, 0.93-1.05] for controls; P = .01). In this exploratory study, children with autism were more likely to have mitochondrial dysfunction, mtDNA overreplication, and mtDNA deletions than typically developing children.
Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T
2018-01-05
Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.
Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I.
Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Mühlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P S; Hoffmann, Georg F; Garbade, Sven F; Kölker, Stefan
2009-07-01
In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as asymptomatic newborns by newborn screening. Most previous studies have focused on the onset and mechanism of striatal injury, whereas little is known about neuroradiological abnormalities in pre-symptomatically diagnosed patients and about dynamic changes of extrastriatal abnormalities. Thus, the major aim of the present retrospective study was to improve our understanding of striatal and extrastriatal abnormalities in affected individuals including those diagnosed by newborn screening. To this end, we systematically analysed magnetic resonance imagings (MRIs) in 38 patients with glutaric aciduria type I diagnosed before or after the manifestation of neurological symptoms. To identify brain regions that are susceptible to cerebral injury during acute encephalopathic crises, we compared the frequency of magnetic resonance abnormalities in patients with and without such crises. Major specific changes after encephalopathic crises were found in the putamen (P < 0.001), nucleus caudatus (P < 0.001), globus pallidus (P = 0.012) and ventricles (P = 0.001). Analysis of empirical cumulative distribution frequencies, however, demonstrated that isolated pallidal abnormalities did not significantly differ over time in both groups (P = 0.544) suggesting that isolated pallidal abnormalities are not induced by acute crises--in contrast to striatal abnormalities. The manifestation of motor disability was associated with signal abnormalities in putamen, caudate, pallidum and ventricles. In addition, we found a large number of extrastriatal abnormalities in patients with and without preceding encephalophatic crises. These abnormalities include widening of anterior temporal and sylvian CSF spaces, pseudocysts, signal changes of substantia nigra, nucleus dentatus, thalamus, tractus tegmentalis centralis and supratentorial white matter as well as signs of delayed maturation (myelination and gyral pattern). In contrast to the striatum, extrastriatal abnormalities were variable and could regress or even normalize with time. This includes widening of sylvian fissures, delayed maturation, pallidal signal changes and pseudocysts. Based on these results, we hypothesize that neuroradiological abnormalities and neurological symptoms in glutaric aciduria type I can be explained by overlaying episodes of cerebral alterations including maturational delay of the brain in utero, acute striatal injury during a vulnerable period in infancy and chronic progressive changes that may continue lifelong. This may have widespread consequences for the pathophysiological understanding of this disease, long-term outcomes and therapeutic considerations.
Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation.
Sue, C M; Mitchell, P; Crimmins, D S; Moshegov, C; Byrne, E; Morris, J G
1997-10-01
Fourteen patients from four unrelated families were studied to determine the prevalence of retinal pigmentary abnormalities associated with the MELAS A to G 3243 point mutation. Neurologic and ophthalmic examinations, retinal photography, pattern shift visual evoked potentials, and electroretinography were performed in all patients. Eight of the 14 patients had retinal pigmentary abnormalities characterized by symmetric areas of depigmentation involving predominantly the posterior pole and midperipheral retina. None of the patients had optic atrophy and only one patient with pigmentary retinal abnormalities had impaired visual acuity. None of the diabetic subjects (n = 6) had signs of diabetic retinopathy. Fluorescein angiography demonstrated mottled hyper- and hypofluorescent areas indicating multiple window defects in the retinal pigmentary epithelium. Visual evoked potentials showed delayed P100 responses in four of the eight patients with retinal pigmentary abnormalities. We conclude that there is a high prevalence of retinal pigmentary abnormalities in patients with MELAS A to G 3243 point mutation. These abnormalities are usually asymptomatic and best detected by retinal photography.
Utility of genetic testing for the detection of late-onset hearing loss in neonates.
Lim, B Gail; Clark, Reese H; Kelleher, Amy S; Lin, Zhili; Spitzer, Alan R
2013-12-01
The purpose of this study was to demonstrate the utility of molecular testing in the detection of potentially important causes of delayed hearing loss missed by current audiometric screening at birth. We enrolled infants who had received a newborn audiometric hearing screen and a filter paper blood collection for state newborn screening. A central laboratory ran the SoundGene® panel. Of 3,681 infants studied, 35 (0.95%) had a positive SoundGene panel, 16 had mitochondrial mutations, 9 had Pendred mutations, 5 were cytomegalovirus (CMV) DNA positive, 2 had connexin mutations, and 3 had a combination of different mutations. Infants with an abnormal SoundGene panel were at increased risk for hearing loss compared to neonates without mutations. Three (8.6%) of the 35 subjects had persistent hearing loss compared to 5 (0.21%) of 2,398 subjects with no report of mutation (p < .01). Of 3,681 infants studied, 8 (0.22%) had persistent hearing loss: 5 (62.5%) had abnormal newborn audiometric screens, 2 (25%) had an abnormal SoundGene panel (1 was CMV positive, 1 had a mitochondrial mutation), and 1 (12.5%) had no identifiable risk factors. A positive SoundGene panel identifies infants who are not identified by audiometric testing and may be at risk for hearing loss.
Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.
Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam
2017-04-09
BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.
Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry
Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.
2014-01-01
Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca2+ modifies the depletion and refilling mechanism of ER Ca2+ stores. PMID:24748364
Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.
2011-01-01
Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. PMID:22110631
Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.
Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S
2016-02-01
Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.
Yui, Kunio; Sato, Atsushi; Imataka, George
2015-01-01
Mitochondria are organelles that play a central role in processes related to cellular viability, such as energy production, cell growth, cell death via apoptosis, and metabolism of reactive oxygen species (ROS). We can observe behavioral abnormalities relevant to autism spectrum disorders (ASDs) and their recovery mediated by the mTOR inhibitor rapamycin in mouse models. In Tsc2(+/-) mice, the transcription of multiple genes involved in mTOR signaling is enhanced, suggesting a crucial role of dysregulated mTOR signaling in the ASD model. This review proposes that the mTOR inhibitor may be useful for the pharmacological treatment of ASD. This review offers novel insights into mitochondrial dysfunction and the related impaired glutathione synthesis and lower detoxification capacity. Firstly, children with ASD and concomitant mitochondrial dysfunction have been reported to manifest clinical symptoms similar to those of mitochondrial disorders, and it therefore shows that the clinical manifestations of ASD with a concomitant diagnosis of mitochondrial dysfunction are likely due to these mitochondrial disorders. Secondly, the adenosine triphosphate (ATP) production/oxygen consumption pathway may be a potential candidate for preventing mitochondrial dysfunction due to oxidative stress, and disruption of ATP synthesis alone may be related to impaired glutathione synthesis. Finally, a decrease in total antioxidant capacity may account for ASD children who show core social and behavioral impairments without neurological and somatic symptoms.
Bociąga-Jasik, Monika; Góralska, Joanna; Polus, Anna; Śliwa, Agnieszka; Gruca, Anna; Raźny, Urszula; Zdzienicka, Anna; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona
2013-06-01
HIV infection results in the development of immunodeficiency mainly due to the apoptosis of infected and by stander CD4 cells. The aim of the study was to follow the mitochondrial dependent pathway of apoptosis, one of the suggested mechanisms of above process. The inner mitochondrial membrane potential (MMP), Adenosine-5'-triphosphate (ATP) generation, apoptosis and necrosis markers of peripheral mononuclear cells (PBMCs) were compared in HIV infected patients and HIV negative control group. The correlation of blood viral load, TNFα concentration, CD4 cells count and duration of ARV therapy was considered. Additionally, group of HIV infected ARV-naive patients was involved for the follow-up study and the effects of one year of ARV therapy on measured parameters were studied. PBMCs of HIV infected individuals (especially without ARV therapy) demonstrated lower MMP and ATP generation and higher percentage of apoptotic/necrotic PBMCs. Correlation between blood TNFα level and mitochondrial dysfunction was observed. The first months of ARV therapy resulted in most significant restoration of mitochondrial function and living PBMCs count. HIV infection and ARV therapy have significant impact on mitochondrial function and apoptosis of PBMCs. They are driven by abnormal mitochondrial function apoptosis of immune cells which seems to be the key element leading to immunosuppression, thus an early intervention in this process by therapy can be beneficial for symptomatology of HIV infected patients.
Feng, Min; Wang, Lirui; Chang, Siyuan; Yuan, Pu
2018-05-31
The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia-reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P < 0.05). Additionally, p38MAPK and JNK blockers (SB239063 and SP600125, respectively) had an effect on rats same as that of PHC. Although Drp1 blocker (Mdivi-1) showed a similar cardioprotective effect (P < 0.05), it did not affect the expression of MAPKs and apoptosis-related proteins (P > 0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P < 0.05). PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury. Copyright © 2018 Elsevier B.V. All rights reserved.
G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization
Papkovskaia, Tatiana D.; Chau, Kai-Yin; Inesta-Vaquera, Francisco; Papkovsky, Dmitri B.; Healy, Daniel G.; Nishio, Koji; Staddon, James; Duchen, Michael R.; Hardy, John; Schapira, Anthony H.V.; Cooper, J. Mark
2012-01-01
The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD. PMID:22736029
Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M
2010-05-13
Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.
ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila
Liao, Pin-Chao; Tandarich, Lauren C.
2017-01-01
Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS. PMID:28542430
Peroxisomes are oxidative organelles.
Antonenkov, Vasily D; Grunau, Silke; Ohlmeier, Steffen; Hiltunen, J Kalervo
2010-08-15
Peroxisomes are multifunctional organelles with an important role in the generation and decomposition of reactive oxygen species (ROS). In this review, the ROS-producing enzymes, as well as the antioxidative defense system in mammalian peroxisomes, are described. In addition, various conditions leading to disturbances in peroxisomal ROS metabolism, such as abnormal peroxisomal biogenesis, hypocatalasemia, and proliferation of peroxisomes are discussed. We also review the role of mammalian peroxisomes in some physiological and pathological processes involving ROS that lead to mitochondrial abnormalities, defects in cell proliferation, and alterations in the central nervous system, alcoholic cardiomyopathy, and aging. Antioxid.
USDA-ARS?s Scientific Manuscript database
Maruca vitrata Fabricius is a pantropical lepidopteran pest of legumes. Phylogenetic analysis of a mitochondrial cytochrome c oxidase-I gene (coxI) fragment indicates that three Maruca sp. mitochondrial lineages have unique geographic distributions [lineages 1 and 2: Australia, Taiwan, and West Afr...
Vaiman, Anne; Beauvallet, Christian; Floriot, Sandrine; Rodriguez, Sabrina; Vilotte, Marthe; Boulanger, Laurent; Albaric, Olivier; Guillaume, François; Boukadiri, Abdelhak; Richard, Laurence; Bertaud, Maud; Timsit, Edouard; Guatteo, Raphaël; Jaffrézic, Florence; Calvel, Pierre; Helary, Louise; Mahla, Rachid; Esquerré, Diane; Péchoux, Christine; Liuu, Sophie; Boichard, Didier; Slama, Abdelhamid; Vilotte, Jean-Luc
2017-01-01
Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the “Turning calves syndrome”, a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics. PMID:28376083
Monpays, Cécile; Deslauriers, Jessica; Sarret, Philippe; Grignon, Sylvain
2016-08-01
Schizophrenia is a chronic mental illness in which mitochondrial dysfunction has been suggested. Our laboratory recently developed a juvenile murine two-hit model (THM) of schizophrenia based on the combination of gestational inflammation, followed by juvenile restraint stress. We previously reported that relevant behaviors and neurochemical disturbances, including oxidative stress, were reversed by the antioxidant lipoic acid (LA), thereby pointing to the central role played by oxidative abnormalities and prompting us to investigate mitochondrial function. Mitochondrial activity was determined with the MitoXpress® commercial kit in two schizophrenia-relevant regions (prefrontal cortex (PFC) and striatum). Measurements were performed in state 3, with substrates for complex I- and complex II-induced respiratory activity (IRA). We observed an increase in complex I IRA in the PFC and striatum in both sexes but an increase in complex II activity only in males. LA treatment prevented this increase only in complex II IRA in males. Expression levels of the different respiratory chain complexes, as well as fission/fusion proteins and protein carbonylation, were unchanged. In conclusion, our juvenile schizophrenia THM shows an increase in mitochondrial activity reversed by LA, specifically in complex II IRA in males. Further investigations are required to determine the mechanisms of these modifications.
Evaluating mitochondrial DNA variation in autism spectrum disorders
HADJIXENOFONTOS, ATHENA; SCHMIDT, MICHAEL A.; WHITEHEAD, PATRICE L.; KONIDARI, IOANNA; HEDGES, DALE J.; WRIGHT, HARRY H.; ABRAMSON, RUTH K.; MENON, RAMKUMAR; WILLIAMS, SCOTT M.; CUCCARO, MICHAEL L.; HAINES, JONATHAN L.; GILBERT, JOHN R.; PERICAK-VANCE, MARGARET A.; MARTIN, EDEN R.; MCCAULEY, JACOB L.
2012-01-01
SUMMARY Despite the increasing speculation that oxidative stress and abnormal energy metabolism may play a role in Autism Spectrum Disorders (ASD), and the observation that patients with mitochondrial defects have symptoms consistent with ASD, there are no comprehensive published studies examining the role of mitochondrial variation in autism. Therefore, we have sought to comprehensively examine the role of mitochondrial DNA (mtDNA) variation with regard to ASD risk, employing a multi-phase approach. In phase 1 of our experiment, we examined 132 mtDNA single-nucleotide polymorphisms (SNPs) genotyped as part of our genome-wide association studies of ASD. In phase 2 we genotyped the major European mitochondrial haplogroup-defining variants within an expanded set of autism probands and controls. Finally in phase 3, we resequenced the entire mtDNA in a subset of our Caucasian samples (~400 proband-father pairs). In each phase we tested whether mitochondrial variation showed evidence of association to ASD. Despite a thorough interrogation of mtDNA variation, we found no evidence to suggest a major role for mtDNA variation in ASD susceptibility. Accordingly, while there may be attractive biological hints suggesting the role of mitochondria in ASD our data indicate that mtDNA variation is not a major contributing factor to the development of ASD. PMID:23130936
Mitochondrial enteropathy: the primary pathology may not be within the gastrointestinal tract
Chinnery, P; Jones, S; Sviland, L; Andrews, R; Parsons, T; Turnbull, D; Bindoff, L
2001-01-01
BACKGROUND—Mitochondrial DNA (mtDNA) defects are an important cause of disease. Although gastrointestinal symptoms are common in these patients, their pathogenesis remains uncertain. AIM—To investigate the role of the mtDNA defect in the production of gastrointestinal dysfunction. PATIENT—A 20 year old woman who presented at 15 years of age with recurrent vomiting and pseudo-obstruction, who did not respond to conservative management and ultimately had subtotal gastrectomy and Roux-en-y reconstruction. She subsequently presented with status epilepticus and was found to have a mitochondrial respiratory chain disorder due to a pathogenic mtDNA point mutation (A3243G). METHODS—Resected bowel was studied using light and electron microscopy and mtDNA analysed from both mucosal and muscular layers using polymerase chain reaction generated RFLP analysis. RESULTS— Histological and electron microscopic studies revealed no morphological abnormalities in the resected stomach, and molecular genetic analysis failed to identify the genetic defect in either the mucosal or muscle layers. CONCLUSION—This study suggests that in some individuals with gastrointestinal symptoms associated with established mitochondrial DNA disease, the primary pathology of the mitochondrial enteropathy lies outside the gastrointestinal tract. Keywords: mitochondrial encephalomyopathy; cyclical vomiting; pseudo-obstruction PMID:11115833
Odahara, Masaki; Masuda, Yuichi; Sato, Mayuko; Wakazaki, Mayumi; Harada, Chizuru; Toyooka, Kiminori; Sekine, Yasuhiko
2015-01-01
Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO) mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8–79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA) instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12–63 bp) in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions. PMID:25769081
Loewen, Carin A; Ganetzky, Barry
2018-04-01
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila
2010-04-15
Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongatedmore » mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.« less
TSPO Expression and Brain Structure in the Psychosis Spectrum.
Hafizi, Sina; Guma, Elisa; Koppel, Alex; Da Silva, Tania; Kiang, Michael; Houle, Sylvain; Wilson, Alan A; Rusjan, Pablo M; Chakravarty, M Mallar; Mizrahi, Romina
2018-06-12
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [ 18 F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [ 18 F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [ 18 F]FEPPA V T (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [ 18 F]FEPPA V T and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis. Copyright © 2018. Published by Elsevier Inc.
Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty
2012-01-01
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224
[Review of the recent literature on hereditary neuropathies].
Birouk, N
2014-12-01
The recent literature included interesting reports on the pathogenic mechanisms of hereditary neuropathies. The axonal traffic and its abnormalities in some forms of Charcot-Marie-Tooth (CMT) disease were particularly reviewed by Bucci et al. Many genes related to CMT disease code for proteins that are involved directly or not in intracellular traffic. KIF1B controls vesicle motility on microtubules. MTMR2, MTMR13 and FIG4 regulate the metabolism of phosphoinositide at the level of endosomes. The HSPs are involved in the proteasomal degradation. GDAP1 and MFN2 regulate the mitochondrial fission and fusion respectively and the mitochondial transport within the axon. Pareyson et al. reported a review on peripheral neuropathies in mitochondrial disorders. They used the term of "mitochondrial CMT" for the forms of CMT with abnormal mitochondrial dynamic or structure. Among the new entities, we can draw the attention to a proximal form of hereditary motor and sensory neuropathy with autosomal dominant inheritance, which is characterized by motor deficit with cramps and fasciculations predominating in proximal muscles. Distal sensory deficit can be present. The gene TFG on chromosome 3 has been recently identified to be responsible for this form. Another rare form of axonal autosomal recessive neuropathy due to HNT1 gene mutation is characterized by the presence of hands myotonia that appears later than neuropathy but constitute an interesting clinical hallmark to orientate the diagnosis of this form. In terms of differential diagnosis, CMT4J due to FIG4 mutation can present with a rapidly progressive and asymmetric weakness that resembles CIDP. Bouhy et al. made an interesting review on the therapeutic trials, animal models and the future therapeutic strategies to be developed in CMT disease. Copyright © 2014. Published by Elsevier Masson SAS.
The Role of Nogo and the Mitochondria–Endoplasmic Reticulum Unit in Pulmonary Hypertension
Sutendra, Gopinath; Dromparis, Peter; Wright, Paulette; Bonnet, Sébastien; Haromy, Alois; Hao, Zhengrong; McMurtry, M. Sean; Michalak, Marek; Vance, Jean E.; Sessa, William C.; Michelakis, Evangelos D.
2013-01-01
Pulmonary arterial hypertension (PAH) is caused by excessive proliferation of vascular cells, which occlude the lumen of pulmonary arteries (PAs) and lead to right ventricular failure. The cause of the vascular remodeling in PAH remains unknown, and the prognosis of PAH remains poor. Abnormal mitochondria in PAH PA smooth muscle cells (SMCs) suppress mitochondria-dependent apoptosis and contribute to the vascular remodeling. We hypothesized that early endoplasmic reticulum (ER) stress, which is associated with clinical triggers of PAH including hypoxia, bone morphogenetic protein receptor II mutations, and HIV/herpes simplex virus infections, explains the mitochondrial abnormalities and has a causal role in PAH. We showed in SMCs from mice that Nogo-B, a regulator of ER structure, was induced by hypoxia in SMCs of the PAs but not the systemic vasculature through activation of the ER stress–sensitive transcription factor ATF6. Nogo-B induction increased the distance between the ER and mitochondria and decreased ER-to-mitochondria phospholipid transfer and intramitochondrial calcium. In addition, we noted inhibition of calcium-sensitive mitochondrial enzymes, increased mitochondrial membrane potential, decreased mitochondrial reactive oxygen species, and decreased mitochondria-dependent apoptosis. Lack of Nogo-B in PASMCs from Nogo-A/B−/− mice prevented these hypoxia-induced changes in vitro and in vivo, resulting in complete resistance to PAH. Nogo-B in the serum and PAs of PAH patients was also increased. Therefore, triggers of PAH may induce Nogo-B, which disrupts the ER-mitochondria unit and suppresses apoptosis. This could rescue PASMCs from death during ER stress but enable the development of PAH through overproliferation. The disruption of the ER-mitochondria unit may be relevant to other diseases in which Nogo is implicated, such as cancer and neurodegeneration. PMID:21697531
Dalakas, M C; Semino-Mora, C; Leon-Monzon, M
2001-11-01
The 2'3'-dideoxycytidine (ddC), a nonazylated dideoxynucleoside analog used for the treatment of AIDS, causes a dose-dependent, painful, sensorimotor axonal peripheral neuropathy in up to 30% of the patients. To investigate the cause of the neuropathy, we performed morphological and molecular studies on nerve biopsy specimens from well-selected patients with ddC-neuropathy and from control subjects with disease, including patients with AIDS-related neuropathy never treated with ddC. Because ddC, in vitro, inhibits the replication of mitochondrial DNA (mtDNA), we counted the number of normal and abnormal mitochondria in a 0.04 mm(2) cross-sectional area of the nerves and quantified the copy numbers of mtDNA by competitive PCR in all specimens. A varying degree of axonal degeneration was present in all nerves. Abnormal mitochondria with enlarged size, excessive vacuolization, electron-dense concentric inclusions and degenerative myelin structures were prominent in the ddC-neuropathy and accounted for 55% +/- 2.5% of all counted mitochondria in the axon and Schwann cells, compared with 9% +/- 0.7% of the controls (p < 0.001). Significantly (p < 0.005) reduced copy numbers, with as high as 80% depletion, of the mtDNA was demonstrated in the nerves of the ddC-treated patients compared with the controls. We conclude that ddC induces a mitochondrial neuropathy with depletion of the nerve's mtDNA. The findings are consistent with the ability of ddC to selectively inhibit the gamma-DNA polymerase in neuronal cell lines. Toxicity to mitochondria of the peripheral nerve is a new cause of acquired neuropathy induced by exogenous toxins and may be the cause of neuropathy associated with the other neurotoxic antiretroviral drugs or toxic-metabolic conditions.
Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S
2009-01-01
Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.
de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.
2015-01-01
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184
Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice.
Xu, Zhiqiang; Guo, Xiaobo; Yang, Yong; Tucker, Donovan; Lu, Yujiao; Xin, Ning; Zhang, Gaocai; Yang, Lingli; Li, Jizhen; Du, Xiangdong; Zhang, Quanguang; Xu, Xingshun
2017-08-01
Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT. Depression models in space restriction mice and Abelson helper integration site-1 (Ahi1) knockout (KO) mice were employed in this work. Our results revealed that LLLT effectively improved depression-like behaviors, in the two depression mice models, by decreasing immobility duration in behavioral despair tests. In addition, ATP biosynthesis and the level of mitochondrial complex IV expression and activity were significantly elevated in prefrontal cortex (PFC) following LLLT. Intriguingly, LLLT has no effects on ATP content and mitochondrial complex I-IV levels in other tested brain regions, hippocampus and hypothalamus. As a whole, these findings shed light on a novel strategy of transcranial LLLT on depression improvement by ameliorating neurotransmitter abnormalities and promoting mitochondrial function in PFC. The present work provides concrete groundwork for further investigation of LLLT for depression treatment.
Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G.
Majamaa-Voltti, Kirsi; Peuhkurinen, Keijo; Kortelainen, Marja-Leena; Hassinen, Ilmo E; Majamaa, Kari
2002-08-01
Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown. Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5-4 kHz) was used as a measure of the clinical severity of disease. Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74-67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5-4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable. Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities.
Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han
2016-05-01
Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Lidocaine (0.005%-0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50-800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway.
Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han
2016-01-01
Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463
Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P; Garduno-Garcia, Jose de Jesus; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas
2011-08-01
Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.
Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao
2015-11-01
Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam
2006-10-27
Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.
Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P
2014-02-14
Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1β, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood. Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.
Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio
2008-01-15
In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.
3-methylglutaconic aciduria type 4 manifesting as Leigh syndrome in 2 siblings.
Jareño, Nuria Muñoz; Fernández-Mayoralas, Daniel Martín; Silvestre, Celia Pérez-Cerdá; Cortés, Begoña Merinero; Pérez, Magdalena Ugarte; Campos-Castelló, Jaime
2007-02-01
The authors report the case of a pair of siblings with 3-methylglutaconic aciduria type 4 manifesting as Leigh syndrome. Disease progression was monitored from birth until the present. Both patients fulfilled the diagnostic criteria for Leigh syndrome along with increased urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid (biochemical markers of methylglutaric acid) in several determinations. No mitochondrial respiratory chain defects in muscle biopsy were detected. Although mitochondrial abnormalities are the most common known cause of Leigh syndrome, there have been several reports of links with nonmitochondrial metabolic disorders. Descriptions of 3-methylglutaric acid type 4 associated with Leigh syndrome are rare.
Nataraj, Jagatheesan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin; Essa, Musthafa Mohammed
2016-07-01
Mitochondrial dysfunction and oxidative stress-mediated apoptosis plays an important role in various neurodegenerative diseases including Huntington's disease, Parkinson's disease (PD) and Alzheimer's disease (AD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the most widely used neurotoxin mimics the symptoms of PD by inhibiting mitochondrial complex I that stimulates excessive intracellular reactive oxygen species (ROS) and finally leads to mitochondrial-dependent apoptosis. Lutein, a carotenoid of xanthophyll family, is found abundantly in leafy green vegetables such as spinach, kale and in egg yolk, animal fat and human eye retinal macula. Increasing evidence indicates that lutein has offers benefits against neuronal damages during diabetic retinopathy, ischemia and AD by virtue of its mitochondrial protective, antioxidant and anti-apoptotic properties. Male C57BL/6 mice (23-26 g) were randomized and grouped in to Control, MPTP, and Lutein treated groups. Lutein significantly reversed the loss of nigral dopaminergic neurons by increasing the striatal dopamine level in mice. Moreover, lutein-ameliorated MPTP induced mitochondrial dysfunction, oxidative stress and motor abnormalities. In addition, lutein repressed the MPTP-induced neuronal damage/apoptosis by inhibiting the activation of pro-apoptotic markers (Bax, caspases-3, 8 and 9) and enhancing anti-apoptotic marker (Bcl-2) expressions. Our current results revealed that lutein possessed protection on dopaminergic neurons by enhancing antioxidant defense and diminishing mitochondrial dysfunction and apoptotic death, suggesting the potential benefits of lutein for PD treatment.
Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.
2010-01-01
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀ = ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725
The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions
Hallman, Troy M.; Peng, Min; Meade, Ray; Hancock, Wayne W.; Madaio, Michael P.; Gasser, David L.
2008-01-01
Interstitial nephritis occurs spontaneously in kd/kd mice, but the mechanisms leading to this disease have not been fully elucidated. The earliest manifestation of a phenotype is the appearance of ultrastructural defects in the mitochondria of mice as young as 42 days of age. To examine the influence of the environment on the phenotype, homozygous B6.kd/kd mice were transferred from specific pathogen-free (SPF) conditions to a germfree (GF) environment, and the development of the disease was observed. The GF state resulted in a highly significant reduction in the frequency of tubulointerstitial nephritis. In addition, GF conditions markedly reduced the appearance of the mitochondrial phenotype, with no sign of mitochondrial abnormalities in GF mice of up to 155 days of age. These results suggest that environmental factors are involved in the progression of all known manifestations of this disease phenotype. PMID:16337774
[MELAS syndrome as a differential diagnosis of ischemic stroke].
Finsterer, J
2009-01-01
Mitochondrial encephalomyopathy, lactacidosis and stroke-like episode (MELAS) syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder with a clinical onset between the first and third decade. The clinical hallmark is the stroke-like-episode, which mimicks ischemic stroke but is usually transient and non-disabling in nature. The morphological equivalent on MRI is a T2-hyperintensity, predominantly over the temporo-parieto-occipital region, not confined to a vascular territory, which is also hyperintense on diffusion weighted imaging and on apparent diffusion coefficient sequences (vasogenic edema, stroke-like lesion). Additional features include seizures, cognitive decline, psychosis, lactic acidosis, migraine, visual impairment, hearing loss, short stature, diabetes, or myopathy. Muscle biopsy typically shows ragged-red fibers, COX-negative fibers, SDH hyperreactivity, and abnormally shaped mitochondria with paracristalline inclusions. The diagnosis is confirmed by demonstration of a biochemical respiratory chain defect or one of the disease-causing mutations, of which 80 % affect the mitochondrial tRNALeu gene.
Qi, Xiao-Kun; Yao, Sheng; Wang, Hai-Yan; Piao, Yue-Shan; Lu, De-Hong; Yuan, Yun
2009-04-01
To investigate the pathological changes and pathogenesis of the MELAS syndrome (mitochondrial encephalopathy lactic acidosis stroke-like episodes) by using the method of immunohistochemical staining in the brain biopsy specimens with anti-mitochondrial antibody (AMA). We performed immunohistochemical staining in 3 confirmed MELAS patients' paraffin-imbued brain biopsy specimens. Small vessel proliferation and the uneven thickness of the wall were found in the 3 MELAS patients. A lot of brown deposits was shown in the wall of small vessels and also noted in neurons. The main pathological change in the MELAS brain biopsy immunohistochemical staining with AMA was the small vessel proliferation, indicating that abnormal mitochondria accumulated in the vascular smooth muscle, endothelial cell and neurons of the lesion sites. This finding was consistent with the electron microscopic discovery and valuable for the diagnosis of MELAS.
A novel NDUFS4 frameshift mutation causes Leigh disease in the Hutterite population.
Lamont, Ryan E; Beaulieu, Chandree L; Bernier, Francois P; Sparkes, Rebecca; Innes, A Micheil; Jackel-Cram, Candice; Ober, Carole; Parboosingh, Jillian S; Lemire, Edmond G
2017-03-01
Leigh disease is a progressive, infantile-onset, neurodegenerative disorder characterized by feeding difficulties, failure to thrive, hypotonia, seizures, and central respiratory compromise. Metabolic and neuroimaging investigations typically identify abnormalities consistent with a disorder of mitochondrial energy metabolism. Mutations in more than 35 genes affecting the mitochondrial respiratory chain encoded from both the nuclear and mitochondrial genomes have been associated with Leigh disease. The clinical presentations of five individuals of Hutterite descent with Leigh disease are described herein. An identity-by-descent mapping and candidate gene approach was used to identify a novel homozygous c.393dupA frameshift mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4) gene. The carrier frequency of this mutation was estimated in >1,300 Hutterite individuals to be 1 in 27. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Dynamic Changes of Striatal and Extrastriatal Abnormalities in Glutaric Aciduria Type I
ERIC Educational Resources Information Center
Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M.; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Muhlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P. S.; Hoffmann, Georg F.; Garbade, Sven F.; Kolker, Stefan
2009-01-01
In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as…
Dung, Vuu My; Suong, Dang Ngoc Anh; Okamaoto, Yuji; Hiramatsu, Yu; Thao, Dang Thi Phuong; Yoshida, Hideki; Takashima, Hiroshi; Yamaguchi, Masamitsu
2018-05-15
Pyruvate dehydrogenase complex deficiency (PDCD) is a common primary cause of defects in mitochondrial function and also can lead to peripheral neuropathy. Pyruvate dehydrogenase E1 component subunit beta (PDHB) is a subunit of pyruvate dehydrogenase E1, which is a well-known component of PDC. In Drosophila melanogaster, the CG11876 (dPDHB) gene is a homolog of human PDHB. In this study, we established a Drosophila model with neuron-specific knockdown of dPDHB to investigate its role in neuropathy pathogenesis. Knockdown of dPDHB in pan-neurons induced locomotor defects in both larval and adult stages, which were consistent with abnormal morphology of the motor neuron terminals at neuromuscular junctions and mitochondrial fragmentation in brains. Moreover, neuron-specific knockdown of dPDHB also shortened the lifespan of adult flies. In addition, flies with knockdown of dPDHB manifested a rough eye phenotype and aberrant photoreceptor axon targeting. These results with the Drosophila model suggest the involvement of PDHB in peripheral neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
Gastroesophageal Reflux in Neurologically Impaired Children: What Are the Risk Factors?
Kim, Seung; Koh, Hong; Lee, Joon Soo
2017-03-15
Neurologically impaired patients frequently suffer from gastrointestinal tract problems, such as gastroesophageal reflux disease (GERD). In this study, we aimed to define the risk factors for GERD in neurologically impaired children. From May 2006 to March 2014, 101 neurologically impaired children who received 24-hour esophageal pH monitoring at Severance Children's Hospital were enrolled in the study. The esophageal pH finding and the clinical characteristics of the patients were analyzed. The reflux index was higher in patients with abnormal electroencephalography (EEG) results than in those with normal EEG results (p=0.027). Mitochondrial disease was associated with a higher reflux index than were epileptic disorders or cerebral palsy (p=0.009). Patient gender, feeding method, scoliosis, tracheostomy, and baclofen use did not lead to statistical differences in reflux index. Age of onset of neurological impairment was inversely correlated with DeMeester score and reflux index. Age at the time of examination, the duration of the disease, and the number of antiepileptic drugs were not correlated with GER severity. Early-onset neurological impairment, abnormal EEG results, and mitochondrial disease are risk factors for severe GERD.
Mordekar, S R; Guthrie, P; Bonham, J R; Olpin, S E; Hargreaves, I; Baxter, P S
2006-03-01
Mitochondrial diseases are an important group of neurometabolic disorders in children with varied clinical presentations and diagnosis that can be difficult to confirm. To report the significance of reduced respiratory chain enzyme (RCE) activity in muscle biopsy samples from children. Retrospective odds ratio was used to compare clinical and biochemical features, DNA studies, neuroimaging, and muscle biopsies in 18 children with and 48 without reduced RCE activity. Children with reduced RCE activity were significantly more likely to have consanguineous parents, to present with acute encephalopathy and lactic acidaemia and/or within the first year of life; to have an axonal neuropathy, CSF lactate >4 mmol/l; and/or to have signal change in the basal ganglia. There were positive associations with a maternal family history of possible mitochondrial cytopathy; a presentation with failure to thrive and lactic acidaemia, ragged red fibres, reduced fibroblast fatty acid oxidation and with an abnormal allopurinol loading test. There was no association with ophthalmic abnormalities, deafness, epilepsy or myopathy. The association of these clinical, biochemical and radiological features with reduced RCE activity suggests a possible causative link.
Ben-Shachar, Dorit
2017-09-01
Mitochondria are key players in various essential cellular processes beyond being the main energy supplier of the cell. Accordingly, they are involved in neuronal synaptic transmission, neuronal growth and sprouting and consequently neuronal plasticity and connectivity. In addition, mitochondria participate in the modulation of gene transcription and inflammation as well in physiological responses in health and disease. Schizophrenia is currently regarded as a neurodevelopmental disorder associated with impaired immune system, aberrant neuronal differentiation and abnormalities in various neurotransmitter systems mainly the dopaminergic, glutaminergic and GABAergic. Ample evidence has been accumulated over the last decade indicating a multifaceted dysfunction of mitochondria in schizophrenia. Indeed, mitochondrial deficit can be of relevance for the majority of the pathologies observed in this disease. In the present article, we overview specific deficits of the mitochondria in schizophrenia, with a focus on the first complex (complex I) of the mitochondrial electron transport chain (ETC). We argue that complex I, being a major factor in the regulation of mitochondrial ETC, is a possible key modulator of various functions of the mitochondria. We review biochemical, molecular, cellular and functional evidence for mitochondrial impairments and their possible convergence to impact in-vitro neuronal differentiation efficiency in schizophrenia. Mitochondrial function in schizophrenia may advance our knowledge of the disease pathophysiology and open the road for new treatment targets for the benefit of the patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis
Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I
2016-01-01
Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498
Ma, Sai; Feng, Jing; Zhang, Ran; Chen, Jiangwei; Han, Dong; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong; Wang, Yabin; Cao, Feng
2017-01-01
Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Cardiac-specific SIRT1 knockout (SIRT1 KO ) mice were generated using Cre-loxP system. SIRT1 KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1 KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1 KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.
Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division
Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong
2017-01-01
Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422
The Impact of Reproductive Technologies on Stallion Mitochondrial Function.
Peña, F J; Plaza Davila, M; Ball, B A; Squires, E L; Martin Muñoz, P; Ortega Ferrusola, C; Balao da Silva, C
2015-08-01
The traditional assessment of stallion sperm comprises evaluation of sperm motility and membrane integrity and identification of abnormal morphology of the spermatozoa. More recently, the progressive introduction of flow cytometry is increasing the number of tests available. However, compared with other sperm structures and functions, the evaluation of mitochondria has received less attention in stallion andrology. Recent research indicates that sperm mitochondria are key structures in sperm function suffering major changes during biotechnological procedures such as cryopreservation. In this paper, mitochondrial structure and function will be reviewed in the stallion, when possible specific stallion studies will be discussed, and general findings on mammalian mitochondrial function will be argued when relevant. Especial emphasis will be put on their role as source of reactive oxygen species and in their role regulating sperm lifespan, a possible target to investigate with the aim to improve the quality of frozen-thawed stallion sperm. Later on, the impact of current sperm technologies, principally cryopreservation, on mitochondrial function will be discussed pointing out novel areas of research interest with high potential to improve current sperm technologies. © 2015 Blackwell Verlag GmbH.
Chirinos, Julio A.; Zamani, Payman
2016-01-01
The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic LV load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term “disease-modifying” effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway. PMID:26792295
Ultrastructural findings in noncompaction prevail with neuromuscular disorders.
Finsterer, Josef; Stöllberger, Claudia
2013-01-01
Little is known about the ultrastructural abnormalities of left ventricular hypertrabeculation/noncompaction (LVHT). This literature review aimed to summarize and discuss ultrastructural abnormalities described in LVHT so far. The literature search was conducted via MEDLINE using the search terms 'non-compaction', 'noncompaction', 'left ventricular hypertrabeculation', 'spongy myocardium' in combination with the terms 'ultra-structural', or 'electron microscopy'. Altogether, 11 studies reporting ultrastructural investigations of LVHT were retrieved. In these 11 studies, data on 13 patients with LVHT were presented. Ultrastructural abnormalities found in these study patients were generally nonspecific and included an increase in the number of mitochondria (n = 3), abnormally shaped mitochondria (n = 2), distorted cristae (n = 3), sarcomeric derangement (n = 3), immature cardiomyocytes (n = 1), lipid-like inclusions (n = 1), enlarged interstitial spaces (n = 1), increased interstitial collagen (n = 1), or increased glycogen (n = 1). The morphological abnormalities were most prominent in patients with a neuromuscular disorder like Barth syndrome or mitochondrial myopathy. Only in few patients with LVHT, ultrastructural investigations have been performed so far. Ultrastructural abnormalities in LVHT are nonspecific and most prominent in patients with a neuromuscular disorder. There is a strong need to carry out thorough ultrastructural investigations of LVHT to contribute to the understanding of this still unexplained myocardial abnormality.
The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs).
Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Maes, Michael
2014-04-01
The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.
Cassandrini, Denise; Cilio, Maria Roberta; Bianchi, Marzia; Doimo, Mara; Balestri, Martina; Tessa, Alessandra; Rizza, Teresa; Sartori, Geppo; Meschini, Maria Chiara; Nesti, Claudia; Tozzi, Giulia; Petruzzella, Vittoria; Piemonte, Fiorella; Bisceglia, Luigi; Bruno, Claudio; Dionisi-Vici, Carlo; D'Amico, Adele; Fattori, Fabiana; Carrozzo, Rosalba; Salviati, Leonardo; Santorelli, Filippo M; Bertini, Enrico
2013-01-01
Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.
PGC-1α repression and high fat diet induce age-related macular degeneration-like phenotypes in mice.
Zhang, Meng; Chu, Yi; Mowery, Joseph; Konkel, Brandon; Galli, Susana; Theos, Alexander C; Golestaneh, Nady
2018-06-20
Age-related macular degeneration (AMD) is the major cause of blindness in the elderly in developed countries and its prevalence is increasing with the aging population. AMD initially affects the retinal pigment epithelium (RPE) and gradually leads to secondary photoreceptor degeneration. Recent studies have associated mitochondrial damage with AMD, and we have observed mitochondrial and autophagic dysfunction and repressed peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α in native RPE from AMD donor eyes and their respective induced pluripotent stem cell-derived RPE (AMD RPE-iPSC-RPE). To further investigate the effect of PGC-1α repression we have established a mouse model by feeding PGC-1α + /- mice with high fat diet (HFD) and investigated the RPE and retinal health. Here we show that when mice expressing lower levels of Pgc-1α are exposed to HFD, they present AMD-like abnormalities in RPE and retinal morphology and function. These abnormalities include basal laminar deposits, thickening of Bruch's membrane (BM) with drusen marker-containing deposits, RPE and photoreceptor degeneration, decreased mitochondrial activity, increased ROS levels, decreased autophagy dynamics/ flux, and increased inflammatory response in the RPE/retina. Our study show that the PGC-1α is important in outer retina biology and that PGC-1α + /- mouse fed with HFD is a promising model to study AMD and opens doors for novel treatment strategies in AMD. © 2018. Published by The Company of Biologists Ltd.
Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook
2017-06-09
Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.
Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R
2009-09-01
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865
Politi, Letterio Salvatore; Bianchi Marzoli, Stefania; Godi, Claudia; Panzeri, Marta; Ciasca, Paola; Brugnara, Gianluca; Castaldo, Anna; Di Bella, Daniela; Taroni, Franco; Nanetti, Lorenzo; Mariotti, Caterina
2016-05-01
Spinocerebellar ataxias type 2 and 28 (SCA2, SCA28) are autosomal dominant disorders characterized by progressive cerebellar and oculomotor abnormalities. We aimed to investigate cerebellar, brainstem, and extraocular muscle involvement in the mitochondrial SCA28 disease compared with SCA2. We obtained orbital and brain 1.5 T-magnetic resonance images (MRI) in eight SCA28 subjects, nine SCA2, and nine age-matched healthy subjects. Automated segmentation of cerebellum and frontal lobe was performed using Freesurfer software. Manual segmentations for midbrain, pons, and extraocular muscles were performed using OsiriX. Eye movement abnormalities in SCA2 subjects were characterized by slow horizontal saccades. Subjects with SCA28 variably presented hypometric saccades, saccadic horizontal pursuit, impaired horizontal gaze holding, and superior eyelid ptosis. Quantitative brain MRI demonstrated that cerebellar and pons volumes were significantly reduced in both SCA2 and SCA28 subjects compared with controls (P < 0.03), and in SCA2 subjects compared with SCA28 (P < 0.01). Midbrain and frontal lobe volumes were also significantly reduced in SCA2 compared to controls (P < 0.03), whereas these volumes did not differ between SCA2 and SCA28 and between SCA28 and control subjects. The extraocular muscle areas were 37% to 48% smaller in SCA28 subjects compared with controls (P < 0.002), and 14% to 36% smaller compared with SCA2 subjects (P < 0.03). Extraocular muscle areas did not differ between SCA2 and controls. Our MRI findings support the hypothesis of different cerebellar and extraocular myopathic contributions in the eye movement abnormalities in SCA2 and SCA28 diseases. In SCA28, a myopathic defect selectively involving the extraocular muscles supports a specific impairment of mitochondrial energy metabolism.
Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.
Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M
2002-03-16
Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.
Cardiac damage induced by 2-amino-3-methyl-imidazo[4,5-f]quinoline in nonhuman primates.
Thorgeirsson, U P; Farb, A; Virmani, R; Adamson, R H
1994-01-01
The heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a potent hepatocarcinogen in cynomolgus and rhesus monkeys. The finding of high cardiac IQ-DNA adduct levels prompted a histopathological study of perfusion-fixed hearts from 10 tumor-bearing monkeys chronically dosed with IQ at 10 mg/kg or 20 mg/kg 5 days per week for 48-80 months. Two monkeys dosed only with the vehicle for IQ, hydroxypropylcellulose, served as controls. All the monkeys had normal heart weights, and no abnormalities were observed upon gross inspection of the hearts. Microscopically, focal myocardial lesions were observed in 8 of 10 monkeys dosed with IQ. Light microscopic abnormalities included myocyte necrosis with or without chronic inflammatory infiltrates, interstitial fibrosis with myocyte hypertrophy or atrophy, and vasculitis. Electron microscopic findings included disruption of the mitochondrial architecture (i.e., mitochondrial swelling and clearing of matrix densities), myofibrillar loss, disorganization of the normal alignment of sarcomeres, and occasional myocytes showing nuclear hypertrophy or peripheral clumping of the nuclear chromatin. There was some correlation between the cumulative dose of IQ and the extent of the myocardial abnormalities. These findings suggest that chronic exposure to IQ can lead to myocardial damage in monkeys. Although focal and not associated with clinical evidence of heart failure, these abnormalities may represent the initial stages of IQ-induced toxic cardiomyopathy. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 3. C Figure 3. D Figure 4. A Figure 4. B Figure 5. A Figure 5. B PMID:8033851
Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G
Majamaa-Voltti, Kirsi; Peuhkurinen, Keijo; Kortelainen, Marja-Leena; Hassinen, Ilmo E; Majamaa, Kari
2002-01-01
Background Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown. Methods Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5–4 kHz) was used as a measure of the clinical severity of disease. Results Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74–67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5–4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable. Conclusions Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities. PMID:12150714
Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui
2014-02-01
A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P.; de Jesus Garduno-Garcia, Jose; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A.; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas
2011-01-01
OBJECTIVE Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. RESEARCH DESIGN AND METHODS Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. RESULTS ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. CONCLUSIONS Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria. PMID:21677280
Chowdhury, Subir Roy; Djordjevic, Jelena; Thomson, Ella; Smith, Darrell R; Albensi, Benedict C; Fernyhough, Paul
2018-05-23
Abnormalities in mitochondrial function under diabetic conditions can lead to deficits in function of cortical neurons and their support cells exhibiting a pivotal role in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. We aimed to assess simultaneously mitochondrial respiration rates and membrane potential or H 2 O 2 generation and proteins involved in mitochondrial dynamics, antioxidants and AMPK/SIRT/PGC-1α pathway activity in cortex under diabetic conditions. Cortical mitochondria from streptozotocin (STZ)-induced type 1 diabetic rats or mice, and aged-match controls were used for simultaneous measurements of mitochondrial respiration rates and mitochondrial membrane potential (mtMP) or H 2 O 2 using OROBOROS oxygraph and measurements of enzymatic activities by a spectrophotometer. Protein levels in cortical mitochondria and homogenates were determined by Western blotting. Mitochondrial coupled respiration rates and FCCP-induced uncoupled respiration rates were significantly decreased in mitochondria of STZ-diabetic cortical rats compared to controls. The mtMP in the presence of ADP was significantly depolarized and succinate-dependent respiration rates and H 2 O 2 were significantly diminished in mitochondria of diabetic animals compared to controls, accompanied with reduced expression of CuZn- and Mn-superoxide dismutase. The enzymatic activities of Complex I, II, and IV and protein levels of certain components of Complex I and II, mitofusin 2 (Mfn2), dynamin-related protein 1 (DRP1), P-AMPK, SIRT2 and PGC-1α were significantly diminished in diabetic cortex. Deficits in mitochondrial function, dynamics, and antioxidant capabilities putatively mediated through sub-optimal AMPK/SIRT/PGC-1α signaling, are involved in the development of early sub-clinical neurodegeneration in the cortex under diabetic conditions. Copyright © 2017. Published by Elsevier Inc.
Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease.
Menezes, Manoj P; Rahman, Shamima; Bhattacharya, Kaustuv; Clark, Damian; Christodoulou, John; Ellaway, Carolyn; Farrar, Michelle; Pitt, Matthew; Sampaio, Hugo; Ware, Tyson L; Wedatilake, Yehani; Thorburn, David R; Ryan, Monique M; Ouvrier, Robert
2016-09-01
Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang
2016-09-01
Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.
2013-01-01
Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425
Noland, Robert C; Koves, Timothy R; Seiler, Sarah E; Lum, Helen; Lust, Robert M; Ilkayeva, Olga; Stevens, Robert D; Hegardt, Fausto G; Muoio, Deborah M
2009-08-21
In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine diminution was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete beta-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.
Noland, Robert C.; Koves, Timothy R.; Seiler, Sarah E.; Lum, Helen; Lust, Robert M.; Ilkayeva, Olga; Stevens, Robert D.; Hegardt, Fausto G.; Muoio, Deborah M.
2009-01-01
In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome. PMID:19553674
Metabolic control of T-cell activation and death in SLE
Fernandez, David; Perl, Andras
2009-01-01
Systemic lupus erythematosus (SLE) is characterized by abnormal T-cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Δψm) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Δψm or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca2+ influx upon CD3/CD28 co-stimulation, thus mimicking the Ca2+ signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca2+ fluxing but fails to affect MHP, suggesting that altered Ca2+ fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T-cell activation and death signaling in SLE. Lupus T cells exhibit mitochondrial dysfunctionMitochondrial hyperpolarization (MHP) and ATP depletion predispose lupus T cells to death by necrosis which is pro-inflammatoryMHP is caused by depletion of glutathione and exposure to nitric oxide (NO)NO-induced mitochondrial biogenesis regenerates the Ca2+ signaling profile of lupus T cellsRapamycin treatment normalizes Ca2+ fluxing but not MHP, suggesting that the mammalian target of rapamycin, acts as a sensor and effector of MHP in SLE PMID:18722557
Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J
2014-11-01
Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.
Carr, Carolyn A.; Stuckey, Daniel J.; West, James A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Heather, Lisa C.; Tyler, Damian J.
2015-01-01
Background Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. PMID:25201905
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*
De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György
2016-01-01
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331
Sykes, Steven E.
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. PMID:23125353
Sykes, Steven E; Hajduk, Stephen L
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.
Armstrong, D G
1979-01-01
1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548
No difference in mitochondrial distribution is observed in human oocytes after cryopreservation.
Stimpfel, Martin; Vrtacnik-Bokal, Eda; Virant-Klun, Irma
2017-08-01
The primary aim of this study was to determine if any difference in mitochondrial distribution can be observed between fresh and cryopreserved (slow-frozen/thawed and vitrified/warmed) oocytes when oocytes are stained with Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Additionally, the influence of cryopreservation procedure on the viable rates of oocytes at different maturation stages was evaluated. The germinal vesicle (GV) and MII oocytes were cryopreserved with slow-freezing and vitrification. After thawing/warming, oocytes were stained using Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Mitotracker staining revealed that in GV oocytes the pattern of mitochondrial distribution appeared as aggregated clusters around the whole oocyte. In mature MII oocytes, three different patterns of mitochondrial distribution were observed; a smooth pattern around the polar body with aggregated clusters at the opposite side of the polar body, a smooth pattern throughout the whole cell, and aggregated clusters as can be seen in GV oocytes. There were no significant differences in the observed patterns between fresh, vitrified/warmed and frozen/thawed oocytes. When comparing the viable rates of oocytes after two different cryopreservation procedures, the results showed no significant differences, although the trend of viable MII oocytes tends to be higher after vitrification/warming and for viable GV oocytes it tends to be higher after slow-freezing/thawing. Mitotracker Red CMXRos staining of mitochondria in oocytes did not reveal differences in mitochondrial distribution between fresh and cryopreserved oocytes at different maturity stages. Additionally, no difference was observed in the viable rates of GV and MII oocytes after slow-freezing/thawing and vitrification/warming.
Zhang, Ran; Chen, Jiangwei; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong
2017-01-01
Background Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Methods and Results Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Conclusions Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM. PMID:28883902
Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.
Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng
2018-05-20
Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun
2015-12-01
Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.
Calder, Elizabeth A.; McLeman, Dena; Barnes, E. W.; Irvine, W. J.
1972-01-01
A total of fifty-two patients with Hashimoto thyroiditis were tested for delayed hypersensitivity to thyroid antigens using the leucocyte migration test. The percentage of patients showing abnormal migration in the presence of crude thyroid extract, thyroglobulin, thyroid mitochondria and thyroid microsomes was 75, 44, 54 and 34% respectively. Fifty-three control patients were studied concurrently with the same antigens and the percentage showing abnormal migration was 4, 6, 6 and 6% respectively. The antigenic activity of the mitochondrial fraction was not organ specific; both liver and kidney mitochondria interfered with the migration of leucocytes from patients with Hashimoto thyroiditis. PMID:4568149
Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier
2009-08-07
Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha) destabilization. The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.
Du, Zhong-Jun; Cui, Guan-Qun; Zhang, Juan; Liu, Xiao-Mei; Zhang, Zhi-Hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-Xiang; Shao, Hua
2017-01-01
Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological effects.
Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin.
Alfarano, C; Foussal, C; Lairez, O; Calise, D; Attané, C; Anesia, R; Daviaud, D; Wanecq, E; Parini, A; Valet, P; Kunduzova, O
2015-02-01
Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.
Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.
2015-01-01
Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3 h induced dose-dependent cell death with an EC50 of 3.98 μM and 3.77 μM, respectively. Also, tebufenpyrad and pyridaben (3 μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system. PMID:26141520
Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S
2016-01-11
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hong-Seok; Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060; Choi, Yeong-Gon
Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress inmore » scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the neuropathological changes associated with prion disease.« less
Shenk, Justin C; Liu, Jiankang; Fischbach, Kathryn; Xu, Kui; Puchowicz, Michel; Obrenovich, Mark E; Gasimov, Eldar; Alvarez, Ludis Morales; Ames, Bruce N; Lamanna, Joseph C; Aliev, Gjumrakch
2009-08-15
We measured age-dependent effects of human ApoE4 on cerebral blood flow (CBF) using ApoE4 transgenic mice compared to age-matched wild-type (WT) mice by use of [(14)C] iodoantipyrene autoradiography. ApoE4 associated factors reduce CBF gradually to create brain hypoperfusion when compared to WT, and the differences in CBF are greatest as animals age from 6-weeks to 12-months. Transmission electron microscopy with colloidal gold immunocytochemistry showed structural damage in young and aged microvessel endothelium of ApoE4 animals extended to the cytoplasm of perivascular cells, perivascular nerve terminals and hippocampal neurons and glial cells. These abnormalities coexist with mitochondrial structural alteration and mitochondrial DNA overproliferation and/or deletion in all brain cellular compartments. Spatial memory and temporal memory tests showed a trend in improving cognitive function in ApoE4 mice fed selective mitochondrial antioxidants acetyl-l-carnitine and R-alpha-lipoic acid. Our findings indicate that ApoE4 genotype-induced mitochondrial changes and associated structural damage may explain age-dependent pathology seen in AD, indicating potential for novel treatment strategies in the near future.
Renal Involvement in Neuropathy, Ataxia, Retinitis Pigmentosa (NARP) Syndrome: A Case Report.
Lemoine, Sandrine; Panaye, Marine; Rabeyrin, Maud; Errazuriz-Cerda, Elisabeth; Mousson de Camaret, Bénédicte; Petiot, Philippe; Juillard, Laurent; Guebre-Egziabher, Fitsum
2018-05-01
We report a case of a patient who had the mitochondrial cytopathy complex of neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome diagnosed at age 11 years with a biopsy-proven kidney involvement that progressed to end-stage renal disease at age 21 years. Mutations of mitochondrial DNA (mtDNA) are maternally inherited and lead to mitochondrial cytopathies with predominant neurologic manifestations: psychomotor retardation, epilepsy, ataxia, neuropathy, and myopathy. Given the ubiquitous nature of mitochondria, cellular dysfunction can also appear in tissues with high metabolic turnover; thus, there can be cardiac, digestive, ophthalmologic, and kidney complications. Mutations in the MT-ATP6 gene of mtDNA have been shown to cause NARP syndrome without renal involvement. We report a patient who had NARP syndrome diagnosed at age 11 years in whom glomerular proteinuria was present very early after diagnosis. Although neurologic manifestations were stable over time, he developed worsening proteinuria and kidney function. He started dialysis therapy at age 21 years. Kidney biopsy confirmed the mitochondrial cytopathy histologically, with abnormal mitochondria seen on electron microscopy. The MT-ATP6 gene mutation was detected in the kidney biopsy specimen. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Deletion of murine choline dehydrogenase results in diminished sperm motility.
Johnson, Amy R; Craciunescu, Corneliu N; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J; Blusztajn, Jan K; Zeisel, Steven H
2010-08-01
Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.
Optic neuropathies--importance of spatial distribution of mitochondria as well as function.
Yu Wai Man, C Y; Chinnery, P F; Griffiths, P G
2005-01-01
Optic neuropathies such as Leber's hereditary optic neuropathy, dominant optic atrophy and toxic amblyopia are an important cause of irreversible visual failure. Although they are associated with a defect of mitochondrial energy production, their pathogenesis is poorly understood. A common feature to all these disorders is relatively selective degeneration of the papillomacular bundle of retinal ganglion cells resulting central or caecocentral visual field defects. The striking similarity in the pattern of clinical involvement seen with these disparate disorders suggests a common pathway in their aetiology. The existing hypothesis that the optic nerve head has higher energy demands than other tissues making it uniquely dependent on oxidative phosporylation is not satisfactory. First, other ocular tissues such as photoreceptors, which are more dependent on oxidative phosporylation are not affected. Second, other mitochondrial disorders, which have a greater impact on mitochondrial energy function, do not affect the optic nerve. The optic nerve head has certain unique ultra structural features. Ganglion cell axons exit the eye through a perforated collagen plate, the lamina cribrosa. There is a sharp discontinuity in the density of mitochondria at the optic nerve head, with a very high concentration in the prelaminar nerve fibre layer and low concentration behind the lamina. This has previously been attributed to a mechanical hold up of axoplasmic flow, which has itself been proposed as a factor in the pathogenesis of a number of optic neuropathies. More recent evidence shows that mitochondrial distribution reflects the different energy requirements of the unmyelinated prelaminar axons in comparison to the myelinated retrolaminar axons. The heterogeous distribution of mitochondria is actively maintained to support conduction through the optic nerve head. We propose that factors that disrupt the heterogeneous distribution of mitochondria can result in ganglion cell death. Evidence for this comes from studies of cultured cells with the dominant optic atrophy mutation in which mitochondrial distribution is altered and from some forms of hereditary spastic paraparesis which are associated with optic atrophy. The responsible mutations do not affect ATP production until late in the disease but do affect mitochondrial arrangement, again showing that mitochondrial distribution as well as energy production by individual mitochondria may be important in the pathogenesis of ganglion cell death. Greater understanding of the factors localising mitochondria within the ganglion cell axon in particular the interaction with cytoskeleton is required to formulate new treatments. Boosting energy production alone may not be an effective treatment.
Hwang, Hyonson; Bowen, Benjamin P.; Lefort, Natalie; Flynn, Charles R.; De Filippis, Elena A.; Roberts, Christine; Smoke, Christopher C.; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J.
2010-01-01
OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance. PMID:19833877
Influence of mitochondrion-toxic agents on the cardiovascular system.
Finsterer, Josef; Ohnsorge, Peter
2013-12-01
Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects. Copyright © 2013 Elsevier Inc. All rights reserved.
Givvimani, Srikanth; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Metreveli, Naira; Tyagi, Suresh C.
2012-01-01
Background We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. Conclusion Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure. PMID:22479323
Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication.
Protti, Alessandro; Russo, Riccarda; Tagliabue, Paola; Vecchio, Sarah; Singer, Mervyn; Rudiger, Alain; Foti, Giuseppe; Rossi, Anna; Mistraletti, Giovanni; Gattinoni, Luciano
2010-01-01
Lactic acidosis can develop during biguanide (metformin and phenformin) intoxication, possibly as a consequence of mitochondrial dysfunction. To verify this hypothesis, we investigated whether body oxygen consumption (VO2), that primarily depends on mitochondrial respiration, is depressed in patients with biguanide intoxication. Multicentre retrospective analysis of data collected from 24 patients with lactic acidosis (pH 6.93 +/- 0.20; lactate 18 +/- 6 mM at hospital admission) due to metformin (n = 23) or phenformin (n = 1) intoxication. In 11 patients, VO2 was computed as the product of simultaneously recorded arterio-venous difference in O2 content [C(a-v)O2] and cardiac index (CI). In 13 additional cases, C(a-v)O2, but not CI, was available. On day 1, VO2 was markedly depressed (67 +/- 28 ml/min/m2) despite a normal CI (3.4 +/- 1.2 L/min/m2). C(a-v)O2 was abnormally low in both patients either with (2.0 +/- 1.0 ml O2/100 ml) or without (2.5 +/- 1.1 ml O2/100 ml) CI (and VO2) monitoring. Clearance of the accumulated drug was associated with the resolution of lactic acidosis and a parallel increase in VO2 (P < 0.001) and C(a-v)O2 (P < 0.05). Plasma lactate and VO2 were inversely correlated (R2 0.43; P < 0.001, n = 32). VO2 is abnormally low in patients with lactic acidosis due to biguanide intoxication. This finding is in line with the hypothesis of inhibited mitochondrial respiration and consequent hyperlactatemia.
Small fibre neuropathy in mitochondrial diseases explored with sudoscan.
Luigetti, Marco; Primiano, Guido; Cuccagna, Cristina; Bernardo, Daniela; Sauchelli, Donato; Vollono, Catello; Servidei, Serenella
2018-06-01
Polyneuropathy in mitochondrial diseases (MDs) is relatively common and widely investigated, but few data are instead reported about small fibres involvement. In order to investigate the involvement of small fibres in MDs we performed extensive neurophysiological test (nerve conduction studies; sympathetic skin response; sudoscan) in 27 patients with genetic diagnosis of MD (7 m.3243A > G; 4 m.8344A > G; 9 single mtDNA deletion; 7 multiple mtDNA deletions). NCS showed a polyneuropathy in 11/27 cases (41%). The incidence was very high in POLG1 (100%), m.8344A > G (75%) and m.3243A > G (43%), while only 11% of patients with single deletion had evidence of large fibres involvement. Sympathetic skin response was abnormal only in three patients (one progressive external ophthalmoplegia with single mtDNA deletion; one patient with m.3243A > G mutation; one patient with POLG1 mutation). Sudoscan revealed the presence of an autonomic small fibres dysfunction in 9/27 cases (33%), most of them (7/9) carrying a single mtDNA deletion. Sudoscan data were also confirmed in a sub-group of patients by laser evoked potentials study. Considering only patients with single mtDNA deletion 7/9 (78%) showed abnormal results at sudoscan. Small fibre neuropathy is another feature to investigate in mitochondrial diseases and seems specifically associated with the presence of single mtDNA deletion. The correct identification through specific neurophysiological tests of small fibres involvement in MDs represents another tile in this challenging diagnosis. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Eckert, Anne; Nisbet, Rebecca; Grimm, Amandine; Götz, Jürgen
2014-08-01
The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments. © 2013.
Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro
2017-05-04
Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.
Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies.
Ozaltin, Fatih
2014-06-01
Oxidative phosphorylation (OXPHOS) is a metabolic pathway that uses energy released by the oxidation of nutrients to generate adenosine triphosphate (ATP). Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in the human body not only by generating ATP in the mitochondrial respiratory chain but also by providing protection from reactive oxygen species (ROS) and functioning in the activation of many mitochondrial dehydrogenases and enzymes required in pyrimidine nucleoside biosynthesis. The presentations of primary CoQ10 deficiencies caused by genetic mutations are very heterogeneous. The phenotypes related to energy depletion or ROS production may depend on the content of CoQ10 in the cell, which is determined by the severity of the mutation. Primary CoQ10 deficiency is unique among mitochondrial disorders because early supplementation with CoQ10 can prevent the onset of neurological and renal manifestations. In this review I summarize primary CoQ10 deficiencies caused by various genetic abnormalities, emphasizing its nephropathic form.
Perspectives on the Role and Relevance of Copper in Cardiac Disease.
Medeiros, Denis M
2017-03-01
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Im, Ilkyun; Jang, Mi-jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn
2015-01-01
A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD+/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018
D'Souza, Anthony D; Parish, Ian A; Krause, Diane S; Kaech, Susan M; Shadel, Gerald S
2013-01-01
The disease ataxia-telangiectasia (A-T) has no cure and few treatment options. It is caused by mutations in the ATM kinase, which functions in the DNA-damage response and redox sensing. In addition to severe cerebellar degeneration, A-T pathology includes cancer predisposition, sterility, immune system dysfunction, and bone marrow abnormalities. These latter phenotypes are recapitulated in the ATM null (ATM−/−) mouse model of the disease. Since oxidative stress and mitochondrial dysfunction are implicated in A-T, we determined whether reducing mitochondrial reactive oxygen species (ROS) via overexpression of catalase targeted to mitochondria (mCAT) alleviates A-T–related pathology in ATM−/− mice. We found that mCAT has many beneficial effects in this context, including reduced propensity to develop thymic lymphoma, improved bone marrow hematopoiesis and macrophage differentiation in vitro, and partial rescue of memory T-cell developmental defects. Our results suggest that positive effects observed on cancer development may be linked to mCAT reducing mitochondrial ROS, lactate production, and TORC1 signaling in transforming double-positive cells, whereas beneficial effects in memory T cells appear to be TORC1-independent. Altogether, this study provides proof-of-principle that reducing mitochondrial ROS production per se may be therapeutic for the disease, which may have advantages compared with more general antioxidant strategies. PMID:23011031
Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi
2017-08-01
Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.
Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook
2017-01-01
Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD+) metabolism. However, the functional role of NAD+ metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD+ levels affect the characteristics of glioma-driven SSEA1+ TICs, including clonogenic growth potential. An increase in the mitochondrial NAD+ levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD+ levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors. PMID:28604662
Luigetti, M; Sauchelli, D; Primiano, G; Cuccagna, C; Bernardo, D; Lo Monaco, M; Servidei, S
2016-06-01
Peripheral neuropathy in mitochondrial diseases (MDs) may vary from a subclinical finding in a multisystem syndrome to a severe, even isolated, manifestation in some patients. To investigate the involvement of the peripheral nervous system in MDs extensive electrophysiological studies were performed in 109 patients with morphological, biochemical and genetic diagnosis of MD [12 A3243G progressive external ophthalmoplegia (PEO)/mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 16 myoclonic epilepsy with ragged-red fibres (MERRF), four mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), 67 PEO with single or multiple deletions of mitochondrial DNA, 10 others]. A neuropathy was found in 49 patients (45%). The incidence was very high in MNGIE (100%), MELAS (92%) and MERRF (69%), whilst 28% of PEO patients had evidence of peripheral involvement. The most frequent abnormality was a sensory axonal neuropathy found in 32/49 patients (65%). A sensory-motor axonal neuropathy was instead detected in 16% of the patients and sensory-motor axonal demyelinating neuropathy in 16%. Finally one Leigh patient had a motor axonal neuropathy. It is interesting to note that the great majority had preserved tendon reflexes and no sensory disturbances. In conclusion, peripheral involvement in MD is frequent even if often mild or asymptomatic. The correct identification and characterization of peripheral neuropathy through electrophysiological studies represents another tile in the challenge of MD diagnosis. © 2016 EAN.
Varicocele Negatively Affects Sperm Mitochondrial Respiration.
Ferramosca, Alessandra; Albani, Denise; Coppola, Lamberto; Zara, Vincenzo
2015-10-01
To evaluate the effect of varicocele on oxidative stress, sperm mitochondrial respiratory efficiency, sperm morphology, and semen parameters. A total of 20 patients with varicocele and 20 normozoospermic subjects without varicocele (control group) were recruited from a medical center for reproductive biology. The levels of serum reactive oxygen metabolites and seminal lipid peroxides were assessed for both control and varicocele subjects. Sperm deoxyribonucleic acid fragmentation was measured by sperm chromatin dispersion test. Mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. In this study, varicocele patients were compared with men without varicoceles. Oxidative stress was observed in the serum and seminal fluid of varicocele patients. These patients showed an increase of 59% (P <.05) in serum reactive oxygen metabolites and a 3-fold increase in the level of sperm lipid peroxides. A parallel and significant increase (a 2-fold increase; P <.05) in the degree of sperm deoxyribonucleic acid fragmentation was also observed. Varicocele patients showed a 27% decrease (P <.05) in mitochondrial respiratory activity in comparison to the control group. A 32% increase (P <.05) in sperm midpiece defects and a 41% decrease (P <.05) in sperm concentration and motility were also observed. Men with varicocele have increased markers of oxidative stress and decreased mitochondrial respiratory activity. These results correlated with abnormalities in semen parameters. For morphology, these correlated with midpiece defects. Copyright © 2015 Elsevier Inc. All rights reserved.
2010-01-01
Background In recent years, several lines of evidence have shown an increase in Parkinson's disease prevalence in rural environments where pesticides are heavily used. Although, the underlying mechanism for neuronal degeneration in sporadic PD remains unknown, mitochondrial dysfunction, oxidative stress and proteasomal dysfunction are proposed as contributing factors. In this study rats were chronically and continuously exposed to the pesticide, dichlorvos to identify the molecular mechanism of nigrostaital neuronal degeneration. Result Chronic dichlorvos exposure (2.50 mg/kg b.wt.s.c/daily for 12 weeks) caused nigrostriatal dopaminergic degeneration. The degenerative changes were accompanied by a loss of 60-80% of the nigral dopamine neurons and 60-70% reduction in striatal dopamine and tyrosine hydroxylase levels. Dichlorvos exposed animals also showed α -synuclein and ubiquitin positive inclusions along with swollen, dystrophic neurites and mitochondrial abnormalities like decreased complex I&IV activities, increased mitochondrial size, axonal degeneration and presence of electron dense perinuclear cytoplasmic inclusions in the substantia nigra of rats. These animals also showed evidence of oxidative stress, including increased mitochondrial ROS levels, decreased MnSOD activity and increased lipid peroxidation. Measurable impairments in neurobehavioral indices were also observed. Notable exacerbations in motor impairments, open field and catalepsy were also evident in dichlorvos exposed animals. Conclusion All these findings taken together indicate that chronic dichlorvos exposure may cause nigrostaital neurodegenaration and significant behavioral impairments. PMID:21073741
Williams, T B; Daniels, M; Puthenveetil, G; Chang, R; Wang, R Y; Abdenur, J E
2012-05-01
Pearson syndrome is a very rare metabolic disorder that is usually present in infancy with transfusion dependent macrocytic anemia and multiorgan involvement including exocrine pancreas, liver and renal tubular defects. The disease is secondary to a mitochondrial DNA deletion that is variable in size and location. Endocrine abnormalities can develop, but are usually not part of the initial presentation. We report two patients who presented with unusual endocrine manifestations, neonatal diabetes and adrenal insufficiency, who were both later diagnosed with Pearson syndrome. Medical records were reviewed. Confirmatory testing included: mitochondrial DNA deletion testing and sequencing of the breakpoints, muscle biopsy, and bone marrow studies. Case 1 presented with hyperglycemia requiring insulin at birth. She had several episodes of ketoacidosis triggered by stress and labile blood glucose control. Workup for genetic causes of neonatal diabetes was negative. She had transfusion dependent anemia and died at 24 months due to multisystem organ failure. Case 2 presented with adrenal insufficiency and anemia during inturcurrent illness, requiring steroid replacement since 37 months of age. He is currently 4 years old and has mild anemia. Mitochondrial DNA studies confirmed a 4.9 kb deletion in patient 1 and a 5.1 kb deletion in patient 2. The patients reported highlight the importance of considering mitochondrial DNA disorders in patients with early onset endocrine dysfunction, and expand the knowledge about this rare mitochondrial disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration.
Qi, Y; Liu, H; Daniels, M P; Zhang, G; Xu, H
2016-02-01
Mitochondrial AAA (ATPases Associated with diverse cellular Activities) proteases i-AAA (intermembrane space-AAA) and m-AAA (matrix-AAA) are closely related and have major roles in inner membrane protein homeostasis. Mutations of m-AAA proteases are associated with neuromuscular disorders in humans. However, the role of i-AAA in metazoans is poorly understood. We generated a deletion affecting Drosophila i-AAA, dYME1L (dYME1L(del)). Mutant flies exhibited premature aging, progressive locomotor deficiency and neurodegeneration that resemble some key features of m-AAA diseases. dYME1L(del) flies displayed elevated mitochondrial unfolded protein stress and irregular cristae. Aged dYME1L(del) flies had reduced complex I (NADH/ubiquinone oxidoreductase) activity, increased level of reactive oxygen species (ROS), severely disorganized mitochondrial membranes and increased apoptosis. Furthermore, inhibiting apoptosis by targeting dOmi (Drosophila Htra2/Omi) or DIAP1, or reducing ROS accumulation suppressed retinal degeneration. Our results suggest that i-AAA is essential for removing unfolded proteins and maintaining mitochondrial membrane architecture. Loss of i-AAA leads to the accumulation of oxidative damage and progressive deterioration of membrane integrity, which might contribute to apoptosis upon the release of proapoptotic molecules such as dOmi. Containing ROS level could be a potential strategy to manage mitochondrial AAA protease deficiency.
Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations.
MacHordom, A; Suárez, J; Almodóvar, A; Bautista, J M
2000-09-01
The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.
Oxidative Stress and Mitochondrial Functions in the Intestinal Caco-2/15 Cell Line
Taha, Rame; Seidman, Ernest; Mailhot, Genevieve; Boudreau, François; Gendron, Fernand-Pierre; Beaulieu, Jean-François; Ménard, Daniel; Delvin, Edgard; Amre, Devendra; Levy, Emile
2010-01-01
Background Although mitochondrial dysfunction and oxidative stress are central mechanisms in various pathological conditions, they have not been extensively studied in the gastrointestinal tract, which is known to be constantly exposed to luminal oxidants from ingested foods. Key among these is the simultaneous consumption of iron salts and ascorbic acid, which can cause oxidative damage to biomolecules. Methodology/Principal Findings The objective of the present work was to evaluate how iron-ascorbate (FE/ASC)-mediated lipid peroxidation affects mitochondrion functioning in Caco-2/15 cells. Our results show that treatment of Caco-2/15 cells with FE/ASC (0.2 mM/2 mM) (1) increased malondialdehyde levels assessed by HPLC; (2) reduced ATP production noted by luminescence assay; (3) provoked dysregulation of mitochondrial calcium homeostasis as evidenced by confocal fluorescence microscopy; (4) upregulated the protein expression of cytochrome C and apoptotic inducing factor, indicating exaggerated apoptosis; (5) affected mitochondrial respiratory chain complexes I, II, III and IV; (6) elicited mtDNA lesions as illustrated by the raised levels of 8-OHdG; (7) lowered DNA glycosylase, one of the first lines of defense against 8-OHdG mutagenicity; and (8) altered the gene expression and protein mass of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2) without any effects on RNA Polymerase. The presence of the powerful antioxidant BHT (50 µM) prevented the occurrence of oxidative stress and most of the mitochondrial abnormalities. Conclusions/Significance Collectively, our findings indicate that acute exposure of Caco-2/15 cells to FE/ASC-catalyzed peroxidation produces harmful effects on mitochondrial functions and DNA integrity, which are abrogated by the powerful exogenous BHT antioxidant. Functional derangements of mitochondria may have implications in oxidative stress-related disorders such as inflammatory bowel diseases. PMID:20676402
Oxidative stress and mitochondrial functions in the intestinal Caco-2/15 cell line.
Taha, Rame; Seidman, Ernest; Mailhot, Genevieve; Boudreau, François; Gendron, Fernand-Pierre; Beaulieu, Jean-François; Ménard, Daniel; Delvin, Edgard; Amre, Devendra; Levy, Emile
2010-07-27
Although mitochondrial dysfunction and oxidative stress are central mechanisms in various pathological conditions, they have not been extensively studied in the gastrointestinal tract, which is known to be constantly exposed to luminal oxidants from ingested foods. Key among these is the simultaneous consumption of iron salts and ascorbic acid, which can cause oxidative damage to biomolecules. The objective of the present work was to evaluate how iron-ascorbate (FE/ASC)-mediated lipid peroxidation affects mitochondrion functioning in Caco-2/15 cells. Our results show that treatment of Caco-2/15 cells with FE/ASC (0.2 mM/2 mM) (1) increased malondialdehyde levels assessed by HPLC; (2) reduced ATP production noted by luminescence assay; (3) provoked dysregulation of mitochondrial calcium homeostasis as evidenced by confocal fluorescence microscopy; (4) upregulated the protein expression of cytochrome C and apoptotic inducing factor, indicating exaggerated apoptosis; (5) affected mitochondrial respiratory chain complexes I, II, III and IV; (6) elicited mtDNA lesions as illustrated by the raised levels of 8-OHdG; (7) lowered DNA glycosylase, one of the first lines of defense against 8-OHdG mutagenicity; and (8) altered the gene expression and protein mass of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2) without any effects on RNA Polymerase. The presence of the powerful antioxidant BHT (50 microM) prevented the occurrence of oxidative stress and most of the mitochondrial abnormalities. Collectively, our findings indicate that acute exposure of Caco-2/15 cells to FE/ASC-catalyzed peroxidation produces harmful effects on mitochondrial functions and DNA integrity, which are abrogated by the powerful exogenous BHT antioxidant. Functional derangements of mitochondria may have implications in oxidative stress-related disorders such as inflammatory bowel diseases.
The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy
Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng
2014-01-01
Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055
Ursolic acid improves domoic acid-induced cognitive deficits in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dong-mei; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province; Lu, Jun, E-mail: lu-jun75@163.com
Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitivemore » deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.« less
Garrido-Maraver, Juan; Cordero, Mario D; Moñino, Irene Domínguez; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; De Miguel, Manuel; Bautista Lorite, Juan; Rivas Infante, Eloy; Alvarez-Dolado, Manuel; Navas, Plácido; Jackson, Sandra; Francisci, Silvia; Sánchez-Alcázar, José A
2012-11-01
MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. According to our results, supplementation with riboflavin or coenzyme Q(10) effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Garrido-Maraver, Juan; Cordero, Mario D; Moñino, Irene Domínguez; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; De Miguel, Manuel; Bautista Lorite, Juan; Rivas Infante, Eloy; Álvarez-Dolado, Manuel; Navas, Plácido; Jackson, Sandra; Francisci, Silvia; Sánchez-Alcázar, José A
2012-01-01
BACKGROUND AND PURPOSE MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. EXPERIMENTAL APPROACH We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. KEY RESULTS According to our results, supplementation with riboflavin or coenzyme Q10 effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. CONCLUSIONS AND IMPLICATIONS Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. PMID:22747838
Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C
2008-08-01
Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.
Oztarhan, Kazim; Gedikbasi, Ali; Yildirim, Dogukan; Arslan, Oguz; Adal, Erdal; Kavuncuoglu, Sultan; Ozbek, Sibel; Ceylan, Yavuz
2010-12-01
The aim of this study was to determine the distribution of cases associated with congenital abnormalities during the following three periods: pregnancy, birth, and the neonatal period. This was a retrospective study of cases between 2002 and 2006. All abnormal pregnancies, elective terminations of pregnancies, stillbirths, and births with congenital abnormalities managed in the Neonatology Unit were classified based on the above distribution scheme. During the 5-year study period, 1906 cases with congenital abnormalities were recruited, as follows: 640 prenatally detected and terminated cases, with most abnormalities related to the central nervous system, chromosomes, and urogenital system (56.7%, 12.7%, and 8.9%, respectively); 712 neonates with congenital abnormalities (congenital heart disease [49.2%], central nervous system abnormalities [14.7%], and urogenital system abnormalities [12.9%]); and hospital stillbirths, of which 34.2% had malformations (220 prenatal cases [34.4%] had multiple abnormalities, whereas 188 liveborn cases [26.4%] had multiple abnormalities). The congenital abnormalities rate between 2002 and 2006 was 2.07%. Systematic screening for fetal anomalies is the primary means for identification of affected pregnancies. © 2010 The Authors. Congenital Anomalies © 2010 Japanese Teratology Society.
Stockman, Jonathan; Innis, Charles J; Solano, Mauricio; O'Sullivan Brisson, Jennifer; Kass, Philip H; Tlusty, Michael F; Weber, E Scott
2013-03-01
To evaluate the prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) and associations between these abnormalities and body weight, carapace length, and hematologic and plasma biochemical variables. Retrospective case series. 89 cold-stunned juvenile Kemp's ridley sea turtles. Medical records were reviewed. Dorsoventral and horizontal beam craniocaudal radiographs were evaluated for the presence, distribution, and progression of lung abnormalities. Turtles were categorized as having radiographically normal or abnormal lungs; those with abnormalities detected were further categorized according to the distribution of abnormalities (left lung, right lung, or both affected). Body weight, carapace length, and hematologic and plasma biochemical data were compared among categories. 48 of 89 (54%) turtles had radiographic abnormalities of the lungs. Unilateral abnormalities of the right or left lung were detected in 14 (16%) and 2 (2%), respectively; both lungs were affected in 32 (36%). Prevalence of unilateral abnormalities was significantly greater for the right lung than for the left lung. Evaluation of follow-up radiographs indicated clinical improvement over time for most (18/31 [58%]) turtles. Prevalence of bilateral radiographic abnormalities was positively correlated with body weight and carapace length. There was no significant association between radiographic category and hematologic or plasma biochemical variables. Radiographic abnormalities of the lungs were commonly detected in cold-stunned Kemp's ridley turtles. Results of this study may aid clinicians in developing effective diagnostic and treatment plans for these patients.
Kiliç, Ebru Tarikçi; Gerenli, Nelgin; Akdemir, Mehmet Salim; Tastan, Necmi Onur; Atag, Egemen
2018-01-01
Leigh syndrome (LS) is a rare disease mainly affecting the central nervous system due to the abnormalities of mitochondrial energy generation and seen in early childhood with progressive loss of movement, mental abilities, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Anesthesia and surgery exacerbate the risks of aspiration, wheezing, and breathing difficulties. Tracheal irritability can be stimulated with the efforts of intubation. We report the anesthetic management of a rare case of an 11-year-old boy with a severe form of LS for percutaneous endoscopic gastrostomy insertion. The patient was closely monitored during the procedure and the postoperative period. Carefully chosen anesthetic agents, good pain control, and close monitoring are essential. PMID:29628597
Lou, Di-dong; Zhang, Kai-lin; Qin, Shuang-li; Liu, Yan-fei; Yu, Yan-ni; Guan, Zhi-zhong
2012-04-01
To investigate the changes of mitochondrial distribution in axon/soma and the expression of mitochondrial fission 1 (Fis1) protein in the cortical neurons of rats with chronic fluorosis. Sixty SD rats were divided into 3 groups (20 each) according to weight hierarchy and fed with different concentrations of fluoride in drinking water (0, 10 and 50 mg/L, respectively) for 6 months. Images of mitochondria and tubulin labeled by immunofluorescence COXIV and tubulin-α were captured with fluorescence microscope. Fis1 protein expression in cortical neurons was analyzed with immunohistochemistry and Western blot. The expression of Fis1 mRNA was detected with real-time PCR. Varying degrees of dental fluorosis and increased fluoride contents in urine were observed in the rats receiving additional fluoride in drinking water. In the cortical neurons of rats fed with 10 mg/L and 50 mg/L fluoride, the numbers of neuronal soma stained with COXIV(34.8 ± 4.7 and 39.3 ± 3.0, respectively), and the expression of Fis1 protein (immunohistochemistry: 54.0 ± 3.6 and 51.3 ± 4.1, respectively; Western blot: 2.9 ± 0.4 and 2.6 ± 0.6, respectively) and mRNA (3773 ± 1292 and 1274 ± 162, respectively) was markedly increased as compared with controls (4.4 ± 2.3, 25.2 ± 2.5, 1.8 ± 0.2 and 277 ± 73) over the experimental period of 6 months. Excessive intake of fluoride results in an altered mitochondrial distribution in axon and soma in cortical neurons (i.e., the increase in soma and the decrease in axon), increased expression of Fis1 gene and enhanced mitochondrial fission. The altered mitochondrial distribution may be related to the high expression level of Fis1 and a functional disorder of mitochondria.
Jia, Zhenzhen; Feng, Zeyang; Wang, Lining; Li, Hao; Wang, Hongyu; Xu, Dingqi; Zhao, Xin; Feng, Daofu; Feng, Xizeng
2018-05-23
Reproductive dysfunction associated with obesity is increasing among women of reproductive age, including infertility and increasing risk of miscarriage. In females, reproductive disorders are linked to declining quality of oocytes. Using a model of diet-induced obesity, we have investigated the possible effects of obesity on oocyte quality, including metabolism, lipid accumulation, ROS levels, meiosis and changes in spindle structure in Metaphase II. Our study showed that obesity induced by a high fat diet can impair oocyte meiosis, destroy spindle assembly, and promote oxidative stress and abnormal mitochondrial distribution. With the addition of resveratrol, the negative impact of diet-induced obesity on the quality of oocytes was alleviated to some extent. In addition, we found that obesity causes mouse oocytes to soften, and resveratrol can restore the zona pellucida of oocytes to the same state as the control group. In conclusion, resveratrol can reverse the adverse effects of obesity on oocytes, which is beneficial for subsequent embryonic development.
LA SYNTHÈSE DE L'ADN MITOCHONDRIAL CHEZ TETRAHYMENA PYRIFORMIS
Charret, Renée; André, Jean
1968-01-01
Electron microscopic radioautography has been used to study the synthesis of mitochondrial DNA after incorporation of thymidine-3H by cultures in logarithmic phase of Tetrahymena pyriformis during periods ranging from 15 min to 12 hr. The great majority of silver grains are distributed over the macronuclei, the micronuclei, and the mitochondria. The intensity of the label over the entire mitochondrial population is a function of the length of the incubation period within the time interval considered. The intensity of the mitochondrial label was compared with that of the nuclear label. Mitochondria incorporate at the same rate whether the nuclei are synthesizing or not. This persistence of mitochondrial incorporation in the absence of nuclear incorporation excludes the hypothesis of a nuclear origin for mitochondrial DNA. We are not able to determine whether the apparent continuity of synthesis in the entire mitochondrial population of a cell actually represents a series of asynchronous discontinuities. PMID:5677970
Mitophagy in hematopoietic stem cells
Joshi, Aashish; Kundu, Mondira
2013-01-01
Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis. PMID:24135495
The Role of Brain MRI in Mitochondrial Neurogastrointestinal Encephalomyopathy
Scarpelli, Mauro; Ricciardi, Giuseppe Kenneth; Beltramello, Alberto; Zocca, Isabella; Calabria, Francesca; Russignan, Anna; Zappini, Francesca; Cotelli, Maria Sofia; Padovani, Alessandro; Tomelleri, Giuliano; Filosto, Massimiliano; Tonin, Paola
2013-01-01
Summary Leukoencephalopathy is a hallmark of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) a devastating disorder characterized by ptosis, ophthalmoparesis, gastrointestinal dysfunction and polyneuropathy. To characterize MNGIE-associated leukoencephalopathy and to correlate it with clinical, biochemical and molecular data, four MNGIE patients with heterogeneous clinical phenotypes (enteropathic arthritis, exercise intolerance, CIDP-like phenotype and typical presentation) were studied by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps were also obtained. In two patients we also investigated the role of brain MRI in monitoring the evolution of leukoencephalopathy by performing follow-up imaging studies at an interval of one and two years. The extension and distribution of leukoencephalopathy were not clearly linked with age, phenotype or disease severity, and did not seem to be related to TYMP mutations, enzyme activity or pyrimidine levels. In the studied patients MRS revealed reduced N-acetyl-aspartate and increased choline signals. Although DWI appeared normal in all patients but one, ADC maps always showed moderate increased diffusivity. Leukoencephalopathy worsened over a two-year period in two patients, regardless of the clinical course, indicating a lack of correlation between clinical phenotype, size and progression of white matter abnormalities during this period. Brain MRI should be considered a very useful tool to diagnose both classical and atypical MNGIE. Serial MRIs in untreated and treated MNGIE patients will help to establish whether the leukoencephalopathy is a reversible condition or not. PMID:24199812
Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S
2018-02-01
Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Pinto, Milena; Nissanka, Nadee; Moraes, Carlos T
2018-01-24
PARK2 is the most common gene mutated in monogenic recessive familial cases of Parkinson's disease (PD). Pathogenic mutations cause a loss of function of the encoded protein Parkin. ParkinKO mice, however, poorly represent human PD symptoms as they only exhibit mild motor phenotypes, minor dopamine metabolism abnormalities, and no signs of dopaminergic neurodegeneration. Parkin has been shown to participate in mitochondrial turnover, by targeting damaged mitochondria with low membrane potential to mitophagy. We studied the role of Parkin on mitochondrial quality control in vivo by knocking out Parkin in the PD-mito- Pst I mouse (males), where the mitochondrial DNA (mtDNA) undergoes double-strand breaks only in dopaminergic neurons. The lack of Parkin promoted earlier onset of dopaminergic neurodegeneration and motor defects in the PD-mito- Pst I mice, but it did not worsen the pathology. The lack of Parkin affected mitochondrial morphology in dopaminergic axons and was associated with an increase in mtDNA levels (mutant and wild type). Unexpectedly, it did not cause a parallel increase in mitochondrial mass or mitophagy. Our results suggest that Parkin affects mtDNA levels in a mitophagy-independent manner. SIGNIFICANCE STATEMENT Parkinson's disease is characterized by progressive motor symptoms due to the selective loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations of Parkin cause some monogenic forms of Parkinson's disease, possibly through its role in mitochondrial turnover and quality control. To study whether Parkin has a role in vivo in the context of mitochondrial damage, we knocked out Parkin in a mouse model in which the mitochondrial DNA is damaged in dopaminergic neurons. We found that the loss of Parkin did not exacerbate the parkinsonian pathology already present in the mice, but it was associated with an increase in mtDNA levels (mutant and wild-type) without altering mitochondrial mass. These results shed new light on the function of Parkin in vivo . Copyright © 2018 the authors 0270-6474/18/381042-12$15.00/0.
Rose, Shannon; Bennuri, Sirish C.; Murray, Katherine F.; Buie, Timothy; Winter, Harland
2017-01-01
Gastrointestinal (GI) symptoms are prevalent in autism spectrum disorder (ASD) but the pathophysiology is poorly understood. Imbalances in the enteric microbiome have been associated with ASD and can cause GI dysfunction potentially through disruption of mitochondrial function as microbiome metabolites modulate mitochondrial function and mitochondrial dysfunction is highly associated with GI symptoms. In this study, we compared mitochondrial function in rectal and cecum biopsies under the assumption that certain microbiome metabolites, such as butyrate and propionic acid, are more abundant in the cecum as compared to the rectum. Rectal and cecum mucosal biopsies were collected during elective diagnostic colonoscopy. Using a single-blind case-control design, complex I and IV and citrate synthase activities and complex I-V protein quantity from 10 children with ASD, 10 children with Crohn’s disease and 10 neurotypical children with nonspecific GI complaints were measured. The protein for all complexes, except complex II, in the cecum as compared to the rectum was significantly higher in ASD samples as compared to other groups. For both rectal and cecum biopsies, ASD samples demonstrated higher complex I activity, but not complex IV or citrate synthase activity, compared to other groups. Mitochondrial function in the gut mucosa from children with ASD was found to be significantly different than other groups who manifested similar GI symptomatology suggesting a unique pathophysiology for GI symptoms in children with ASD. Abnormalities localized to the cecum suggest a role for imbalances in the microbiome, potentially in the production of butyrate, in children with ASD. PMID:29028817
Di Fonzo, Alessio; Ronchi, Dario; Lodi, Tiziana; Fassone, Elisa; Tigano, Marco; Lamperti, Costanza; Corti, Stefania; Bordoni, Andreina; Fortunato, Francesco; Nizzardo, Monica; Napoli, Laura; Donadoni, Chiara; Salani, Sabrina; Saladino, Francesca; Moggio, Maurizio; Bresolin, Nereo; Ferrero, Iliana; Comi, Giacomo P
2009-05-01
A disulfide relay system (DRS) was recently identified in the yeast mitochondrial intermembrane space (IMS) that consists of two essential components: the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40. The DRS drives the import of cysteine-rich proteins into the IMS via an oxidative folding mechanism. Erv1p is reoxidized within this system, transferring its electrons to molecular oxygen through interactions with cytochrome c and cytochrome c oxidase (COX), thereby linking the DRS to the respiratory chain. The role of the human Erv1 ortholog, GFER, in the DRS has been poorly explored. Using homozygosity mapping, we discovered that a mutation in the GFER gene causes an infantile mitochondrial disorder. Three children born to healthy consanguineous parents presented with progressive myopathy and partial combined respiratory-chain deficiency, congenital cataract, sensorineural hearing loss, and developmental delay. The consequences of the mutation at the level of the patient's muscle tissue and fibroblasts were 1) a reduction in complex I, II, and IV activity; 2) a lower cysteine-rich protein content; 3) abnormal ultrastructural morphology of the mitochondria, with enlargement of the IMS space; and 4) accelerated time-dependent accumulation of multiple mtDNA deletions. Moreover, the Saccharomyces cerevisiae erv1(R182H) mutant strain reproduced the complex IV activity defect and exhibited genetic instability of the mtDNA and mitochondrial morphological defects. These findings shed light on the mechanisms of mitochondrial biogenesis, establish the role of GFER in the human DRS, and promote an understanding of the pathogenesis of a new mitochondrial disease.
PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila
Shiba-Fukushima, Kahori; Inoshita, Tsuyoshi; Hattori, Nobutaka; Imai, Yuzuru
2014-01-01
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. PMID:24901221
Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A
2017-04-01
To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.
Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A.; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C.; Bader, Gary D.; Minden, Mark D.; Schimmer, Aaron D.
2013-01-01
Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress. PMID:23520503
Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C; Bader, Gary D; Minden, Mark D; Schimmer, Aaron D
2013-01-01
Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.
Problem-Solving Test: Submitochondrial Localization of Proteins
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…
Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei
2016-07-01
The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group.
Tourtellotte, Warren G.
2017-01-01
Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345
Yu, Haitao; Lin, Xuemei; Wang, Dian; Zhang, Zaijun; Guo, Yi; Ren, Xiaohu; Xu, Benhong; Yuan, Jianhui; Liu, Jianjun; Spencer, Peter S.; Wang, Jian-Zhi; Yang, Xifei
2018-01-01
Mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer’s disease (AD). However, the precise mitochondrial molecular deficits in AD remain poorly understood. Mitochondrial and nuclear proteomic analysis in mature male triple transgenic AD mice (PS1M146V/APPSwe/TauP301L) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF-MS/MS, bio-informatics analysis and immunofluorescent staining were performed in this study. In addition to impaired spatial memory impairment and intracellular accumulation of amyloid 1–42 (Aβ1–42) in the 3xTg-AD mice, a well-accepted mouse model of the human disease, we also found significantly increased DNA oxidative damage in entorhinal cortex, hippocampal CA1, CA3 and dental gyrus (DG), as evidenced by the positive staining of 8-hydroxyguanosine, a biomarker of mild cognitive impairment early in AD. We identified significant differences in 27 hippocampal mitochondrial proteins (11 increased and 16 decreased), and 37 hippocampal nuclear proteins (12 increased and 25 decreased) in 3xTg-AD mice compared with the wild-type (WT) mice. Differentially expressed mitochondrial and nuclear proteins were mainly involved in energy metabolism (>55%), synapses, DNA damage, apoptosis and oxidative stress. Two proteins were differentially expressed in both hippocampal mitochondria and nuclei, namely electron transport chain (ETC)-related protein ATP synthase subunit d (ATP5H) was significantly decreased, and apoptosis-related dynamin-1 (DYN1), a pre-synaptic and mitochondrial division-regulated protein that was significantly increased. In sum, perturbations of hippocampus mitochondrial energy metabolism-related proteins responsible for ATP generation via oxidation phosphorylation (OXPHOS), especially nuclear-encoded OXPHOS proteins, correlated with the amyloid-associated cognitive deficits of this murine AD model. The molecular changes in respiratory chain-related proteins and DYN1 may represent novel biomarkers of AD. PMID:29593495
Gu, F; Chauhan, V; Kaur, K; Brown, W T; LaFauci, G; Wegiel, J; Chauhan, A
2013-01-01
Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence suggests that mitochondrial dysfunction and oxidative stress may contribute to the etiology of autism. This is the first study to compare the activities of mitochondrial electron transport chain (ETC) complexes (I–V) and pyruvate dehydrogenase (PDH), as well as mitochondrial DNA (mtDNA) copy number in the frontal cortex tissues from autistic and age-matched control subjects. The activities of complexes I, V and PDH were most affected in autism (n=14) being significantly reduced by 31%, 36% and 35%, respectively. When 99% confidence interval (CI) of control group was taken as a reference range, impaired activities of complexes I, III and V were observed in 43%, 29% and 43% of autistic subjects, respectively. Reduced activities of all five ETC complexes were observed in 14% of autistic cases, and the activities of multiple complexes were decreased in 29% of autistic subjects. These results suggest that defects in complexes I and III (sites of mitochondrial free radical generation) and complex V (adenosine triphosphate synthase) are more prevalent in autism. PDH activity was also reduced in 57% of autistic subjects. The ratios of mtDNA of three mitochondrial genes ND1, ND4 and Cyt B (that encode for subunits of complexes I and III) to nuclear DNA were significantly increased in autism, suggesting a higher mtDNA copy number in autism. Compared with the 95% CI of the control group, 44% of autistic children showed higher copy numbers of all three mitochondrial genes examined. Furthermore, ND4 and Cyt B deletions were observed in 44% and 33% of autistic children, respectively. This study indicates that autism is associated with mitochondrial dysfunction in the brain. PMID:24002085
A mitocentric view of Alzheimer's disease suggests multi-faceted treatments.
Gibson, Gary E; Shi, Qingli
2010-01-01
Alzheimer's disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.g., genetic mutations lead to high Abeta1-42 or hyperphosphorylated tau proteins). In the vast majority of AD cases, the cause is unknown. Substantial evidence now suggests that abnormalities in glucose metabolism/mitochondrial function/oxidative stress (GMO) are an invariant feature of AD and occur at an early stage of the disease process in both genetic and non-genetic forms of AD. Indeed, decreases in brain glucose utilization are diagnostic for AD. Changes in calcium homeostasis also precede clinical manifestations of AD. Abnormal GMO can lead to plaques, tangles, and the calcium abnormalities that accompany AD. Abnormalities in GMO diminish the ability of the brain to adapt. Therapies targeting mitochondria may ameliorate abnormalities in plaques, tangles, calcium homeostasis, and cognition that comprise AD.
Ihlow, Flora; Vamberger, Melita; Flecks, Morris; Hartmann, Timo; Cota, Michael; Makchai, Sunchai; Meewattana, Pratheep; Dawson, Jeffrey E.; Kheng, Long; Rödder, Dennis; Fritz, Uwe
2016-01-01
Based on an integrative taxonomic approach, we examine the differentiation of Southeast Asian snail-eating turtles using information from 1863 bp of mitochondrial DNA, 12 microsatellite loci, morphology and a correlative species distribution model. Our analyses reveal three genetically distinct groups with limited mitochondrial introgression in one group. All three groups exhibit distinct nuclear gene pools and distinct morphology. Two of these groups correspond to the previously recognized species Malayemys macrocephala (Chao Phraya Basin) and M. subtrijuga (Lower Mekong Basin). The third and genetically most divergent group from the Khorat Basin represents a previously unrecognized species, which is described herein. Although Malayemys are extensively traded and used for religious release, only few studied turtles appear to be translocated by humans. Historic fluctuations in potential distributions were assessed using species distribution models (SDMs). The Last Glacial Maximum (LGM) projection of the predictive SDMs suggests two distinct glacial distribution ranges, implying that the divergence of M. macrocephala and M. subtrijuga occurred in allopatry and was triggered by Pleistocene climate fluctuations. Only the projection derived from the global circulation model MIROC reveals a distinct third glacial distribution range for the newly discovered Malayemys species. PMID:27050302
Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P
2017-01-01
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.
Ivanova, Aneta; Law, Simon R.; Narsai, Reena; Duncan, Owen; Lee, Jae-Hoon; Zhang, Botao; Van Aken, Olivier; Radomiljac, Jordan D.; van der Merwe, Margaretha; Yi, KeKe; Whelan, James
2014-01-01
The perception and integration of stress stimuli with that of mitochondrion function are important during periods of perturbed cellular homeostasis. In a continuous effort to delineate these mitochondrial/stress-interacting networks, forward genetic screens using the mitochondrial stress response marker alternative oxidase 1a (AOX1a) provide a useful molecular tool to identify and characterize regulators of mitochondrial stress signaling (referred to as regulators of alternative oxidase 1a [RAOs] components). In this study, we reveal that mutations in genes coding for proteins associated with auxin transport and distribution resulted in a greater induction of AOX1a in terms of magnitude and longevity. Three independent mutants for polarized auxin transport, rao3/big, rao4/pin-formed1, and rao5/multidrug-resistance1/abcb19, as well as the Myb transcription factor rao6/asymmetric leaves1 (that displays altered auxin patterns) were identified and resulted in an acute sensitivity toward mitochondrial dysfunction. Induction of the AOX1a reporter system could be inhibited by the application of auxin analogs or reciprocally potentiated by blocking auxin transport. Promoter activation studies with AOX1a::GUS and DR5::GUS lines further confirmed a clear antagonistic relationship between the spatial distribution of mitochondrial stress and auxin response kinetics, respectively. Genome-wide transcriptome analyses revealed that mitochondrial stress stimuli, such as antimycin A, caused a transient suppression of auxin signaling and conversely, that auxin treatment repressed a part of the response to antimycin A treatment, including AOX1a induction. We conclude that mitochondrial stress signaling and auxin signaling are reciprocally regulated, balancing growth and stress response(s). PMID:24820025
Yan, Shijun; Du, Fang; Wu, Long; Zhang, Zhihua; Zhong, Changjia; Yu, Qing; Wang, Yongfu; Lue, Lih-Fen; Walker, Douglas G; Douglas, Justin T; Yan, Shirley ShiDu
2016-11-01
Mitochondrial abnormalities are well known to cause cognitive decline. However, the underlying molecular basis of mitochondria-associated neuronal and synaptic dysfunction in the diabetic brain remains unclear. Here, using a mitochondrial single-channel patch clamp and cyclophilin D (CypD)-deficient mice (Ppif -/- ) with streptozotocin-induced diabetes, we observed an increase in the probability of Ca 2+ -induced mitochondrial permeability transition pore (mPTP) opening in brain mitochondria of diabetic mice, which was further confirmed by mitochondrial swelling and cytochrome c release induced by Ca 2+ overload. Diabetes-induced elevation of CypD triggers enhancement of F 1 F 0 ATP synthase-CypD interaction, which in turn leads to mPTP opening. Indeed, in patients with diabetes, brain cypD protein levels were increased. Notably, blockade of the F 1 F 0 ATP synthase-CypD interaction by CypD ablation protected against diabetes-induced mPTP opening, ATP synthesis deficits, oxidative stress, and mitochondria dysfunction. Furthermore, the absence of CypD alleviated deficits in synaptic plasticity, learning, and memory in diabetic mice. Thus, blockade of ATP synthase interaction with CypD provides a promising new target for therapeutic intervention in diabetic encephalopathy. © 2016 by the American Diabetes Association.
Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration
Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi
2010-01-01
Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860
Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.
Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi
2010-05-01
Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.
Santamaría, Enrique; Avila, Matías A.; Latasa, M. Ujue; Rubio, Angel; Martín-Duce, Antonio; Lu, Shelly C.; Mato, José M.; Corrales, Fernando J.
2003-01-01
Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A−/−) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A−/− expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at ≈8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase β-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in ob/ob mice and obese patients who are at risk for nonalcoholic steatohepatitis. PMID:12631701
Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes
Tahrir, Farzaneh G.; Knezevic, Tijana; Gupta, Manish K.; Gordon, Jennifer; Cheung, Joseph Y.; Feldman, Arthur M.; Khalili, Kamel
2017-01-01
Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates expression of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. PMID:27381181
The role of mitofilin in left ventricular hypertrophy in hemodialysis patients.
Wu, Qi-Shun; He, Qing; He, Jian-Qiang; Chao, Jun; Wang, Wen-Yan; Zhou, Yan; Lou, Ji-Zhuang; Kong, Wei; Chen, Jun-Feng
2018-11-01
Left ventricular hypertrophy (LVH) is a common abnormality in hemodialysis (HD) patients. Mitochondrial dysfunction contributes to the progression of LVH. As an inner mitochondrial membrane structural protein, mitofilin plays a key role in maintaining mitochondrial structure and function. The aim of this study was to investigate the relationship between mitofilin and LVH in HD patients. A total of 98 HD patients and 32 healthy controls were included in the study. Serum N-terminal proBNP (NT-proBNP), endothelin-1 (ET-1), and atrial natriuretic peptide (ANP) were examined. The protein level of mitofilin and the mitochondrial DNA (mtDNA) copy number were estimated in peripheral blood mononuclear cells (PBMCs). The left ventricle mass index (LVMI) was evaluated in all participants, and the interaction between these variables and the LVMI was assessed. The LVMI was positively correlated with the NT-proBNP, ET-1, and ANP levels, and it was negatively correlated with mtDNA copy number and mitofilin levels. Multiple regression analysis showed that the NT-proBNP, ET-1, and ANP levels as well as mitofilin levels and mtDNA copy number were associated with the LVMI. Although further research of these associations is needed, this result suggests that LVH may affect the levels of mitofilin in HD patients.
Uittenbogaard, Martine; Brantner, Christine A; Fang, ZiShui; Wong, Lee-Jun; Gropman, Andrea; Chiaramello, Anne
2018-06-08
Little is known about the molecular mechanism of the rare coexistence of Leber's Hereditary Optic Neuropathy (LHON) and multiple sclerosis (MS), also known as the Harding's syndrome. In this study, we provide novel evidence that the m.11778A > G variant causes a defective metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis. We used dermal fibroblasts derived from a female proband exhibiting clinical symptoms compatible with LHON-MS due to the presence of the pathogenic m.11778A > G variant at near homoplasmic levels. Our mitochondrial morphometric analysis reveals abnormal cristae architecture. Live-cell respiratory studies show stunted metabolic potential and spare respiratory capacity, vital for cell survival upon a sudden energy demand. The m.11778 A > G variant also alters glycolytic activities with a diminished compensatory glycolysis, thereby preventing an efficient metabolic reprogramming during a mitochondrial ATP crisis. Our collective results provide evidence of limited bioenergetic flexibility in the presence of the m.11778 A > G variant. Our study sheds light on the potential pathophysiologic mechanism of the m.11778 A > G variant leading to energy crisis in this patient with the LHON-MS disease. Copyright © 2018. Published by Elsevier B.V.
Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M
2017-09-01
Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379-397.
Martínez-Revelles, Sonia; García-Redondo, Ana B.; Avendaño, María S.; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R.; Fortuño, Ana; Touyz, Rhian M.; Martínez-González, Jose; Salaices, Mercedes
2017-01-01
Abstract Aims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Results: Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.− levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. Innovation: We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. Conclusion: LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379–397. PMID:28010122
NASA Technical Reports Server (NTRS)
Miquel, J.; Binnard, R.; Fleming, J. E.
1983-01-01
The notion that injury to mitochondrial DNA is a cause of intrinsic aging was tested by correlating the different respiration rates of several wild strains of Drosophila melanogaster with the life-spans. Respiration rate and aging in a mutant of D. melanogaster deficient in postreplication repair were also investigated. In agreement with the rate of living theory, there was an inverse relation between oxygen consumption and median life-span in flies having normal DNA repair. The mutant showed an abnormally low life-span as compared to the controls and also exhibited significant deficiency in mating fitness and a depressed metabolic rate. Therefore, the short life-span of the mutant may be due to the congenital condition rather than to accelerated aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun
2014-12-12
Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less
Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi
2018-01-01
Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.
Toledo, Frederico G S; Goodpaster, Bret H
2013-10-15
Mitochondria within skeletal muscle have been implicated in insulin resistance of obesity and type 2 diabetes mellitus as well as impaired muscle function with normal aging. Evaluating the potential of interventions to improve mitochondria is clearly relevant to the prevention or treatment of metabolic diseases and age-related dysfunction. This review provides an overview and critical evaluation of the effects of weight loss and exercise interventions on skeletal muscle mitochondria, along with implications for insulin resistance, obesity, type 2 diabetes and aging. The available literature strongly suggests that the lower mitochondrial capacity associated with obesity, type 2 diabetes and aging is not an irreversible lesion. However, weight loss does not appear to affect this response, even when the weight loss is extreme. In contrast, increasing physical activity improves mitochondrial content and perhaps the function of individual mitochondrion. Despite the consistent effect of exercise to improve mitochondrial capacity, studies mechanistically linking mitochondria to insulin resistance, reductions in intramyocellular lipid or improvement in muscle function remain inconclusive. In summary, studies of diet and exercise training have advanced our understanding of the link between mitochondrial oxidative capacity and insulin resistance in obesity, type 2 diabetes and aging. Nevertheless, additional inquiry is necessary to establish the significance and clinical relevance of those perturbations, which could lead to targeted therapies for a myriad of conditions and diseases involving mitochondria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis
2009-10-01
Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.
Kahle, M.; Schäfer, A.; Seelig, A.; Schultheiß, J.; Wu, M.; Aichler, M.; Leonhardt, J.; Rathkolb, B.; Rozman, J.; Sarioglu, H.; Hauck, S.M.; Ueffing, M.; Wolf, E.; Kastenmueller, G.; Adamski, J.; Walch, A.; Hrabé de Angelis, M.; Neschen, S.
2014-01-01
Objective Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. Methods We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Results Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. Conclusions We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and during changes in hepatic insulin action in liver alter membrane properties – in particular those of mitochondria which are highly abundant in hepatocytes. In turn, a progressive decrease in the abundance of mitochondrial membrane proteins throughout HF-exposure likely impacts on mitochondrial energy metabolism, substrate exchange across mitochondrial membranes, contributes to oxidative stress, mitochondrial damage, and the development of insulin resistance in liver. PMID:25685688
Pernice, Wolfgang M.; Vevea, Jason D.; Pon, Liza A.
2016-01-01
Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. PMID:26839174
Parkin overexpression protects retinal ganglion cells against glutamate excitotoxicity.
Hu, Xinxin; Dai, Yi; Sun, Xinghuai
2017-01-01
To investigate the role of parkin in regulating mitochondrial homeostasis of retinal ganglion cells (RGCs) under glutamate excitotoxicity. Rat RGCs were purified from dissociated retinal tissue with a modified two-step panning protocol. Cultured RGCs were transfected with parkin using an adenovirus system. The distribution and morphology of mitochondria in the RGCs were assessed with MitoTracker. The expression and distribution of parkin and optineurin proteins were measured with western blot analysis and immunofluorescence. Cytotoxicity of RGCs was evaluated by measuring lactate dehydrogenase (LDH) activity. Mitochondrial membrane potential was determined with the JC-1 assay. The expression of Bax and Bcl-2 were measured with western blot analysis. In the presence of glutamate-induced excitotoxicity, the number of mitochondria in the axons of the RGCs was predominantly increased, and the mitochondrial membrane potential in RGCs was depolarized. The expression of the parkin and optineurin proteins was upregulated and distributed mostly in the axons of the RGCs. Overexpression of parkin stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax, and promoted the expression of optineurin under glutamate excitotoxicity. Overexpression of parkin exerted a significant protective effect on cultured RGCs against glutamate excitotoxicity. Interventions to alter the parkin-mediated mitochondria pathway may be useful in protecting RGCs against excitotoxic RGC damage.
Optical redox imaging indices discriminate human breast cancer from normal tissues
NASA Astrophysics Data System (ADS)
Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.
2016-11-01
Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (p<0.05). The redox ratio Fp/(NADH + Fp) was ˜27% higher in the cancerous tissues (p<0.05). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients.
Optical redox imaging indices discriminate human breast cancer from normal tissues
Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.
2016-01-01
Abstract. Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (p<0.05). The redox ratio Fp/(NADH + Fp) was ∼27% higher in the cancerous tissues (p<0.05). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients. PMID:27896360
Biochemical abnormalities in Pearson syndrome.
Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola
2015-03-01
Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders. © 2015 Wiley Periodicals, Inc.
Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)
Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.
1991-01-01
We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.
Ma, Xiuhui; Kang, Jingliang; Chen, Weitao; Zhou, Chuanjiang; He, Shunping
2015-10-28
The distribution of the Chinese Glyptosternoid catfish is limited to the rivers of the Tibetan Plateau and peripheral regions, especially the drainage areas of southeastern Tibet. Therefore, Glyptosternoid fishes are ideal for reconstructing the geological history of the southeastern Tibet drainage patterns and mitochondrial genetic adaptions to high elevations. Our phylogenetic results support the monophyly of the Sisoridae and the Glyptosternoid fishes. The reconstructed ancestral geographical distribution suggests that the ancestral Glyptosternoids was widely distributed throughout the Brahmaputra drainage in the eastern Himalayas and Tibetan area during the Late Miocene (c. 5.5 Ma). We found that the Glyptosternoid fishes lineage had a higher ratio of nonsynonymous to synonymous substitutions than those found in non-Glyptosternoids. In addition, ωpss was estimated to be 10.73, which is significantly higher than 1 (p-value 0.0002), in COX1, which indicates positive selection in the common ancestral branch of Glyptosternoid fishes in China. We also found other signatures of positive selection in the branch of specialized species. These results imply mitochondrial genetic adaptation to high elevations in the Glyptosternoids. We reconstructed a possible scenario for the southeastern Tibetan drainage patterns based on the adaptive geographical distribution of the Chinese Glyptosternoids in this drainage. The Glyptosternoids may have experienced accelerated evolutionary rates in mitochondrial genes that were driven by positive selection to better adapt to the high-elevation environment of the Tibetan Plateau.
Di Fonzo, Alessio; Ronchi, Dario; Lodi, Tiziana; Fassone, Elisa; Tigano, Marco; Lamperti, Costanza; Corti, Stefania; Bordoni, Andreina; Fortunato, Francesco; Nizzardo, Monica; Napoli, Laura; Donadoni, Chiara; Salani, Sabrina; Saladino, Francesca; Moggio, Maurizio; Bresolin, Nereo; Ferrero, Iliana; Comi, Giacomo P.
2009-01-01
A disulfide relay system (DRS) was recently identified in the yeast mitochondrial intermembrane space (IMS) that consists of two essential components: the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40. The DRS drives the import of cysteine-rich proteins into the IMS via an oxidative folding mechanism. Erv1p is reoxidized within this system, transferring its electrons to molecular oxygen through interactions with cytochrome c and cytochrome c oxidase (COX), thereby linking the DRS to the respiratory chain. The role of the human Erv1 ortholog, GFER, in the DRS has been poorly explored. Using homozygosity mapping, we discovered that a mutation in the GFER gene causes an infantile mitochondrial disorder. Three children born to healthy consanguineous parents presented with progressive myopathy and partial combined respiratory-chain deficiency, congenital cataract, sensorineural hearing loss, and developmental delay. The consequences of the mutation at the level of the patient's muscle tissue and fibroblasts were 1) a reduction in complex I, II, and IV activity; 2) a lower cysteine-rich protein content; 3) abnormal ultrastructural morphology of the mitochondria, with enlargement of the IMS space; and 4) accelerated time-dependent accumulation of multiple mtDNA deletions. Moreover, the Saccharomyces cerevisiae erv1R182H mutant strain reproduced the complex IV activity defect and exhibited genetic instability of the mtDNA and mitochondrial morphological defects. These findings shed light on the mechanisms of mitochondrial biogenesis, establish the role of GFER in the human DRS, and promote an understanding of the pathogenesis of a new mitochondrial disease. PMID:19409522
Chen, Peng-Yan; Zheng, Bo-Ying; Liu, Jing-Xian; Wei, Shu-Jun
2016-01-01
Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera. PMID:27727175
Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha
2017-01-01
Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.
Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina
2015-02-01
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.
Burelle, Yan; Bemeur, Chantal; Rivard, Marie-Eve; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine
2015-01-01
Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects.
Adzic, Miroslav; Mitic, Milos; Radojcic, Marija
2017-09-15
Depression is a disease of an abnormal brain energy metabolism also marked with increased apoptosis in specific brain regions. Mounting evidence indicates that the mitochondrial oxidative phosphorylation and apoptosis are novel targets for the actions of estrogen receptors (ERs). In this study, we examined the effects of antidepressant (AD) fluoxetine (FLU) treatment on the mitochondrial ER alpha (ERα), ER beta (total and phospho-pERβ) and their association with cytochrome c (cyt c) oxidase activity and apoptotic Bcl2/Bax-molecules in the hippocampal mitochondria of chronically isolated (CPSI) female and male rats depicting depression. Impaired behaviour induced by CPSI was followed by decreased corticosterone (CORT) in both sexes and downregulation of cyt c oxidase in males. CPSI did not affect the ERα in either of sexes, but it decreased mitochondrial ERβ and increased pERβ in both sexes. Stress-reduced ERβ is associated with a decrease in mitochondrial energetic processes in males and with apoptotic mechanisms in females. FLU normalized behaviour in both sexes and increased cyt c oxidase in females. FLU elevated ERα in males, increased ERβ and decreased pERβ in both sexes. The AD-induced alterations of ERβ paralleled with bioenergetics and pro-survival pathways in females. In conclusion, sex-unspecific regulation of ERβ by the stress and by AD and its differential convergence with bioenergetics and apoptotic pathways in females and males implies its role as a vulnerability factor in the stress response and emphasizes mitochondrial ERβ-dependent pathways as an important gateway of ADs action, at least in females. Copyright © 2017 Elsevier B.V. All rights reserved.
PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis
Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.
2014-01-01
Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319
Zhao, Hongcui; Zhao, Yue; Li, Tianjie; Li, Min; Li, Junsheng; Li, Rong; Liu, Ping; Yu, Yang; Qiao, Jie
2015-09-01
Classic polycystic ovary syndrome (PCOS) is a high-risk phenotype accompanied by increased risks of reproductive and metabolic abnormalities; however, the local metabolism characteristics of the ovaries and their effects on germ cell development are unclear. The present study used targeted metabolomics to detect alterations in the intermediate metabolites of follicular fluid from classic PCOS patients, and the results indicated that hyperandrogenism but not obesity induced the changed intermediate metabolites in classic PCOS patients. Regarding the direct contact, we identified mitochondrial function, redox potential, and oxidative stress in cumulus cells which were necessary to support oocyte growth before fertilization, and suggested dysfunction of mitochondria, imbalanced redox potential, and increased oxidative stress in cumulus cells of classic PCOS patients. Follicular fluid intermediary metabolic profiles provide signatures of classic PCOS ovary local metabolism and establish a close link with mitochondria dysfunction of cumulus cells, highlighting the role of metabolic signal and mitochondrial cross talk involved in the pathogenesis of classic PCOS. Copyright © 2015 Elsevier Inc. All rights reserved.
Leber's Hereditary Optic Neuropathy: The Mitochondrial Connection Revisited.
Abu-Amero, Khaled K
2011-01-01
Our current understanding of Leber's hereditary optic neuropathy (LHON)-mitochondrial connection falls short of comprehensive. Twenty years of intensive investigation have yielded a wealth of information about mitochondria, the mitochondrial genome, the metabolism of the optic nerve and other structures, and the phenotypic variability of classic LHON. However, we still cannot completely explain how primary LHON mutations injure the optic nerve or why the optic nerve is particularly at risk. We cannot explain the incomplete penetrance or the male predominance of LHON, the typical onset in young adult life without warning, or the synchronicity of visual loss. Moreover, primary LHON mutations clearly are not present in every family with the LHON phenotype (including multigenerational maternal inheritance), and they are present in only a minority of individuals who have the LHON optic neuropathy phenotype without a family history. All lines of evidence point to abnormalities of the mitochondria as the direct or indirect cause of LHON. Therefore, the mitochondria-LHON connection needs to be revisited and examined closely. This review will attempt to do that and provide an update on various aspects of LHON.
Low-level light treatment ameliorates immune thrombocytopenia
Yang, Jingke; Zhang, Qi; Li, Peiyu; Dong, Tingting; Wu, Mei X.
2016-01-01
Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP. PMID:27901126
Low-level light treatment ameliorates immune thrombocytopenia
NASA Astrophysics Data System (ADS)
Yang, Jingke; Zhang, Qi; Wu, Mei X.
2017-02-01
Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP.
Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.
2013-01-01
Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904
Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress
Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.
2012-01-01
Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112
Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A
2014-01-01
Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.
Mitochondrial dynamics in mammalian health and disease.
Liesa, Marc; Palacín, Manuel; Zorzano, Antonio
2009-07-01
The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.
SR/ER-mitochondrial local communication: Calcium and ROS
Csordás, György; Hajnóczky, György
2009-01-01
Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca2+ and ROS signaling in the control of SR/ER-mitochondrial function. PMID:19527680
Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium
Sripathi, Srinivasa R.; He, Weilue; Sylvester, O’Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S.; Jahng, Wan Jin
2016-01-01
Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration (AMD). Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde vs. anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases. PMID:27029380
Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.
2012-01-01
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225
Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium.
Sripathi, Srinivas R; He, Weilue; Sylvester, O'Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S; Jahng, Wan Jin
2016-06-01
Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.
Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus
2013-01-01
Background Species with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity. The Pyrenean desman, Galemys pyrenaicus, is a small semi-aquatic mammal that inhabits clean streams of the northern half of the Iberian Peninsula and is endangered in most of its geographic range, but its genetic structure is currently unknown. While the stringent ecological demands derived from its aquatic habitat might have caused a partition of the genetic diversity among river basins, Pleistocene glaciations would have generated a genetic pattern related to glacial refugia. Results To study the relative importance of historical and ecological factors in the genetic structure of G. pyrenaicus, we used mitochondrial and intronic sequences of specimens covering most of the species range. We show, first, that the Pyrenean desman has very low levels of genetic diversity compared to other mammals. In addition, phylogenetic and dating analyses of the mitochondrial sequences reveal a strong phylogeographic structure of a Middle Pleistocene origin, suggesting that the main lineages arose during periods of glacial isolation. Furthermore, both the spatial distribution of nuclear and mitochondrial diversity and the results of species distribution modeling suggest the existence of a major glacial refugium in the northwestern part of the Iberian Peninsula. Finally, the main mitochondrial lineages show a striking parapatric distribution without any apparent exchange of mitochondrial haplotypes between the lineages that came into secondary contact (although with certain permeability to nuclear genes), indicating incomplete mixing after the post-glacial recolonization. On the other hand, when we analyzed the partition of the genetic diversity among river basins, the Pyrenean desman showed a lower than expected genetic differentiation among main rivers. Conclusions The analysis of mitochondrial and intronic markers in G. pyrenaicus showed the predominant effects of Pleistocene glaciations on the genetic structure of this species, while the distribution of the genetic diversity was not greatly influenced by the main river systems. These results and, particularly, the discovery of a marked phylogeographic structure, may have important implications for the conservation of the Pyrenean desman. PMID:23738626
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui
2017-10-01
To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.
The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease.
Haas, Richard H
2007-06-01
The evidence supporting a treatment benefit for coenzyme Q10 (CoQ10) in primary mitochondrial disease (mitochondrial disease) whilst positive is limited. Mitochondrial disease in this context is defined as genetic disease causing an impairment in mitochondrial oxidative phosphorylation (OXPHOS). There are no treatment trials achieving the highest Level I evidence designation. Reasons for this include the relative rarity of mitochondrial disease, the heterogeneity of mitochondrial disease, the natural cofactor status and easy 'over the counter availability' of CoQ10 all of which make funding for the necessary large blinded clinical trials unlikely. At this time the best evidence for efficacy comes from controlled trials in common cardiovascular and neurodegenerative diseases with mitochondrial and OXPHOS dysfunction the etiology of which is most likely multifactorial with environmental factors playing on a background of genetic predisposition. There remain questions about dosing, bioavailability, tissue penetration and intracellular distribution of orally administered CoQ10, a compound which is endogenously produced within the mitochondria of all cells. In some mitochondrial diseases and other commoner disorders such as cardiac disease and Parkinson's disease low mitochondrial or tissue levels of CoQ10 have been demonstrated providing an obvious rationale for supplementation. This paper discusses the current state of the evidence supporting the use of CoQ10 in mitochondrial disease.
Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi
2011-01-13
PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.
Weerasinghe, Chamara Arachchighe Lahiru; Bui, Bich-Hong Thi; Vu, Thu Thi; Nguyen, Hong-Loan Thi; Phung, Bao-Khanh; Nguyen, Van-Minh; Pham, Van-Anh; Cao, Vu-Hung; Phan, Tuan-Nghia
2018-05-01
Leigh syndrome is a rare inherited, heterogeneous and progressive neurometabolic disorder that is mainly caused by specific mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). The present study reported a case of childhood Leigh syndrome with a point mutation at bp 8,993 in the mitochondrial ATPase6 gene. A 21‑month‑old male child had developed epilepsy, muscular weakness and vomiting, which was accompanied by high fever. Magnetic resonance imaging indicated typical characteristics of Leigh syndrome, including a symmetric abnormal signal in the dorsal medulla oblongata and Sylvian fissure enlargement in association with an abnormal signal in the periventricular white matter and in the putamina and caudate heads. The diagnosis was further supported with genetic tests including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), sequencing, and quantitative PCR. The patient was found to carry a mitochondrial T8993C (m.T8993C) mutation in peripheral blood with 94.00±1.34% heteroplasmy. Eight of his relatives were also subjected to quantification of the m.T8993C mutation. The percentages of heteroplasmy in samples taken from the grandmother, mother, aunt, cousin 1, and cousin 2 were 16.33±1.67, 66.81±0.85, 71.66±3.22, 87.00±1.79, and 91.24±2.50%, respectively. The mutation was not found in samples taken from the father, the husband of the aunt, or the grandfather of the patient. The obtained data showed that the mutation was maternally inherited and accumulated through generations. Even though the heteroplasmy levels of his mother, aunt, cousin 1, and cousin 2 were relatively high (66.81‑91.24%), they remained asymptomatic, indicating that the threshold at which this mutation shows effects is high. To the best of our knowledge, this is the first report of a case of Leigh syndrome in a Vietnamese individual harboring a mtDNA mutation at the 8,993 bp site, and showing a correlation between the heteroplasmy and clinical phenotype. These findings may be useful in helping to improve the clinical diagnosis and treatment of Leigh syndrome.
Superresolution Imaging of Human Cytomegalovirus vMIA Localization in Sub-Mitochondrial Compartments
Bhuvanendran, Shivaprasad; Salka, Kyle; Rainey, Kristin; Sreetama, Sen Chandra; Williams, Elizabeth; Leeker, Margretha; Prasad, Vidhya; Boyd, Jonathan; Patterson, George H.; Jaiswal, Jyoti K.; Colberg-Poley, Anamaris M.
2014-01-01
The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization. PMID:24721787
Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T
2017-11-16
The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.
2017-01-01
Screening of mud crab genus Scylla was conducted in four locations (Marudu Bay, Lundu, Taiping, Setiu) representing Malaysia. Scylla olivacea with abnormal primary and secondary sexual characters were prevalent (approximately 42.27% of the local screened S. olivacea population) in Marudu Bay, Sabah. A total of six different types of abnormalities were described. Crabs with type 1 and type 3 were immature males, type 2 and type 4 were mature males, type 5 were immature females and type 6 were mature females. The abdomen of all crabs with abnormalities were dented on both sides along the abdomen’s middle line. Abnormal crabs showed significant variation in their size, weight, abdomen width and/or gonopod or pleopod length compared to normal individuals. The mean body weight of abnormal crabs (type 1–5) were higher than normal crabs with smaller body size, while females with type 6 abnormality were always heavier than the normal counterparts at any given size. Sacculinid’s externa were observed in the abdomen of crabs with type 4 and type 6 abnormalities. The presence of embryos within the externa and subsequent molecular analysis of partial mitochondrial COI region confirmed the rhizocephalan parasite as Sacculina beauforti. Future in-depth descriptions of the life cycle and characteristics of S. beauforti are recommended as it involves a commercially important edible crab species and the effect on human health from the consumption of crabs is of crucial concern. PMID:28674645
Aguer, Céline; Gambarotta, Daniela; Mailloux, Ryan J; Moffat, Cynthia; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2011-01-01
Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.
Cao, Zhixiu; Yu, Weimin; Li, Wei; Cheng, Fan; Rao, Ting; Yao, Xiaobing; Zhang, Xiaobin; Larré, Stéphane
2015-01-01
Objective We aimed to study whether tolerance to irrigation pressure could be modified by evaluating the oxidative damage of obstructed kidneys based on rabbit models experiencing different degrees of hydronephrosis. Methods A total of 66 rabbits were randomly divided into two experimental groups and a control group. In the experimental groups, the rabbits underwent a surgical procedure inducing mild (group M, n=24) or severe (group S, n=24) hydronephrosis. In each experimental group, the rabbits were then randomly divided into 4 subgroups (M0-M3 and S0-S3) consisting of 6 rabbits each. Group 0 received no perfusion. Groups 1 through 3 were perfused with 20, 60 and 100 mmHg fluid, respectively. For the control group, after a sham operation was performed, the rabbits were divided into 4 subgroups and were perfused with fluid at 0, 20, 60 or 100 mmHg of pressure. Kidney injuries was evaluated by neutrophil gelatinase associated lipocalin (NGAL). Oxidative damage was assessed by analyzing superoxide dismutase (Mn-SOD) activity, malondialdehyde (MDA) levels, glutathione reductase (GR), catalase (CAT) and peroxide (H2O2) levels, mitochondrial injuries was assessed by mitochondrial membrane potential (MMP), the mitochondrial ultrastructure and tubular cell apoptosis. Results In the experimental groups, all results were similar for groups 0 and 1. In group 2, abnormalities were observed in the S group only, and the kidneys of rabbits in group 3 suffered oxidative damage and mitochondrial injuries with increased NGAL, decreased Mn-SOD, GR and CAT,increased MDA and H2O2, lower levels of MMP, mitochondrial vacuolization and an increased apoptotic index. Conclusion In rabbits, severely obstructed kidneys were more susceptible to oxidative damage and mitochondrial injury than mildly obstructed kidneys when subjected to higher degrees of kidney perfusion pressure. PMID:26090815
Deregulation of Mitochondria-Shaping Proteins Opa-1 and Drp-1 in Manganese-Induced Apoptosis
Alaimo, Agustina; Gorojod, Roxana M.; Beauquis, Juan; Muñoz, Manuel J.; Saravia, Flavia; Kotler, Mónica L.
2014-01-01
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases. PMID:24632637
Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis.
Alaimo, Agustina; Gorojod, Roxana M; Beauquis, Juan; Muñoz, Manuel J; Saravia, Flavia; Kotler, Mónica L
2014-01-01
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.
Wang, Sufan; Wan, Ting; Ye, Mingtong; Qiu, Yun; Pei, Lei; Jiang, Rui; Pang, Nengzhi; Huang, Yuanling; Liang, Baoxia; Ling, Wenhua; Lin, Xiaojun; Zhang, Zhenfeng; Yang, Lili
2018-07-01
Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD + ) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms. We fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ± 0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation. We found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD + levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol. NR can protect against ethanol induced liver injuries via replenishing NAD + , reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang
2017-06-01
Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.
Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E
2011-03-15
Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.
Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.
Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S
1976-01-01
Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.
A novel mitochondrial DNA 8597T>C mutation of Leigh syndrome: report of one case.
Tsai, Jeng-Dau; Liu, Chin-San; Tsao, Teng-Fu; Sheu, Ji-Nan
2012-02-01
Leigh syndrome is an early-onset progressive neurodegenerative disorder with a characteristic neuropathology consisting of focal, bilateral lesions in one or more areas of the central nervous system. The brain images of Leigh syndrome are characterized by markedly symmetrical involvement, most frequently of the putamen. We report a 2-year-old girl with Leigh syndrome manifested as acute onset of altered level of consciousness. Brain magnetic resonance images showed abnormal signal intensity over the bilateral basal ganglia and cerebellar dentate nuclei. Despite normal biochemical studies, in particular serum lactate levels, magnetic resonance spectroscopy demonstrated a downward doublet lactate peak. The diagnosis of Leigh syndrome was subsequently confirmed by genetic study which showed a novel mutation at 8597T>C of the mitochondrial ATPase6 gene. Copyright © 2012. Published by Elsevier B.V.
Naderi, Saeid; Rezaei, Hamid-Reza; Taberlet, Pierre; Zundel, Stéphanie; Rafat, Seyed-Abbas; Naghash, Hamid-Reza; El-Barody, Mohamed A. A.; Ertugrul, Okan; Pompanon, François
2007-01-01
Background From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the nomenclature of mitochondrial haplogroups in other domestic species. PMID:17925860
Mitochondrial dynamics in Parkinson's disease
Van Laar, Victor S.; Berman, Sarah B.
2009-01-01
The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events. PMID:19332061
Bonnen, Penelope E.; Yarham, John W.; Besse, Arnaud; Wu, Ping; Faqeih, Eissa A.; Al-Asmari, Ali Mohammad; Saleh, Mohammad A.M.; Eyaid, Wafaa; Hadeel, Alrukban; He, Langping; Smith, Frances; Yau, Shu; Simcox, Eve M.; Miwa, Satomi; Donti, Taraka; Abu-Amero, Khaled K.; Wong, Lee-Jun; Craigen, William J.; Graham, Brett H.; Scott, Kenneth L.; McFarland, Robert; Taylor, Robert W.
2013-01-01
Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability. PMID:23993193
Xiao, Li; Xu, Xiaoxuan; Zhang, Fan; Wang, Ming; Xu, Yan; Tang, Dan; Wang, Jiahui; Qin, Yan; Liu, Yu; Tang, Chengyuan; He, Liyu; Greka, Anna; Zhou, Zhiguang; Liu, Fuyou; Dong, Zheng; Sun, Lin
2017-04-01
Mitochondria play a crucial role in tubular injury in diabetic kidney disease (DKD). MitoQ is a mitochondria-targeted antioxidant that exerts protective effects in diabetic mice, but the mechanism underlying these effects is not clear. We demonstrated that mitochondrial abnormalities, such as defective mitophagy, mitochondrial reactive oxygen species (ROS) overexpression and mitochondrial fragmentation, occurred in the tubular cells of db/db mice, accompanied by reduced PINK and Parkin expression and increased apoptosis. These changes were partially reversed following an intraperitoneal injection of mitoQ. High glucose (HG) also induces deficient mitophagy, mitochondrial dysfunction and apoptosis in HK-2 cells, changes that were reversed by mitoQ. Moreover, mitoQ restored the expression, activity and translocation of HG-induced NF-E2-related factor 2 (Nrf2) and inhibited the expression of Kelch-like ECH-associated protein (Keap1), as well as the interaction between Nrf2 and Keap1. The reduced PINK and Parkin expression noted in HK-2 cells subjected to HG exposure was partially restored by mitoQ. This effect was abolished by Nrf2 siRNA and augmented by Keap1 siRNA. Transfection with Nrf2 siRNA or PINK siRNA in HK-2 cells exposed to HG conditions partially blocked the effects of mitoQ on mitophagy and tubular damage. These results suggest that mitoQ exerts beneficial effects on tubular injury in DKD via mitophagy and that mitochondrial quality control is mediated by Nrf2/PINK. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.
Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle
2017-10-01
Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.
Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A; Joven, Jorge; Fernández-Arroyo, Salvador
2016-01-01
Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.
Deletion of murine choline dehydrogenase results in diminished sperm motility
Johnson, Amy R.; Craciunescu, Corneliu N.; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J.; Blusztajn, Jan K.; Zeisel, Steven H.
2010-01-01
Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh−/− mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh−/− males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh+/+ and Chdh−/− mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh−/− males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh−/− sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh−/− animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.—Johnson, A. R., Craciunescu, C. N., Guo, Z., Teng, Y.-W., Thresher, R. J., Blusztajn, J. K., Zeisel, S. H. Deletion of murine choline dehydrogenase results in diminished sperm motility. PMID:20371614
Kang, Hyun Tae; Park, Joon Tae; Choi, Kobong; Choi, Hyo Jei Claudia; Jung, Chul Won; Kim, Gyu Ree; Lee, Young-Sam; Park, Sang Chul
2017-06-01
Hutchinson-Gilford progeria syndrome (HGPS) constitutes a genetic disease wherein an aging phenotype manifests in childhood. Recent studies indicate that reactive oxygen species (ROS) play important roles in HGPS phenotype progression. Thus, pharmacological reduction in ROS levels has been proposed as a potentially effective treatment for patient with this disorder. In this study, we performed high-throughput screening to find compounds that could reduce ROS levels in HGPS fibroblasts and identified rho-associated protein kinase (ROCK) inhibitor (Y-27632) as an effective agent. To elucidate the underlying mechanism of ROCK in regulating ROS levels, we performed a yeast two-hybrid screen and discovered that ROCK1 interacts with Rac1b. ROCK activation phosphorylated Rac1b at Ser71 and increased ROS levels by facilitating the interaction between Rac1b and cytochrome c. Conversely, ROCK inactivation with Y-27632 abolished their interaction, concomitant with ROS reduction. Additionally, ROCK activation resulted in mitochondrial dysfunction, whereas ROCK inactivation with Y-27632 induced the recovery of mitochondrial function. Furthermore, a reduction in the frequency of abnormal nuclear morphology and DNA double-strand breaks was observed along with decreased ROS levels. Thus, our study reveals a novel mechanism through which alleviation of the HGPS phenotype is mediated by the recovery of mitochondrial function upon ROCK inactivation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A.; Joven, Jorge; Fernández-Arroyo, Salvador
2016-01-01
Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.
Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny
2014-05-01
To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.
Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B
Vališ, Karel; Grobárová, Valéria; Hernychová, Lucie; Bugáňová, Martina; Kavan, Daniel; Kalous, Martin; Černý, Jiří; Stodůlková, Eva; Kuzma, Marek; Flieger, Miroslav; Černý, Jan; Novák, Petr
2017-01-01
Abnormalities in cancer metabolism represent potential targets for cancer therapy. We have recently identified a natural compound Quambalarine B (QB), which inhibits proliferation of several leukemic cell lines followed by cell death. We have predicted ubiquinone binding sites of mitochondrial respiratory complexes as potential molecular targets of QB in leukemia cells. Hence, we tracked the effect of QB on leukemia metabolism by applying several omics and biochemical techniques. We have confirmed the inhibition of respiratory complexes by QB and found an increase in the intracellular AMP levels together with respiratory substrates. Inhibition of mitochondrial respiration by QB triggered reprogramming of leukemic cell metabolism involving disproportions in glycolytic flux, inhibition of proteins O-glycosylation, stimulation of glycine synthesis pathway, and pyruvate kinase activity, followed by an increase in pyruvate and a decrease in lactate levels. Inhibition of mitochondrial complex I by QB suppressed folate metabolism as determined by a decrease in formate production. We have also observed an increase in cellular levels of several amino acids except for aspartate, indicating the dependence of Jurkat (T-ALL) cells on aspartate synthesis. These results indicate blockade of mitochondrial complex I and II activity by QB and reduction in aspartate and folate metabolism as therapeutic targets in T-ALL cells. Anti-cancer activity of QB was also confirmed during in vivo studies, suggesting the therapeutic potential of this natural compound. PMID:29262552
Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes.
Tahrir, Farzaneh G; Knezevic, Tijana; Gupta, Manish K; Gordon, Jennifer; Cheung, Joseph Y; Feldman, Arthur M; Khalili, Kamel
2017-04-01
Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.
Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I
2016-12-01
The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.
Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf
2017-01-01
The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.
2013-01-01
Background Mitochondrial genes are among the most commonly used markers in studies of species’ phylogeography and to draw conclusions about taxonomy. The Hyles euphorbiae complex (HEC) comprises six distinct mitochondrial lineages in the Mediterranean region, of which one exhibits a cryptic disjunct distribution. The predominant mitochondrial lineage in most of Europe, euphorbiae, is also present on Malta; however, it is nowadays strangely absent from Southern Italy and Sicily, where it is replaced by 'italica'. A separate biological entity in Italy is further corroborated by larval colour patterns with a congruent, confined suture zone along the Northern Apennines. By means of historic DNA extracted from museum specimens, we aimed to investigate the evolution of the mitochondrial demographic structure of the HEC in Italy and Malta throughout the Twentieth Century. Results At the beginning of the Twentieth Century, the European mainland lineages were also present at a moderate frequency in Southern Italy and Sicily. The proportion of 'italica' then steadily increased in this area from below 60 percent to near fixation in about 120 years. Thus, geographical sorting of mitochondrial lineages in the HEC was not as complete then as the current demography suggests. The pattern of an integral 'italica' core region and a disjunct euphorbiae distribution evolved very recently. To explain these strong demographic changes, we propose genetic drift due to anthropogenic habitat loss and fragmentation in combination with an impact from recent climate warming that favoured the spreading of the potentially better adapted 'italica' populations. Conclusions The pattern of geographically separated mitochondrial lineages is commonly interpreted as representing long term separated entities. However, our results indicate that such a pattern can emerge surprisingly quickly, even in a widespread and rather common taxon. We thus caution against drawing hasty taxonomic conclusions from biogeographical patterns of mitochondrial markers derived from modern sampling alone. PMID:23594258
2012-01-01
Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection. PMID:22935041
Wielstra, Ben; Arntzen, Jan W
2012-08-30
If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. We first delimit a ca. 54,000 km(2) area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection.
King, Timothy L.; Eackles, Michael S.; Reshetnikov, Andrey N.
2015-01-01
Human-mediated translocations and subsequent large-scale colonization by the invasive fish rotan (Perccottus glenii Dybowski, 1877; Perciformes, Odontobutidae), also known as Amur or Chinese sleeper, has resulted in dramatic transformations of small lentic ecosystems. However, no detailed genetic information exists on population structure, levels of effective movement, or relatedness among geographic populations of P. glenii within the European part of the range. We used massively parallel genomic DNA shotgun sequencing on the semiconductor-based Ion Torrent Personal Genome Machine (PGM) sequencing platform to identify nuclear microsatellite and mitochondrial DNA sequences in P. glenii from European Russia. Here we describe the characterization of nine nuclear microsatellite loci, ascertain levels of allelic diversity, heterozygosity, and demographic status of P. glenii collected from Ilev, Russia, one of several initial introduction points in European Russia. In addition, we mapped sequence reads to the complete P. glenii mitochondrial DNA sequence to identify polymorphic regions. Nuclear microsatellite markers developed for P. glenii yielded sufficient genetic diversity to: (1) produce unique multilocus genotypes; (2) elucidate structure among geographic populations; and (3) provide unique perspectives for analysis of population sizes and historical demographics. Among 4.9 million filtered P. glenii Ion Torrent PGM sequence reads, 11,304 mapped to the mitochondrial genome (NC_020350). This resulted in 100 % coverage of this genome to a mean coverage depth of 102X. A total of 130 variable sites were observed between the publicly available genome from China and the studied composite mitochondrial genome. Among these, 82 were diagnostic and monomorphic between the mitochondrial genomes and distributed among 15 genome regions. The polymorphic sites (N = 48) were distributed among 11 mitochondrial genome regions. Our results also indicate that sequence reads generated from two three-hour runs on the Ion Torrent PGM can generate a sufficient number of nuclear and mitochondrial markers to improve understanding of the evolutionary and ecological dynamics of non-model and in particular, invasive species.
Baker, C S; Palumbi, S R; Lambertsen, R H; Weinrich, M T; Calambokidis, J; O'Brien, S J
1990-03-15
Humpback whales (Megaptera novaeangliae) migrate nearly 10,000 km each year between summer feeding grounds in temperate or near-polar waters and winter breeding grounds in shallow tropical waters. Observations of marked individuals suggest that major oceanic populations of humpback whales are divided into a number of distinct seasonal subpopulations which are not separated by obvious geographic barriers. To test whether these observed patterns of distribution and migration are reflected in the genetic structure of populations, we looked for variation in the mitochondrial DNA of 84 individual humpback whales on different feeding and wintering grounds of the North Pacific and western North Atlantic oceans. On the basis of restriction-fragment analysis, we now report a marked segregation of mitochondrial DNA haplotypes among subpopulations as well as between the two oceans. We interpret this segregation to be the consequence of maternally directed fidelity to migratory destinations.
Headless spermatozoa in infertile men.
Sha, Y-W; Ding, L; Wu, J-X; Lin, S-B; Wang, X; Ji, Z-Y; Li, P
2017-10-01
Spermatozoa morphology, an important parameter in a semen specimen's potential fertility evaluation, is a significant factor for in vitro fertilisation in assisted reproductive technology. Eleven sterile men with headless spermatozoa, a type of human teratozoospermia, are presented. Their ejaculates' headless spermatozoa percentages were high with rare normal spermatozoa forms. Additionally, abnormal morphology (e.g. round-headed or microcephalic spermatozoa) was also found. Spermatozoa motility was somewhat affected, potentially because of the missing mitochondrial sheath at the sperm tail base. Patients who underwent assisted reproductive technology treatment experienced adverse pregnancy outcomes. Work types and corresponding environments seemed irrelevant, but specific family history may have prompted its genetic origin. Computer-assisted semen analysis systems easily mistake headless spermatozoa as oligozoospermia because of nonrecognition of the loose head. However, morphological testing, especially with an electronic microscope, clearly identifies abnormal spermatozoa. Future exploration requires more methods investigating the frequency and percentage of this morphological abnormality in different populations with varied fertility levels. Such research would estimate the probable correlation of the abnormality with other semen parameters and examine the potential developmental or genetic origins. During clinical work, medical staff should detect these cases, avoid misdiagnosis and provide proper consultation about diagnosis and assisted reproductive technology treatment. © 2016 Blackwell Verlag GmbH.
The pathophysiology of mitochondrial disease as modeled in the mouse.
Wallace, Douglas C; Fan, Weiwei
2009-08-01
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.
Cartledge, T. G.; Lloyd, D.
1972-01-01
1. Homogenates were prepared from sphaeroplasts of aerobically grown glucose-de-repressed Saccharomyces carlsbergensis and the distributions of marker enzymes were investigated after differential centrifugation. Cytochrome c oxidase and cytochrome c were sedimented almost completely at 105g-min, and this fraction also contained 37% of the catalase, 27% of the acid p-nitrophenyl phosphatase, 53 and 54% respectively of the NADH– and NADPH–cytochrome c oxidoreductases. 2. Zonal centrifugation indicated complex density distributions of the sedimentable portions of these enzymes and of adenosine triphosphatases and suggested the presence of two mitochondrial populations, as well as a bimodal distribution of peroxisomes and heterogeneity of the acid p-nitrophenyl phosphatase-containing particles. 3. Several different adenosine triphosphatases were distinguished in a post-mitochondrial supernatant that contained no mitochondrial fragments; these enzymes varied in their sensitivities to oligomycin and ouabain and their distributions were different from those of pyrophosphatase, adenosine phosphatase and adenosine pyrophosphatase. 4. The distribution of NADPH–cytochrome c oxidoreductase demonstrated that it cannot be used in S. carlsbergensis as a specific marker enzyme for the microsomal fraction. Glucose 6-phosphatase, inosine pyrophosphatase, cytochrome P-450 and five other enzymes frequently assigned to microsomal fractions of mammalian origin were not detected in yeast under these growth conditions. ImagesPLATE 2PLATE 1 (cont.)PLATE 1PLATE 2 (cont.) PMID:4400904
Genetic imprint of the Mongol: signal from phylogeographic analysis of mitochondrial DNA.
Cheng, Baoweng; Tang, Wenru; He, Li; Dong, Yongli; Lu, Jing; Lei, Yunping; Yu, Haijing; Zhang, Jiali; Xiao, Chunjie
2008-01-01
Mitochondrial deoxyribonucleic acid (DNA) from 201 unrelated Mongolian individuals in the three different regions was analyzed. The Mongolians took the dominant East Asian-specific haplogroups, and some European-prevalent haplogroups were detected. The East Asians-specific haplogroups distributed from east to west in decreasing frequencies, and the European-specific haplogroups distributed conversely. These genetic data suggest that the Mongolian empire played an important role in the maternal genetic admixture across Mongolians and even Central Asian populations, whereas the Silk Road might have contributed little in the admixture between the East Asians and the Europeans.
Telling apart Felidae and Ursidae from the distribution of nucleotides in mitochondrial DNA
NASA Astrophysics Data System (ADS)
Rovenchak, Andrij
2018-02-01
Rank-frequency distributions of nucleotide sequences in mitochondrial DNA are defined in a way analogous to the linguistic approach, with the highest-frequent nucleobase serving as a whitespace. For such sequences, entropy and mean length are calculated. These parameters are shown to discriminate the species of the Felidae (cats) and Ursidae (bears) families. From purely numerical values we are able to see in particular that giant pandas are bears while koalas are not. The observed linear relation between the parameters is explained using a simple probabilistic model. The approach based on the non-additive generalization of the Bose distribution is used to analyze the frequency spectra of the nucleotide sequences. In this case, the separation of families is not very sharp. Nevertheless, the distributions for Felidae have on average longer tails comparing to Ursidae.
The complete mitochondrial genome of Glaucidium brodiei (Strigiformes: Strigidae).
Sun, Xiaonan; Zhou, Wenliang; Sun, Zhonglou; Qian, Lifu; Zhang, Yanan; Pan, Tao; Zhang, Baowei
2016-07-01
In this paper, the complete mitochondrial genome of Glaucidium brodiei is sequenced and reported for the first time. The mitochondrial genome is a circular molecule of 17,318 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and a control region. Overall base composition of the complete mitochondrial DNA is A (29.9%), G (14.1%), C (32.1%) and T (23.9%), the percentage of A and T (53.8%) is slightly higher than G and C (46.2%). All the genes in G. brodiei are distributed on the H-strand, except for the ND6 subunit gene and nine tRNA genes, which are encoded on the L-strand.
Selections that isolate recombinant mitochondrial genomes in animals
Ma, Hansong; O'Farrell, Patrick H
2015-01-01
Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germline and revealed somatic recombination. When the recombination partner was a diverged Drosophila melanogaster genome or a genome from a different species such as Drosophila yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome. DOI: http://dx.doi.org/10.7554/eLife.07247.001 PMID:26237110
Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio
2013-05-01
Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Vandana, V P; Bindu, Parayil Sankaran; Sonam, Kothari; Govindaraj, Periyasamy; Taly, Arun B; Gayathri, Narayanappa; Chiplunkar, Shwetha; Govindaraju, Chikkanna; Arvinda, H R; Nagappa, Madhu; Sinha, Sanjib; Thangaraj, Kumarasamy
2016-09-01
Reports of audiological manifestations in specific subgroups of mitochondrial disorders are limited. This study aims to describe the audiological findings in patients with MELAS syndrome and m.3243A>G mutation. Audiological evaluation was carried out in eight patients with confirmed MELAS syndrome and m.3243A>G mutation. The evaluation included a complete neurological evaluation, pure tone audiometry (n=8), otoacoustic emissions (n=8) and brainstem evoked response audiometry (n=6), magnetic resonance imaging (n=8) and muscle biospy (n=6). Eight patients (Age range: 5-45 years; M:F-1:3) including six children and two adults underwent formal audiological evaluation. Five patients had hearing loss; of these two had "subclinical hearing loss", one had moderate and two had severe hearing loss. The abnormalities included abnormal audiometry (n=5), otoacoustic emission testing (n=7) and absent brainstem auditory evoked responses (n=1). The findings were suggestive of cochlear involvement in four and retrocochlear in one. This study shows that hearing loss of both cochlear and retrocochlear origin occurs in patients with MELAS and may be subclinical. Early referrals for audiological evaluation is warranted to recognize the subclinical hearing loss in these patients. The therapeutic implications include early interventions in the form of hearing aids, cochlear implants and cautioning the physicians for avoidance of aminoglycosides. Copyright © 2016 Elsevier B.V. All rights reserved.
Cellular bioenergetics is impaired in patients with chronic fatigue syndrome.
Tomas, Cara; Brown, Audrey; Strassheim, Victoria; Elson, Joanna L; Newton, Julia; Manning, Philip
2017-01-01
Chronic fatigue syndrome (CFS) is a highly debilitating disease of unknown aetiology. Abnormalities in bioenergetic function have been cited as one possible cause for CFS. Preliminary studies were performed to investigate cellular bioenergetic abnormalities in CFS patients. A series of assays were conducted using peripheral blood mononuclear cells (PBMCs) from CFS patients and healthy controls. These experiments investigated cellular patterns in oxidative phosphorylation (OXPHOS) and glycolysis. Results showed consistently lower measures of OXPHOS parameters in PBMCs taken from CFS patients compared with healthy controls. Seven key parameters of OXPHOS were calculated: basal respiration, ATP production, proton leak, maximal respiration, reserve capacity, non-mitochondrial respiration, and coupling efficiency. While many of the parameters differed between the CFS and control cohorts, maximal respiration was determined to be the key parameter in mitochondrial function to differ between CFS and control PBMCs due to the consistency of its impairment in CFS patients found throughout the study (p≤0.003). The lower maximal respiration in CFS PBMCs suggests that when the cells experience physiological stress they are less able to elevate their respiration rate to compensate for the increase in stress and are unable to fulfil cellular energy demands. The metabolic differences discovered highlight the inability of CFS patient PBMCs to fulfil cellular energetic demands both under basal conditions and when mitochondria are stressed during periods of high metabolic demand.
Jeon, Hyuk-Joon; You, Seung Yeop; Kim, Dong Hyun; Jeon, Hong Bae; Oh, Jeong Su
2017-08-01
Following ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.
Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.
2014-01-01
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481
Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos
2003-06-01
Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release induced by the inner membrane permeability transition. These advances in the knowledge of mitochondrial cell death mechanisms and their inhibitors may lead to neuroprotective interventions applicable to Parkinsons's disease.
2010-01-01
Background Leuciscinae is a subfamily belonging to the Cyprinidae fish family that is widely distributed in Circum-Mediterranean region. Many efforts have been carried out to deciphering the evolutionary history of this group. Thus, different biogeographical scenarios have tried to explain the colonization of Europe and Mediterranean area by cyprinids, such as the "north dispersal" or the "Lago Mare dispersal" models. Most recently, Pleistocene glaciations influenced the distribution of leuciscins, especially in North and Central Europe. Weighing up these biogeographical scenarios, this paper constitutes not only the first attempt at deciphering the mitochondrial and nuclear relationships of Mediterranean leuciscins but also a test of biogeographical hypotheses that could have determined the current distribution of Circum-Mediterranean leuciscins. Results A total of 4439 characters (mitochondrial + nuclear) from 321 individuals of 176 leuciscine species rendered a well-supported phylogeny, showing fourteen main lineages. Analyses of independent mitochondrial and nuclear markers supported the same main lineages, but basal relationships were not concordant. Moreover, some incongruence was found among independent mitochondrial and nuclear phylogenies. The monophyly of some poorly known genera such as Pseudophoxinus and Petroleuciscus was rejected. Representatives of both genera belong to different evolutionary lineages. Timing of cladogenetic events among the main leuciscine lineages was gained using mitochondrial and all genes data set. Conclusions Adaptations to a predatory lifestyle or miniaturization have superimposed the morphology of some species. These species have been separated into different genera, which are not supported by a phylogenetic framework. Such is the case of the genera Pseudophoxinus and Petroleuciscus, which real taxonomy is not well known. The diversification of leuciscine lineages has been determined by intense vicariant events following the paleoclimatological and hydrogeological history of Mediterranean region. We propose different colonization models of Mediterranean region during the early Oligocene. Later vicariance events promoted Leuciscinae diversification during Oligocene and Miocene periods. Our data corroborate the presence of leuciscins in North Africa before the Messinian salinity crisis. Indeed, Messinian period appears as a stage of gradually Leuciscinae diversification. The rise of humidity at the beginning of the Pliocene promoted the colonization and posterior isolation of newly established freshwater populations. Finally, Pleistocene glaciations determined the current European distribution of some leuciscine species. PMID:20807419
Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria
NASA Astrophysics Data System (ADS)
Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.
2006-02-01
We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.
Yadak, Rana; Sillevis Smitt, Peter; van Gisbergen, Marike W.; van Til, Niek P.; de Coo, Irenaeus F. M.
2017-01-01
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease. PMID:28261062
Sensory Neuropathy Due to Loss of Bcl-w
Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.
2010-01-01
Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1998-01-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1997-12-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni
2012-01-01
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-01-01
Abstract Iron–sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe–S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. PMID:29040572
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Powis, Zoe; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-12-15
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. © The Author 2017. Published by Oxford University Press.
Mitoquinone restores platelet production in irradiation-induced thrombocytopenia
Ramsey, Haley; Zhang, Qi; Wu, Mei X.
2014-01-01
Myelodysplastic syndromes (MDS) are hallmarked by cytopenia and dysplasia of hematopoietic cells, often accompanied by mitochondrial dysfunction and increases of reactive oxygen species (ROS) within affected cells. However, it is not known whether the increase in ROS production is an instigator or a byproduct of the disease. The present investigation shows that mice lacking immediate early responsive gene X-1 (IEX-1) exhibit lineage specific increases in ROS production and abnormal cytology upon radiation in blood cell types commonly identified in MDS. These affected cell lineages chiefly have the bone marrow as a primary site of differentiation and maturation, while cells with extramedullary differentiation and maturation like B- and T-cells remain unaffected. Increased ROS production is likely to contribute significantly to irradiation-induced thrombocytopenia in the absence of IEX-1 as demonstrated by effective reversal of the disorder after mitoquinone (MitoQ) treatment, a mitochondria-specific antioxidant. MitoQ reduced intracellular ROS production within megakaryocytes and platelets. It also normalized mitochondrial membrane potential and superoxide production in platelets in irradiated, IEX-1 deficient mice. The lineage-specific effects of mitochondrial ROS may help us understand the etiology of thrombocytopenia in association with MDS in a subgroup of the patients. PMID:25025394
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1997-06-01
We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.
Michalovova, M; Vyskot, B; Kejnovsky, E
2013-10-01
We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.
Ohta, Keisuke; Okayama, Satoko; Togo, Akinobu; Nakamura, Kei-Ichiro
2014-11-01
The endoplasmic reticulum (ER) and mitochondria associate at multiple contact sites to form specific domains known as mitochondria-ER associated membranes (MAMs) that play a role in the regulation of various cellular processes such as Ca2+ transfer, autophagy, and inflammation. Recently, it has been suggested that MAMs are also involved in mitochondrial dynamics, especially fission events. Cytological analysis showed that ER tubules were frequently located close to each other in mitochondrial fission sites that accumulate fission-related proteins. Three-dimensional (3D) imaging of ER-mitochondrial contacts in yeast mitochondria by using cryo-electron tomography also showed that ER tubules were attached near the constriction site, which is considered to be a fission site1). MAMs have been suggested to play a role in the initiation of mitochondrial fission, although the molecular relationships between MAMs and the mitochondrial fission process have not been established. Although an ER-mitochondrial membrane association has also been observed at the fission site in mammalian mitochondria, the detailed organization of MAMs around mammalian mitochondria remains to be established. To visualize the 3D distribution of the ER-mitochondrial contacts around the mitochondria, especially around the constriction site in mammalian cells, we attempted 3D structural analysis of the mammalian cytoplasm using high-resolution focused ion-beam scanning electron microscopy (FIB-SEM) tomography, and observed the distribution pattern of ER contacts around the mammalian mitochondrial constriction site.Rat hepatocytes and HeLa cells were used. Liver tissue was obtained from male rats (Wistar, 6W) fixed by transcardial perfusion of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) under deep anesthesia. HeLa cells were fixed with the same fixative. The specimens were then stained en bloc to enhance membrane contrast and embedded in epoxy resin2). The surface of the specimens was freshly exposed using an ultramicrotome and examined by FIB/SEM (Quanta 3D FEG, FEI, USA). Ion-beam milling and image acquisition cycles were performed under the following conditions. The milling was performed with a gallium ion beam at 30 kV with a current of 100 pA, with a milling pitch of 10 nm/step. Material contrast images using backscattered electrons (BSE) were acquired at a landing energy of 2 keV with a bias voltage of 1.5-2.5 kV using a vCD detector. The remaining acquisition parameters were as follows: beam current = 11 pA, dwell time = 6-30 µs/pixel, image size = 1024 × 883 pixel (5.9 × 5.1 µm), pixel size = 5.8 nm/pixel. The resultant image stack was processed using Avizo 6.3 and Amira 5.4(FEI, USA).Reconstructed volume showed the existence of several constriction sites on mitochondria in both chemically fixed normal hepatocytes and HeLa cells. Each material contrast image of specimen surfaces showed two types of membrane associations between the ER and mitochondria. The first was an osmiophilic bridge-like structure; these bridges were approximately 50 nm in length, and they connected the ER membrane and the mitochondrial outer membrane (OMM). The second was a close apposition (< 20 nm) of the ER membrane and the OMM. Membrane segmentation revealed the 3D distribution of the membrane contacts; 10 to 20% of the mitochondrial surface was occupied by ER contacts. No fundamental difference was observed between hepatocytes and HeLa cells in the distribution pattern of the contacts. Although ER-contacts and bridge-like structures were occasionally found to accumulate around the mitochondrial constriction area, we did not observe any ring-like ER tubules around the mammalian mitochondrial constriction site, as in yeast. These results suggest that the role of ER-membrane associations in the mitochondrial fission process may differ between mammals and yeast. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan
2009-01-01
Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385
Israeli, Eitan; Dryanovski, Dilyan I.; Schumacker, Paul T.; Chandel, Navdeep S.; Singer, Jeffrey D.; Julien, Jean P.; Goldman, Robert D.; Opal, Puneet
2016-01-01
Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin–proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation. PMID:27000625
Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.
Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D; Jacobs, Howard T
2016-01-01
The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.
Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth
Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D.; Jacobs, Howard T.
2016-01-01
The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level. PMID:26812173
Nerve and muscle involvement in mitochondrial disorders: an electrophysiological study.
Mancuso, Michelangelo; Piazza, Selina; Volpi, Leda; Orsucci, Daniele; Calsolaro, Valeria; Caldarazzo Ienco, Elena; Carlesi, Cecilia; Rocchi, Anna; Petrozzi, Lucia; Calabrese, Rosanna; Siciliano, Gabriele
2012-04-01
Involvement of the peripheral nervous system in mitochondrial disorders (MD) has been previously reported. However, the exact prevalence of peripheral neuropathy and/or myopathy in MD is still unclear. In order to evaluate the prevalence of neuropathy and myopathy in MD, we performed sensory and motor nerve conduction studies (NCS) and concentric needle electromyography (EMG) in 44 unselected MD patients. NCS were abnormal in 36.4% of cases, and were consistent with a sensori-motor axonal multineuropathy (multifocal neuropathy), mainly affecting the lower limbs. EMG evidence of myopathy was present in 54.5% of patients, again mainly affecting the lower limbs. Nerve and muscle involvement was frequently subclinical. Peripheral nerve and muscle involvement is common in MD patients. Our study supports the variability of the clinical expression of MD. Further studies are needed to better understand the molecular basis underlying the phenotypic variability among MD patients.
Schizophrenia and Leigh syndrome, a simple comorbidity or the same etiopathogeny: about a case.
Mnif, Leila; Sellami, Rim; Masmoudi, Jawaher
2015-01-01
Leigh syndrome is a mitochondrial encephalomyopathy that occurs due to "cytochrome c oxidase deficiency". Few psychiatric disorders have been defined that are associated with Leigh syndrome. The objective of this work is to study relations between mitochondrial dysfunction and psychiatric disorders. It was a 20 year old male patient, who received Modopar, for severe extra pyramidal symptoms caused by Leigh syndrome. He developed, four months ago, acute psychotic symptoms such as audio-visual hallucinations, persecution and mystic delirium. The cerebral MRI has shown signal abnormalities in central grey nucleus. The EEG recording and blood test were normal. The hypothesis of drug induced psychiatric disorders (Modopar) was possible. The evolution under atypical antipsychotic was only partial. In this case, the cerebrospinal fluid and lactate levels mean that mitochondria were not an overall explanation for these psychiatric disorders but may at least play a partial role. Psychiatric disorders may just be acomorbidity.
Wang, Pengfei; Sha, Tao; Zhang, Yunrun; Cao, Yang; Mi, Fei; Liu, Cunli; Yang, Dan; Tang, Xiaozhao; He, Xiaoxia; Dong, Jianyong; Wu, Jinyan; Yoell, Shanze; Yoell, Liam; Zhang, Ke-Qin; Zhang, Ying; Xu, Jianping
2017-05-09
In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally. As a result, individual organisms are homoplasmic, containing mitochondrial DNA (mtDNA) from a single parent. Here we analyzed the mitochondrial genotypes in Clade I of the gourmet mushroom Thelephora ganbajun from its broad geographic distribution range. A total of 299 isolates from 28 geographic locations were sequenced at three mitochondrial loci: the mitochondrial small ribosomal RNA gene, and the cytochrome c oxidase subunits I (COX1) and III (COX3) genes. Quantitative PCR analyses showed that the strains had about 60-160 copies of mitochondrial genomes per cell. Interestingly, while no evidence of heteroplasmy was found at the 12S rRNA gene, 262 of the 299 isolates had clear evidence of heterogeneity at either the COX1 (261 isolates) or COX3 (12 isolates) gene fragments. The COX1 heteroplasmy was characterized by two types of introns residing at different sites of the same region and at different frequencies among the isolates. Allelic association analyses of the observed mitochondrial polymorphic nucleotide sites suggest that mtDNA recombination is common in natural populations of this fungus. Our results contrast the prevailing view that heteroplasmy, if exists, is only transient in basidiomycete fungi.
The contribution of the mitochondrial genome to sex-specific fitness variance.
Smith, Shane R T; Connallon, Tim
2017-05-01
Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex-biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations-including the correlation of mutant fitness effects between the sexes-on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias
2015-01-01
The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643
The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities.
Hertweck, Kate L; Dasgupta, Santanu
2017-01-01
Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.
Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons
USDA-ARS?s Scientific Manuscript database
The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...
Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R
2017-07-15
Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Peris, David; Arias, Armando; Orlić, Sandi; Belloch, Carmela; Pérez-Través, Laura; Querol, Amparo; Barrio, Eladio
2017-03-01
Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Bekker, Eugeniya I; Karabanov, Dmitry P; Galimov, Yan R; Haag, Christoph R; Neretina, Tatiana V; Kotov, Alexey A
2018-01-01
Species with a large geographic distributions present a challenge for phylogeographic studies due to logistic difficulties of obtaining adequate sampling. For instance, in most species with a Holarctic distribution, the majority of studies has concentrated on the European or North American part of the distribution, with the Eastern Palearctic region being notably understudied. Here, we study the phylogeography of the freshwater cladoceran Daphnia magna Straus, 1820 (Crustacea: Cladocera), based on partial mitochondrial COI sequences and using specimens from populations spread longitudinally from westernmost Europe to easternmost Asia, with many samples from previously strongly understudied regions in Siberia and Eastern Asia. The results confirm the previously suspected deep split between Eastern and Western mitochondrial haplotype super-clades. We find a narrow contact zone between these two super-clades in the eastern part of Western Siberia, with proven co-occurrence in a single lake in the Novosibirsk region. However, at present there is no evidence suggesting that the two mitochondrial super-clades represent cryptic species. Rather, they may be explained by secondary contact after expansion from different refugia. Interestingly, Central Siberia has previously been found to be an important contact zone also in other cladoceran species, and may thus be a crucial area for understanding the Eurasian phylogeography of freshwater invertebrates. Together, our study provides an unprecedented complete, while still not global, picture of the phylogeography of this important model species.
Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders.
Molero-Luis, Marta; Serrano, Mercedes; Ormazábal, Aida; Pérez-Dueñas, Belén; García-Cazorla, Angels; Pons, Roser; Artuch, Rafael
2013-06-01
To determine the prevalence of dopaminergic abnormalities in 1388 children with neurological disorders, and to analyse their clinical, neuroradiological, and electrophysiological characteristics. We studied biogenic amines in 1388 cerebrospinal fluid (CSF) samples from children with neurological disorders (mean age 3y 10mo, SD 4y 5mo; 712 males, 676 females. Correlations among CSF homovanillic acid (HVA) values and other biochemical, clinical, neuroradiological, and electrophysiological parameters were analysed. Twenty-one patients with primary dopaminergic deficiencies were identified. Of the whole sample, 20% showed altered HVA. We report neurological diseases with abnormal CSF HVA values such as pontocerebellar hypoplasia, perinatal asphyxia, central nervous system infections, mitochondrial disorders, and other genetic diseases. Overlapping HVA levels between primary and secondary dopamine deficiencies were observed. Prevalence of low CSF HVA levels was significantly higher in neonatal patients (χ(2) =84.8, p<0.001). Abnormalities in white matter were associated with low CSF HVA (odds ratio 2.3, 95% confidence interval 1.5-3.5). HVA abnormalities are observed in various neurological diseases, but some are probably an unspecific finding. No clear limits for CSF HVA values pointing towards primary diseases can be stated. We report several neurological diseases showing HVA alterations. No neuroimaging traits were associated with low HVA values, except for white matter abnormalities. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh
2016-01-01
The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and neurodegeneration in the hippocampus. PMID:27252377
Boyle, Kristen E; Hwang, Hyonson; Janssen, Rachel C; DeVente, James M; Barbour, Linda A; Hernandez, Teri L; Mandarino, Lawrence J; Lappas, Martha; Friedman, Jacob E
2014-01-01
The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.
Ling, Xi; Zhang, Guowei; Sun, Lei; Wang, Zhi; Zou, Peng; Gao, Jianfang; Peng, Kaige; Chen, Qing; Yang, Huan; Zhou, Niya; Cui, Zhihong; Zhou, Ziyuan; Liu, Jinyi; Cao, Jia; Ao, Lin
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.
2015-01-01
The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505
Suresh, Sekar; Prithiviraj, Elumalai; Lakshmi, Nagella Venkata; Ganesh, Mohanraj Karthik; Ganesh, Lakshmanan; Prakash, Seppan
2013-01-09
Mucuna pruriens Linn. (M. pruriens) is a leguminous plant that has been recognized as an herbal medicine for improving fertility and related disorders in the Indian traditional system of medicine, however without proper scientific validations. To study the effect of ethanolic seed extract of M. pruriens on mitochondrial dysfunction and the DNA damage in hyperglycemic rat epididymal spermatozoa. Male Wistar albino rats were divided as control (Sham), diabetes induced [streptozotocin 60 mg/kg of body weight (b.w.) in 0.1M citrate buffer] (STZ), diabetic rats administered with 200mg/kg b.w. of extract (STZ+MP) and normal rats administered with 200mg/kg b.w. of extract (Sham+MP). M. pruriens was administered (gavage) once daily for a period of 60 days. On 60th day animals were sacrificed by cervical dislocation sperm were collected from epididymis and subjected various analysis like antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential (MMP). Significant reduction in the sperm count, motility, viability and significant increase in the number of abnormal sperm in STZ compared to sham was noticed. STZ rat sperm showed significant increase in LPO and DNA damage. Both the enzymic and non-enzymic were decreased; MMP and the mitochondrial functions were severely affected in STZ group. The diabetic rats supplemented with M. pruriens showed a remarkable recovery in antioxidant levels and reduced LPO with well preserved sperm DNA. MMP and mitochondrial function test were also preserved in STZ+MP rat sperm. The present study has clearly demonstrated the potency of M. pruriens to reduce the diabetic induced sperm damage induced by oxidative stress (OS). These observations are encouraging to perform similar studies in human. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dickinson, Quinn; Bottoms, Scott; Hinchman, Li; ...
2016-01-20
In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effectsmore » of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.« less
Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T.; Krishna, Radhakrishna; Gordon, Scott M.; Silva, R. A. Gangani D.; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W. Sean; Hofmann, Susanna M.
2014-01-01
Background Abnormal glucose metabolism is a central feature of disorders with increased rates of cardio-vascular disease (CVD). Low levels of high density lipoprotein (HDL) are a key predictor for CVD. We used genetic mouse models with increased HDL levels (apoA-I tg) and reduced HDL levels (apoA-I ko) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. Methods and Results ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test (GTT) compared to wild type (wt) mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity (EC) during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate (OCR) in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved GTT, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of EC compared to wt mice. Circulating levels of fibroblast growth factor 21 (FGF21), a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high fat diet-induced impairment of glucose homeostasis. Conclusions In view of impaired mitochondrial function and decreased HDL levels in T2D, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of T2D beyond CVD. PMID:24170386
Mirshafa, Atefeh; Nazari, Mehdi; Jahani, Daniel; Shaki, Fatemeh
2018-06-01
Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.
Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio
2017-07-15
Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multicenter study on Leigh syndrome: disease course and predictors of survival
2014-01-01
Background Leigh syndrome is a progressive neurodegenerative disorder, associated with primary or secondary dysfunction of the mitochondrial oxidative phosphorylation. Despite the fact that Leigh syndrome is the most common phenotype of mitochondrial disorders in children, longitudinal natural history data is missing. This study was undertaken to assess the phenotypic and genotypic spectrum of patients with Leigh syndrome, characterise the clinical course and identify predictors of survival in a large cohort of patients. Methods This is a retrospective study of patients with Leigh syndrome that have been followed at eight centers specialising in mitochondrial diseases in Europe; Gothenburg, Rotterdam, Helsinki, Copenhagen, Stockholm, Brussels, Bergen and Oulu. Results A total of 130 patients were included (78 males; 52 females), of whom 77 patients had identified pathogenic mutations. The median age of disease onset was 7 months, with 80.8% of patients presenting by the age of 2 years. The most common clinical features were abnormal motor findings, followed by abnormal ocular findings. Epileptic seizures were reported in 40% of patients. Approximately 44% of patients experienced acute exacerbations requiring hospitalisation during the previous year, mainly due to infections. The presence of pathological signs at birth and a history of epileptic seizures were associated with higher occurrence of acute exacerbations and/or relapses. Increased lactate in the cerebrospinal fluid was significantly correlated to a more severe disease course, characterised by early onset before 6 months of age, acute exacerbations and/or relapses, as well as brainstem involvement. 39% of patients had died by the age of 21 years, at a median age of 2.4 years. Disease onset before 6 months of age, failure to thrive, brainstem lesions on neuroimaging and intensive care treatment were significantly associated with poorer survival. Conclusions This is a multicenter study performed in a large cohort of patients with Leigh syndrome. Our data help define the natural history of Leigh syndrome and identify novel predictors of disease severity and long-term prognosis. PMID:24731534
Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai
2014-09-01
RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
A multicenter study on Leigh syndrome: disease course and predictors of survival.
Sofou, Kalliopi; De Coo, Irenaeus F M; Isohanni, Pirjo; Ostergaard, Elsebet; Naess, Karin; De Meirleir, Linda; Tzoulis, Charalampos; Uusimaa, Johanna; De Angst, Isabell B; Lönnqvist, Tuula; Pihko, Helena; Mankinen, Katariina; Bindoff, Laurence A; Tulinius, Már; Darin, Niklas
2014-04-15
Leigh syndrome is a progressive neurodegenerative disorder, associated with primary or secondary dysfunction of the mitochondrial oxidative phosphorylation. Despite the fact that Leigh syndrome is the most common phenotype of mitochondrial disorders in children, longitudinal natural history data is missing. This study was undertaken to assess the phenotypic and genotypic spectrum of patients with Leigh syndrome, characterise the clinical course and identify predictors of survival in a large cohort of patients. This is a retrospective study of patients with Leigh syndrome that have been followed at eight centers specialising in mitochondrial diseases in Europe; Gothenburg, Rotterdam, Helsinki, Copenhagen, Stockholm, Brussels, Bergen and Oulu. A total of 130 patients were included (78 males; 52 females), of whom 77 patients had identified pathogenic mutations. The median age of disease onset was 7 months, with 80.8% of patients presenting by the age of 2 years. The most common clinical features were abnormal motor findings, followed by abnormal ocular findings. Epileptic seizures were reported in 40% of patients. Approximately 44% of patients experienced acute exacerbations requiring hospitalisation during the previous year, mainly due to infections. The presence of pathological signs at birth and a history of epileptic seizures were associated with higher occurrence of acute exacerbations and/or relapses. Increased lactate in the cerebrospinal fluid was significantly correlated to a more severe disease course, characterised by early onset before 6 months of age, acute exacerbations and/or relapses, as well as brainstem involvement. 39% of patients had died by the age of 21 years, at a median age of 2.4 years. Disease onset before 6 months of age, failure to thrive, brainstem lesions on neuroimaging and intensive care treatment were significantly associated with poorer survival. This is a multicenter study performed in a large cohort of patients with Leigh syndrome. Our data help define the natural history of Leigh syndrome and identify novel predictors of disease severity and long-term prognosis.
Burelle, Yan; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine
2015-01-01
Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects. PMID:25835550
Control mechanisms in mitochondrial oxidative phosphorylation☆
Hroudová, Jana; Fišar, Zdeněk
2013-01-01
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677
Control mechanisms in mitochondrial oxidative phosphorylation.
Hroudová, Jana; Fišar, Zdeněk
2013-02-05
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Raza Shaikh, Saame; Brown, David A
2013-01-01
Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, L; Eriksson, S
2010-06-01
Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.
NASA Astrophysics Data System (ADS)
Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan
2011-03-01
Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.
[Advance research on association between environmental compound and parkinson's disease].
Li, X T; Cai, D F
2016-10-06
Parkinson's disease(PD)was the second most common neurodegenerative disorder after Alzheimer's disease. Incidence of PD was ascending year by year. The etiology of PD is poorly understood, involving aging, genetic and environmental factors. Recently, environmental compound had attracted more and more research interest. Studies and extrapolation from epidemiology, animal experiments and cell culture suggested that environmental compound had involved in the molecular mechanisms including mitochondrial dysfunction, oxidative stress, microglia activation, abnormal aggregation of α-synuclein and autophagy damage ,which seemed to increase PD risk.
Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena
2015-01-01
It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal activity leads to the altered transport of mitochondria and their positioning at synapses dependent on a key mitochondrial trafficking protein called Miro1. We also show that, the control of mitochondrial movement and stopping by Miro plays an important role in regulating astrocyte calcium responses. Thus the regulation of intracellular calcium signaling, by Miro-mediated mitochondrial positioning, could have important consequences for astrocyte signaling and neuron–glial interactions. PMID:26631479
Golubenko, M V; Puzyrev, V P; Saliukov, V B; Kucher, A N; Sanchat, N O
2000-03-01
Mitochondrial DNA region V deletion-insertion polymorphism was examined in three Tuvinian populations inhabiting western, northeastern, and southeastern parts of the republic. The 9-bp deletion was characterized by nonrandom distribution across the Tuva territory: its frequency in the western population (13.37%) was statistically significantly higher than that in the northeastern (4.62%), and southeastern populations, as well as in Mongols, who are territorially and ethnically close to Tuvinians. The insertion mutation in the region V was detected with a frequency of about 3% in two out of the three populations tested.
Mitochondrial diversity and distribution of African green monkeys (chlorocebus gray, 1870).
Haus, Tanja; Akom, Emmanuel; Agwanda, Bernard; Hofreiter, Michael; Roos, Christian; Zinner, Dietmar
2013-04-01
African green monkeys (Chlorocebus) represent a widely distributed and morphologically diverse primate genus in sub-Saharan Africa. Little attention has been paid to their genetic diversity and phylogeny. Based on morphological data, six species are currently recognized, but their taxonomy remains disputed. Here, we aim to characterize the mitochondrial (mt) DNA diversity, biogeography and phylogeny of African green monkeys. We analyzed the complete mitochondrial cytochrome b gene of 126 samples using feces from wild individuals and material from zoo and museum specimens with clear geographical provenance, including several type specimens. We found evidence for nine major mtDNA clades that reflect geographic distributions rather than taxa, implying that the mtDNA diversity of African green monkeys does not conform to existing taxonomic classifications. Phylogenetic relationships among clades could not be resolved suggesting a rapid early divergence of lineages. Several discordances between mtDNA and phenotype indicate that hybridization may have occurred in contact zones among species, including the threatened Bale monkey (Chlorocebus djamdjamensis). Our results provide both valuable data on African green monkeys' genetic diversity and evolution and a basis for further molecular studies on this genus. © 2013 Wiley Periodicals, Inc.
Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes
TAKEO, Shun; SATO, Daichi; KIMURA, Koji; MONJI, Yasunori; KUWAYAMA, Takehito; KAWAHARA-MIKI, Ryoka; IWATA, Hisataka
2013-01-01
The aim of the present study was to address the effect of resveratrol-mediated upregulation of sirtuin 1 (SIRT1) during oocyte maturation on mitochondrial function, the developmental ability of oocytes and on mechanisms responsible for blockage of polyspermic fertilization. Oocytes collected from slaughterhouse-derived ovaries were cultured in TCM-199 medium supplemented with 10% FCS and 0 or 20 µM resveratrol (Res). We examined the effect of Res on SIRT1 expression in in vitro-matured oocytes (Exp 1); fertilization and developmental ability (Exp 2); mitochondrial DNA copy number (Mt number), ATP content and mitochondrial membrane potential in matured oocytes (Exp 3); and the time required for proteinase to dissolve the zona pellucida following in vitro fertilization (as a marker of zona pellucida hardening), as well as on the distribution of cortical granules before and after fertilization (Exp 4). In Exp 1, the 20 µM Res treatment upregulated protein expression of SIRT1 in oocytes. In Exp 2, Res treatment improved the ratio of normal fertilization and the total cell number of blastocysts. In Exp 3, Res treatment significantly increased the ATP content in matured oocytes. Additionally, Res increased the overall Mt number and mitochondrial membrane potential, but the effect was donor-dependent. In Exp 4, Res-induced zona hardening improved the distribution and exocytosis of cortical granules after in vitro fertilization. In conclusion, Res improved the quality of oocytes by improving mitochondrial quantity and quality. In addition, Res added to the maturation medium enhanced SIRT1 protein expression in oocytes and improved fertilization via reinforcement of the mechanisms responsible for blockage of polyspermic fertilization. PMID:24390595
Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T
2014-01-01
Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.
Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi
2011-01-01
Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death. PMID:21249202